Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/mvs/@/amd64/compile/hs32/modules/usr/src/sys/modules/puc/@/dev/mpt/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/mvs/@/amd64/compile/hs32/modules/usr/src/sys/modules/puc/@/dev/mpt/mpt.c |
/*- * Generic routines for LSI Fusion adapters. * FreeBSD Version. * * Copyright (c) 2000, 2001 by Greg Ansley * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice immediately at the beginning of the file, without modification, * this list of conditions, and the following disclaimer. * 2. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /*- * Copyright (c) 2002, 2006 by Matthew Jacob * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon including * a substantially similar Disclaimer requirement for further binary * redistribution. * 3. Neither the names of the above listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT * OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Support from Chris Ellsworth in order to make SAS adapters work * is gratefully acknowledged. * * * Support from LSI-Logic has also gone a great deal toward making this a * workable subsystem and is gratefully acknowledged. */ /*- * Copyright (c) 2004, Avid Technology, Inc. and its contributors. * Copyright (c) 2005, WHEEL Sp. z o.o. * Copyright (c) 2004, 2005 Justin T. Gibbs * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon including * a substantially similar Disclaimer requirement for further binary * redistribution. * 3. Neither the names of the above listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT * OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/dev/mpt/mpt.c 231629 2012-02-14 01:15:01Z marius $"); #include <dev/mpt/mpt.h> #include <dev/mpt/mpt_cam.h> /* XXX For static handler registration */ #include <dev/mpt/mpt_raid.h> /* XXX For static handler registration */ #include <dev/mpt/mpilib/mpi.h> #include <dev/mpt/mpilib/mpi_ioc.h> #include <dev/mpt/mpilib/mpi_fc.h> #include <dev/mpt/mpilib/mpi_targ.h> #include <sys/sysctl.h> #define MPT_MAX_TRYS 3 #define MPT_MAX_WAIT 300000 static int maxwait_ack = 0; static int maxwait_int = 0; static int maxwait_state = 0; static TAILQ_HEAD(, mpt_softc) mpt_tailq = TAILQ_HEAD_INITIALIZER(mpt_tailq); mpt_reply_handler_t *mpt_reply_handlers[MPT_NUM_REPLY_HANDLERS]; static mpt_reply_handler_t mpt_default_reply_handler; static mpt_reply_handler_t mpt_config_reply_handler; static mpt_reply_handler_t mpt_handshake_reply_handler; static mpt_reply_handler_t mpt_event_reply_handler; static void mpt_send_event_ack(struct mpt_softc *mpt, request_t *ack_req, MSG_EVENT_NOTIFY_REPLY *msg, uint32_t context); static int mpt_send_event_request(struct mpt_softc *mpt, int onoff); static int mpt_soft_reset(struct mpt_softc *mpt); static void mpt_hard_reset(struct mpt_softc *mpt); static int mpt_dma_buf_alloc(struct mpt_softc *mpt); static void mpt_dma_buf_free(struct mpt_softc *mpt); static int mpt_configure_ioc(struct mpt_softc *mpt, int, int); static int mpt_enable_ioc(struct mpt_softc *mpt, int); /************************* Personality Module Support *************************/ /* * We include one extra entry that is guaranteed to be NULL * to simplify our itterator. */ static struct mpt_personality *mpt_personalities[MPT_MAX_PERSONALITIES + 1]; static __inline struct mpt_personality* mpt_pers_find(struct mpt_softc *, u_int); static __inline struct mpt_personality* mpt_pers_find_reverse(struct mpt_softc *, u_int); static __inline struct mpt_personality * mpt_pers_find(struct mpt_softc *mpt, u_int start_at) { KASSERT(start_at <= MPT_MAX_PERSONALITIES, ("mpt_pers_find: starting position out of range")); while (start_at < MPT_MAX_PERSONALITIES && (mpt->mpt_pers_mask & (0x1 << start_at)) == 0) { start_at++; } return (mpt_personalities[start_at]); } /* * Used infrequently, so no need to optimize like a forward * traversal where we use the MAX+1 is guaranteed to be NULL * trick. */ static __inline struct mpt_personality * mpt_pers_find_reverse(struct mpt_softc *mpt, u_int start_at) { while (start_at < MPT_MAX_PERSONALITIES && (mpt->mpt_pers_mask & (0x1 << start_at)) == 0) { start_at--; } if (start_at < MPT_MAX_PERSONALITIES) return (mpt_personalities[start_at]); return (NULL); } #define MPT_PERS_FOREACH(mpt, pers) \ for (pers = mpt_pers_find(mpt, /*start_at*/0); \ pers != NULL; \ pers = mpt_pers_find(mpt, /*start_at*/pers->id+1)) #define MPT_PERS_FOREACH_REVERSE(mpt, pers) \ for (pers = mpt_pers_find_reverse(mpt, MPT_MAX_PERSONALITIES-1);\ pers != NULL; \ pers = mpt_pers_find_reverse(mpt, /*start_at*/pers->id-1)) static mpt_load_handler_t mpt_stdload; static mpt_probe_handler_t mpt_stdprobe; static mpt_attach_handler_t mpt_stdattach; static mpt_enable_handler_t mpt_stdenable; static mpt_ready_handler_t mpt_stdready; static mpt_event_handler_t mpt_stdevent; static mpt_reset_handler_t mpt_stdreset; static mpt_shutdown_handler_t mpt_stdshutdown; static mpt_detach_handler_t mpt_stddetach; static mpt_unload_handler_t mpt_stdunload; static struct mpt_personality mpt_default_personality = { .load = mpt_stdload, .probe = mpt_stdprobe, .attach = mpt_stdattach, .enable = mpt_stdenable, .ready = mpt_stdready, .event = mpt_stdevent, .reset = mpt_stdreset, .shutdown = mpt_stdshutdown, .detach = mpt_stddetach, .unload = mpt_stdunload }; static mpt_load_handler_t mpt_core_load; static mpt_attach_handler_t mpt_core_attach; static mpt_enable_handler_t mpt_core_enable; static mpt_reset_handler_t mpt_core_ioc_reset; static mpt_event_handler_t mpt_core_event; static mpt_shutdown_handler_t mpt_core_shutdown; static mpt_shutdown_handler_t mpt_core_detach; static mpt_unload_handler_t mpt_core_unload; static struct mpt_personality mpt_core_personality = { .name = "mpt_core", .load = mpt_core_load, // .attach = mpt_core_attach, // .enable = mpt_core_enable, .event = mpt_core_event, .reset = mpt_core_ioc_reset, .shutdown = mpt_core_shutdown, .detach = mpt_core_detach, .unload = mpt_core_unload, }; /* * Manual declaration so that DECLARE_MPT_PERSONALITY doesn't need * ordering information. We want the core to always register FIRST. * other modules are set to SI_ORDER_SECOND. */ static moduledata_t mpt_core_mod = { "mpt_core", mpt_modevent, &mpt_core_personality }; DECLARE_MODULE(mpt_core, mpt_core_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); MODULE_VERSION(mpt_core, 1); #define MPT_PERS_ATTACHED(pers, mpt) ((mpt)->mpt_pers_mask & (0x1 << pers->id)) int mpt_modevent(module_t mod, int type, void *data) { struct mpt_personality *pers; int error; pers = (struct mpt_personality *)data; error = 0; switch (type) { case MOD_LOAD: { mpt_load_handler_t **def_handler; mpt_load_handler_t **pers_handler; int i; for (i = 0; i < MPT_MAX_PERSONALITIES; i++) { if (mpt_personalities[i] == NULL) break; } if (i >= MPT_MAX_PERSONALITIES) { error = ENOMEM; break; } pers->id = i; mpt_personalities[i] = pers; /* Install standard/noop handlers for any NULL entries. */ def_handler = MPT_PERS_FIRST_HANDLER(&mpt_default_personality); pers_handler = MPT_PERS_FIRST_HANDLER(pers); while (pers_handler <= MPT_PERS_LAST_HANDLER(pers)) { if (*pers_handler == NULL) *pers_handler = *def_handler; pers_handler++; def_handler++; } error = (pers->load(pers)); if (error != 0) mpt_personalities[i] = NULL; break; } case MOD_SHUTDOWN: break; #if __FreeBSD_version >= 500000 case MOD_QUIESCE: break; #endif case MOD_UNLOAD: error = pers->unload(pers); mpt_personalities[pers->id] = NULL; break; default: error = EINVAL; break; } return (error); } static int mpt_stdload(struct mpt_personality *pers) { /* Load is always successful. */ return (0); } static int mpt_stdprobe(struct mpt_softc *mpt) { /* Probe is always successful. */ return (0); } static int mpt_stdattach(struct mpt_softc *mpt) { /* Attach is always successful. */ return (0); } static int mpt_stdenable(struct mpt_softc *mpt) { /* Enable is always successful. */ return (0); } static void mpt_stdready(struct mpt_softc *mpt) { } static int mpt_stdevent(struct mpt_softc *mpt, request_t *req, MSG_EVENT_NOTIFY_REPLY *msg) { mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_stdevent: 0x%x\n", msg->Event & 0xFF); /* Event was not for us. */ return (0); } static void mpt_stdreset(struct mpt_softc *mpt, int type) { } static void mpt_stdshutdown(struct mpt_softc *mpt) { } static void mpt_stddetach(struct mpt_softc *mpt) { } static int mpt_stdunload(struct mpt_personality *pers) { /* Unload is always successful. */ return (0); } /* * Post driver attachment, we may want to perform some global actions. * Here is the hook to do so. */ static void mpt_postattach(void *unused) { struct mpt_softc *mpt; struct mpt_personality *pers; TAILQ_FOREACH(mpt, &mpt_tailq, links) { MPT_PERS_FOREACH(mpt, pers) pers->ready(mpt); } } SYSINIT(mptdev, SI_SUB_CONFIGURE, SI_ORDER_MIDDLE, mpt_postattach, NULL); /******************************* Bus DMA Support ******************************/ void mpt_map_rquest(void *arg, bus_dma_segment_t *segs, int nseg, int error) { struct mpt_map_info *map_info; map_info = (struct mpt_map_info *)arg; map_info->error = error; map_info->phys = segs->ds_addr; } /**************************** Reply/Event Handling ****************************/ int mpt_register_handler(struct mpt_softc *mpt, mpt_handler_type type, mpt_handler_t handler, uint32_t *phandler_id) { switch (type) { case MPT_HANDLER_REPLY: { u_int cbi; u_int free_cbi; if (phandler_id == NULL) return (EINVAL); free_cbi = MPT_HANDLER_ID_NONE; for (cbi = 0; cbi < MPT_NUM_REPLY_HANDLERS; cbi++) { /* * If the same handler is registered multiple * times, don't error out. Just return the * index of the original registration. */ if (mpt_reply_handlers[cbi] == handler.reply_handler) { *phandler_id = MPT_CBI_TO_HID(cbi); return (0); } /* * Fill from the front in the hope that * all registered handlers consume only a * single cache line. * * We don't break on the first empty