config root man

Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/mvs/@/amd64/compile/hs32/modules/usr/src/sys/modules/netgraph/atm/sscop/@/dev/hptmv/

FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64
Upload File :
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/mvs/@/amd64/compile/hs32/modules/usr/src/sys/modules/netgraph/atm/sscop/@/dev/hptmv/entry.c

/*
 * Copyright (c) 2004-2005 HighPoint Technologies, Inc.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD: release/9.1.0/sys/dev/hptmv/entry.c 236655 2012-06-06 04:38:25Z eadler $");
 
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/bus.h>
#include <sys/malloc.h>
#include <sys/resource.h>
#include <sys/time.h>
#include <sys/callout.h>
#include <sys/signalvar.h>
#include <sys/eventhandler.h>
#include <sys/proc.h>
#include <sys/kthread.h>

#if (__FreeBSD_version >= 500000)
#include <sys/mutex.h>
#include <sys/module.h>
#endif

#if (__FreeBSD_version >= 500000)
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#else 
#include <pci/pcireg.h>
#include <pci/pcivar.h>
#include <sys/wait.h>
#include <sys/sysproto.h>
#endif

#ifndef __KERNEL__
#define __KERNEL__
#endif

#include <dev/hptmv/global.h>
#include <dev/hptmv/hptintf.h>
#include <dev/hptmv/osbsd.h>
#include <dev/hptmv/access601.h>


#ifdef DEBUG
#ifdef DEBUG_LEVEL
int hpt_dbg_level = DEBUG_LEVEL;
#else 
int hpt_dbg_level = 0;
#endif
#endif

#define MV_ERROR printf

/*
 * CAM SIM entry points
 */
static int 	hpt_probe (device_t dev);
static void launch_worker_thread(void);
static int 	hpt_attach(device_t dev);
static int 	hpt_detach(device_t dev);
static int 	hpt_shutdown(device_t dev);
static void hpt_poll(struct cam_sim *sim);
static void hpt_intr(void *arg);
static void hpt_async(void *callback_arg, u_int32_t code, struct cam_path *path, void *arg);
static void hpt_action(struct cam_sim *sim, union ccb *ccb);

static device_method_t driver_methods[] = {
	/* Device interface */
	DEVMETHOD(device_probe,		hpt_probe),
	DEVMETHOD(device_attach,	hpt_attach),
	DEVMETHOD(device_detach,	hpt_detach),

	DEVMETHOD(device_shutdown,	hpt_shutdown),
	DEVMETHOD_END
};

static driver_t hpt_pci_driver = {
	__str(PROC_DIR_NAME),
	driver_methods,
	sizeof(IAL_ADAPTER_T)
};

static devclass_t	hpt_devclass;

#define __DRIVER_MODULE(p1, p2, p3, p4, p5, p6) DRIVER_MODULE(p1, p2, p3, p4, p5, p6)
__DRIVER_MODULE(PROC_DIR_NAME, pci, hpt_pci_driver, hpt_devclass, 0, 0);
MODULE_DEPEND(PROC_DIR_NAME, cam, 1, 1, 1);

#define ccb_ccb_ptr spriv_ptr0
#define ccb_adapter ccb_h.spriv_ptr1

static void SetInquiryData(PINQUIRYDATA inquiryData, PVDevice pVDev);
static void HPTLIBAPI OsSendCommand (_VBUS_ARG union ccb * ccb);
static void HPTLIBAPI fOsCommandDone(_VBUS_ARG PCommand pCmd);
static void ccb_done(union ccb *ccb);
static void hpt_queue_ccb(union ccb **ccb_Q, union ccb *ccb);
static void hpt_free_ccb(union ccb **ccb_Q, union ccb *ccb);
static void	hptmv_free_edma_queues(IAL_ADAPTER_T *pAdapter);
static void	hptmv_free_channel(IAL_ADAPTER_T *pAdapter, MV_U8 channelNum);
static void	handleEdmaError(_VBUS_ARG PCommand pCmd);
static int	hptmv_init_channel(IAL_ADAPTER_T *pAdapter, MV_U8 channelNum);
static int	fResetActiveCommands(PVBus _vbus_p);
static void	fRegisterVdevice(IAL_ADAPTER_T *pAdapter);
static int	hptmv_allocate_edma_queues(IAL_ADAPTER_T *pAdapter);
static void	hptmv_handle_event_disconnect(void *data);
static void	hptmv_handle_event_connect(void *data);
static int	start_channel(IAL_ADAPTER_T *pAdapter, MV_U8 channelNum);
static void	init_vdev_params(IAL_ADAPTER_T *pAdapter, MV_U8 channel);
static int	hptmv_parse_identify_results(MV_SATA_CHANNEL *pMvSataChannel);
static int HPTLIBAPI fOsBuildSgl(_VBUS_ARG PCommand pCmd, FPSCAT_GATH pSg,
    int logical);
static MV_BOOLEAN CommandCompletionCB(MV_SATA_ADAPTER *pMvSataAdapter,
    MV_U8 channelNum, MV_COMPLETION_TYPE comp_type, MV_VOID_PTR commandId,
    MV_U16 responseFlags, MV_U32 timeStamp,
    MV_STORAGE_DEVICE_REGISTERS *registerStruct);
static MV_BOOLEAN hptmv_event_notify(MV_SATA_ADAPTER *pMvSataAdapter,
    MV_EVENT_TYPE eventType, MV_U32 param1, MV_U32 param2);

#define ccb_ccb_ptr spriv_ptr0
#define ccb_adapter ccb_h.spriv_ptr1

IAL_ADAPTER_T *gIal_Adapter = 0;
IAL_ADAPTER_T *pCurAdapter = 0;
static MV_SATA_CHANNEL gMvSataChannels[MAX_VBUS][MV_SATA_CHANNELS_NUM];

typedef struct st_HPT_DPC {
	IAL_ADAPTER_T *pAdapter;
	void (*dpc)(IAL_ADAPTER_T *, void *, UCHAR);
	void *arg;
	UCHAR flags;
} ST_HPT_DPC;

#define MAX_DPC 16
UCHAR DPC_Request_Nums = 0; 
static ST_HPT_DPC DpcQueue[MAX_DPC];
static int DpcQueue_First=0;
static int DpcQueue_Last = 0;

char DRIVER_VERSION[] = "v1.16";

#if (__FreeBSD_version >= 500000)
static struct mtx driver_lock;
intrmask_t lock_driver()
{

	intrmask_t spl = 0;
	mtx_lock(&driver_lock);
	return spl;
}
void unlock_driver(intrmask_t spl)
{
	mtx_unlock(&driver_lock);
}
#else 
static int driver_locked = 0;
intrmask_t lock_driver()
{
	intrmask_t spl = splcam();
loop:
	while (driver_locked)
		tsleep(&driver_locked, PRIBIO, "hptlck", hz);
	atomic_add_int(&driver_locked, 1);
	if (driver_locked>1) {
		atomic_subtract_int(&driver_locked, 1);
		goto loop;
	}
	return spl;
}

void unlock_driver(intrmask_t spl)
{
	atomic_subtract_int(&driver_locked, 1);
	if (driver_locked==0) {
		wakeup(&driver_locked);
	}
	splx(spl);
}
#endif

/*******************************************************************************
 *	Name:	hptmv_free_channel
 *
 *	Description:	free allocated queues for the given channel
 *
 *	Parameters:    	pMvSataAdapter - pointer to the RR18xx controler this 
 * 					channel connected to. 
 *			channelNum - channel number. 
 *     
 ******************************************************************************/
static void
hptmv_free_channel(IAL_ADAPTER_T *pAdapter, MV_U8 channelNum)
{
	HPT_ASSERT(channelNum < MV_SATA_CHANNELS_NUM);
	pAdapter->mvSataAdapter.sataChannel[channelNum] = NULL;
}

static void failDevice(PVDevice pVDev)
{
	PVBus _vbus_p = pVDev->pVBus;
	IAL_ADAPTER_T *pAdapter = (IAL_ADAPTER_T *)_vbus_p->OsExt;
	
	pVDev->u.disk.df_on_line = 0;
	pVDev->vf_online = 0;
	if (pVDev->pfnDeviceFailed) 
		CallWhenIdle(_VBUS_P (DPC_PROC)pVDev->pfnDeviceFailed, pVDev);

	fNotifyGUI(ET_DEVICE_REMOVED, pVDev);

#ifndef FOR_DEMO
	if (pAdapter->ver_601==2 && !pAdapter->beeping) {
		pAdapter->beeping = 1;
		BeepOn(pAdapter->mvSataAdapter.adapterIoBaseAddress);
		set_fail_led(&pAdapter->mvSataAdapter, pVDev->u.disk.mv->channelNumber, 1);
	}
#endif
}

int MvSataResetChannel(MV_SATA_ADAPTER *pMvSataAdapter, MV_U8 channel);

static void
handleEdmaError(_VBUS_ARG PCommand pCmd)
{
	PDevice pDevice = &pCmd->pVDevice->u.disk;
	MV_SATA_ADAPTER * pSataAdapter = pDevice->mv->mvSataAdapter;

	if (!pDevice->df_on_line) {
		KdPrint(("Device is offline"));
		pCmd->Result = RETURN_BAD_DEVICE;
		CallAfterReturn(_VBUS_P (DPC_PROC)pCmd->pfnCompletion, pCmd);	
		return;
	}

	if (pCmd->RetryCount++>5) {
		hpt_printk(("too many retries on channel(%d)\n", pDevice->mv->channelNumber));
failed:
		failDevice(pCmd->pVDevice);
		pCmd->Result = RETURN_IDE_ERROR;
		CallAfterReturn(_VBUS_P (DPC_PROC)pCmd->pfnCompletion, pCmd);	
		return;
	}

	/* reset the channel and retry the command */
	if (MvSataResetChannel(pSataAdapter, pDevice->mv->channelNumber))
		goto failed;

	fNotifyGUI(ET_DEVICE_ERROR, Map2pVDevice(pDevice));

	hpt_printk(("Retry on channel(%d)\n", pDevice->mv->channelNumber));
	fDeviceSendCommand(_VBUS_P pCmd);
}

/****************************************************************
 *	Name:	hptmv_init_channel
 *
 *	Description:	allocate request and response queues for the EDMA of the 
 *					given channel and sets other fields.
 *
 *	Parameters:    	
 *		pAdapter - pointer to the emulated adapter data structure
 *		channelNum - channel number. 
 *	Return:	0 on success, otherwise on failure
 ****************************************************************/
static int
hptmv_init_channel(IAL_ADAPTER_T *pAdapter, MV_U8 channelNum)
{
	MV_SATA_CHANNEL *pMvSataChannel;
	dma_addr_t    req_dma_addr;
	dma_addr_t    rsp_dma_addr;

	if (channelNum >= MV_SATA_CHANNELS_NUM)
	{
		MV_ERROR("RR18xx[%d]: Bad channelNum=%d",
				 pAdapter->mvSataAdapter.adapterId, channelNum);
		return -1;
	}

	pMvSataChannel = &gMvSataChannels[pAdapter->mvSataAdapter.adapterId][channelNum];
	pAdapter->mvSataAdapter.sataChannel[channelNum] = pMvSataChannel;
	pMvSataChannel->channelNumber = channelNum;
	pMvSataChannel->lba48Address = MV_FALSE;
	pMvSataChannel->maxReadTransfer = MV_FALSE;

	pMvSataChannel->requestQueue = (struct mvDmaRequestQueueEntry *)
								   (pAdapter->requestsArrayBaseAlignedAddr + (channelNum * MV_EDMA_REQUEST_QUEUE_SIZE));
	req_dma_addr = pAdapter->requestsArrayBaseDmaAlignedAddr + (channelNum * MV_EDMA_REQUEST_QUEUE_SIZE);


	KdPrint(("requestQueue addr is 0x%llX", (HPT_U64)(ULONG_PTR)req_dma_addr));

	/* check the 1K alignment of the request queue*/
	if (req_dma_addr & 0x3ff)
	{
		MV_ERROR("RR18xx[%d]: request queue allocated isn't 1 K aligned,"
				 " dma_addr=%llx channel=%d\n", pAdapter->mvSataAdapter.adapterId,
				 (HPT_U64)(ULONG_PTR)req_dma_addr, channelNum);
		return -1;
	}
	pMvSataChannel->requestQueuePciLowAddress = req_dma_addr;
	pMvSataChannel->requestQueuePciHiAddress = 0;
	KdPrint(("RR18xx[%d,%d]: request queue allocated: 0x%p",
			  pAdapter->mvSataAdapter.adapterId, channelNum,
			  pMvSataChannel->requestQueue));
	pMvSataChannel->responseQueue = (struct mvDmaResponseQueueEntry *)
									(pAdapter->responsesArrayBaseAlignedAddr + (channelNum * MV_EDMA_RESPONSE_QUEUE_SIZE));
	rsp_dma_addr = pAdapter->responsesArrayBaseDmaAlignedAddr + (channelNum * MV_EDMA_RESPONSE_QUEUE_SIZE);

	/* check the 256 alignment of the response queue*/
	if (rsp_dma_addr & 0xff)
	{
		MV_ERROR("RR18xx[%d,%d]: response queue allocated isn't 256 byte "
				 "aligned, dma_addr=%llx\n",
				 pAdapter->mvSataAdapter.adapterId, channelNum, (HPT_U64)(ULONG_PTR)rsp_dma_addr);
		return -1;
	}
	pMvSataChannel->responseQueuePciLowAddress = rsp_dma_addr;
	pMvSataChannel->responseQueuePciHiAddress = 0;
	KdPrint(("RR18xx[%d,%d]: response queue allocated: 0x%p",
			  pAdapter->mvSataAdapter.adapterId, channelNum,
			  pMvSataChannel->responseQueue));

	pAdapter->mvChannel[channelNum].online = MV_TRUE;
	return 0;
}

/******************************************************************************
 *	Name: hptmv_parse_identify_results
 *
 *	Description:	this functions parses the identify command results, checks
 *					that the connected deives can be accesed by RR18xx EDMA,
 *					and updates the channel stucture accordingly.
 *
 *	Parameters:     pMvSataChannel, pointer to the channel data structure.
 *
 *	Returns:       	=0 ->success, < 0 ->failure.
 *
 ******************************************************************************/
static int
hptmv_parse_identify_results(MV_SATA_CHANNEL *pMvSataChannel)
{
	MV_U16  *iden = pMvSataChannel->identifyDevice;

	/*LBA addressing*/
	if (! (iden[IDEN_CAPACITY_1_OFFSET] & 0x200))
	{
		KdPrint(("IAL Error in IDENTIFY info: LBA not supported\n"));
		return -1;
	}
	else
	{
		KdPrint(("%25s - %s\n", "Capabilities", "LBA supported"));
	}
	/*DMA support*/
	if (! (iden[IDEN_CAPACITY_1_OFFSET] & 0x100))
	{
		KdPrint(("IAL Error in IDENTIFY info: DMA not supported\n"));
		return -1;
	}
	else
	{
		KdPrint(("%25s - %s\n", "Capabilities", "DMA supported"));
	}
	/* PIO */
	if ((iden[IDEN_VALID] & 2) == 0)
	{
		KdPrint(("IAL Error in IDENTIFY info: not able to find PIO mode\n"));
		return -1;
	}
	KdPrint(("%25s - 0x%02x\n", "PIO modes supported",
			  iden[IDEN_PIO_MODE_SPPORTED] & 0xff));

	/*UDMA*/
	if ((iden[IDEN_VALID] & 4) == 0)
	{
		KdPrint(("IAL Error in IDENTIFY info: not able to find UDMA mode\n"));
		return -1;
	}

