Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/mvs/@/amd64/compile/hs32/modules/usr/src/sys/modules/ispfw/isp_1040_it/@/opencrypto/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/mvs/@/amd64/compile/hs32/modules/usr/src/sys/modules/ispfw/isp_1040_it/@/opencrypto/crypto.c |
/*- * Copyright (c) 2002-2006 Sam Leffler. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/opencrypto/crypto.c 208834 2010-06-05 16:00:53Z kib $"); /* * Cryptographic Subsystem. * * This code is derived from the Openbsd Cryptographic Framework (OCF) * that has the copyright shown below. Very little of the original * code remains. */ /*- * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu) * * This code was written by Angelos D. Keromytis in Athens, Greece, in * February 2000. Network Security Technologies Inc. (NSTI) kindly * supported the development of this code. * * Copyright (c) 2000, 2001 Angelos D. Keromytis * * Permission to use, copy, and modify this software with or without fee * is hereby granted, provided that this entire notice is included in * all source code copies of any software which is or includes a copy or * modification of this software. * * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR * PURPOSE. */ #define CRYPTO_TIMING /* enable timing support */ #include "opt_ddb.h" #include "opt_kdtrace.h" #include <sys/param.h> #include <sys/systm.h> #include <sys/eventhandler.h> #include <sys/kernel.h> #include <sys/kthread.h> #include <sys/lock.h> #include <sys/module.h> #include <sys/mutex.h> #include <sys/malloc.h> #include <sys/proc.h> #include <sys/sdt.h> #include <sys/sysctl.h> #include <ddb/ddb.h> #include <vm/uma.h> #include <opencrypto/cryptodev.h> #include <opencrypto/xform.h> /* XXX for M_XDATA */ #include <sys/kobj.h> #include <sys/bus.h> #include "cryptodev_if.h" #if defined(__i386__) || defined(__amd64__) #include <machine/pcb.h> #endif SDT_PROVIDER_DEFINE(opencrypto); /* * Crypto drivers register themselves by allocating a slot in the * crypto_drivers table with crypto_get_driverid() and then registering * each algorithm they support with crypto_register() and crypto_kregister(). */ static struct mtx crypto_drivers_mtx; /* lock on driver table */ #define CRYPTO_DRIVER_LOCK() mtx_lock(&crypto_drivers_mtx) #define CRYPTO_DRIVER_UNLOCK() mtx_unlock(&crypto_drivers_mtx) #define CRYPTO_DRIVER_ASSERT() mtx_assert(&crypto_drivers_mtx, MA_OWNED) /* * Crypto device/driver capabilities structure. * * Synchronization: * (d) - protected by CRYPTO_DRIVER_LOCK() * (q) - protected by CRYPTO_Q_LOCK() * Not tagged fields are read-only. */ struct cryptocap { device_t cc_dev; /* (d) device/driver */ u_int32_t cc_sessions; /* (d) # of sessions */ u_int32_t cc_koperations; /* (d) # os asym operations */ /* * Largest possible operator length (in bits) for each type of * encryption algorithm. XXX not used */ u_int16_t cc_max_op_len[CRYPTO_ALGORITHM_MAX + 1]; u_int8_t cc_alg[CRYPTO_ALGORITHM_MAX + 1]; u_int8_t cc_kalg[CRK_ALGORITHM_MAX + 1]; int cc_flags; /* (d) flags */ #define CRYPTOCAP_F_CLEANUP 0x80000000 /* needs resource cleanup */ int cc_qblocked; /* (q) symmetric q blocked */ int cc_kqblocked; /* (q) asymmetric q blocked */ }; static struct cryptocap *crypto_drivers = NULL; static int crypto_drivers_num = 0; /* * There are two queues for crypto requests; one for symmetric (e.g. * cipher) operations and one for asymmetric (e.g. MOD)operations. * A single mutex is used to lock access to both queues. We could * have one per-queue but having one simplifies handling of block/unblock * operations. */ static int crp_sleep = 0; static TAILQ_HEAD(,cryptop) crp_q; /* request queues */ static TAILQ_HEAD(,cryptkop) crp_kq; static struct mtx crypto_q_mtx; #define CRYPTO_Q_LOCK() mtx_lock(&crypto_q_mtx) #define CRYPTO_Q_UNLOCK() mtx_unlock(&crypto_q_mtx) /* * There are two queues for processing completed crypto requests; one * for the symmetric and one for the asymmetric ops. We only need one * but have two to avoid type futzing (cryptop vs. cryptkop). A single * mutex is used to lock access to both queues. Note that this lock * must be separate from the lock on request queues to insure driver * callbacks don't generate lock order reversals. */ static TAILQ_HEAD(,cryptop) crp_ret_q; /* callback queues */ static TAILQ_HEAD(,cryptkop) crp_ret_kq; static struct mtx crypto_ret_q_mtx; #define CRYPTO_RETQ_LOCK() mtx_lock(&crypto_ret_q_mtx) #define CRYPTO_RETQ_UNLOCK() mtx_unlock(&crypto_ret_q_mtx) #define CRYPTO_RETQ_EMPTY() (TAILQ_EMPTY(&crp_ret_q) && TAILQ_EMPTY(&crp_ret_kq)) static uma_zone_t cryptop_zone; static uma_zone_t cryptodesc_zone; int crypto_userasymcrypto = 1; /* userland may do asym crypto reqs */ SYSCTL_INT(_kern, OID_AUTO, userasymcrypto, CTLFLAG_RW, &crypto_userasymcrypto, 0, "Enable/disable user-mode access to asymmetric crypto support"); int crypto_devallowsoft = 0; /* only use hardware crypto for asym */ SYSCTL_INT(_kern, OID_AUTO, cryptodevallowsoft, CTLFLAG_RW, &crypto_devallowsoft, 0, "Enable/disable use of software asym crypto support"); MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records"); static void crypto_proc(void); static struct proc *cryptoproc; static void crypto_ret_proc(void); static struct proc *cryptoretproc; static void crypto_destroy(void); static int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint); static int crypto_kinvoke(struct cryptkop *krp, int flags); static struct cryptostats cryptostats; SYSCTL_STRUCT(_kern, OID_AUTO, crypto_stats, CTLFLAG_RW, &cryptostats, cryptostats, "Crypto system statistics"); #ifdef CRYPTO_TIMING static int crypto_timing = 0; SYSCTL_INT(_debug, OID_AUTO, crypto_timing, CTLFLAG_RW, &crypto_timing, 0, "Enable/disable crypto timing support"); #endif static int crypto_init(void) { int error; mtx_init(&crypto_drivers_mtx, "crypto", "crypto driver table", MTX_DEF|MTX_QUIET); TAILQ_INIT(&crp_q); TAILQ_INIT(&crp_kq); mtx_init(&crypto_q_mtx, "crypto", "crypto op queues", MTX_DEF); TAILQ_INIT(&crp_ret_q); TAILQ_INIT(&crp_ret_kq); mtx_init(&crypto_ret_q_mtx, "crypto", "crypto return queues", MTX_DEF); cryptop_zone = uma_zcreate("cryptop", sizeof (struct cryptop), 0, 0, 0, 0, UMA_ALIGN_PTR, UMA_ZONE_ZINIT); cryptodesc_zone = uma_zcreate("cryptodesc", sizeof (struct cryptodesc), 0, 0, 0, 0, UMA_ALIGN_PTR, UMA_ZONE_ZINIT); if (cryptodesc_zone == NULL || cryptop_zone == NULL) { printf("crypto_init: cannot setup crypto zones\n"); error = ENOMEM; goto bad; } crypto_drivers_num = CRYPTO_DRIVERS_INITIAL; crypto_drivers = malloc(crypto_drivers_num * sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO); if (crypto_drivers == NULL) { printf("crypto_init: cannot setup crypto drivers\n"); error = ENOMEM; goto bad; } error = kproc_create((void (*)(void *)) crypto_proc, NULL, &cryptoproc, 0, 0, "crypto"); if (error) { printf("crypto_init: cannot start crypto thread; error %d", error); goto bad; } error = kproc_create((void (*)(void *)) crypto_ret_proc, NULL, &cryptoretproc, 0, 0, "crypto returns"); if (error) { printf("crypto_init: cannot start cryptoret thread; error %d", error); goto bad; } return 0; bad: crypto_destroy(); return error; } /* * Signal a crypto thread to terminate. We use the driver * table lock to synchronize the sleep/wakeups so that we * are sure the threads have terminated before we release * the data structures they use. See crypto_finis below * for the other half of this song-and-dance. */ static void crypto_terminate(struct proc **pp, void *q) { struct proc *p; mtx_assert(&crypto_drivers_mtx, MA_OWNED); p = *pp; *pp = NULL; if (p) { wakeup_one(q); PROC_LOCK(p); /* NB: insure we don't miss wakeup */ CRYPTO_DRIVER_UNLOCK(); /* let crypto_finis progress */ msleep(p, &p->p_mtx, PWAIT, "crypto_destroy", 0); PROC_UNLOCK(p); CRYPTO_DRIVER_LOCK(); } } static void crypto_destroy(void) { /* * Terminate any crypto threads. */ CRYPTO_DRIVER_LOCK(); crypto_terminate(&cryptoproc, &crp_q); crypto_terminate(&cryptoretproc, &crp_ret_q); CRYPTO_DRIVER_UNLOCK(); /* XXX flush queues??? */ /* * Reclaim dynamically allocated resources. */ if (crypto_drivers != NULL) free(crypto_drivers, M_CRYPTO_DATA); if (cryptodesc_zone != NULL) uma_zdestroy(cryptodesc_zone); if (cryptop_zone != NULL) uma_zdestroy(cryptop_zone); mtx_destroy(&crypto_q_mtx); mtx_destroy(&crypto_ret_q_mtx); mtx_destroy(&crypto_drivers_mtx); } static struct cryptocap * crypto_checkdriver(u_int32_t hid) { if (crypto_drivers == NULL) return NULL; return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]); } /* * Compare a driver's list of supported algorithms against another * list; return non-zero if all algorithms are supported. */ static int driver_suitable(const struct cryptocap *cap, const struct cryptoini *cri) { const struct cryptoini *cr; /* See if all the algorithms are supported. */ for (cr = cri; cr; cr = cr->cri_next) if (cap->cc_alg[cr->cri_alg] == 0) return 0; return 1; } /* * Select a driver for a new session that supports the specified * algorithms and, optionally, is constrained according to the flags. * The algorithm we use here is pretty stupid; just use the * first driver that supports all the algorithms we need. If there * are multiple drivers we choose the driver with the fewest active * sessions. We prefer hardware-backed drivers to software ones. * * XXX We