slot so * that the full table is checked to see if * this handler was previously registered. */ if (free_cbi == MPT_HANDLER_ID_NONE && (mpt_reply_handlers[cbi] == mpt_default_reply_handler)) free_cbi = cbi; } if (free_cbi == MPT_HANDLER_ID_NONE) { return (ENOMEM); } mpt_reply_handlers[free_cbi] = handler.reply_handler; *phandler_id = MPT_CBI_TO_HID(free_cbi); break; } default: mpt_prt(mpt, "mpt_register_handler unknown type %d\n", type); return (EINVAL); } return (0); } int mpt_deregister_handler(struct mpt_softc *mpt, mpt_handler_type type, mpt_handler_t handler, uint32_t handler_id) { switch (type) { case MPT_HANDLER_REPLY: { u_int cbi; cbi = MPT_CBI(handler_id); if (cbi >= MPT_NUM_REPLY_HANDLERS || mpt_reply_handlers[cbi] != handler.reply_handler) return (ENOENT); mpt_reply_handlers[cbi] = mpt_default_reply_handler; break; } default: mpt_prt(mpt, "mpt_deregister_handler unknown type %d\n", type); return (EINVAL); } return (0); } static int mpt_default_reply_handler(struct mpt_softc *mpt, request_t *req, uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame) { mpt_prt(mpt, "Default Handler Called: req=%p:%u reply_descriptor=%x frame=%p\n", req, req->serno, reply_desc, reply_frame); if (reply_frame != NULL) mpt_dump_reply_frame(mpt, reply_frame); mpt_prt(mpt, "Reply Frame Ignored\n"); return (/*free_reply*/TRUE); } static int mpt_config_reply_handler(struct mpt_softc *mpt, request_t *req, uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame) { if (req != NULL) { if (reply_frame != NULL) { MSG_CONFIG *cfgp; MSG_CONFIG_REPLY *reply; cfgp = (MSG_CONFIG *)req->req_vbuf; reply = (MSG_CONFIG_REPLY *)reply_frame; req->IOCStatus = le16toh(reply_frame->IOCStatus); bcopy(&reply->Header, &cfgp->Header, sizeof(cfgp->Header)); cfgp->ExtPageLength = reply->ExtPageLength; cfgp->ExtPageType = reply->ExtPageType; } req->state &= ~REQ_STATE_QUEUED; req->state |= REQ_STATE_DONE; TAILQ_REMOVE(&mpt->request_pending_list, req, links); if ((req->state & REQ_STATE_NEED_WAKEUP) != 0) { wakeup(req); } else if ((req->state & REQ_STATE_TIMEDOUT) != 0) { /* * Whew- we can free this request (late completion) */ mpt_free_request(mpt, req); } } return (TRUE); } static int mpt_handshake_reply_handler(struct mpt_softc *mpt, request_t *req, uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame) { /* Nothing to be done. */ return (TRUE); } static int mpt_event_reply_handler(struct mpt_softc *mpt, request_t *req, uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame) { int free_reply; KASSERT(reply_frame != NULL, ("null reply in mpt_event_reply_handler")); KASSERT(req != NULL, ("null request in mpt_event_reply_handler")); free_reply = TRUE; switch (reply_frame->Function) { case MPI_FUNCTION_EVENT_NOTIFICATION: { MSG_EVENT_NOTIFY_REPLY *msg; struct mpt_personality *pers; u_int handled; handled = 0; msg = (MSG_EVENT_NOTIFY_REPLY *)reply_frame; msg->EventDataLength = le16toh(msg->EventDataLength); msg->IOCStatus = le16toh(msg->IOCStatus); msg->IOCLogInfo = le32toh(msg->IOCLogInfo); msg->Event = le32toh(msg->Event); MPT_PERS_FOREACH(mpt, pers) handled += pers->event(mpt, req, msg); if (handled == 0 && mpt->mpt_pers_mask == 0) { mpt_lprt(mpt, MPT_PRT_INFO, "No Handlers For Any Event Notify Frames. " "Event %#x (ACK %sequired).