	/* 48 bit address */
	if ((iden[IDEN_SUPPORTED_COMMANDS2] & 0x400))
	{
		KdPrint(("%25s - %s\n", "LBA48 addressing", "supported"));
		pMvSataChannel->lba48Address = MV_TRUE;
	}
	else
	{
		KdPrint(("%25s - %s\n", "LBA48 addressing", "Not supported"));
		pMvSataChannel->lba48Address = MV_FALSE;
	}
	return 0;
}

static void
init_vdev_params(IAL_ADAPTER_T *pAdapter, MV_U8 channel)
{
	PVDevice pVDev = &pAdapter->VDevices[channel];
	MV_SATA_CHANNEL *pMvSataChannel = pAdapter->mvSataAdapter.sataChannel[channel];
	MV_U16_PTR IdentifyData = pMvSataChannel->identifyDevice;

	pMvSataChannel->outstandingCommands = 0;

	pVDev->u.disk.mv         = pMvSataChannel;
	pVDev->u.disk.df_on_line = 1;
	pVDev->u.disk.pVBus      = &pAdapter->VBus;
	pVDev->pVBus             = &pAdapter->VBus;

#ifdef SUPPORT_48BIT_LBA
	if (pMvSataChannel->lba48Address == MV_TRUE)
		pVDev->u.disk.dDeRealCapacity = ((IdentifyData[101]<<16) | IdentifyData[100]) - 1;
	else
#endif
	if(IdentifyData[53] & 1) {
	pVDev->u.disk.dDeRealCapacity = 
	  (((IdentifyData[58]<<16 | IdentifyData[57]) < (IdentifyData[61]<<16 | IdentifyData[60])) ? 
		  (IdentifyData[61]<<16 | IdentifyData[60]) :
				(IdentifyData[58]<<16 | IdentifyData[57])) - 1;
	} else
		pVDev->u.disk.dDeRealCapacity = 
				 (IdentifyData[61]<<16 | IdentifyData[60]) - 1;

	pVDev->u.disk.bDeUsable_Mode = pVDev->u.disk.bDeModeSetting = 
		pAdapter->mvChannel[channel].maxPioModeSupported - MV_ATA_TRANSFER_PIO_0;

	if (pAdapter->mvChannel[channel].maxUltraDmaModeSupported!=0xFF) {
		pVDev->u.disk.bDeUsable_Mode = pVDev->u.disk.bDeModeSetting = 
			pAdapter->mvChannel[channel].maxUltraDmaModeSupported - MV_ATA_TRANSFER_UDMA_0 + 8;
	}
}

static void device_change(IAL_ADAPTER_T *pAdapter , MV_U8 channelIndex, int plugged)
{
	PVDevice pVDev;
	MV_SATA_ADAPTER  *pMvSataAdapter = &pAdapter->mvSataAdapter;
	MV_SATA_CHANNEL  *pMvSataChannel = pMvSataAdapter->sataChannel[channelIndex];
	
	if (!pMvSataChannel) return;

	if (plugged)
	{
		pVDev = &(pAdapter->VDevices[channelIndex]);
		init_vdev_params(pAdapter, channelIndex);

		pVDev->VDeviceType = pVDev->u.disk.df_atapi? VD_ATAPI : 
			pVDev->u.disk.df_removable_drive? VD_REMOVABLE : VD_SINGLE_DISK;

		pVDev->VDeviceCapacity = pVDev->u.disk.dDeRealCapacity-SAVE_FOR_RAID_INFO;
		pVDev->pfnSendCommand = pfnSendCommand[pVDev->VDeviceType];
		pVDev->pfnDeviceFailed = pfnDeviceFailed[pVDev->VDeviceType];
		pVDev->vf_online = 1;

#ifdef SUPPORT_ARRAY
		if(pVDev->pParent) 
		{
			int iMember;
			for(iMember = 0; iMember < 	pVDev->pParent->u.array.bArnMember; iMember++)
				if((PVDevice)pVDev->pParent->u.array.pMember[iMember] == pVDev)
					pVDev->pParent->u.array.pMember[iMember] = NULL;
			pVDev->pParent = NULL;
		}
#endif
		fNotifyGUI(ET_DEVICE_PLUGGED,pVDev);
		fCheckBootable(pVDev);
		RegisterVDevice(pVDev);

#ifndef FOR_DEMO
		if (pAdapter->beeping) {
			pAdapter->beeping = 0;
			BeepOff(pAdapter->mvSataAdapter.adapterIoBaseAddress);
		}
#endif

	}
	else
	{
		pVDev  = &(pAdapter->VDevices[channelIndex]);
		failDevice(pVDev);
	}
}

static int
start_channel(IAL_ADAPTER_T *pAdapter, MV_U8 channelNum)
{
	MV_SATA_ADAPTER *pMvSataAdapter = &pAdapter->mvSataAdapter;
	MV_SATA_CHANNEL *pMvSataChannel = pMvSataAdapter->sataChannel[channelNum];
	MV_CHANNEL		*pChannelInfo = &(pAdapter->mvChannel[channelNum]);
	MV_U32          udmaMode,pioMode;

	KdPrint(("RR18xx [%d]: start channel (%d)", pMvSataAdapter->adapterId, 
			 channelNum));


	/* Software reset channel */
	if (mvStorageDevATASoftResetDevice(pMvSataAdapter, channelNum) == MV_FALSE)
	{
		MV_ERROR("RR18xx [%d,%d]: failed to perform Software reset\n",
				 pMvSataAdapter->adapterId, channelNum);
		return -1;
	}

	/* Hardware reset channel */
	if (mvSataChannelHardReset(pMvSataAdapter, channelNum) == MV_FALSE)
	{
		/* If failed, try again - this is when trying to hardreset a channel */
		/* when drive is just spinning up */
		StallExec(5000000); /* wait 5 sec before trying again */
		if (mvSataChannelHardReset(pMvSataAdapter, channelNum) == MV_FALSE)
		{
			MV_ERROR("RR18xx [%d,%d]: failed to perform Hard reset\n",
					 pMvSataAdapter->adapterId, channelNum);
			return -1;
		}
	}

	/* identify device*/
	if (mvStorageDevATAIdentifyDevice(pMvSataAdapter, channelNum) == MV_FALSE)
	{
		MV_ERROR("RR18xx [%d,%d]: failed to perform ATA Identify command\n"
				 , pMvSataAdapter->adapterId, channelNum);
		return -1;
	}
	if (hptmv_parse_identify_results(pMvSataChannel))
	{
		MV_ERROR("RR18xx [%d,%d]: Error in parsing ATA Identify message\n"
				 , pMvSataAdapter->adapterId, channelNum);
		return -1;
	}

	/* mvStorageDevATASetFeatures */
	/* Disable 8 bit PIO in case CFA enabled */
	if (pMvSataChannel->identifyDevice[86] & 4)
	{
		KdPrint(("RR18xx [%d]: Disable 8 bit PIO (CFA enabled) \n",
				  pMvSataAdapter->adapterId));
		if (mvStorageDevATASetFeatures(pMvSataAdapter, channelNum,
									   MV_ATA_SET_FEATURES_DISABLE_8_BIT_PIO, 0,
									   0, 0, 0) == MV_FALSE)
		{
			MV_ERROR("RR18xx [%d]: channel %d: mvStorageDevATASetFeatures"
					 " failed\n", pMvSataAdapter->adapterId, channelNum); 
			return -1;
		}
	}
	/* Write cache */
#ifdef ENABLE_WRITE_CACHE
	if (pMvSataChannel->identifyDevice[82] & 0x20)
	{
		if (!(pMvSataChannel->identifyDevice[85] & 0x20)) /* if not enabled by default */
		{
			if (mvStorageDevATASetFeatures(pMvSataAdapter, channelNum,
										   MV_ATA_SET_FEATURES_ENABLE_WCACHE, 0,
										   0, 0, 0) == MV_FALSE)
			{
				MV_ERROR("RR18xx [%d]: channel %d: mvStorageDevATASetFeatures failed\n",
						 pMvSataAdapter->adapterId, channelNum); 
				return -1;
			}
		}
		KdPrint(("RR18xx [%d]: channel %d, write cache enabled\n",
				  pMvSataAdapter->adapterId, channelNum));
	}
	else
	{
		KdPrint(("RR18xx [%d]: channel %d, write cache not supported\n",
				  pMvSataAdapter->adapterId, channelNum));
	}
#else /* disable write cache */
	{
		if (pMvSataChannel->identifyDevice[85] & 0x20)
		{
			KdPrint(("RR18xx [%d]: channel =%d, disable write cache\n",
					  pMvSataAdapter->adapterId, channelNum));
			if (mvStorageDevATASetFeatures(pMvSataAdapter, channelNum,
										   MV_ATA_SET_FEATURES_DISABLE_WCACHE, 0,
										   0, 0, 0) == MV_FALSE)
			{
				MV_ERROR("RR18xx [%d]: channel %d: mvStorageDevATASetFeatures failed\n",
						 pMvSataAdapter->adapterId, channelNum); 
				return -1;
			}
		}
		KdPrint(("RR18xx [%d]: channel=%d, write cache disabled\n",
				  pMvSataAdapter->adapterId, channelNum));
	}
#endif

	/* Set transfer mode */
	KdPrint(("RR18xx [%d] Set transfer mode XFER_PIO_SLOW\n",
			  pMvSataAdapter->adapterId));
	if (mvStorageDevATASetFeatures(pMvSataAdapter, channelNum,
								   MV_ATA_SET_FEATURES_TRANSFER,
								   MV_ATA_TRANSFER_PIO_SLOW, 0, 0, 0) == 
		MV_FALSE)
	{
		MV_ERROR("RR18xx [%d] channel %d: Set Features failed\n",
				 pMvSataAdapter->adapterId, channelNum); 
		return -1;
	}

	if (pMvSataChannel->identifyDevice[IDEN_PIO_MODE_SPPORTED] & 1)
	{
		pioMode = MV_ATA_TRANSFER_PIO_4;
	}
	else if (pMvSataChannel->identifyDevice[IDEN_PIO_MODE_SPPORTED] & 2)
	{
		pioMode = MV_ATA_TRANSFER_PIO_3;
	}
	else
	{
		MV_ERROR("IAL Error in IDENTIFY info: PIO modes 3 and 4 not supported\n");
		pioMode = MV_ATA_TRANSFER_PIO_SLOW;
	}

	KdPrint(("RR18xx [%d] Set transfer mode XFER_PIO_4\n",
			  pMvSataAdapter->adapterId));
	pAdapter->mvChannel[channelNum].maxPioModeSupported = pioMode;
	if (mvStorageDevATASetFeatures(pMvSataAdapter, channelNum,
								   MV_ATA_SET_FEATURES_TRANSFER,
								   pioMode, 0, 0, 0) == MV_FALSE)
	{
		MV_ERROR("RR18xx [%d] channel %d: Set Features failed\n",
				 pMvSataAdapter->adapterId, channelNum); 
		return -1;
	}

	udmaMode = MV_ATA_TRANSFER_UDMA_0;
	if (pMvSataChannel->identifyDevice[IDEN_UDMA_MODE] & 0x40)
	{
		udmaMode =  MV_ATA_TRANSFER_UDMA_6;
	}
	else if (pMvSataChannel->identifyDevice[IDEN_UDMA_MODE] & 0x20)
	{
		udmaMode =  MV_ATA_TRANSFER_UDMA_5;
	}
	else if (pMvSataChannel->identifyDevice[IDEN_UDMA_MODE] & 0x10)
	{
		udmaMode =  MV_ATA_TRANSFER_UDMA_4;
	}
	else if (pMvSataChannel->identifyDevice[IDEN_UDMA_MODE] & 8)
	{
		udmaMode =  MV_ATA_TRANSFER_UDMA_3;
	}
	else if (pMvSataChannel->identifyDevice[IDEN_UDMA_MODE] & 4)
	{
		udmaMode =  MV_ATA_TRANSFER_UDMA_2;
	}

	KdPrint(("RR18xx [%d] Set transfer mode XFER_UDMA_%d\n",
			  pMvSataAdapter->adapterId, udmaMode & 0xf));
	pChannelInfo->maxUltraDmaModeSupported = udmaMode;

	/*if (mvStorageDevATASetFeatures(pMvSataAdapter, channelNum,
								   MV_ATA_SET_FEATURES_TRANSFER, udmaMode,
								   0, 0, 0) == MV_FALSE)
	{
		MV_ERROR("RR18xx [%d] channel %d: Set Features failed\n",
				 pMvSataAdapter->adapterId, channelNum); 
		return -1;
	}*/
	if (pChannelInfo->maxUltraDmaModeSupported == 0xFF) 
		return TRUE;
	else 
		do
		{
			if (mvStorageDevATASetFeatures(pMvSataAdapter, channelNum,
								   MV_ATA_SET_FEATURES_TRANSFER, 
								   pChannelInfo->maxUltraDmaModeSupported,
								   0, 0, 0) == MV_FALSE)
			{
				if (pChannelInfo->maxUltraDmaModeSupported > MV_ATA_TRANSFER_UDMA_0)
				{
					if (mvStorageDevATASoftResetDevice(pMvSataAdapter, channelNum) == MV_FALSE)
					{
						MV_REG_WRITE_BYTE(pMvSataAdapter->adapterIoBaseAddress,
										  pMvSataChannel->eDmaRegsOffset +
										  0x11c, /* command reg */
										  MV_ATA_COMMAND_IDLE_IMMEDIATE); 
						mvMicroSecondsDelay(10000);
						mvSataChannelHardReset(pMvSataAdapter, channelNum);
						if (mvStorageDevATASoftResetDevice(pMvSataAdapter, channelNum) == MV_FALSE)
							return FALSE;
					}
					if (mvSataChannelHardReset(pMvSataAdapter, channelNum) == MV_FALSE)
						return FALSE;
					pChannelInfo->maxUltraDmaModeSupported--;
					continue;
				}
				else   return FALSE;
			}
			break;
		}while (1);

	/* Read look ahead */
#ifdef ENABLE_READ_AHEAD
	if (pMvSataChannel->identifyDevice[82] & 0x40)
	{
		if (!(pMvSataChannel->identifyDevice[85] & 0x40)) /* if not enabled by default */
		{
			if (mvStorageDevATASetFeatures(pMvSataAdapter, channelNum,
										   MV_ATA_SET_FEATURES_ENABLE_RLA, 0, 0,
										   0, 0) == MV_FALSE)
			{
				MV_ERROR("RR18xx [%d] channel %d: Set Features failed\n",
						 pMvSataAdapter->adapterId, channelNum); 
				return -1;
			}
		}
		KdPrint(("RR18xx [%d]: channel=%d, read look ahead enabled\n", 
				  pMvSataAdapter->adapterId, channelNum));
	}
	else
	{
		KdPrint(("RR18xx [%d]: channel %d, Read Look Ahead not supported\n",
				  pMvSataAdapter->adapterId, channelNum));
	}
#else 
	{
		if (pMvSataChannel->identifyDevice[86] & 0x20)
		{
			KdPrint(("RR18xx [%d]:channel %d, disable read look ahead\n",
					  pMvSataAdapter->adapterId, channelNum));
			if (mvStorageDevATASetFeatures(pMvSataAdapter, channelNum,
										   MV_ATA_SET_FEATURES_DISABLE_RLA, 0, 0,
										   0, 0) == MV_FALSE)
			{
				MV_ERROR("RR18xx [%d]:channel %d:  ATA Set Features failed\n",
						 pMvSataAdapter->adapterId, channelNum); 
				return -1;
			}
		}
		KdPrint(("RR18xx [%d]:channel %d, read look ahead disabled\n",
				  pMvSataAdapter->adapterId, channelNum));
	}    
#endif


	{
		KdPrint(("RR18xx [%d]: channel %d config EDMA, Non Queued Mode\n",
				  pMvSataAdapter->adapterId, 
				  channelNum));
		if (mvSataConfigEdmaMode(pMvSataAdapter, channelNum,
								 MV_EDMA_MODE_NOT_QUEUED, 0) == MV_FALSE)
		{
			MV_ERROR("RR18xx [%d] channel %d Error: mvSataConfigEdmaMode failed\n",
					 pMvSataAdapter->adapterId, channelNum);
			return -1;
		}
	}
	/* Enable EDMA */
	if (mvSataEnableChannelDma(pMvSataAdapter, channelNum) == MV_FALSE)
	{
		MV_ERROR("RR18xx [%d] Failed to enable DMA, channel=%d\n",
				 pMvSataAdapter->adapterId, channelNum);
		return -1;
	}
	MV_ERROR("RR18xx [%d,%d]: channel started successfully\n",
			 pMvSataAdapter->adapterId, channelNum);