need more smarts here (in real life too, but that's * XXX another story altogether). */ static struct cryptocap * crypto_select_driver(const struct cryptoini *cri, int flags) { struct cryptocap *cap, *best; int match, hid; CRYPTO_DRIVER_ASSERT(); /* * Look first for hardware crypto devices if permitted. */ if (flags & CRYPTOCAP_F_HARDWARE) match = CRYPTOCAP_F_HARDWARE; else match = CRYPTOCAP_F_SOFTWARE; best = NULL; again: for (hid = 0; hid < crypto_drivers_num; hid++) { cap = &crypto_drivers[hid]; /* * If it's not initialized, is in the process of * going away, or is not appropriate (hardware * or software based on match), then skip. */ if (cap->cc_dev == NULL || (cap->cc_flags & CRYPTOCAP_F_CLEANUP) || (cap->cc_flags & match) == 0) continue; /* verify all the algorithms are supported. */ if (driver_suitable(cap, cri)) { if (best == NULL || cap->cc_sessions < best->cc_sessions) best = cap; } } if (best != NULL) return best; if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) { /* sort of an Algol 68-style for loop */ match = CRYPTOCAP_F_SOFTWARE; goto again; } return best; } /* * Create a new session. The crid argument specifies a crypto * driver to use or constraints on a driver to select (hardware * only, software only, either). Whatever driver is selected * must be capable of the requested crypto algorithms. */ int crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int crid) { struct cryptocap *cap; u_int32_t hid, lid; int err; CRYPTO_DRIVER_LOCK(); if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) { /* * Use specified driver; verify it is capable. */ cap = crypto_checkdriver(crid); if (cap != NULL && !driver_suitable(cap, cri)) cap = NULL; } else { /* * No requested driver; select based on crid flags. */ cap = crypto_select_driver(cri, crid); /* * if NULL then can't do everything in one session. * XXX Fix this. We need to inject a "virtual" session * XXX layer right about here. */ } if (cap != NULL) { /* Call the driver initialization routine. */ hid = cap - crypto_drivers; lid = hid; /* Pass the driver ID. */ err = CRYPTODEV_NEWSESSION(cap->cc_dev, &lid, cri); if (err == 0) { (*sid) = (cap->cc_flags & 0xff000000) | (hid & 0x00ffffff); (*sid) <<= 32; (*sid) |= (lid & 0xffffffff); cap->cc_sessions++; } } else err = EINVAL; CRYPTO_DRIVER_UNLOCK(); return err; } static void crypto_remove(struct cryptocap *cap) { mtx_assert(&crypto_drivers_mtx, MA_OWNED); if (cap->cc_sessions == 0 && cap->cc_koperations == 0) bzero(cap, sizeof(*cap)); } /* * Delete an existing session (or a reserved session on an unregistered * driver). */ int crypto_freesession(u_int64_t sid) { struct cryptocap *cap; u_int32_t hid; int err; CRYPTO_DRIVER_LOCK(); if (crypto_drivers == NULL) { err = EINVAL; goto done; } /* Determine two IDs. */ hid = CRYPTO_SESID2HID(sid); if (hid >= crypto_drivers_num) { err = ENOENT; goto done; } cap = &crypto_drivers[hid]; if (cap->cc_sessions) cap->cc_sessions--; /* Call the driver cleanup routine, if available. */ err = CRYPTODEV_FREESESSION(cap->cc_dev, sid); if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) crypto_remove(cap); done: CRYPTO_DRIVER_UNLOCK(); return err; } /* * Return an unused driver id. Used by drivers prior to registering * support for the algorithms they handle. */ int32_t crypto_get_driverid(device_t dev, int flags) { struct cryptocap *newdrv; int i; if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) { printf("%s: no flags specified when registering driver\n", device_get_nameunit(dev)); return -1; } CRYPTO_DRIVER_LOCK(); for (i = 0; i < crypto_drivers_num; i++) { if (crypto_drivers[i].cc_dev == NULL && (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0) { break; } } /* Out of entries, allocate some more. */ if (i == crypto_drivers_num) { /* Be careful about wrap-around. */ if (2 * crypto_drivers_num <= crypto_drivers_num) { CRYPTO_DRIVER_UNLOCK(); printf("crypto: driver count wraparound!\n"); return -1; } newdrv = malloc(2 * crypto_drivers_num * sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT|M_ZERO); if (newdrv == NULL) { CRYPTO_DRIVER_UNLOCK(); printf("crypto: no space to expand driver table!