\n", msg->Event, msg->AckRequired? "r" : "not r"); } else if (handled == 0) { mpt_lprt(mpt, msg->AckRequired? MPT_PRT_WARN : MPT_PRT_INFO, "Unhandled Event Notify Frame. Event %#x " "(ACK %sequired).\n", msg->Event, msg->AckRequired? "r" : "not r"); } if (msg->AckRequired) { request_t *ack_req; uint32_t context; context = req->index | MPT_REPLY_HANDLER_EVENTS; ack_req = mpt_get_request(mpt, FALSE); if (ack_req == NULL) { struct mpt_evtf_record *evtf; evtf = (struct mpt_evtf_record *)reply_frame; evtf->context = context; LIST_INSERT_HEAD(&mpt->ack_frames, evtf, links); free_reply = FALSE; break; } mpt_send_event_ack(mpt, ack_req, msg, context); /* * Don't check for CONTINUATION_REPLY here */ return (free_reply); } break; } case MPI_FUNCTION_PORT_ENABLE: mpt_lprt(mpt, MPT_PRT_DEBUG , "enable port reply\n"); break; case MPI_FUNCTION_EVENT_ACK: break; default: mpt_prt(mpt, "unknown event function: %x\n", reply_frame->Function); break; } /* * I'm not sure that this continuation stuff works as it should. * * I've had FC async events occur that free the frame up because * the continuation bit isn't set, and then additional async events * then occur using the same context. As you might imagine, this * leads to Very Bad Thing. * * Let's just be safe for now and not free them up until we figure * out what's actually happening here. */ #if 0 if ((reply_frame->MsgFlags & MPI_MSGFLAGS_CONTINUATION_REPLY) == 0) { TAILQ_REMOVE(&mpt->request_pending_list, req, links); mpt_free_request(mpt, req); mpt_prt(mpt, "event_reply %x for req %p:%u NOT a continuation", reply_frame->Function, req, req->serno); if (reply_frame->Function == MPI_FUNCTION_EVENT_NOTIFICATION) { MSG_EVENT_NOTIFY_REPLY *msg = (MSG_EVENT_NOTIFY_REPLY *)reply_frame; mpt_prtc(mpt, " Event=0x%x AckReq=%d", msg->Event, msg->AckRequired); } } else { mpt_prt(mpt, "event_reply %x for %p:%u IS a continuation", reply_frame->Function, req, req->serno); if (reply_frame->Function == MPI_FUNCTION_EVENT_NOTIFICATION) { MSG_EVENT_NOTIFY_REPLY *msg = (MSG_EVENT_NOTIFY_REPLY *)reply_frame; mpt_prtc(mpt, " Event=0x%x AckReq=%d", msg->Event, msg->AckRequired); } mpt_prtc(mpt, "\n"); } #endif return (free_reply); } /* * Process an asynchronous event from the IOC. */ static int mpt_core_event(struct mpt_softc *mpt, request_t *req, MSG_EVENT_NOTIFY_REPLY *msg) { mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_core_event: 0x%x\n", msg->Event & 0xFF); switch(msg->Event & 0xFF) { case MPI_EVENT_NONE: break; case MPI_EVENT_LOG_DATA: { int i; /* Some error occurred that LSI wants logged */ mpt_prt(mpt, "EvtLogData: IOCLogInfo: 0x%08x\n", msg->IOCLogInfo); mpt_prt(mpt, "\tEvtLogData: Event Data:"); for (i = 0; i < msg->EventDataLength; i++) mpt_prtc(mpt, " %08x", msg->Data[i]); mpt_prtc(mpt, "\n"); break; } case MPI_EVENT_EVENT_CHANGE: /* * This is just an acknowledgement * of our mpt_send_event_request. */ break; case MPI_EVENT_SAS_DEVICE_STATUS_CHANGE: break; default: return (0); break; } return (1); } static void mpt_send_event_ack(struct mpt_softc *mpt, request_t *ack_req, MSG_EVENT_NOTIFY_REPLY *msg, uint32_t context) { MSG_EVENT_ACK *ackp; ackp = (MSG_EVENT_ACK *)ack_req->req_vbuf; memset(ackp, 0, sizeof (*ackp)); ackp->Function = MPI_FUNCTION_EVENT_ACK; ackp->Event = htole32(msg->Event); ackp->EventContext = htole32(msg->EventContext); ackp->MsgContext = htole32(context); mpt_check_doorbell(mpt); mpt_send_cmd(mpt, ack_req); } /***************************** Interrupt Handling *****************************/ void mpt_intr(void *arg) { struct mpt_softc *mpt; uint32_t reply_desc; int ntrips = 0; mpt = (struct mpt_softc *)arg; mpt_lprt(mpt, MPT_PRT_DEBUG2, "enter mpt_intr\n"); MPT_LOCK_ASSERT(mpt); while ((reply_desc = mpt_pop_reply_queue(mpt)) != MPT_REPLY_EMPTY) { request_t *req; MSG_DEFAULT_REPLY *reply_frame; uint32_t reply_baddr; uint32_t ctxt_idx; u_int cb_index; u_int req_index; u_int offset; int free_rf; req = NULL; reply_frame = NULL; reply_baddr = 0; offset = 0; if ((reply_desc & MPI_ADDRESS_REPLY_A_BIT) != 0) { /* * Ensure that the reply frame is coherent. */ reply_baddr = MPT_REPLY_BADDR(reply_desc); offset = reply_baddr - (mpt->reply_phys & 0xFFFFFFFF); bus_dmamap_sync_range(mpt->reply_dmat, mpt->reply_dmap, offset, MPT_REPLY_SIZE, BUS_DMASYNC_POSTREAD); reply_frame = MPT_REPLY_OTOV(mpt, offset); ctxt_idx = le32toh(reply_frame->MsgContext); } else { uint32_t type; type = MPI_GET_CONTEXT_REPLY_TYPE(reply_desc); ctxt_idx = reply_desc; mpt_lprt(mpt, MPT_PRT_DEBUG1, "Context Reply: 0x%08x\n", reply_desc); switch (type) { case MPI_CONTEXT_REPLY_TYPE_SCSI_INIT: ctxt_idx &= MPI_CONTEXT_REPLY_CONTEXT_MASK; break; case MPI_CONTEXT_REPLY_TYPE_SCSI_TARGET: ctxt_idx = GET_IO_INDEX(reply_desc); if (mpt->tgt_cmd_ptrs == NULL) { mpt_prt(mpt, "mpt_intr: no target cmd ptrs\n"); reply_desc = MPT_REPLY_EMPTY; break; } if (ctxt_idx >= mpt->tgt_cmds_allocated) { mpt_prt(mpt, "mpt_intr: bad tgt cmd ctxt %u\n", ctxt_idx); reply_desc = MPT_REPLY_EMPTY; ntrips = 1000; break; } req = mpt->tgt_cmd_ptrs[ctxt_idx]; if (req == NULL) { mpt_prt(mpt, "no request backpointer " "at index %u", ctxt_idx); reply_desc = MPT_REPLY_EMPTY; ntrips = 1000; break; } /* * Reformulate ctxt_idx to be just as if * it were another type of context reply * so the code below will find the request * via indexing into the pool. */ ctxt_idx = req->index | mpt->scsi_tgt_handler_id; req = NULL; break; case MPI_CONTEXT_REPLY_TYPE_LAN: mpt_prt(mpt, "LAN CONTEXT REPLY: 0x%08x\n", reply_desc); reply_desc = MPT_REPLY_EMPTY; break; default: mpt_prt(mpt, "Context Reply 0x%08x?\n", type); reply_desc = MPT_REPLY_EMPTY; break; } if (reply_desc == MPT_REPLY_EMPTY) { if (ntrips++ > 1000) { break; } continue; } } cb_index = MPT_CONTEXT_TO_CBI(ctxt_idx); req_index = MPT_CONTEXT_TO_REQI(ctxt_idx); if (req_index < MPT_MAX_REQUESTS(mpt)) { req = &mpt->request_pool[req_index]; } else { mpt_prt(mpt, "WARN: mpt_intr index == %d (reply_desc ==" " 0x%x)\n", req_index, reply_desc); } bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); free_rf = mpt_reply_handlers[cb_index](mpt, req, reply_desc, reply_frame); if (reply_frame != NULL && free_rf) { bus_dmamap_sync_range(mpt->reply_dmat, mpt->reply_dmap, offset, MPT_REPLY_SIZE, BUS_DMASYNC_PREREAD); mpt_free_reply(mpt, reply_baddr); } /* * If we got ourselves disabled, don't get stuck in a loop */ if (mpt->disabled) { mpt_disable_ints(mpt); break; } if (ntrips++ > 1000) { break; } } mpt_lprt(mpt, MPT_PRT_DEBUG2, "exit mpt_intr\n"); } /******************************* Error Recovery *******************************/ void mpt_complete_request_chain(struct mpt_softc *mpt, struct