#ifndef FOR_DEMO
	set_fail_led(pMvSataAdapter, channelNum, 0);
#endif
	return 0;
}

static void
hptmv_handle_event(void * data, int flag)
{
	IAL_ADAPTER_T   *pAdapter = (IAL_ADAPTER_T *)data;
	MV_SATA_ADAPTER *pMvSataAdapter = &pAdapter->mvSataAdapter;
	MV_U8           channelIndex;
 
/*	mvOsSemTake(&pMvSataAdapter->semaphore); */
	for (channelIndex = 0; channelIndex < MV_SATA_CHANNELS_NUM; channelIndex++)
	{
		switch(pAdapter->sataEvents[channelIndex])
		{
			case SATA_EVENT_CHANNEL_CONNECTED:
				/* Handle only connects */
				if (flag == 1)
					break;
				KdPrint(("RR18xx [%d,%d]: new device connected\n",
						 pMvSataAdapter->adapterId, channelIndex));
				hptmv_init_channel(pAdapter, channelIndex);
				if (mvSataConfigureChannel( pMvSataAdapter, channelIndex) == MV_FALSE)
				{
					MV_ERROR("RR18xx [%d,%d] Failed to configure\n",
							 pMvSataAdapter->adapterId, channelIndex);
					hptmv_free_channel(pAdapter, channelIndex);
				}
				else
				{
					/*mvSataChannelHardReset(pMvSataAdapter, channel);*/
					if (start_channel( pAdapter, channelIndex))
					{
						MV_ERROR("RR18xx [%d,%d]Failed to start channel\n",
								 pMvSataAdapter->adapterId, channelIndex);
						hptmv_free_channel(pAdapter, channelIndex);
					}
					else 
					{
						device_change(pAdapter, channelIndex, TRUE);
					}
				}
				pAdapter->sataEvents[channelIndex] = SATA_EVENT_NO_CHANGE;
			   break;

			case SATA_EVENT_CHANNEL_DISCONNECTED:
				/* Handle only disconnects */
				if (flag == 0)
					break;
				KdPrint(("RR18xx [%d,%d]: device disconnected\n",
						 pMvSataAdapter->adapterId, channelIndex));
					/* Flush pending commands */
				if(pMvSataAdapter->sataChannel[channelIndex])
				{
					_VBUS_INST(&pAdapter->VBus)
					mvSataFlushDmaQueue (pMvSataAdapter, channelIndex,
										 MV_FLUSH_TYPE_CALLBACK);
					CheckPendingCall(_VBUS_P0);
					mvSataRemoveChannel(pMvSataAdapter,channelIndex);
					hptmv_free_channel(pAdapter, channelIndex);
					pMvSataAdapter->sataChannel[channelIndex] = NULL;
					KdPrint(("RR18xx [%d,%d]: channel removed\n",
						 pMvSataAdapter->adapterId, channelIndex));
					if (pAdapter->outstandingCommands==0 && DPC_Request_Nums==0)
						Check_Idle_Call(pAdapter);
				}
				else
				{
					KdPrint(("RR18xx [%d,%d]: channel already removed!!\n",
							 pMvSataAdapter->adapterId, channelIndex));
				}
				pAdapter->sataEvents[channelIndex] = SATA_EVENT_NO_CHANGE;
				break;
				
			case SATA_EVENT_NO_CHANGE:
				break;

			default:
				break;
		}
	}
/*	mvOsSemRelease(&pMvSataAdapter->semaphore); */
}

#define EVENT_CONNECT					1
#define EVENT_DISCONNECT				0

static void
hptmv_handle_event_connect(void *data)
{
  hptmv_handle_event (data, 0);
}

static void
hptmv_handle_event_disconnect(void *data)
{
  hptmv_handle_event (data, 1);
}

static MV_BOOLEAN
hptmv_event_notify(MV_SATA_ADAPTER *pMvSataAdapter, MV_EVENT_TYPE eventType,
								   MV_U32 param1, MV_U32 param2)
{
	IAL_ADAPTER_T   *pAdapter = pMvSataAdapter->IALData;

	switch (eventType)
	{
		case MV_EVENT_TYPE_SATA_CABLE:
			{
				MV_U8   channel = param2;

				if (param1 == EVENT_CONNECT)
				{
					pAdapter->sataEvents[channel] = SATA_EVENT_CHANNEL_CONNECTED;
					KdPrint(("RR18xx [%d,%d]: device connected event received\n",
							 pMvSataAdapter->adapterId, channel));
					/* Delete previous timers (if multiple drives connected in the same time */
					pAdapter->event_timer_connect = timeout(hptmv_handle_event_connect, pAdapter, 10*hz);
				}
				else if (param1 == EVENT_DISCONNECT)
				{
					pAdapter->sataEvents[channel] = SATA_EVENT_CHANNEL_DISCONNECTED;
					KdPrint(("RR18xx [%d,%d]: device disconnected event received \n",
							 pMvSataAdapter->adapterId, channel));
					device_change(pAdapter, channel, FALSE);
					/* Delete previous timers (if multiple drives disconnected in the same time */
					/*pAdapter->event_timer_disconnect = timeout(hptmv_handle_event_disconnect, pAdapter, 10*hz); */
					/*It is not necessary to wait, handle it directly*/
					hptmv_handle_event_disconnect(pAdapter);
				}
				else
				{

					MV_ERROR("RR18xx: illigal value for param1(%d) at "
							 "connect/disconect event, host=%d\n", param1,
							 pMvSataAdapter->adapterId );

				}
			}
			break;
		case MV_EVENT_TYPE_ADAPTER_ERROR:
			KdPrint(("RR18xx: DEVICE error event received, pci cause "
					  "reg=%x,  don't how to handle this\n", param1));
			return MV_TRUE;
		default:
			MV_ERROR("RR18xx[%d]: unknown event type (%d)\n",
					 pMvSataAdapter->adapterId, eventType);
			return MV_FALSE;
	}
	return MV_TRUE;
}

static int 
hptmv_allocate_edma_queues(IAL_ADAPTER_T *pAdapter)
{
	pAdapter->requestsArrayBaseAddr = (MV_U8 *)contigmalloc(REQUESTS_ARRAY_SIZE, 
			M_DEVBUF, M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0ul);
	if (pAdapter->requestsArrayBaseAddr == NULL)
	{
		MV_ERROR("RR18xx[%d]: Failed to allocate memory for EDMA request"
				 " queues\n", pAdapter->mvSataAdapter.adapterId);
		return -1;
	}
	pAdapter->requestsArrayBaseDmaAddr = fOsPhysicalAddress(pAdapter->requestsArrayBaseAddr);
	pAdapter->requestsArrayBaseAlignedAddr = pAdapter->requestsArrayBaseAddr;
	pAdapter->requestsArrayBaseAlignedAddr += MV_EDMA_REQUEST_QUEUE_SIZE;
	pAdapter->requestsArrayBaseAlignedAddr  = (MV_U8 *)
		(((ULONG_PTR)pAdapter->requestsArrayBaseAlignedAddr) & ~(ULONG_PTR)(MV_EDMA_REQUEST_QUEUE_SIZE - 1));
	pAdapter->requestsArrayBaseDmaAlignedAddr = pAdapter->requestsArrayBaseDmaAddr; 
	pAdapter->requestsArrayBaseDmaAlignedAddr += MV_EDMA_REQUEST_QUEUE_SIZE;
	pAdapter->requestsArrayBaseDmaAlignedAddr &= ~(ULONG_PTR)(MV_EDMA_REQUEST_QUEUE_SIZE - 1);

	if ((pAdapter->requestsArrayBaseDmaAlignedAddr - pAdapter->requestsArrayBaseDmaAddr) != 
		(pAdapter->requestsArrayBaseAlignedAddr - pAdapter->requestsArrayBaseAddr))
	{
		MV_ERROR("RR18xx[%d]: Error in Request Quueues Alignment\n",
				 pAdapter->mvSataAdapter.adapterId);
		contigfree(pAdapter->requestsArrayBaseAddr, REQUESTS_ARRAY_SIZE, M_DEVBUF);
		return -1;
	}
	/* response queues */
	pAdapter->responsesArrayBaseAddr = (MV_U8 *)contigmalloc(RESPONSES_ARRAY_SIZE, 
			M_DEVBUF, M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0ul);
	if (pAdapter->responsesArrayBaseAddr == NULL)
	{
		MV_ERROR("RR18xx[%d]: Failed to allocate memory for EDMA response"
				 " queues\n", pAdapter->mvSataAdapter.adapterId);
		contigfree(pAdapter->requestsArrayBaseAddr, RESPONSES_ARRAY_SIZE, M_DEVBUF);
		return -1;
	}
	pAdapter->responsesArrayBaseDmaAddr = fOsPhysicalAddress(pAdapter->responsesArrayBaseAddr);
	pAdapter->responsesArrayBaseAlignedAddr = pAdapter->responsesArrayBaseAddr;
	pAdapter->responsesArrayBaseAlignedAddr += MV_EDMA_RESPONSE_QUEUE_SIZE;
	pAdapter->responsesArrayBaseAlignedAddr  = (MV_U8 *)
		(((ULONG_PTR)pAdapter->responsesArrayBaseAlignedAddr) & ~(ULONG_PTR)(MV_EDMA_RESPONSE_QUEUE_SIZE - 1));
	pAdapter->responsesArrayBaseDmaAlignedAddr = pAdapter->responsesArrayBaseDmaAddr; 
	pAdapter->responsesArrayBaseDmaAlignedAddr += MV_EDMA_RESPONSE_QUEUE_SIZE;
	pAdapter->responsesArrayBaseDmaAlignedAddr &= ~(ULONG_PTR)(MV_EDMA_RESPONSE_QUEUE_SIZE - 1);

	if ((pAdapter->responsesArrayBaseDmaAlignedAddr - pAdapter->responsesArrayBaseDmaAddr) != 
		(pAdapter->responsesArrayBaseAlignedAddr - pAdapter->responsesArrayBaseAddr))
	{
		MV_ERROR("RR18xx[%d]: Error in Response Quueues Alignment\n",
				 pAdapter->mvSataAdapter.adapterId);
		contigfree(pAdapter->requestsArrayBaseAddr, REQUESTS_ARRAY_SIZE, M_DEVBUF);
		contigfree(pAdapter->responsesArrayBaseAddr, RESPONSES_ARRAY_SIZE, M_DEVBUF);
		return -1;
	}
	return 0;
}

static void
hptmv_free_edma_queues(IAL_ADAPTER_T *pAdapter)
{
	contigfree(pAdapter->requestsArrayBaseAddr, REQUESTS_ARRAY_SIZE, M_DEVBUF);
	contigfree(pAdapter->responsesArrayBaseAddr, RESPONSES_ARRAY_SIZE, M_DEVBUF);
}

static PVOID
AllocatePRDTable(IAL_ADAPTER_T *pAdapter)
{
	PVOID ret;
	if (pAdapter->pFreePRDLink) {
		KdPrint(("pAdapter->pFreePRDLink:%p\n",pAdapter->pFreePRDLink));
		ret = pAdapter->pFreePRDLink;
		pAdapter->pFreePRDLink = *(void**)ret;
		return ret;
	}
	return NULL;
}

static void
FreePRDTable(IAL_ADAPTER_T *pAdapter, PVOID PRDTable)
{
	*(void**)PRDTable = pAdapter->pFreePRDLink;
	pAdapter->pFreePRDLink = PRDTable;
}

extern PVDevice fGetFirstChild(PVDevice pLogical);
extern void fResetBootMark(PVDevice pLogical);
static void
fRegisterVdevice(IAL_ADAPTER_T *pAdapter)
{
	PVDevice pPhysical, pLogical;
	PVBus  pVBus;
	int i,j;

	for(i=0;i<MV_SATA_CHANNELS_NUM;i++) {
		pPhysical = &(pAdapter->VDevices[i]);
		pLogical = pPhysical;
		while (pLogical->pParent) pLogical = pLogical->pParent;
		if (pLogical->vf_online==0) {
			pPhysical->vf_bootmark = pLogical->vf_bootmark = 0;
			continue;
		}
		if (pLogical->VDeviceType==VD_SPARE || pPhysical!=fGetFirstChild(pLogical)) 
			continue;

		pVBus = &pAdapter->VBus;
		if(pVBus)
		{
			j=0;
			while(j<MAX_VDEVICE_PER_VBUS && pVBus->pVDevice[j]) j++;
			if(j<MAX_VDEVICE_PER_VBUS){
				pVBus->pVDevice[j] = pLogical; 
				pLogical->pVBus = pVBus;

				if (j>0 && pLogical->vf_bootmark) {
					if (pVBus->pVDevice[0]->vf_bootmark) {
						fResetBootMark(pLogical);
					}
					else {
						do { pVBus->pVDevice[j] = pVBus->pVDevice[j-1]; } while (--j);
						pVBus->pVDevice[0] = pLogical;
					}
				}
			}
		}
	}
}

PVDevice
GetSpareDisk(_VBUS_ARG PVDevice pArray)
{
	IAL_ADAPTER_T *pAdapter = (IAL_ADAPTER_T *)pArray->pVBus->OsExt;
	LBA_T capacity = LongDiv(pArray->VDeviceCapacity, pArray->u.array.bArnMember-1);
	LBA_T thiscap, maxcap = MAX_LBA_T;
	PVDevice pVDevice, pFind = NULL;
	int i;

	for(i=0;i<MV_SATA_CHANNELS_NUM;i++)
	{
		pVDevice = &pAdapter->VDevices[i];
		if(!pVDevice) 
			continue;
		thiscap = pArray->vf_format_v2? pVDevice->u.disk.dDeRealCapacity : pVDevice->VDeviceCapacity;
		/* find the smallest usable spare disk */
		if (pVDevice->VDeviceType==VD_SPARE &&
			pVDevice->u.disk.df_on_line &&
			thiscap < maxcap &&
			thiscap >= capacity)
		{						
				maxcap = pVDevice->VDeviceCapacity;
				pFind = pVDevice;			
		}
	}
	return pFind;
}

/******************************************************************
 * IO ATA Command
 *******************************************************************/
int HPTLIBAPI
fDeReadWrite(PDevice pDev, ULONG Lba, UCHAR Cmd, void *tmpBuffer)
{
	return mvReadWrite(pDev->mv, Lba, Cmd, tmpBuffer);
}

void HPTLIBAPI fDeSelectMode(PDevice pDev, UCHAR NewMode)
{
	MV_SATA_CHANNEL *pSataChannel = pDev->mv;
	MV_SATA_ADAPTER *pSataAdapter = pSataChannel->mvSataAdapter;	
	MV_U8 channelIndex = pSataChannel->channelNumber;
	UCHAR mvMode;
	/* 508x don't use MW-DMA? */
	if (NewMode>4 && NewMode<8) NewMode = 4;
	pDev->bDeModeSetting = NewMode;
	if (NewMode<=4)
		mvMode = MV_ATA_TRANSFER_PIO_0 + NewMode;
	else
		mvMode = MV_ATA_TRANSFER_UDMA_0 + (NewMode-8);