\n"); return -1; } bcopy(crypto_drivers, newdrv, crypto_drivers_num * sizeof(struct cryptocap)); crypto_drivers_num *= 2; free(crypto_drivers, M_CRYPTO_DATA); crypto_drivers = newdrv; } /* NB: state is zero'd on free */ crypto_drivers[i].cc_sessions = 1; /* Mark */ crypto_drivers[i].cc_dev = dev; crypto_drivers[i].cc_flags = flags; if (bootverbose) printf("crypto: assign %s driver id %u, flags %u\n", device_get_nameunit(dev), i, flags); CRYPTO_DRIVER_UNLOCK(); return i; } /* * Lookup a driver by name. We match against the full device * name and unit, and against just the name. The latter gives * us a simple widlcarding by device name. On success return the * driver/hardware identifier; otherwise return -1. */ int crypto_find_driver(const char *match) { int i, len = strlen(match); CRYPTO_DRIVER_LOCK(); for (i = 0; i < crypto_drivers_num; i++) { device_t dev = crypto_drivers[i].cc_dev; if (dev == NULL || (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP)) continue; if (strncmp(match, device_get_nameunit(dev), len) == 0 || strncmp(match, device_get_name(dev), len) == 0) break; } CRYPTO_DRIVER_UNLOCK(); return i < crypto_drivers_num ? i : -1; } /* * Return the device_t for the specified driver or NULL * if the driver identifier is invalid. */ device_t crypto_find_device_byhid(int hid) { struct cryptocap *cap = crypto_checkdriver(hid); return cap != NULL ? cap->cc_dev : NULL; } /* * Return the device/driver capabilities. */ int crypto_getcaps(int hid) { struct cryptocap *cap = crypto_checkdriver(hid); return cap != NULL ? cap->cc_flags : 0; } /* * Register support for a key-related algorithm. This routine * is called once for each algorithm supported a driver. */ int crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags) { struct cryptocap *cap; int err; CRYPTO_DRIVER_LOCK(); cap = crypto_checkdriver(driverid); if (cap != NULL && (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) { /* * XXX Do some performance testing to determine placing. * XXX We probably need an auxiliary data structure that * XXX describes relative performances. */ cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED; if (bootverbose) printf("crypto: %s registers key alg %u flags %u\n" , device_get_nameunit(cap->cc_dev) , kalg , flags ); err = 0; } else err = EINVAL; CRYPTO_DRIVER_UNLOCK(); return err; } /* * Register support for a non-key-related algorithm. This routine * is called once for each such algorithm supported by a driver. */ int crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen, u_int32_t flags) { struct cryptocap *cap; int err; CRYPTO_DRIVER_LOCK(); cap = crypto_checkdriver(driverid); /* NB: algorithms are in the range [1..max] */ if (cap != NULL && (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) { /* * XXX Do some performance testing to determine placing. * XXX We probably need an auxiliary data structure that * XXX describes relative performances. */ cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED; cap->cc_max_op_len[alg] = maxoplen; if (bootverbose) printf("crypto: %s registers alg %u flags %u maxoplen %u\n" , device_get_nameunit(cap->cc_dev) , alg , flags , maxoplen ); cap->cc_sessions = 0; /* Unmark */ err = 0; } else err = EINVAL; CRYPTO_DRIVER_UNLOCK(); return err; } static void driver_finis(struct cryptocap *cap) { u_int32_t ses, kops; CRYPTO_DRIVER_ASSERT(); ses = cap->cc_sessions; kops = cap->cc_koperations; bzero(cap, sizeof(*cap)); if (ses != 0 || kops != 0) { /* * If there are pending sessions, * just mark as invalid. */ cap->cc_flags |= CRYPTOCAP_F_CLEANUP; cap->cc_sessions = ses; cap->cc_koperations = kops; } } /* * Unregister a crypto driver. If there are pending sessions using it, * leave enough information around so that subsequent calls using those * sessions will correctly detect the driver has been unregistered and * reroute requests. */ int crypto_unregister(u_int32_t driverid, int alg) { struct cryptocap *cap; int i, err; CRYPTO_DRIVER_LOCK(); cap = crypto_checkdriver(driverid); if (cap != NULL && (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) && cap->cc_alg[alg] != 0) { cap->cc_alg[alg] = 0; cap->cc_max_op_len[alg] = 0; /* Was this the last algorithm ? */ for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++) if (cap->cc_alg[i] != 0) break; if (i == CRYPTO_ALGORITHM_MAX + 1) driver_finis(cap); err = 0; } else err = EINVAL; CRYPTO_DRIVER_UNLOCK(); return err; } /* * Unregister all algorithms associated with a crypto driver. * If there are pending sessions using it, leave enough information * around so that subsequent calls using those sessions will * correctly detect the driver has been unregistered and reroute * requests. */ int crypto_unregister_all(u_int32_t driverid) { struct cryptocap *cap; int err; CRYPTO_DRIVER_LOCK(); cap = crypto_checkdriver(driverid); if (cap != NULL) { driver_finis(cap); err = 0; } else err = EINVAL; CRYPTO_DRIVER_UNLOCK(); return err; } /* * Clear blockage on a driver. The what parameter indicates whether * the driver is now ready for cryptop's and/or cryptokop's. */ int crypto_unblock(u_int32_t driverid, int what) { struct cryptocap *cap; int err; CRYPTO_Q_LOCK(); cap = crypto_checkdriver(driverid); if (cap != NULL) { if (what & CRYPTO_SYMQ) cap->cc_qblocked = 0; if (what & CRYPTO_ASYMQ) cap->cc_kqblocked = 0; if (crp_sleep) wakeup_one(&crp_q); err = 0; } else err = EINVAL; CRYPTO_Q_UNLOCK(); return err; } /* * Add a crypto request to a queue, to be processed by the kernel thread. */ int crypto_dispatch(struct cryptop *crp) { struct cryptocap *cap; u_int32_t hid; int result; cryptostats.cs_ops++; #ifdef CRYPTO_TIMING if (crypto_timing) binuptime(&crp->crp_tstamp); #endif hid = CRYPTO_SESID2HID(crp->crp_sid); if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) { /* * Caller marked the request to be processed * immediately; dispatch it directly to the * driver unless the driver is currently blocked. */ cap = crypto_checkdriver(hid); /* Driver cannot disappeared when there is an active session. */ KASSERT(cap != NULL, ("%s: Driver disappeared.", __func__)); if (!cap->cc_qblocked) { result = crypto_invoke(cap, crp, 0); if (result != ERESTART) return (result); /* * The driver ran out of resources, put the request on * the queue. */ } } CRYPTO_Q_LOCK(); TAILQ_INSERT_TAIL(&crp_q, crp, crp_next); if (crp_sleep) wakeup_one(&crp_q); CRYPTO_Q_UNLOCK(); return 0; } /* * Add an asymetric crypto request to a queue, * to be processed by the kernel thread. */ int crypto_kdispatch(struct cryptkop *krp) { int error; cryptostats.cs_kops++; error = crypto_kinvoke(krp, krp->krp_crid); if (error == ERESTART) { CRYPTO_Q_LOCK(); TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next); if (crp_sleep) wakeup_one(&crp_q); CRYPTO_Q_UNLOCK(); error = 0; } return error; } /* * Verify a driver is suitable for the specified operation. */ static __inline int kdriver_suitable(const struct cryptocap *cap, const struct cryptkop *krp) { return (cap->cc_kalg[krp->krp_op] & CRYPTO_ALG_FLAG_SUPPORTED) != 0; } /* * Select a driver for an asym operation. The driver must * support the necessary algorithm. The caller can constrain * which device is selected with the flags parameter. The * algorithm we use here is pretty stupid; just use the first * driver that supports the algorithms we need. If there are * multiple suitable drivers we choose the driver with the * fewest active operations. We prefer hardware-backed * drivers to software ones when either may be used. */ static struct cryptocap * crypto_select_kdriver(const struct cryptkop *krp, int flags) { struct cryptocap *cap, *best, *blocked; int match, hid; CRYPTO_DRIVER_ASSERT(); /* * Look first for hardware crypto devices if permitted. */ if (flags & CRYPTOCAP_F_HARDWARE) match = CRYPTOCAP_F_HARDWARE; else match = CRYPTOCAP_F_SOFTWARE; best = NULL; blocked = NULL; again: for (hid = 0; hid < crypto_drivers_num; hid++) { cap = &crypto_drivers[hid]; /* * If it's not initialized, is in the process of * going away, or is not appropriate (hardware * or software based on match), then skip. */ if (cap->cc_dev == NULL || (cap->cc_flags & CRYPTOCAP_F_CLEANUP) || (cap->cc_flags & match) == 0) continue; /* verify all the algorithms are supported. */ if (kdriver_suitable(cap, krp)) { if (best == NULL || cap->cc_koperations < best->cc_koperations) best = cap; } } if (best != NULL) return best; if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) { /* sort of an Algol 68-style for loop */ match = CRYPTOCAP_F_SOFTWARE; goto again; } return best; } /* * Dispatch an assymetric crypto request. */ static int crypto_kinvoke(struct cryptkop *krp, int crid) { struct cryptocap *cap = NULL; int error; KASSERT(krp != NULL, ("%s: krp == NULL", __func__)); KASSERT(krp->krp_callback != NULL, ("%s: krp->crp_callback == NULL", __func__)); CRYPTO_DRIVER_LOCK(); if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) { cap = crypto_checkdriver(crid); if (cap != NULL) { /* * Driver present, it must support the necessary * algorithm and, if s/w drivers are excluded, * it must be registered as hardware-backed. */ if (!kdriver_suitable(cap, krp) || (!crypto_devallowsoft && (cap->cc_flags & CRYPTOCAP_F_HARDWARE) == 0)) cap = NULL; } } else { /* * No requested driver; select based on crid flags. */ if (!crypto_devallowsoft) /* NB: disallow s/w drivers */ crid &= ~CRYPTOCAP_F_SOFTWARE; cap = crypto_select_kdriver(krp, crid); } if (cap != NULL && !cap->cc_kqblocked) { krp->krp_hid = cap - crypto_drivers; cap->cc_koperations++; CRYPTO_DRIVER_UNLOCK(); error = CRYPTODEV_KPROCESS(cap->cc_dev, krp, 0); CRYPTO_DRIVER_LOCK(); if (error == ERESTART) { cap->cc_koperations--; CRYPTO_DRIVER_UNLOCK(); return (error); } } else { /* * NB: cap is !NULL if device is blocked; in * that case return ERESTART so the operation * is resubmitted if