	/*To fix 88i8030 bug*/
	if (mvMode > MV_ATA_TRANSFER_UDMA_0 && mvMode < MV_ATA_TRANSFER_UDMA_4)
		mvMode = MV_ATA_TRANSFER_UDMA_0;

	mvSataDisableChannelDma(pSataAdapter, channelIndex);
	/* Flush pending commands */
	mvSataFlushDmaQueue (pSataAdapter, channelIndex, MV_FLUSH_TYPE_NONE);

	if (mvStorageDevATASetFeatures(pSataAdapter, channelIndex,
								   MV_ATA_SET_FEATURES_TRANSFER,
								   mvMode, 0, 0, 0) == MV_FALSE)
	{
		KdPrint(("channel %d: Set Features failed\n", channelIndex)); 
	}
	/* Enable EDMA */
	if (mvSataEnableChannelDma(pSataAdapter, channelIndex) == MV_FALSE)
		KdPrint(("Failed to enable DMA, channel=%d", channelIndex));
}

int HPTLIBAPI fDeSetTCQ(PDevice pDev, int enable, int depth)
{
	MV_SATA_CHANNEL *pSataChannel = pDev->mv;
	MV_SATA_ADAPTER *pSataAdapter = pSataChannel->mvSataAdapter;
	MV_U8 channelIndex = pSataChannel->channelNumber;
	IAL_ADAPTER_T *pAdapter = pSataAdapter->IALData;
	MV_CHANNEL		*channelInfo = &(pAdapter->mvChannel[channelIndex]);
	int dmaActive = pSataChannel->queueCommandsEnabled;
	int ret = 0;

	if (dmaActive) {
		mvSataDisableChannelDma(pSataAdapter, channelIndex);
		mvSataFlushDmaQueue(pSataAdapter,channelIndex,MV_FLUSH_TYPE_CALLBACK);
	}

	if (enable) {
		if (pSataChannel->queuedDMA == MV_EDMA_MODE_NOT_QUEUED &&
			(pSataChannel->identifyDevice[IDEN_SUPPORTED_COMMANDS2] & (0x2))) {
			UCHAR depth = ((pSataChannel->identifyDevice[IDEN_QUEUE_DEPTH]) & 0x1f) + 1;
			channelInfo->queueDepth = (depth==32)? 31 : depth;
			mvSataConfigEdmaMode(pSataAdapter, channelIndex, MV_EDMA_MODE_QUEUED, depth);
			ret = 1;
		}
	}
	else
	{
		if (pSataChannel->queuedDMA != MV_EDMA_MODE_NOT_QUEUED) {
			channelInfo->queueDepth = 2;
			mvSataConfigEdmaMode(pSataAdapter, channelIndex, MV_EDMA_MODE_NOT_QUEUED, 0);
			ret = 1;
		}
	}

	if (dmaActive)
		mvSataEnableChannelDma(pSataAdapter,channelIndex);
	return ret;
}

int HPTLIBAPI fDeSetNCQ(PDevice pDev, int enable, int depth)
{
	return 0;
}

int HPTLIBAPI fDeSetWriteCache(PDevice pDev, int enable)
{
	MV_SATA_CHANNEL *pSataChannel = pDev->mv;
	MV_SATA_ADAPTER *pSataAdapter = pSataChannel->mvSataAdapter;
	MV_U8 channelIndex = pSataChannel->channelNumber;
	IAL_ADAPTER_T *pAdapter = pSataAdapter->IALData;
	MV_CHANNEL		*channelInfo = &(pAdapter->mvChannel[channelIndex]);
	int dmaActive = pSataChannel->queueCommandsEnabled;
	int ret = 0;

	if (dmaActive) {
		mvSataDisableChannelDma(pSataAdapter, channelIndex);
		mvSataFlushDmaQueue(pSataAdapter,channelIndex,MV_FLUSH_TYPE_CALLBACK);
	}

	if ((pSataChannel->identifyDevice[82] & (0x20))) {
		if (enable) {
			if (mvStorageDevATASetFeatures(pSataAdapter, channelIndex,
				MV_ATA_SET_FEATURES_ENABLE_WCACHE, 0, 0, 0, 0))
			{
				channelInfo->writeCacheEnabled = MV_TRUE;
				ret = 1;
			}
		}
		else {
			if (mvStorageDevATASetFeatures(pSataAdapter, channelIndex,
				MV_ATA_SET_FEATURES_DISABLE_WCACHE, 0, 0, 0, 0))
			{
				channelInfo->writeCacheEnabled = MV_FALSE;
				ret = 1;
			}
		}
	}

	if (dmaActive)
		mvSataEnableChannelDma(pSataAdapter,channelIndex);
	return ret;
}

int HPTLIBAPI fDeSetReadAhead(PDevice pDev, int enable)
{
	MV_SATA_CHANNEL *pSataChannel = pDev->mv;
	MV_SATA_ADAPTER *pSataAdapter = pSataChannel->mvSataAdapter;
	MV_U8 channelIndex = pSataChannel->channelNumber;
	IAL_ADAPTER_T *pAdapter = pSataAdapter->IALData;
	MV_CHANNEL		*channelInfo = &(pAdapter->mvChannel[channelIndex]);
	int dmaActive = pSataChannel->queueCommandsEnabled;
	int ret = 0;

	if (dmaActive) {
		mvSataDisableChannelDma(pSataAdapter, channelIndex);
		mvSataFlushDmaQueue(pSataAdapter,channelIndex,MV_FLUSH_TYPE_CALLBACK);
	}

	if ((pSataChannel->identifyDevice[82] & (0x40))) {
		if (enable) {
			if (mvStorageDevATASetFeatures(pSataAdapter, channelIndex,
				MV_ATA_SET_FEATURES_ENABLE_RLA, 0, 0, 0, 0))
			{
				channelInfo->readAheadEnabled = MV_TRUE;
				ret = 1;
			}
		}
		else {
			if (mvStorageDevATASetFeatures(pSataAdapter, channelIndex,
				MV_ATA_SET_FEATURES_DISABLE_RLA, 0, 0, 0, 0))
			{
				channelInfo->readAheadEnabled = MV_FALSE;
				ret = 1;
			}
		}
	}

	if (dmaActive)
		mvSataEnableChannelDma(pSataAdapter,channelIndex);
	return ret;
}

#ifdef SUPPORT_ARRAY
#define IdeRegisterVDevice  fCheckArray
#else 
void
IdeRegisterVDevice(PDevice pDev)
{
	PVDevice pVDev = Map2pVDevice(pDev);

	pVDev->VDeviceType = pDev->df_atapi? VD_ATAPI : 
						 pDev->df_removable_drive? VD_REMOVABLE : VD_SINGLE_DISK;
	pVDev->vf_online = 1;
	pVDev->VDeviceCapacity = pDev->dDeRealCapacity;
	pVDev->pfnSendCommand = pfnSendCommand[pVDev->VDeviceType];
	pVDev->pfnDeviceFailed = pfnDeviceFailed[pVDev->VDeviceType];
}
#endif

static __inline PBUS_DMAMAP
dmamap_get(struct IALAdapter * pAdapter)
{
	PBUS_DMAMAP	p = pAdapter->pbus_dmamap_list;
	if (p)
		pAdapter->pbus_dmamap_list = p-> next;
	return p;
}

static __inline void
dmamap_put(PBUS_DMAMAP p)
{
	p->next = p->pAdapter->pbus_dmamap_list;
	p->pAdapter->pbus_dmamap_list = p;
}

/*Since mtx not provide the initialize when declare, so we Final init here to initialize the global mtx*/
#if __FreeBSD_version >= 500000
#define override_kernel_driver()

static void hpt_init(void *dummy)
{
	override_kernel_driver();	
	mtx_init(&driver_lock, "hptsleeplock", NULL, MTX_DEF);
}
SYSINIT(hptinit, SI_SUB_CONFIGURE, SI_ORDER_FIRST, hpt_init, NULL);
#endif

static int num_adapters = 0;
static int
init_adapter(IAL_ADAPTER_T *pAdapter)
{
	PVBus _vbus_p = &pAdapter->VBus;
	MV_SATA_ADAPTER *pMvSataAdapter;
	int i, channel, rid;

	PVDevice pVDev;

	intrmask_t oldspl = lock_driver();

	pAdapter->next = 0;

	if(gIal_Adapter == 0){
		gIal_Adapter = pAdapter;
		pCurAdapter = gIal_Adapter;
	}
	else {
		pCurAdapter->next = pAdapter;
		pCurAdapter = pAdapter;
	}

	pAdapter->outstandingCommands = 0;

	pMvSataAdapter = &(pAdapter->mvSataAdapter);
	_vbus_p->OsExt = (void *)pAdapter; 
	pMvSataAdapter->IALData = pAdapter;

	if (bus_dma_tag_create(bus_get_dma_tag(pAdapter->hpt_dev),/* parent */
			4,	/* alignment */
			BUS_SPACE_MAXADDR_32BIT+1, /* boundary */
			BUS_SPACE_MAXADDR,	/* lowaddr */
			BUS_SPACE_MAXADDR,	/* highaddr */
			NULL, NULL, 		/* filter, filterarg */
			PAGE_SIZE * (MAX_SG_DESCRIPTORS-1), /* maxsize */
			MAX_SG_DESCRIPTORS, /* nsegments */
			0x10000,	/* maxsegsize */
			BUS_DMA_WAITOK, 	/* flags */
#if __FreeBSD_version>502000
			busdma_lock_mutex,	/* lockfunc */
			&driver_lock,		/* lockfuncarg */
#endif
			&pAdapter->io_dma_parent /* tag */))
		{
			return ENXIO;
	}


	if (hptmv_allocate_edma_queues(pAdapter))
	{
		MV_ERROR("RR18xx: Failed to allocate memory for EDMA queues\n");
		unlock_driver(oldspl);
		return ENOMEM;
	}

	/* also map EPROM address */
	rid = 0x10;
	if (!(pAdapter->mem_res = bus_alloc_resource(pAdapter->hpt_dev, SYS_RES_MEMORY, &rid,
			0, ~0, MV_SATA_PCI_BAR0_SPACE_SIZE+0x40000, RF_ACTIVE))
		||
		!(pMvSataAdapter->adapterIoBaseAddress = rman_get_virtual(pAdapter->mem_res)))
	{
		MV_ERROR("RR18xx: Failed to remap memory space\n");
		hptmv_free_edma_queues(pAdapter);
		unlock_driver(oldspl);
		return ENXIO;
	}
	else
	{
		KdPrint(("RR18xx: io base address 0x%p\n", pMvSataAdapter->adapterIoBaseAddress));
	}

	pMvSataAdapter->adapterId = num_adapters++;
	/* get the revision ID */
	pMvSataAdapter->pciConfigRevisionId = pci_read_config(pAdapter->hpt_dev, PCIR_REVID, 1);
	pMvSataAdapter->pciConfigDeviceId = pci_get_device(pAdapter->hpt_dev);
	
	/* init RR18xx */
	pMvSataAdapter->intCoalThre[0]= 1;
	pMvSataAdapter->intCoalThre[1]= 1;
	pMvSataAdapter->intTimeThre[0] = 1;
	pMvSataAdapter->intTimeThre[1] = 1;
	pMvSataAdapter->pciCommand = 0x0107E371;
	pMvSataAdapter->pciSerrMask = 0xd77fe6ul;
	pMvSataAdapter->pciInterruptMask = 0xd77fe6ul;
	pMvSataAdapter->mvSataEventNotify = hptmv_event_notify;

	if (mvSataInitAdapter(pMvSataAdapter) == MV_FALSE)
	{
		MV_ERROR("RR18xx[%d]: core failed to initialize the adapter\n",
				 pMvSataAdapter->adapterId);
unregister:
		bus_release_resource(pAdapter->hpt_dev, SYS_RES_MEMORY, rid, pAdapter->mem_res);
		hptmv_free_edma_queues(pAdapter);
		unlock_driver(oldspl);
		return ENXIO;
	}
	pAdapter->ver_601 = pMvSataAdapter->pcbVersion;

#ifndef FOR_DEMO
	set_fail_leds(pMvSataAdapter, 0);
#endif
	
	/* setup command blocks */
	KdPrint(("Allocate command blocks\n"));
	_vbus_(pFreeCommands) = 0;
	pAdapter->pCommandBlocks = 
		malloc(sizeof(struct _Command) * MAX_COMMAND_BLOCKS_FOR_EACH_VBUS, M_DEVBUF, M_NOWAIT);
	KdPrint(("pCommandBlocks:%p\n",pAdapter->pCommandBlocks));
	if (!pAdapter->pCommandBlocks) {
		MV_ERROR("insufficient memory\n");
		goto unregister;
	}

	for (i=0; i<MAX_COMMAND_BLOCKS_FOR_EACH_VBUS; i++) {
		FreeCommand(_VBUS_P &(pAdapter->pCommandBlocks[i]));
	}

	/*Set up the bus_dmamap*/
	pAdapter->pbus_dmamap = (PBUS_DMAMAP)malloc (sizeof(struct _BUS_DMAMAP) * MAX_QUEUE_COMM, M_DEVBUF, M_NOWAIT);
	if(!pAdapter->pbus_dmamap) {
		MV_ERROR("insufficient memory\n");
		free(pAdapter->pCommandBlocks, M_DEVBUF);
		goto unregister;
	}

	memset((void *)pAdapter->pbus_dmamap, 0, sizeof(struct _BUS_DMAMAP) * MAX_QUEUE_COMM);
	pAdapter->pbus_dmamap_list = 0;
	for (i=0; i < MAX_QUEUE_COMM; i++) {
		PBUS_DMAMAP  pmap = &(pAdapter->pbus_dmamap[i]);
		pmap->pAdapter = pAdapter;
		dmamap_put(pmap);

		if(bus_dmamap_create(pAdapter->io_dma_parent, 0, &pmap->dma_map)) {
			MV_ERROR("Can not allocate dma map\n");
			free(pAdapter->pCommandBlocks, M_DEVBUF);
			free(pAdapter->pbus_dmamap, M_DEVBUF);
			goto unregister;
		}
	}
	/* setup PRD Tables */
	KdPrint(("Allocate PRD Tables\n"));
	pAdapter->pFreePRDLink = 0;
	
	pAdapter->prdTableAddr = (PUCHAR)contigmalloc(
		(PRD_ENTRIES_SIZE*PRD_TABLES_FOR_VBUS + 32), M_DEVBUF, M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0ul);
		
	KdPrint(("prdTableAddr:%p\n",pAdapter->prdTableAddr));
	if (!pAdapter->prdTableAddr) {
		MV_ERROR("insufficient PRD Tables\n");
		goto unregister;
	}
	pAdapter->prdTableAlignedAddr = (PUCHAR)(((ULONG_PTR)pAdapter->prdTableAddr + 0x1f) & ~(ULONG_PTR)0x1fL);
	{
		PUCHAR PRDTable = pAdapter->prdTableAlignedAddr;
		for (i=0; i<PRD_TABLES_FOR_VBUS; i++)
		{
/*			KdPrint(("i=%d,pAdapter->pFreePRDLink=%p\n",i,pAdapter->pFreePRDLink)); */
			FreePRDTable(pAdapter, PRDTable);
			PRDTable += PRD_ENTRIES_SIZE;
		}
	}

	/* enable the adapter interrupts */

	/* configure and start the connected channels*/
	for (channel = 0; channel < MV_SATA_CHANNELS_NUM; channel++)
	{
		pAdapter->mvChannel[channel].online = MV_FALSE;
		if (mvSataIsStorageDeviceConnected(pMvSataAdapter, channel)
			== MV_TRUE)
		{
			KdPrint(("RR18xx[%d]: channel %d is connected\n",
					  pMvSataAdapter->adapterId, channel));

			if (hptmv_init_channel(pAdapter, channel) == 0)
			{
				if (mvSataConfigureChannel(pMvSataAdapter, channel) == MV_FALSE)
				{
					MV_ERROR("RR18xx[%d]: Failed to configure channel"
							 " %d\n",pMvSataAdapter->adapterId, channel);
					hptmv_free_channel(pAdapter, channel);
				}
				else
				{
					if (start_channel(pAdapter, channel))
					{
						MV_ERROR("RR18xx[%d]: Failed to start channel,"
								 " channel=%d\n",pMvSataAdapter->adapterId,
								 channel);
						hptmv_free_channel(pAdapter, channel);
					}
					pAdapter->mvChannel[channel].online = MV_TRUE; 
					/*  mvSataChannelSetEdmaLoopBackMode(pMvSataAdapter,
													   channel,
													   MV_TRUE);*/
				}
			}
		}
		KdPrint(("pAdapter->mvChannel[channel].online:%x, channel:%d\n",
			pAdapter->mvChannel[channel].online, channel));
	}

#ifdef SUPPORT_ARRAY
	for(i = MAX_ARRAY_DEVICE - 1; i >= 0; i--) {
		pVDev = ArrayTables(i);
		mArFreeArrayTable(pVDev);
	}
#endif

	KdPrint(("Initialize Devices\n"));
	for (channel = 0; channel < MV_SATA_CHANNELS_NUM; channel++) {
		MV_SATA_CHANNEL *pMvSataChannel = pMvSataAdapter->sataChannel[channel];
		if (pMvSataChannel) {
			init_vdev_params(pAdapter, channel);
			IdeRegisterVDevice(&pAdapter->VDevices[channel].u.disk);
		}
	}
#ifdef SUPPORT_ARRAY
	CheckArrayCritical(_VBUS_P0);
#endif
	_vbus_p->nInstances = 1;
	fRegisterVdevice(pAdapter);

	for (channel=0;channel<MV_SATA_CHANNELS_NUM;channel++) {
		pVDev = _vbus_p->pVDevice[channel];
		if (pVDev && pVDev->vf_online)
			fCheckBootable(pVDev);
	}

#if defined(SUPPORT_ARRAY) && defined(_RAID5N_)
	init_raid5_memory(_VBUS_P0);
	_vbus_(r5).enable_write_back = 1;
	printf("RR18xx: RAID5 write-back %s\n", _vbus_(r5).enable_write_back? "enabled" : "disabled");
#endif

	mvSataUnmaskAdapterInterrupt(pMvSataAdapter);
	unlock_driver(oldspl);
	return 0;
}

int
MvSataResetChannel(MV_SATA_ADAPTER *pMvSataAdapter, MV_U8 channel)
{
	IAL_ADAPTER_T   *pAdapter = (IAL_ADAPTER_T *)pMvSataAdapter->IALData;

	mvSataDisableChannelDma(pMvSataAdapter, channel);
	/* Flush pending commands */
	mvSataFlushDmaQueue (pMvSataAdapter, channel, MV_FLUSH_TYPE_CALLBACK);

	/* Software reset channel */
	if (mvStorageDevATASoftResetDevice(pMvSataAdapter, channel) == MV_FALSE)
	{
		MV_ERROR("RR18xx [%d,%d]: failed to perform Software reset\n",
				 pMvSataAdapter->adapterId, channel);
		hptmv_free_channel(pAdapter, channel);
		return -1;
	}
	
	/* Hardware reset channel */
	if (mvSataChannelHardReset(pMvSataAdapter, channel)== MV_FALSE)
	{
		MV_ERROR("RR18xx [%d,%d] Failed to Hard reser the SATA channel\n",
				 pMvSataAdapter->adapterId, channel);
		hptmv_free_channel(pAdapter, channel);
		return -1;
	}

	if (mvSataIsStorageDeviceConnected(pMvSataAdapter, channel) == MV_FALSE)
	{
		 MV_ERROR("RR18xx [%d,%d] Failed to Connect Device\n",
				 pMvSataAdapter->adapterId, channel);
		hptmv_free_channel(pAdapter, channel);
		return -1;
	}else
	{
		MV_ERROR("channel %d: perform recalibrate command", channel);
		if (!mvStorageDevATAExecuteNonUDMACommand(pMvSataAdapter, channel,
								MV_NON_UDMA_PROTOCOL_NON_DATA,
								MV_FALSE,
								NULL,	 /* pBuffer*/
								0,		 /* count  */
								0,		/*features*/
										/* sectorCount */
								0,
								0,	/* lbaLow */
								0,	/* lbaMid */
									/* lbaHigh */
								0,
								0,		/* device */
										/* command */
								0x10))
			MV_ERROR("channel %d: recalibrate failed", channel);
		
		/* Set transfer mode */
		if((mvStorageDevATASetFeatures(pMvSataAdapter, channel,
						MV_ATA_SET_FEATURES_TRANSFER,
						MV_ATA_TRANSFER_PIO_SLOW, 0, 0, 0) == MV_FALSE) || 
			(mvStorageDevATASetFeatures(pMvSataAdapter, channel,
						MV_ATA_SET_FEATURES_TRANSFER,
						pAdapter->mvChannel[channel].maxPioModeSupported, 0, 0, 0) == MV_FALSE) ||
			(mvStorageDevATASetFeatures(pMvSataAdapter, channel,
						MV_ATA_SET_FEATURES_TRANSFER,
						pAdapter->mvChannel[channel].maxUltraDmaModeSupported, 0, 0, 0) == MV_FALSE) )
		{
			MV_ERROR("channel %d: Set Features failed", channel);
			hptmv_free_channel(pAdapter, channel);
			return -1;
		}
		/* Enable EDMA */
		if (mvSataEnableChannelDma(pMvSataAdapter, channel) == MV_FALSE)
		{
			MV_ERROR("Failed to enable DMA, channel=%d", channel);
			hptmv_free_channel(pAdapter, channel);
			return -1;
		}
	}
	return 0;
}

static int
fResetActiveCommands(PVBus _vbus_p)
{
	MV_SATA_ADAPTER *pMvSataAdapter = &((IAL_ADAPTER_T *)_vbus_p->OsExt)->mvSataAdapter;
	MV_U8 channel;
	for (channel=0;channel< MV_SATA_CHANNELS_NUM;channel++) {
		if (pMvSataAdapter->sataChannel[channel] && pMvSataAdapter->sataChannel[channel]->outstandingCommands) 
			MvSataResetChannel(pMvSataAdapter,channel);
	}
	return 0;
}

void fCompleteAllCommandsSynchronously(PVBus _vbus_p)
{
	UINT cont;
	ULONG ticks = 0;
	MV_U8 channel;
	MV_SATA_ADAPTER *pMvSataAdapter = &((IAL_ADAPTER_T *)_vbus_p->OsExt)->mvSataAdapter;
	MV_SATA_CHANNEL *pMvSataChannel;

	do {
check_cmds:
		cont = 0;
		CheckPendingCall(_VBUS_P0);
#ifdef _RAID5N_
		dataxfer_poll();
		xor_poll();
#endif
		for (channel=0;channel< MV_SATA_CHANNELS_NUM;channel++) {
			pMvSataChannel = pMvSataAdapter->sataChannel[channel];
			if (pMvSataChannel && pMvSataChannel->outstandingCommands) 
			{
				while (pMvSataChannel->outstandingCommands) {
					if (!mvSataInterruptServiceRoutine(pMvSataAdapter)) {
						StallExec(1000);
						if (ticks++ > 3000) {
							MvSataResetChannel(pMvSataAdapter,channel);
							goto check_cmds;
						}
					}
					else 
						ticks = 0;
				}
				cont = 1;
			}
		}
	} while (cont);
}

void
fResetVBus(_VBUS_ARG0)
{
	KdPrint(("fMvResetBus(%p)", _vbus_p));

	/* some commands may already finished. */
	CheckPendingCall(_VBUS_P0);

	fResetActiveCommands(_vbus_p);
	/* 
	 * the other pending commands may still be finished successfully.
	 */
	fCompleteAllCommandsSynchronously(_vbus_p);

	/* Now there should be no pending commands. No more action needed. */
	CheckIdleCall(_VBUS_P0);

	KdPrint(("fMvResetBus() done"));
}

/*No rescan function*/
void
fRescanAllDevice(_VBUS_ARG0)
{
}

static MV_BOOLEAN 
CommandCompletionCB(MV_SATA_ADAPTER *pMvSataAdapter,
					MV_U8 channelNum,
					MV_COMPLETION_TYPE comp_type,
					MV_VOID_PTR commandId,
					MV_U16 responseFlags,
					MV_U32 timeStamp,
					MV_STORAGE_DEVICE_REGISTERS *registerStruct)
{
	PCommand pCmd = (PCommand) commandId;
	_VBUS_INST(pCmd->pVDevice->pVBus)

	if (pCmd->uScratch.sata_param.prdAddr) 
		FreePRDTable(pMvSataAdapter->IALData,pCmd->uScratch.sata_param.prdAddr);

	switch (comp_type)
	{
	case MV_COMPLETION_TYPE_NORMAL:
		pCmd->Result = RETURN_SUCCESS;
		break;
	case MV_COMPLETION_TYPE_ABORT:
		pCmd->Result = RETURN_BUS_RESET;
		break;
	case MV_COMPLETION_TYPE_ERROR:
		 MV_ERROR("IAL: COMPLETION ERROR, adapter %d, channel %d, flags=%x\n",
				 pMvSataAdapter->adapterId, channelNum, responseFlags);

		if (responseFlags & 4) {
			MV_ERROR("ATA regs: error %x, sector count %x, LBA low %x, LBA mid %x,"
				" LBA high %x, device %x, status %x\n",
				registerStruct->errorRegister,
				registerStruct->sectorCountRegister,
				registerStruct->lbaLowRegister,
				registerStruct->lbaMidRegister,
				registerStruct->lbaHighRegister,
				registerStruct->deviceRegister,
				registerStruct->statusRegister);
		}
		/*We can't do handleEdmaError directly here, because CommandCompletionCB is called by 
		 * mv's ISR, if we retry the command, than the internel data structure may be destroyed*/
		pCmd->uScratch.sata_param.responseFlags = responseFlags;
		pCmd->uScratch.sata_param.bIdeStatus = registerStruct->statusRegister;
		pCmd->uScratch.sata_param.errorRegister = registerStruct->errorRegister;
		pCmd->pVDevice->u.disk.QueueLength--;
		CallAfterReturn(_VBUS_P (DPC_PROC)handleEdmaError,pCmd);
		return TRUE;
		
	default:
		MV_ERROR(" Unknown completion type (%d)\n", comp_type);
		return MV_FALSE;
	}
	
	if (pCmd->uCmd.Ide.Command == IDE_COMMAND_VERIFY && pCmd->uScratch.sata_param.cmd_priv > 1) {
		pCmd->uScratch.sata_param.cmd_priv --;
		return TRUE;
	}
	pCmd->pVDevice->u.disk.QueueLength--;
	CallAfterReturn(_VBUS_P (DPC_PROC)pCmd->pfnCompletion, pCmd);
	return TRUE;
}

void
fDeviceSendCommand(_VBUS_ARG PCommand pCmd)
{
	MV_SATA_EDMA_PRD_ENTRY  *pPRDTable = 0;
	MV_SATA_ADAPTER *pMvSataAdapter;
	MV_SATA_CHANNEL *pMvSataChannel;
	PVDevice pVDevice = pCmd->pVDevice;
	PDevice  pDevice = &pVDevice->u.disk;
	LBA_T    Lba = pCmd->uCmd.Ide.Lba;
	USHORT   nSector = pCmd->uCmd.Ide.nSectors;

	MV_QUEUE_COMMAND_RESULT result;
	MV_QUEUE_COMMAND_INFO commandInfo;	
	MV_UDMA_COMMAND_PARAMS  *pUdmaParams = &commandInfo.commandParams.udmaCommand;
	MV_NONE_UDMA_COMMAND_PARAMS *pNoUdmaParams = &commandInfo.commandParams.NoneUdmaCommand;

	MV_BOOLEAN is48bit;
	MV_U8      channel;
	int        i=0;
	
	DECLARE_BUFFER(FPSCAT_GATH, tmpSg);

	if (!pDevice->df_on_line) {
		MV_ERROR("Device is offline");
		pCmd->Result = RETURN_BAD_DEVICE;
		CallAfterReturn(_VBUS_P (DPC_PROC)pCmd->pfnCompletion, pCmd);
		return;
	}

	pDevice->HeadPosition = pCmd->uCmd.Ide.Lba + pCmd->uCmd.Ide.nSectors;
	pMvSataChannel = pDevice->mv;
	pMvSataAdapter = pMvSataChannel->mvSataAdapter;
	channel = pMvSataChannel->channelNumber;
	
	/* old RAID0 has hidden lba. Remember to clear dDeHiddenLba when delete array! */
	Lba += pDevice->dDeHiddenLba;
	/* check LBA */
	if (Lba+nSector-1 > pDevice->dDeRealCapacity) {
		pCmd->Result = RETURN_INVALID_REQUEST;
		CallAfterReturn(_VBUS_P (DPC_PROC)pCmd->pfnCompletion, pCmd);
		return;
	}
	
	/*
	 * always use 48bit LBA if drive supports it.
	 * Some Seagate drives report error if you use a 28-bit command
	 * to access sector 0xfffffff.
	 */
	is48bit = pMvSataChannel->lba48Address;

	switch (pCmd->uCmd.Ide.Command)
	{
	case IDE_COMMAND_READ:
	case IDE_COMMAND_WRITE:
		if (pDevice->bDeModeSetting<8) goto pio;
		
		commandInfo.type = MV_QUEUED_COMMAND_TYPE_UDMA;
		pUdmaParams->isEXT = is48bit;
		pUdmaParams->numOfSectors = nSector;
		pUdmaParams->lowLBAAddress = Lba;
		pUdmaParams->highLBAAddress = 0;
		pUdmaParams->prdHighAddr = 0;
		pUdmaParams->callBack = CommandCompletionCB;
		pUdmaParams->commandId = (MV_VOID_PTR )pCmd;
		if(pCmd->uCmd.Ide.Command == IDE_COMMAND_READ)
			pUdmaParams->readWrite = MV_UDMA_TYPE_READ;
		else 
			pUdmaParams->readWrite = MV_UDMA_TYPE_WRITE;
		
		if (pCmd->pSgTable && pCmd->cf_physical_sg) {
			FPSCAT_GATH sg1=tmpSg, sg2=pCmd->pSgTable;
			do { *sg1++=*sg2; } while ((sg2++->wSgFlag & SG_FLAG_EOT)==0);
		}
		else {
			if (!pCmd->pfnBuildSgl || !pCmd->pfnBuildSgl(_VBUS_P pCmd, tmpSg, 0)) {
pio:				
				mvSataDisableChannelDma(pMvSataAdapter, channel);
				mvSataFlushDmaQueue(pMvSataAdapter, channel, MV_FLUSH_TYPE_CALLBACK);
	
				if (pCmd->pSgTable && pCmd->cf_physical_sg==0) {
					FPSCAT_GATH sg1=tmpSg, sg2=pCmd->pSgTable;
					do { *sg1++=*sg2; } while ((sg2++->wSgFlag & SG_FLAG_EOT)==0);
				}
				else {
					if (!pCmd->pfnBuildSgl || !pCmd->pfnBuildSgl(_VBUS_P pCmd, tmpSg, 1)) {
						pCmd->Result = RETURN_NEED_LOGICAL_SG;
						goto finish_cmd;
					}
				}
										
				do {
					ULONG size = tmpSg->wSgSize? tmpSg->wSgSize : 0x10000;
					ULONG_PTR addr = tmpSg->dSgAddress;
					if (size & 0x1ff) {
						pCmd->Result = RETURN_INVALID_REQUEST;
						goto finish_cmd;
					}
					if (mvStorageDevATAExecuteNonUDMACommand(pMvSataAdapter, channel,
						(pCmd->cf_data_out)?MV_NON_UDMA_PROTOCOL_PIO_DATA_OUT:MV_NON_UDMA_PROTOCOL_PIO_DATA_IN,
						is48bit,
						(MV_U16_PTR)addr, 
						size >> 1,	/* count       */
						0,		/* features  N/A  */
						(MV_U16)(size>>9),	/*sector count*/
						(MV_U16)(  (is48bit? (MV_U16)((Lba >> 16) & 0xFF00) : 0 )  | (UCHAR)(Lba & 0xFF) ), /*lbalow*/
						(MV_U16)((Lba >> 8) & 0xFF), /* lbaMid      */
						(MV_U16)((Lba >> 16) & 0xFF),/* lbaHigh     */
						(MV_U8)(0x40 | (is48bit ? 0 : (UCHAR)(Lba >> 24) & 0xFF )),/* device      */
						(MV_U8)(is48bit ? (pCmd->cf_data_in?IDE_COMMAND_READ_EXT:IDE_COMMAND_WRITE_EXT):pCmd->uCmd.Ide.Command)
					)==MV_FALSE)
					{
						pCmd->Result = RETURN_IDE_ERROR;
						goto finish_cmd;
					}
					Lba += size>>9;
					if(Lba & 0xF0000000) is48bit = MV_TRUE;
				}
				while ((tmpSg++->wSgFlag & SG_FLAG_EOT)==0);
				pCmd->Result = RETURN_SUCCESS;
finish_cmd:
				mvSataEnableChannelDma(pMvSataAdapter,channel);
				CallAfterReturn(_VBUS_P (DPC_PROC)pCmd->pfnCompletion, pCmd);
				return;
			}
		}
		