possible. */ error = (cap == NULL) ? ENODEV : ERESTART; } CRYPTO_DRIVER_UNLOCK(); if (error) { krp->krp_status = error; crypto_kdone(krp); } return 0; } #ifdef CRYPTO_TIMING static void crypto_tstat(struct cryptotstat *ts, struct bintime *bt) { struct bintime now, delta; struct timespec t; uint64_t u; binuptime(&now); u = now.frac; delta.frac = now.frac - bt->frac; delta.sec = now.sec - bt->sec; if (u < delta.frac) delta.sec--; bintime2timespec(&delta, &t); timespecadd(&ts->acc, &t); if (timespeccmp(&t, &ts->min, <)) ts->min = t; if (timespeccmp(&t, &ts->max, >)) ts->max = t; ts->count++; *bt = now; } #endif /* * Dispatch a crypto request to the appropriate crypto devices. */ static int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint) { KASSERT(crp != NULL, ("%s: crp == NULL", __func__)); KASSERT(crp->crp_callback != NULL, ("%s: crp->crp_callback == NULL", __func__)); KASSERT(crp->crp_desc != NULL, ("%s: crp->crp_desc == NULL", __func__)); #ifdef CRYPTO_TIMING if (crypto_timing) crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp); #endif if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) { struct cryptodesc *crd; u_int64_t nid; /* * Driver has unregistered; migrate the session and return * an error to the caller so they'll resubmit the op. * * XXX: What if there are more already queued requests for this * session? */ crypto_freesession(crp->crp_sid); for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next) crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI); /* XXX propagate flags from initial session? */ if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0) crp->crp_sid = nid; crp->crp_etype = EAGAIN; crypto_done(crp); return 0; } else { /* * Invoke the driver to process the request. */ return CRYPTODEV_PROCESS(cap->cc_dev, crp, hint); } } /* * Release a set of crypto descriptors. */ void crypto_freereq(struct cryptop *crp) { struct cryptodesc *crd; if (crp == NULL) return; #ifdef DIAGNOSTIC { struct cryptop *crp2; CRYPTO_Q_LOCK(); TAILQ_FOREACH(crp2, &crp_q, crp_next) { KASSERT(crp2 != crp, ("Freeing cryptop from the crypto queue (%p).", crp)); } CRYPTO_Q_UNLOCK(); CRYPTO_RETQ_LOCK(); TAILQ_FOREACH(crp2, &crp_ret_q, crp_next) { KASSERT(crp2 != crp, ("Freeing cryptop from the return queue (%p).", crp)); } CRYPTO_RETQ_UNLOCK(); } #endif while ((crd = crp->crp_desc) != NULL) { crp->crp_desc = crd->crd_next; uma_zfree(cryptodesc_zone, crd); } uma_zfree(cryptop_zone, crp); } /* * Acquire a set of crypto descriptors. */ struct cryptop * crypto_getreq(int num) { struct cryptodesc *crd; struct cryptop *crp; crp = uma_zalloc(cryptop_zone, M_NOWAIT|M_ZERO); if (crp != NULL) { while (num--) { crd = uma_zalloc(cryptodesc_zone, M_NOWAIT|M_ZERO); if (crd == NULL) { crypto_freereq(crp); return NULL; } crd->crd_next = crp->crp_desc; crp->crp_desc = crd; } } return crp; } /* * Invoke the callback on behalf of the driver. */ void crypto_done(struct cryptop *crp) { KASSERT((crp->crp_flags & CRYPTO_F_DONE) == 0, ("crypto_done: op already done, flags 0x%x", crp->crp_flags)); crp->crp_flags |= CRYPTO_F_DONE; if (crp->crp_etype != 0) cryptostats.cs_errs++; #ifdef CRYPTO_TIMING if (crypto_timing) crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp); #endif /* * CBIMM means unconditionally do the callback immediately; * CBIFSYNC means do the callback immediately only if the * operation was done synchronously. Both are used to avoid * doing extraneous context switches; the latter is mostly * used with the software crypto driver. */ if ((crp->crp_flags & CRYPTO_F_CBIMM) || ((crp->crp_flags & CRYPTO_F_CBIFSYNC) && (CRYPTO_SESID2CAPS(crp->crp_sid) & CRYPTOCAP_F_SYNC))) { /* * Do the callback directly. This is ok when the * callback routine does very little (e.g. the * /dev/crypto callback method just does a wakeup). */ #ifdef CRYPTO_TIMING if (crypto_timing) { /* * NB: We must copy the timestamp before * doing the callback as the cryptop is * likely to be reclaimed. */ struct bintime t = crp->crp_tstamp; crypto_tstat(&cryptostats.cs_cb, &t); crp->crp_callback(crp); crypto_tstat(&cryptostats.cs_finis, &t); } else #endif crp->crp_callback(crp); } else { /* * Normal case; queue the callback for the thread. */ CRYPTO_RETQ_LOCK(); if (CRYPTO_RETQ_EMPTY()) wakeup_one(&crp_ret_q); /* shared wait channel */ TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next); CRYPTO_RETQ_UNLOCK(); } } /* * Invoke the callback on behalf of the driver. */ void crypto_kdone(struct cryptkop *krp) { struct cryptocap *cap; if (krp->krp_status != 0) cryptostats.cs_kerrs++; CRYPTO_DRIVER_LOCK(); /* XXX: What if driver is loaded in the meantime? */ if (krp->krp_hid < crypto_drivers_num) { cap = &crypto_drivers[krp->krp_hid]; cap->cc_koperations--; KASSERT(cap->cc_koperations >= 0, ("cc_koperations < 0")); if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) crypto_remove(cap); } CRYPTO_DRIVER_UNLOCK(); CRYPTO_RETQ_LOCK(); if (CRYPTO_RETQ_EMPTY()) wakeup_one(&crp_ret_q); /* shared wait channel */ TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next); CRYPTO_RETQ_UNLOCK(); } int crypto_getfeat(int *featp) { int hid, kalg, feat = 0; CRYPTO_DRIVER_LOCK(); for (hid = 0; hid < crypto_drivers_num; hid++) { const struct cryptocap *cap = &crypto_drivers[hid]; if ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) && !crypto_devallowsoft) { continue; } for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++) if (cap->cc_kalg[kalg] & CRYPTO_ALG_FLAG_SUPPORTED) feat |= 1 << kalg; } CRYPTO_DRIVER_UNLOCK(); *featp = feat; return (0); } /* * Terminate a thread at module unload. The process that * initiated this is waiting for us to signal that we're gone; * wake it up and exit. We use the driver table lock to insure * we don't do the wakeup before they're waiting. There is no * race here because the waiter sleeps on the proc lock for the * thread so it gets notified at the right time because of an * extra wakeup that's done in exit1(). */ static void crypto_finis(void *chan) { CRYPTO_DRIVER_LOCK(); wakeup_one(chan); CRYPTO_DRIVER_UNLOCK(); kproc_exit(0); } /* * Crypto thread, dispatches crypto requests. */ static void crypto_proc(void) { struct cryptop *crp, *submit; struct cryptkop *krp; struct cryptocap *cap; u_int32_t hid; int result, hint; #if defined(__i386__) || defined(__amd64__) fpu_kern_thread(FPU_KERN_NORMAL); #endif CRYPTO_Q_LOCK(); for (;;) { /* * Find the first element in the queue that can be * processed and look-ahead to see if multiple ops * are ready for the same driver. */ submit = NULL; hint = 0; TAILQ_FOREACH(crp, &crp_q, crp_next) { hid = CRYPTO_SESID2HID(crp->crp_sid); cap = crypto_checkdriver(hid); /* * Driver cannot disappeared when there is an active * session. */ KASSERT(cap != NULL, ("%s:%u Driver disappeared.", __func__, __LINE__)); if (cap == NULL || cap->cc_dev == NULL) { /* Op needs to be migrated, process it. */ if (submit == NULL) submit = crp; break; } if (!cap->cc_qblocked) { if (submit != NULL) { /* * We stop on finding another op, * regardless whether its for the same * driver or not. We could keep * searching the queue but it might be * better to just use a per-driver * queue instead. */ if (CRYPTO_SESID2HID(submit->crp_sid) == hid) hint = CRYPTO_HINT_MORE; break; } else { submit = crp; if ((submit->crp_flags & CRYPTO_F_BATCH) == 0) break; /* keep scanning for more are q'd */ } } } if (submit != NULL) { TAILQ_REMOVE(&crp_q, submit, crp_next); hid = CRYPTO_SESID2HID(submit->crp_sid); cap = crypto_checkdriver(hid); KASSERT(cap != NULL, ("%s:%u Driver disappeared.", __func__, __LINE__)); result = crypto_invoke(cap, submit, hint); if (result == ERESTART) { /* * The driver ran out of resources, mark the * driver ``blocked'' for cryptop's and put * the request back in the queue. It would * best to put the request back where we got * it but that's hard so for now we put it * at the front. This should be ok; putting * it at the end does not work. */ /* XXX validate sid again? */ crypto_drivers[CRYPTO_SESID2HID(submit->crp_sid)].cc_qblocked = 1; TAILQ_INSERT_HEAD(&crp_q, submit, crp_next); cryptostats.cs_blocks++; } } /* As above, but for key ops */ TAILQ_FOREACH(krp, &crp_kq, krp_next) { cap = crypto_checkdriver(krp->krp_hid); if (cap == NULL || cap->cc_dev == NULL) { /* * Operation needs to be migrated, invalidate * the assigned device so it will reselect a * new one below. Propagate the original * crid selection flags if supplied. */ krp->krp_hid = krp->krp_crid & (CRYPTOCAP_F_SOFTWARE|CRYPTOCAP_F_HARDWARE); if (krp->krp_hid == 0) krp->krp_hid = CRYPTOCAP_F_SOFTWARE|CRYPTOCAP_F_HARDWARE; break; } if (!cap->cc_kqblocked) break; } if (krp != NULL) { TAILQ_REMOVE(&crp_kq, krp, krp_next); result = crypto_kinvoke(krp, krp->krp_hid); if (result == ERESTART) { /* * The driver ran out of resources, mark the * driver ``blocked'' for cryptkop's and put * the request back in the queue. It would * best to put the request back where we got * it but that's hard so for now we put it * at the front. This should be ok; putting * it at the end does not work. */ /* XXX validate sid again? */ crypto_drivers[krp->krp_hid].cc_kqblocked = 1; TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next); cryptostats.cs_kblocks++; } } if (submit == NULL && krp == NULL) { /* * Nothing more to be processed. Sleep