		pPRDTable = (MV_SATA_EDMA_PRD_ENTRY *) AllocatePRDTable(pMvSataAdapter->IALData);
		KdPrint(("pPRDTable:%p\n",pPRDTable));
		if (!pPRDTable) {
			pCmd->Result = RETURN_DEVICE_BUSY;
			CallAfterReturn(_VBUS_P (DPC_PROC)pCmd->pfnCompletion, pCmd);
			HPT_ASSERT(0);
			return;
		}

		do{
			pPRDTable[i].highBaseAddr = (sizeof(tmpSg->dSgAddress)>4 ? (MV_U32)(tmpSg->dSgAddress>>32) : 0);
			pPRDTable[i].flags = (MV_U16)tmpSg->wSgFlag;
			pPRDTable[i].byteCount = (MV_U16)tmpSg->wSgSize;
			pPRDTable[i].lowBaseAddr = (MV_U32)tmpSg->dSgAddress;
			pPRDTable[i].reserved = 0;
			i++;
		}while((tmpSg++->wSgFlag & SG_FLAG_EOT)==0);
		
		pUdmaParams->prdLowAddr = (ULONG)fOsPhysicalAddress(pPRDTable);
		if ((pUdmaParams->numOfSectors == 256) && (pMvSataChannel->lba48Address == MV_FALSE)) {
			pUdmaParams->numOfSectors = 0;
		}
		
		pCmd->uScratch.sata_param.prdAddr = (PVOID)pPRDTable;

		result = mvSataQueueCommand(pMvSataAdapter, channel, &commandInfo);

		if (result != MV_QUEUE_COMMAND_RESULT_OK)
		{
queue_failed:
			switch (result)
			{
			case MV_QUEUE_COMMAND_RESULT_BAD_LBA_ADDRESS:
				MV_ERROR("IAL Error: Edma Queue command failed. Bad LBA "
						 "LBA[31:0](0x%08x)\n", pUdmaParams->lowLBAAddress);
				pCmd->Result = RETURN_IDE_ERROR;
				break;
			case MV_QUEUE_COMMAND_RESULT_QUEUED_MODE_DISABLED:
				MV_ERROR("IAL Error: Edma Queue command failed. EDMA"
						 " disabled adapter %d channel %d\n",
						 pMvSataAdapter->adapterId, channel);
				mvSataEnableChannelDma(pMvSataAdapter,channel);
				pCmd->Result = RETURN_IDE_ERROR;
				break;
			case MV_QUEUE_COMMAND_RESULT_FULL:
				MV_ERROR("IAL Error: Edma Queue command failed. Queue is"
						 " Full adapter %d channel %d\n",
						 pMvSataAdapter->adapterId, channel);
				pCmd->Result = RETURN_DEVICE_BUSY;
				break;
			case MV_QUEUE_COMMAND_RESULT_BAD_PARAMS:
				MV_ERROR("IAL Error: Edma Queue command failed. (Bad "
						 "Params), pMvSataAdapter: %p,  pSataChannel: %p.\n",
						 pMvSataAdapter, pMvSataAdapter->sataChannel[channel]);
				pCmd->Result = RETURN_IDE_ERROR;
				break;
			default:
				MV_ERROR("IAL Error: Bad result value (%d) from queue"
						 " command\n", result);
				pCmd->Result = RETURN_IDE_ERROR;
			}
			if(pPRDTable) 
				FreePRDTable(pMvSataAdapter->IALData,pPRDTable);
			CallAfterReturn(_VBUS_P (DPC_PROC)pCmd->pfnCompletion, pCmd);
		}
		pDevice->QueueLength++;
		return;
		
	case IDE_COMMAND_VERIFY:
		commandInfo.type = MV_QUEUED_COMMAND_TYPE_NONE_UDMA;
		pNoUdmaParams->bufPtr = NULL;
		pNoUdmaParams->callBack = CommandCompletionCB;
		pNoUdmaParams->commandId = (MV_VOID_PTR)pCmd;
		pNoUdmaParams->count = 0;
		pNoUdmaParams->features = 0;
		pNoUdmaParams->protocolType = MV_NON_UDMA_PROTOCOL_NON_DATA;
		
		pCmd->uScratch.sata_param.cmd_priv = 1;
		if (pMvSataChannel->lba48Address == MV_TRUE){
			pNoUdmaParams->command = MV_ATA_COMMAND_READ_VERIFY_SECTORS_EXT;
			pNoUdmaParams->isEXT = MV_TRUE;
			pNoUdmaParams->lbaHigh = (MV_U16)((Lba & 0xff0000) >> 16);
			pNoUdmaParams->lbaMid = (MV_U16)((Lba & 0xff00) >> 8);   
			pNoUdmaParams->lbaLow = 
				(MV_U16)(((Lba & 0xff000000) >> 16)| (Lba & 0xff));
			pNoUdmaParams->sectorCount = nSector;
			pNoUdmaParams->device = 0x40;
			result = mvSataQueueCommand(pMvSataAdapter, channel, &commandInfo);
			if (result != MV_QUEUE_COMMAND_RESULT_OK){
				goto queue_failed;
			}
			return;
		}
		else{
			pNoUdmaParams->command = MV_ATA_COMMAND_READ_VERIFY_SECTORS;
			pNoUdmaParams->isEXT = MV_FALSE;
			pNoUdmaParams->lbaHigh = (MV_U16)((Lba & 0xff0000) >> 16);
			pNoUdmaParams->lbaMid = (MV_U16)((Lba & 0xff00) >> 8);   
			pNoUdmaParams->lbaLow = (MV_U16)(Lba & 0xff);
			pNoUdmaParams->sectorCount = 0xff & nSector;
			pNoUdmaParams->device = (MV_U8)(0x40 |
				((Lba & 0xf000000) >> 24));
			pNoUdmaParams->callBack = CommandCompletionCB;
			result = mvSataQueueCommand(pMvSataAdapter, channel, &commandInfo);
			/*FIXME: how about the commands already queued? but marvel also forgets to consider this*/
			if (result != MV_QUEUE_COMMAND_RESULT_OK){
				goto queue_failed;
			}
		}
		break;
	default:
		pCmd->Result = RETURN_INVALID_REQUEST;
		CallAfterReturn(_VBUS_P (DPC_PROC)pCmd->pfnCompletion, pCmd);
		break;
	}
}

/**********************************************************
 *
 *	Probe the hostadapter.
 *
 **********************************************************/
static int
hpt_probe(device_t dev)
{
	if ((pci_get_vendor(dev) == MV_SATA_VENDOR_ID) &&
		(pci_get_device(dev) == MV_SATA_DEVICE_ID_5081
#ifdef FOR_DEMO
		|| pci_get_device(dev) == MV_SATA_DEVICE_ID_5080
#endif
		))
	{
		KdPrintI((CONTROLLER_NAME " found\n"));
		device_set_desc(dev, CONTROLLER_NAME);
		return 0;
	}
	else
		return(ENXIO);
}

/***********************************************************
 *
 *      Auto configuration:  attach and init a host adapter.
 *
 ***********************************************************/
static int
hpt_attach(device_t dev)
{
	IAL_ADAPTER_T * pAdapter = device_get_softc(dev);
	int rid;
	union ccb *ccb;
	struct cam_devq *devq;
	struct cam_sim *hpt_vsim;

	printf("%s Version %s \n", DRIVER_NAME, DRIVER_VERSION);

	if (!pAdapter)
	{
		pAdapter = (IAL_ADAPTER_T *)malloc(sizeof (IAL_ADAPTER_T), M_DEVBUF, M_NOWAIT);
#if __FreeBSD_version > 410000
		device_set_softc(dev, (void *)pAdapter);
#else 
		device_set_driver(dev, (driver_t *)pAdapter);
#endif
	}

	if (!pAdapter) return (ENOMEM);
	bzero(pAdapter, sizeof(IAL_ADAPTER_T));

	pAdapter->hpt_dev = dev;
	
	rid = init_adapter(pAdapter);
	if (rid)
		return rid;

	rid = 0;
	if ((pAdapter->hpt_irq = bus_alloc_resource(pAdapter->hpt_dev, SYS_RES_IRQ, &rid, 0, ~0ul, 1, RF_SHAREABLE | RF_ACTIVE)) == NULL)
	{
		hpt_printk(("can't allocate interrupt\n"));
		return(ENXIO);
	}

#if __FreeBSD_version <700000
	if (bus_setup_intr(pAdapter->hpt_dev, pAdapter->hpt_irq, INTR_TYPE_CAM,
				hpt_intr, pAdapter, &pAdapter->hpt_intr))
#else 
	if (bus_setup_intr(pAdapter->hpt_dev, pAdapter->hpt_irq, INTR_TYPE_CAM,
				NULL, hpt_intr, pAdapter, &pAdapter->hpt_intr))
#endif
	{
		hpt_printk(("can't set up interrupt\n"));
		free(pAdapter, M_DEVBUF);
		return(ENXIO);
	}


	if((ccb = (union ccb *)malloc(sizeof(*ccb), M_DEVBUF, M_WAITOK)) != (union ccb*)NULL)
	{
		bzero(ccb, sizeof(*ccb));
		ccb->ccb_h.pinfo.priority = 1;
		ccb->ccb_h.pinfo.index = CAM_UNQUEUED_INDEX;
	}
	else
	{
		return ENOMEM;
	}
	/*
	 * Create the device queue for our SIM(s).
	 */
	if((devq = cam_simq_alloc(8/*MAX_QUEUE_COMM*/)) == NULL)
	{
		KdPrint(("ENXIO\n"));
		return ENOMEM;
	}

	/*
	 * Construct our SIM entry
	 */
#if __FreeBSD_version <700000
	hpt_vsim = cam_sim_alloc(hpt_action, hpt_poll, __str(PROC_DIR_NAME),
			pAdapter, device_get_unit(pAdapter->hpt_dev), 1, 8, devq);
#else 
	hpt_vsim = cam_sim_alloc(hpt_action, hpt_poll, __str(PROC_DIR_NAME),
			pAdapter, device_get_unit(pAdapter->hpt_dev), &Giant, 1, 8, devq);
#endif
	if (hpt_vsim == NULL) {
		cam_simq_free(devq);
		return ENOMEM;
	}

#if __FreeBSD_version <700000
	if (xpt_bus_register(hpt_vsim, 0) != CAM_SUCCESS)
#else 
	if (xpt_bus_register(hpt_vsim, dev, 0) != CAM_SUCCESS)
#endif
	{
		cam_sim_free(hpt_vsim, /*free devq*/ TRUE);
		hpt_vsim = NULL;
		return ENXIO;
	}

	if(xpt_create_path(&pAdapter->path, /*periph */ NULL,
			cam_sim_path(hpt_vsim), CAM_TARGET_WILDCARD,
			CAM_LUN_WILDCARD) != CAM_REQ_CMP)
	{
		xpt_bus_deregister(cam_sim_path(hpt_vsim));
		cam_sim_free(hpt_vsim, /*free_devq*/TRUE);
		hpt_vsim = NULL;
		return ENXIO;
	}

	xpt_setup_ccb(&(ccb->ccb_h), pAdapter->path, /*priority*/5);
	ccb->ccb_h.func_code = XPT_SASYNC_CB;
	ccb->csa.event_enable = AC_LOST_DEVICE;
	ccb->csa.callback = hpt_async;
	ccb->csa.callback_arg = hpt_vsim;
	xpt_action((union ccb *)ccb);
	free(ccb, M_DEVBUF);

	if (device_get_unit(dev) == 0) {
		/* Start the work thread.  XXX */
		launch_worker_thread();
	}

	return 0;
}

static int
hpt_detach(device_t dev)
{	
	return (EBUSY);
}


/***************************************************************
 * The poll function is used to simulate the interrupt when
 * the interrupt subsystem is not functioning.
 *
 ***************************************************************/
static void
hpt_poll(struct cam_sim *sim)
{
	hpt_intr((void *)cam_sim_softc(sim));
}

/****************************************************************
 *	Name:	hpt_intr
 *	Description:	Interrupt handler.
 ****************************************************************/
static void
hpt_intr(void *arg)
{
	IAL_ADAPTER_T *pAdapter = (IAL_ADAPTER_T *)arg;
	intrmask_t oldspl = lock_driver();
	
	/* KdPrintI(("----- Entering Isr() -----\n")); */
	if (mvSataInterruptServiceRoutine(&pAdapter->mvSataAdapter) == MV_TRUE)
	{
		_VBUS_INST(&pAdapter->VBus)
		CheckPendingCall(_VBUS_P0);
	}

	/* KdPrintI(("----- Leaving Isr() -----\n")); */
	unlock_driver(oldspl);
}

/**********************************************************
 * 			Asynchronous Events
 *********************************************************/
#if (!defined(UNREFERENCED_PARAMETER))
#define UNREFERENCED_PARAMETER(x) (void)(x)
#endif

static void
hpt_async(void * callback_arg, u_int32_t code, struct cam_path * path,
    void * arg)
{
	/* debug XXXX */
	panic("Here");
	UNREFERENCED_PARAMETER(callback_arg);
	UNREFERENCED_PARAMETER(code);
	UNREFERENCED_PARAMETER(path);
	UNREFERENCED_PARAMETER(arg);

}

static void
FlushAdapter(IAL_ADAPTER_T *pAdapter)
{
	int i;

	hpt_printk(("flush all devices\n"));
	
	/* flush all devices */
	for (i=0; i<MAX_VDEVICE_PER_VBUS; i++) {
		PVDevice pVDev = pAdapter->VBus.pVDevice[i];
		if(pVDev) fFlushVDev(pVDev);
	}
}

static int
hpt_shutdown(device_t dev)
{
		IAL_ADAPTER_T *pAdapter;
	
		pAdapter = device_get_softc(dev);
		if (pAdapter == NULL)
			return (EINVAL);

		EVENTHANDLER_DEREGISTER(shutdown_final, pAdapter->eh);
		FlushAdapter(pAdapter);
		  /* give the flush some time to happen, 
		    *otherwise "shutdown -p now" will make file system corrupted */
		DELAY(1000 * 1000 * 5);
		return 0;
}

void
Check_Idle_Call(IAL_ADAPTER_T *pAdapter)
{
	_VBUS_INST(&pAdapter->VBus)

	if (mWaitingForIdle(_VBUS_P0)) {
		CheckIdleCall(_VBUS_P0);
#ifdef SUPPORT_ARRAY
		{
			int i;
			PVDevice pArray;
			for(i = 0; i < MAX_ARRAY_PER_VBUS; i++){
				if ((pArray=ArrayTables(i))->u.array.dArStamp==0) 
					continue; 
				else if (pArray->u.array.rf_auto_rebuild) {
						KdPrint(("auto rebuild.\n"));
						pArray->u.array.rf_auto_rebuild = 0;
						hpt_queue_dpc((HPT_DPC)hpt_rebuild_data_block, pAdapter, pArray, DUPLICATE);
				}
			}
		}
#endif
	}
	/* launch the awaiting commands blocked by mWaitingForIdle */
	while(pAdapter->pending_Q!= NULL)
	{
		_VBUS_INST(&pAdapter->VBus)
		union ccb *ccb = (union ccb *)pAdapter->pending_Q->ccb_h.ccb_ccb_ptr;
		hpt_free_ccb(&pAdapter->pending_Q, ccb);
		CallAfterReturn(_VBUS_P (DPC_PROC)OsSendCommand, ccb);
	}
}

static void
ccb_done(union ccb *ccb)
{
	PBUS_DMAMAP pmap = (PBUS_DMAMAP)ccb->ccb_adapter;
	IAL_ADAPTER_T * pAdapter = pmap->pAdapter;
	KdPrintI(("ccb_done: ccb %p status %x\n", ccb, ccb->ccb_h.status));

	dmamap_put(pmap);
	xpt_done(ccb);

	pAdapter->outstandingCommands--;

	if (pAdapter->outstandingCommands == 0)
	{
		if(DPC_Request_Nums == 0)
			Check_Idle_Call(pAdapter);
	}
}

/****************************************************************
 *	Name:	hpt_action
 *	Description:	Process a queued command from the CAM layer.
 *	Parameters:		sim - Pointer to SIM object
 *					ccb - Pointer to SCSI command structure.
 ****************************************************************/

void
hpt_action(struct cam_sim *sim, union ccb *ccb)
{
	intrmask_t oldspl;
	IAL_ADAPTER_T * pAdapter = (IAL_ADAPTER_T *) cam_sim_softc(sim);
	PBUS_DMAMAP  pmap;
	_VBUS_INST(&pAdapter->VBus)

	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("hpt_action\n"));
	KdPrint(("hpt_action(%lx,%lx{%x})\n", (u_long)sim, (u_long)ccb, ccb->ccb_h.func_code));

	switch (ccb->ccb_h.func_code)
	{
		case XPT_SCSI_IO:	/* Execute the requested I/O operation */
		{
			/* ccb->ccb_h.path_id is not our bus id - don't check it */

			if (ccb->ccb_h.target_lun)	{
				ccb->ccb_h.status = CAM_LUN_INVALID;
				xpt_done(ccb);
				return;
			}
			if (ccb->ccb_h.target_id >= MAX_VDEVICE_PER_VBUS ||
				pAdapter->VBus.pVDevice[ccb->ccb_h.target_id]==0) {
				ccb->ccb_h.status = CAM_TID_INVALID;
				xpt_done(ccb);
				return;
			}

			oldspl = lock_driver();
			if (pAdapter->outstandingCommands==0 && DPC_Request_Nums==0)
				Check_Idle_Call(pAdapter);

			pmap = dmamap_get(pAdapter);
			HPT_ASSERT(pmap);
			ccb->ccb_adapter = pmap;
			memset((void *)pmap->psg, 0,  sizeof(pmap->psg));

			if (mWaitingForIdle(_VBUS_P0))
				hpt_queue_ccb(&pAdapter->pending_Q, ccb);
			else
				OsSendCommand(_VBUS_P ccb);
			unlock_driver(oldspl);

			/* KdPrint(("leave scsiio\n")); */
			break;
		}

		case XPT_RESET_BUS:
			KdPrint(("reset bus\n"));
			oldspl = lock_driver();
			fResetVBus(_VBUS_P0);
			unlock_driver(oldspl);
			xpt_done(ccb);
			break;

		case XPT_RESET_DEV:	/* Bus Device Reset the specified SCSI device */
		case XPT_EN_LUN:		/* Enable LUN as a target */
		case XPT_TARGET_IO:		/* Execute target I/O request */
		case XPT_ACCEPT_TARGET_IO:	/* Accept Host Target Mode CDB */
		case XPT_CONT_TARGET_IO:	/* Continue Host Target I/O Connection*/
		case XPT_ABORT:			/* Abort the specified CCB */
		case XPT_TERM_IO:		/* Terminate the I/O process */
			/* XXX Implement */
			ccb->ccb_h.status = CAM_REQ_INVALID;
			xpt_done(ccb);
			break;

		case XPT_GET_TRAN_SETTINGS:
		case XPT_SET_TRAN_SETTINGS:
			/* XXX Implement */
			ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
			xpt_done(ccb);
			break;

		case XPT_CALC_GEOMETRY:
#if __FreeBSD_version >= 500000
			cam_calc_geometry(&ccb->ccg, 1);
#else
			{
			struct	  ccb_calc_geometry *ccg;
			u_int32_t size_mb;
			u_int32_t secs_per_cylinder;

			ccg = &ccb->ccg;
			size_mb = ccg->volume_size / ((1024L * 1024L) / ccg->block_size);

			if (size_mb > 1024 ) {
				ccg->heads = 255;
				ccg->secs_per_track = 63;
			} else {
				ccg->heads = 64;
				ccg->secs_per_track = 32;
			}
			secs_per_cylinder = ccg->heads * ccg->secs_per_track;
			ccg->cylinders = ccg->volume_size / secs_per_cylinder;
			ccb->ccb_h.status = CAM_REQ_CMP;
			}
#endif
			xpt_done(ccb);
			break;

		case XPT_PATH_INQ:		/* Path routing inquiry */
		{
			struct ccb_pathinq *cpi = &ccb->cpi;

			cpi->version_num = 1; /* XXX??? */
			cpi->hba_inquiry = PI_SDTR_ABLE;
			cpi->target_sprt = 0;
			/* Not necessary to reset bus */
			cpi->hba_misc = PIM_NOBUSRESET;
			cpi->hba_eng_cnt = 0;

			cpi->max_target = MAX_VDEVICE_PER_VBUS;
			cpi->max_lun = 0;
			cpi->initiator_id = MAX_VDEVICE_PER_VBUS;

			cpi->bus_id = cam_sim_bus(sim);
			cpi->base_transfer_speed = 3300;
			strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
			strncpy(cpi->hba_vid, "HPT   ", HBA_IDLEN);
			strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
			cpi->unit_number = cam_sim_unit(sim);
			cpi->transport = XPORT_SPI;
			cpi->transport_version = 2;
			cpi->protocol = PROTO_SCSI;
			cpi->protocol_version = SCSI_REV_2;
			cpi->ccb_h.status = CAM_REQ_CMP;
			xpt_done(ccb);
			break;
		}

		default:
			KdPrint(("invalid cmd\n"));
			ccb->ccb_h.status = CAM_REQ_INVALID;
			xpt_done(ccb);
			break;
	}
	/* KdPrint(("leave hpt_action..............\n")); */
}

/* shall be called at lock_driver() */
static void
hpt_queue_ccb(union ccb **ccb_Q, union ccb *ccb)
{
	if(*ccb_Q == NULL)
		ccb->ccb_h.ccb_ccb_ptr = ccb;
	else {
		ccb->ccb_h.ccb_ccb_ptr = (*ccb_Q)->ccb_h.ccb_ccb_ptr;
		(*ccb_Q)->ccb_h.ccb_ccb_ptr = (char *)ccb;
	}

	*ccb_Q = ccb;
}

/* shall be called at lock_driver() */
static void
hpt_free_ccb(union ccb **ccb_Q, union ccb *ccb)
{
	union ccb *TempCCB;

	TempCCB = *ccb_Q;

	if(ccb->ccb_h.ccb_ccb_ptr == ccb) /*it means SCpnt is the last one in CURRCMDs*/
		*ccb_Q = NULL;
	else {
		while(TempCCB->ccb_h.ccb_ccb_ptr != (char *)ccb)
			TempCCB = (union ccb *)TempCCB->ccb_h.ccb_ccb_ptr;

		TempCCB->ccb_h.ccb_ccb_ptr = ccb->ccb_h.ccb_ccb_ptr;

		if(*ccb_Q == ccb)
			*ccb_Q = TempCCB;
	}
}

#ifdef SUPPORT_ARRAY
/***************************************************************************
 * Function:     hpt_worker_thread
 * Description:  Do background rebuilding. Execute in kernel thread context.
 * Returns:      None
 ***************************************************************************/
static void hpt_worker_thread(void)
{
	intrmask_t oldspl;

	for(;;)	{
		while (DpcQueue_First!=DpcQueue_Last) {
			ST_HPT_DPC p;
			oldspl = lock_driver();
			p = DpcQueue[DpcQueue_First];
			DpcQueue_First++;
			DpcQueue_First %= MAX_DPC;
			DPC_Request_Nums++;
			unlock_driver(oldspl);
			p.dpc(p.pAdapter, p.arg, p.flags);

			oldspl = lock_driver();
			DPC_Request_Nums--;
			/* since we may have prevented Check_Idle_Call, do it here */
			if (DPC_Request_Nums==0) {
				if (p.pAdapter->outstandingCommands == 0) {
					_VBUS_INST(&p.pAdapter->VBus);
					Check_Idle_Call(p.pAdapter);
					CheckPendingCall(_VBUS_P0);
				}
			}
			unlock_driver(oldspl);

			/*Schedule out*/
#if (__FreeBSD_version < 500000)
			YIELD_THREAD;
#else 
#if (__FreeBSD_version > 700033)
			pause("sched", 1);
#else
			tsleep((caddr_t)hpt_worker_thread, PPAUSE, "sched", 1); 
#endif
#endif
			if (SIGISMEMBER(curproc->p_siglist, SIGSTOP)) {
				/* abort rebuilding process. */
				IAL_ADAPTER_T *pAdapter;
				PVDevice      pArray;
				PVBus         _vbus_p;
				int i;
				pAdapter = gIal_Adapter;

				while(pAdapter != 0){

					_vbus_p = &pAdapter->VBus;

					for (i=0;i<MAX_ARRAY_PER_VBUS;i++) 
					{
						if ((pArray=ArrayTables(i))->u.array.dArStamp==0) 
							continue; 
						else if (pArray->u.array.rf_rebuilding ||
								pArray->u.array.rf_verifying ||
								pArray->u.array.rf_initializing)
							{
								pArray->u.array.rf_abort_rebuild = 1;
							}
					}
					pAdapter = pAdapter->next;
				}
			}
		}

/*Remove this debug option*/
/*
#ifdef DEBUG
		if (SIGISMEMBER(curproc->p_siglist, SIGSTOP))
#if (__FreeBSD_version > 700033)
			pause("hptrdy", 2*hz);
#else
			tsleep((caddr_t)hpt_worker_thread, PPAUSE, "hptrdy", 2*hz);
#endif
#endif
*/
	#if (__FreeBSD_version >= 800002)
		kproc_suspend_check(curproc);
	#elif (__FreeBSD_version >= 500043)
		kthread_suspend_check(curproc);
	#else 
		kproc_suspend_loop(curproc);
	#endif
#if (__FreeBSD_version > 700033)
		pause("hptrdy", 2*hz);  /* wait for something to do */
#else
		tsleep((caddr_t)hpt_worker_thread, PPAUSE, "hptrdy", 2*hz);  /* wait for something to do */
#endif
	}
}

static struct proc *hptdaemonproc;
static struct kproc_desc hpt_kp = {
	"hpt_wt",
	hpt_worker_thread,
	&hptdaemonproc
};

/*Start this thread in the hpt_attach, to prevent kernel from loading it without our controller.*/
static void
launch_worker_thread(void)
{
	IAL_ADAPTER_T *pAdapTemp;
	
	kproc_start(&hpt_kp);

	for (pAdapTemp = gIal_Adapter; pAdapTemp; pAdapTemp = pAdapTemp->next) {

		_VBUS_INST(&pAdapTemp->VBus)
		int i;
		PVDevice pVDev;

		for(i = 0; i < MAX_ARRAY_PER_VBUS; i++) 
			if ((pVDev=ArrayTables(i))->u.array.dArStamp==0) 
				continue; 
			else{
				if (pVDev->u.array.rf_need_rebuild && !pVDev->u.array.rf_rebuilding)
					hpt_queue_dpc((HPT_DPC)hpt_rebuild_data_block, pAdapTemp, pVDev,
					(UCHAR)((pVDev->u.array.CriticalMembers || pVDev->VDeviceType == VD_RAID_1)? DUPLICATE : REBUILD_PARITY));
			}
	}

	/*
	 * hpt_worker_thread needs to be suspended after shutdown sync, when fs sync finished.
	 */
#if (__FreeBSD_version < 500043)
	EVENTHANDLER_REGISTER(shutdown_post_sync, shutdown_kproc, hptdaemonproc, SHUTDOWN_PRI_FIRST);
#else 
	EVENTHANDLER_REGISTER(shutdown_post_sync, kproc_shutdown, hptdaemonproc, SHUTDOWN_PRI_FIRST);
#endif
}
/*
 *SYSINIT(hptwt, SI_SUB_KTHREAD_IDLE, SI_ORDER_FIRST, launch_worker_thread, NULL);
*/

#endif

/********************************************************************************/

int HPTLIBAPI fOsBuildSgl(_VBUS_ARG PCommand pCmd, FPSCAT_GATH pSg, int logical)
{
	union ccb *ccb = (union ccb *)pCmd->pOrgCommand;
	bus_dma_segment_t *sgList = (bus_dma_segment_t *)ccb->csio.data_ptr;
	int idx;

	if(logical) {
		if (ccb->ccb_h.flags & CAM_DATA_PHYS)
			panic("physical address unsupported");
	
		if (ccb->ccb_h.flags & CAM_SCATTER_VALID) {
			if (ccb->ccb_h.flags & CAM_SG_LIST_PHYS)
				panic("physical address unsupported");
		
			for (idx = 0; idx < ccb->csio.sglist_cnt; idx++) {
				pSg[idx].dSgAddress = (ULONG_PTR)(UCHAR *)sgList[idx].ds_addr;
				pSg[idx].wSgSize = sgList[idx].ds_len;
				pSg[idx].wSgFlag = (idx==ccb->csio.sglist_cnt-1)? SG_FLAG_EOT : 0;
			}
		}
		else {
			pSg->dSgAddress = (ULONG_PTR)(UCHAR *)ccb->csio.data_ptr;
			pSg->wSgSize = ccb->csio.dxfer_len;
			pSg->wSgFlag = SG_FLAG_EOT;
		}
		return TRUE;
	}
	
	/* since we have provided physical sg, nobody will ask us to build physical sg */
	HPT_ASSERT(0);
	return FALSE;
}

/*******************************************************************************/
ULONG HPTLIBAPI
GetStamp(void)
{
	/* 
	 * the system variable, ticks, can't be used since it hasn't yet been active 
	 * when our driver starts (ticks==0, it's a invalid stamp value)
	 */
	ULONG stamp;
	do { stamp = random(); } while (stamp==0);
	return stamp;
}


static void
SetInquiryData(PINQUIRYDATA inquiryData, PVDevice pVDev)
{
	int i;
	IDENTIFY_DATA2 *pIdentify = (IDENTIFY_DATA2*)pVDev->u.disk.mv->identifyDevice;

	inquiryData->DeviceType = T_DIRECT; /*DIRECT_ACCESS_DEVICE*/
	inquiryData->AdditionalLength = (UCHAR)(sizeof(INQUIRYDATA) - 5);
#ifndef SERIAL_CMDS
	inquiryData->CommandQueue = 1;
#endif

	switch(pVDev->VDeviceType) {
	case VD_SINGLE_DISK:
	case VD_ATAPI:
	case VD_REMOVABLE:
		/* Set the removable bit, if applicable. */
		if ((pVDev->u.disk.df_removable_drive) || (pIdentify->GeneralConfiguration & 0x80))
			inquiryData->RemovableMedia = 1;

		/* Fill in vendor identification fields. */
		for (i = 0; i < 20; i += 2) {				
			inquiryData->VendorId[i] 	= ((PUCHAR)pIdentify->ModelNumber)[i + 1];
			inquiryData->VendorId[i+1] 	= ((PUCHAR)pIdentify->ModelNumber)[i];

		}

		/* Initialize unused portion of product id. */
		for (i = 0; i < 4; i++) inquiryData->ProductId[12+i] = ' ';