until we're * woken because there are more ops to process. * This happens either by submission or by a driver * becoming unblocked and notifying us through * crypto_unblock. Note that when we wakeup we * start processing each queue again from the * front. It's not clear that it's important to * preserve this ordering since ops may finish * out of order if dispatched to different devices * and some become blocked while others do not. */ crp_sleep = 1; msleep(&crp_q, &crypto_q_mtx, PWAIT, "crypto_wait", 0); crp_sleep = 0; if (cryptoproc == NULL) break; cryptostats.cs_intrs++; } } CRYPTO_Q_UNLOCK(); crypto_finis(&crp_q); } /* * Crypto returns thread, does callbacks for processed crypto requests. * Callbacks are done here, rather than in the crypto drivers, because * callbacks typically are expensive and would slow interrupt handling. */ static void crypto_ret_proc(void) { struct cryptop *crpt; struct cryptkop *krpt; CRYPTO_RETQ_LOCK(); for (;;) { /* Harvest return q's for completed ops */ crpt = TAILQ_FIRST(&crp_ret_q); if (crpt != NULL) TAILQ_REMOVE(&crp_ret_q, crpt, crp_next); krpt = TAILQ_FIRST(&crp_ret_kq); if (krpt != NULL) TAILQ_REMOVE(&crp_ret_kq, krpt, krp_next); if (crpt != NULL || krpt != NULL) { CRYPTO_RETQ_UNLOCK(); /* * Run callbacks unlocked. */ if (crpt != NULL) { #ifdef CRYPTO_TIMING if (crypto_timing) { /* * NB: We must copy the timestamp before * doing the callback as the cryptop is * likely to be reclaimed. */ struct bintime t = crpt->crp_tstamp; crypto_tstat(&cryptostats.cs_cb, &t); crpt->crp_callback(crpt); crypto_tstat(&cryptostats.cs_finis, &t); } else #endif crpt->crp_callback(crpt); } if (krpt != NULL) krpt->krp_callback(krpt); CRYPTO_RETQ_LOCK(); } else { /* * Nothing more to be processed. Sleep until we're * woken because there are more returns to process. */ msleep(&crp_ret_q, &crypto_ret_q_mtx, PWAIT, "crypto_ret_wait", 0); if (cryptoretproc == NULL) break; cryptostats.cs_rets++; } } CRYPTO_RETQ_UNLOCK(); crypto_finis(&crp_ret_q); } #ifdef DDB static void db_show_drivers(void) { int hid; db_printf("%12s %4s %4s %8s %2s %2s\n" , "Device" , "Ses" , "Kops" , "Flags" , "QB" , "KB" ); for (hid = 0; hid < crypto_drivers_num; hid++) { const struct cryptocap *cap = &crypto_drivers[hid]; if (cap->cc_dev == NULL) continue; db_printf("%-12s %4u %4u %08x %2u %2u\n" , device_get_nameunit(cap->cc_dev) , cap->cc_sessions , cap->cc_koperations , cap->cc_flags , cap->cc_qblocked , cap->cc_kqblocked ); } } DB_SHOW_COMMAND(crypto, db_show_crypto) { struct cryptop *crp; db_show_drivers(); db_printf("\n"); db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n", "HID", "Caps", "Ilen", "Olen", "Etype", "Flags", "Desc", "Callback"); TAILQ_FOREACH(crp, &crp_q, crp_next) { db_printf("%4u %08x %4u %4u %4u %04x %8p %8p\n" , (int) CRYPTO_SESID2HID(crp->crp_sid) , (int) CRYPTO_SESID2CAPS(crp->crp_sid) , crp->crp_ilen, crp->crp_olen , crp->crp_etype , crp->crp_flags , crp->crp_desc , crp->crp_callback ); } if (!TAILQ_EMPTY(&crp_ret_q)) { db_printf("\n%4s %4s %4s %8s\n", "HID", "Etype", "Flags", "Callback"); TAILQ_FOREACH(crp, &crp_ret_q, crp_next) { db_printf("%4u %4u %04x %8p\n" , (int) CRYPTO_SESID2HID(crp->crp_sid) , crp->crp_etype , crp->crp_flags , crp->crp_callback ); } } } DB_SHOW_COMMAND(kcrypto, db_show_kcrypto) { struct cryptkop *krp; db_show_drivers(); db_printf("\n"); db_printf("%4s %5s %4s %4s %8s %4s %8s\n", "Op", "Status", "#IP", "#OP", "CRID", "HID", "Callback"); TAILQ_FOREACH(krp, &crp_kq, krp_next) { db_printf("%4u %5u %4u %4u %08x %4u %8p\n" , krp->krp_op , krp->krp_status , krp->krp_iparams, krp->krp_oparams , krp->krp_crid, krp->krp_hid , krp->krp_callback ); } if (!TAILQ_EMPTY(&crp_ret_q)) { db_printf("%4s %5s %8s %4s %8s\n", "Op", "Status", "CRID", "HID", "Callback"); TAILQ_FOREACH(krp, &crp_ret_kq, krp_next) { db_printf("%4u %5u %08x %4u %8p\n" , krp->krp_op , krp->krp_status , krp->krp_crid, krp->krp_hid , krp->krp_callback ); } } } #endif int crypto_modevent(module_t mod, int type, void *unused); /* * Initialization code, both for static and dynamic loading. * Note this is not invoked with the usual MODULE_DECLARE * mechanism but instead is listed as a dependency by the * cryptosoft driver. This guarantees proper ordering of * calls on module load/unload. */ int crypto_modevent(module_t mod, int type, void *unused) { int error = EINVAL; switch (type) { case MOD_LOAD: error = crypto_init(); if (error == 0 && bootverbose) printf("crypto: <crypto core>\n"); break; case MOD_UNLOAD: /*XXX disallow if active sessions */ error = 0; crypto_destroy(); return 0; } return error; } MODULE_VERSION(crypto, 1); MODULE_DEPEND(crypto, zlib, 1, 1, 1);