		/* firmware revision */
		for (i = 0; i < 4; i += 2)
		{				
			inquiryData->ProductRevisionLevel[i] 	= ((PUCHAR)pIdentify->FirmwareRevision)[i+1];
			inquiryData->ProductRevisionLevel[i+1] 	= ((PUCHAR)pIdentify->FirmwareRevision)[i];
		}
		break;
	default:
		memcpy(&inquiryData->VendorId, "RR18xx  ", 8);
#ifdef SUPPORT_ARRAY
		switch(pVDev->VDeviceType){
		case VD_RAID_0:
			if ((pVDev->u.array.pMember[0] && mIsArray(pVDev->u.array.pMember[0])) ||
				(pVDev->u.array.pMember[1] && mIsArray(pVDev->u.array.pMember[1])))
				memcpy(&inquiryData->ProductId, "RAID 1/0 Array  ", 16);
			else
				memcpy(&inquiryData->ProductId, "RAID 0 Array    ", 16);
			break;
		case VD_RAID_1:
			if ((pVDev->u.array.pMember[0] && mIsArray(pVDev->u.array.pMember[0])) ||
				(pVDev->u.array.pMember[1] && mIsArray(pVDev->u.array.pMember[1])))
				memcpy(&inquiryData->ProductId, "RAID 0/1 Array  ", 16);
			else
				memcpy(&inquiryData->ProductId, "RAID 1 Array    ", 16);
			break;
		case VD_RAID_5:
			memcpy(&inquiryData->ProductId, "RAID 5 Array    ", 16);
			break;
		case VD_JBOD:
			memcpy(&inquiryData->ProductId, "JBOD Array      ", 16);
			break;
		}
#endif
		memcpy(&inquiryData->ProductRevisionLevel, "3.00", 4);
		break;
	}
}

static void
hpt_timeout(void *arg)
{
	_VBUS_INST(&((PBUS_DMAMAP)((union ccb *)arg)->ccb_adapter)->pAdapter->VBus)
	intrmask_t oldspl = lock_driver();
	fResetVBus(_VBUS_P0);
	unlock_driver(oldspl);
}

static void 
hpt_io_dmamap_callback(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
	PCommand pCmd = (PCommand)arg;
	union ccb *ccb = pCmd->pOrgCommand;
	struct ccb_hdr *ccb_h = &ccb->ccb_h;
	PBUS_DMAMAP pmap = (PBUS_DMAMAP) ccb->ccb_adapter;
	IAL_ADAPTER_T *pAdapter = pmap->pAdapter;
	PVDevice	pVDev = pAdapter->VBus.pVDevice[ccb_h->target_id];
	FPSCAT_GATH psg = pCmd->pSgTable;
	int idx;
	_VBUS_INST(pVDev->pVBus)

	HPT_ASSERT(pCmd->cf_physical_sg);
		
	if (error || nsegs == 0)
		panic("busdma error");
		
	HPT_ASSERT(nsegs<= MAX_SG_DESCRIPTORS);

	for (idx = 0; idx < nsegs; idx++, psg++) {
		psg->dSgAddress = (ULONG_PTR)(UCHAR *)segs[idx].ds_addr;
		psg->wSgSize = segs[idx].ds_len;
		psg->wSgFlag = (idx == nsegs-1)? SG_FLAG_EOT: 0;
/*		KdPrint(("psg[%d]:add=%p,size=%x,flag=%x\n", idx, psg->dSgAddress,psg->wSgSize,psg->wSgFlag)); */
	}
/*	psg[-1].wSgFlag = SG_FLAG_EOT; */
	
	if (pCmd->cf_data_in) {
		bus_dmamap_sync(pAdapter->io_dma_parent, pmap->dma_map, BUS_DMASYNC_PREREAD);
	}
	else if (pCmd->cf_data_out) {
		bus_dmamap_sync(pAdapter->io_dma_parent, pmap->dma_map, BUS_DMASYNC_PREWRITE);
	}

	ccb->ccb_h.timeout_ch = timeout(hpt_timeout, (caddr_t)ccb, 20*hz);
	pVDev->pfnSendCommand(_VBUS_P pCmd);
	CheckPendingCall(_VBUS_P0);
}



static void HPTLIBAPI
OsSendCommand(_VBUS_ARG union ccb *ccb)
{
	PBUS_DMAMAP pmap = (PBUS_DMAMAP)ccb->ccb_adapter;
	IAL_ADAPTER_T *pAdapter = pmap->pAdapter;
	struct ccb_hdr *ccb_h = &ccb->ccb_h;
	struct ccb_scsiio *csio = &ccb->csio;
	PVDevice	pVDev = pAdapter->VBus.pVDevice[ccb_h->target_id];

	KdPrintI(("OsSendCommand: ccb %p  cdb %x-%x-%x\n",
		ccb,
		*(ULONG *)&ccb->csio.cdb_io.cdb_bytes[0],
		*(ULONG *)&ccb->csio.cdb_io.cdb_bytes[4],
		*(ULONG *)&ccb->csio.cdb_io.cdb_bytes[8]
	));

	pAdapter->outstandingCommands++;

	if (pVDev == NULL || pVDev->vf_online == 0) {
		ccb->ccb_h.status = CAM_REQ_INVALID;
		ccb_done(ccb);
		goto Command_Complished;
	}

	switch(ccb->csio.cdb_io.cdb_bytes[0])
	{
		case TEST_UNIT_READY:
		case START_STOP_UNIT:
		case SYNCHRONIZE_CACHE:
			/* FALLTHROUGH */
			ccb->ccb_h.status = CAM_REQ_CMP;
			break;

		case INQUIRY:
			ZeroMemory(ccb->csio.data_ptr, ccb->csio.dxfer_len);
			SetInquiryData((PINQUIRYDATA)ccb->csio.data_ptr, pVDev);
			ccb_h->status = CAM_REQ_CMP;
			break;

		case READ_CAPACITY:
		{		
			UCHAR *rbuf=csio->data_ptr;
			unsigned int cap;

			if (pVDev->VDeviceCapacity > 0xfffffffful) {
				cap = 0xfffffffful;
			} else {
				cap = pVDev->VDeviceCapacity - 1;
			}

			rbuf[0] = (UCHAR)(cap>>24);
			rbuf[1] = (UCHAR)(cap>>16);
			rbuf[2] = (UCHAR)(cap>>8);
			rbuf[3] = (UCHAR)cap;
			/* Claim 512 byte blocks (big-endian). */
			rbuf[4] = 0;
			rbuf[5] = 0;
			rbuf[6] = 2;
			rbuf[7] = 0;
			
			ccb_h->status = CAM_REQ_CMP;
			break;
		}

		case 0x9e: /*SERVICE_ACTION_IN*/ 
		{
			UCHAR *rbuf = csio->data_ptr;
			LBA_T cap = pVDev->VDeviceCapacity - 1;
			
			rbuf[0] = (UCHAR)(cap>>56);
			rbuf[1] = (UCHAR)(cap>>48);
			rbuf[2] = (UCHAR)(cap>>40);
			rbuf[3] = (UCHAR)(cap>>32);
			rbuf[4] = (UCHAR)(cap>>24);
			rbuf[5] = (UCHAR)(cap>>16);
			rbuf[6] = (UCHAR)(cap>>8);
			rbuf[7] = (UCHAR)cap;
			rbuf[8] = 0;
			rbuf[9] = 0;
			rbuf[10] = 2;
			rbuf[11] = 0;
			
			ccb_h->status = CAM_REQ_CMP;
			break;	
		}

		case READ_6:
		case WRITE_6:
		case READ_10:
		case WRITE_10:
		case 0x88: /* READ_16 */
		case 0x8a: /* WRITE_16 */
		case 0x13:
		case 0x2f:
		{
			UCHAR Cdb[16];
			UCHAR CdbLength;
			_VBUS_INST(pVDev->pVBus)
			PCommand pCmd = AllocateCommand(_VBUS_P0);
			HPT_ASSERT(pCmd);

			CdbLength = csio->cdb_len;
			if ((ccb->ccb_h.flags & CAM_CDB_POINTER) != 0)
			{
				if ((ccb->ccb_h.flags & CAM_CDB_PHYS) == 0)
				{
					bcopy(csio->cdb_io.cdb_ptr, Cdb, CdbLength);
				}
				else
				{
					KdPrintE(("ERROR!!!\n"));
					ccb->ccb_h.status = CAM_REQ_INVALID;
					break;
				}
			}
			else
			{
				bcopy(csio->cdb_io.cdb_bytes, Cdb, CdbLength);
			}

			pCmd->pOrgCommand = ccb;
			pCmd->pVDevice = pVDev;
			pCmd->pfnCompletion = fOsCommandDone;
			pCmd->pfnBuildSgl = fOsBuildSgl;
			pCmd->pSgTable = pmap->psg;

			switch (Cdb[0])
			{
				case READ_6:
				case WRITE_6:
				case 0x13:
					pCmd->uCmd.Ide.Lba =  ((ULONG)Cdb[1] << 16) | ((ULONG)Cdb[2] << 8) | (ULONG)Cdb[3];
					pCmd->uCmd.Ide.nSectors = (USHORT) Cdb[4];
					break;

				case 0x88: /* READ_16 */
				case 0x8a: /* WRITE_16 */
					pCmd->uCmd.Ide.Lba = 
						(HPT_U64)Cdb[2] << 56 |
						(HPT_U64)Cdb[3] << 48 |
						(HPT_U64)Cdb[4] << 40 |
						(HPT_U64)Cdb[5] << 32 |
						(HPT_U64)Cdb[6] << 24 |
						(HPT_U64)Cdb[7] << 16 |
						(HPT_U64)Cdb[8] << 8 |
						(HPT_U64)Cdb[9];
					pCmd->uCmd.Ide.nSectors = (USHORT)Cdb[12] << 8 | (USHORT)Cdb[13];
					break;
					
				default:
					pCmd->uCmd.Ide.Lba = (ULONG)Cdb[5] | ((ULONG)Cdb[4] << 8) | ((ULONG)Cdb[3] << 16) | ((ULONG)Cdb[2] << 24);
					pCmd->uCmd.Ide.nSectors = (USHORT) Cdb[8] | ((USHORT)Cdb[7]<<8);
					break;
			}

			switch (Cdb[0])
			{
				case READ_6:
				case READ_10:
				case 0x88: /* READ_16 */
					pCmd->uCmd.Ide.Command = IDE_COMMAND_READ;
					pCmd->cf_data_in = 1;
					break;

				case WRITE_6:
				case WRITE_10:
				case 0x8a: /* WRITE_16 */
					pCmd->uCmd.Ide.Command = IDE_COMMAND_WRITE;
					pCmd->cf_data_out = 1;
					break;
				case 0x13:
				case 0x2f:
					pCmd->uCmd.Ide.Command = IDE_COMMAND_VERIFY;
					break;
			}
/*///////////////////////// */
			if (ccb->ccb_h.flags & CAM_SCATTER_VALID) {
				int idx;
				bus_dma_segment_t *sgList = (bus_dma_segment_t *)ccb->csio.data_ptr;
				
				if (ccb->ccb_h.flags & CAM_SG_LIST_PHYS)
					pCmd->cf_physical_sg = 1;

				for (idx = 0; idx < ccb->csio.sglist_cnt; idx++) {
					pCmd->pSgTable[idx].dSgAddress = (ULONG_PTR)(UCHAR *)sgList[idx].ds_addr;
					pCmd->pSgTable[idx].wSgSize = sgList[idx].ds_len;
					pCmd->pSgTable[idx].wSgFlag= (idx==ccb->csio.sglist_cnt-1)?SG_FLAG_EOT: 0;
				}
	
				ccb->ccb_h.timeout_ch = timeout(hpt_timeout, (caddr_t)ccb, 20*hz);
				pVDev->pfnSendCommand(_VBUS_P pCmd);
			}	
			else {
				int error;
				pCmd->cf_physical_sg = 1;
				error = bus_dmamap_load(pAdapter->io_dma_parent, 
							pmap->dma_map, 
							ccb->csio.data_ptr, ccb->csio.dxfer_len, 
							hpt_io_dmamap_callback, pCmd,
					    		BUS_DMA_WAITOK
						);
				KdPrint(("bus_dmamap_load return %d\n", error));
				if (error && error!=EINPROGRESS) {
					hpt_printk(("bus_dmamap_load error %d\n", error));
					FreeCommand(_VBUS_P pCmd);
					ccb->ccb_h.status = CAM_REQ_CMP_ERR;
					dmamap_put(pmap);
					pAdapter->outstandingCommands--;
					xpt_done(ccb);
				}
			}
			goto Command_Complished;
		}

		default:
			ccb->ccb_h.status = CAM_REQ_INVALID;
			break;
	}
	ccb_done(ccb);
Command_Complished:
	CheckPendingCall(_VBUS_P0);
	return;
}

static void HPTLIBAPI 
fOsCommandDone(_VBUS_ARG PCommand pCmd)
{
	union ccb *ccb = pCmd->pOrgCommand;
	PBUS_DMAMAP pmap = (PBUS_DMAMAP)ccb->ccb_adapter; 
	IAL_ADAPTER_T *pAdapter = pmap->pAdapter;

	KdPrint(("fOsCommandDone(pcmd=%p, result=%d)\n", pCmd, pCmd->Result));
	
	untimeout(hpt_timeout, (caddr_t)ccb, ccb->ccb_h.timeout_ch);
	
	switch(pCmd->Result) {
	case RETURN_SUCCESS:
		ccb->ccb_h.status = CAM_REQ_CMP;
		break;
	case RETURN_BAD_DEVICE:
		ccb->ccb_h.status = CAM_DEV_NOT_THERE;
		break;
	case RETURN_DEVICE_BUSY:
		ccb->ccb_h.status = CAM_BUSY;
		break;
	case RETURN_INVALID_REQUEST:
		ccb->ccb_h.status = CAM_REQ_INVALID;
		break;
	case RETURN_SELECTION_TIMEOUT:
		ccb->ccb_h.status = CAM_SEL_TIMEOUT;
		break;
	case RETURN_RETRY:
		ccb->ccb_h.status = CAM_BUSY;
		break;
	default:
		ccb->ccb_h.status = CAM_SCSI_STATUS_ERROR;
		break;
	}

	if (pCmd->cf_data_in) {
		bus_dmamap_sync(pAdapter->io_dma_parent, pmap->dma_map, BUS_DMASYNC_POSTREAD);
	}
	else if (pCmd->cf_data_in) {
		bus_dmamap_sync(pAdapter->io_dma_parent, pmap->dma_map, BUS_DMASYNC_POSTWRITE);
	}
	
	bus_dmamap_unload(pAdapter->io_dma_parent, pmap->dma_map);

	FreeCommand(_VBUS_P pCmd);
	ccb_done(ccb);
}

int
hpt_queue_dpc(HPT_DPC dpc, IAL_ADAPTER_T * pAdapter, void *arg, UCHAR flags)
{
	int p;

	p = (DpcQueue_Last + 1) % MAX_DPC;
	if (p==DpcQueue_First) {
		KdPrint(("DPC Queue full!\n"));
		return -1;
	}

	DpcQueue[DpcQueue_Last].dpc = dpc;
	DpcQueue[DpcQueue_Last].pAdapter = pAdapter;
	DpcQueue[DpcQueue_Last].arg = arg;
	DpcQueue[DpcQueue_Last].flags = flags;
	DpcQueue_Last = p;

	return 0;
}

#ifdef _RAID5N_
/* 
 * Allocate memory above 16M, otherwise we may eat all low memory for ISA devices.
 * How about the memory for 5081 request/response array and PRD table?
 */
void
*os_alloc_page(_VBUS_ARG0)
{ 
	return (void *)contigmalloc(0x1000, M_DEVBUF, M_NOWAIT, 0x1000000, 0xffffffff, PAGE_SIZE, 0ul);
}

void
*os_alloc_dma_page(_VBUS_ARG0)
{
	return (void *)contigmalloc(0x1000, M_DEVBUF, M_NOWAIT, 0x1000000, 0xffffffff, PAGE_SIZE, 0ul);
}

void
os_free_page(_VBUS_ARG void *p) 
{ 
	contigfree(p, 0x1000, M_DEVBUF); 
}

void
os_free_dma_page(_VBUS_ARG void *p) 
{ 
	contigfree(p, 0x1000, M_DEVBUF); 
}

void
DoXor1(ULONG *p0, ULONG *p1, ULONG *p2, UINT nBytes)
{
	UINT i;
	for (i = 0; i < nBytes / 4; i++) *p0++ = *p1++ ^ *p2++;
}

void
DoXor2(ULONG *p0, ULONG *p2, UINT nBytes)
{
	UINT i;
	for (i = 0; i < nBytes / 4; i++) *p0++ ^= *p2++;
}
#endif

Man Man