req_queue *chain, u_int iocstatus) { MSG_DEFAULT_REPLY ioc_status_frame; request_t *req; memset(&ioc_status_frame, 0, sizeof(ioc_status_frame)); ioc_status_frame.MsgLength = roundup2(sizeof(ioc_status_frame), 4); ioc_status_frame.IOCStatus = iocstatus; while((req = TAILQ_FIRST(chain)) != NULL) { MSG_REQUEST_HEADER *msg_hdr; u_int cb_index; bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); msg_hdr = (MSG_REQUEST_HEADER *)req->req_vbuf; ioc_status_frame.Function = msg_hdr->Function; ioc_status_frame.MsgContext = msg_hdr->MsgContext; cb_index = MPT_CONTEXT_TO_CBI(le32toh(msg_hdr->MsgContext)); mpt_reply_handlers[cb_index](mpt, req, msg_hdr->MsgContext, &ioc_status_frame); if (mpt_req_on_pending_list(mpt, req) != 0) TAILQ_REMOVE(chain, req, links); } } /********************************* Diagnostics ********************************/ /* * Perform a diagnostic dump of a reply frame. */ void mpt_dump_reply_frame(struct mpt_softc *mpt, MSG_DEFAULT_REPLY *reply_frame) { mpt_prt(mpt, "Address Reply:\n"); mpt_print_reply(reply_frame); } /******************************* Doorbell Access ******************************/ static __inline uint32_t mpt_rd_db(struct mpt_softc *mpt); static __inline uint32_t mpt_rd_intr(struct mpt_softc *mpt); static __inline uint32_t mpt_rd_db(struct mpt_softc *mpt) { return mpt_read(mpt, MPT_OFFSET_DOORBELL); } static __inline uint32_t mpt_rd_intr(struct mpt_softc *mpt) { return mpt_read(mpt, MPT_OFFSET_INTR_STATUS); } /* Busy wait for a door bell to be read by IOC */ static int mpt_wait_db_ack(struct mpt_softc *mpt) { int i; for (i=0; i < MPT_MAX_WAIT; i++) { if (!MPT_DB_IS_BUSY(mpt_rd_intr(mpt))) { maxwait_ack = i > maxwait_ack ? i : maxwait_ack; return (MPT_OK); } DELAY(200); } return (MPT_FAIL); } /* Busy wait for a door bell interrupt */ static int mpt_wait_db_int(struct mpt_softc *mpt) { int i; for (i = 0; i < MPT_MAX_WAIT; i++) { if (MPT_DB_INTR(mpt_rd_intr(mpt))) { maxwait_int = i > maxwait_int ? i : maxwait_int; return MPT_OK; } DELAY(100); } return (MPT_FAIL); } /* Wait for IOC to transition to a give state */ void mpt_check_doorbell(struct mpt_softc *mpt) { uint32_t db = mpt_rd_db(mpt); if (MPT_STATE(db) != MPT_DB_STATE_RUNNING) { mpt_prt(mpt, "Device not running\n"); mpt_print_db(db); } } /* Wait for IOC to transition to a give state */ static int mpt_wait_state(struct mpt_softc *mpt, enum DB_STATE_BITS state) { int i; for (i = 0; i < MPT_MAX_WAIT; i++) { uint32_t db = mpt_rd_db(mpt); if (MPT_STATE(db) == state) { maxwait_state = i > maxwait_state ? i : maxwait_state; return (MPT_OK); } DELAY(100); } return (MPT_FAIL); } /************************* Intialization/Configuration ************************/ static int mpt_download_fw(struct mpt_softc *mpt); /* Issue the reset COMMAND to the IOC */ static int mpt_soft_reset(struct mpt_softc *mpt) { mpt_lprt(mpt, MPT_PRT_DEBUG, "soft reset\n"); /* Have to use hard reset if we are not in Running state */ if (MPT_STATE(mpt_rd_db(mpt)) != MPT_DB_STATE_RUNNING) { mpt_prt(mpt, "soft reset failed: device not running\n"); return (MPT_FAIL); } /* If door bell is in use we don't have a chance of getting * a word in since the IOC probably crashed in message * processing. So don't waste our time. */ if (MPT_DB_IS_IN_USE(mpt_rd_db(mpt))) { mpt_prt(mpt, "soft reset failed: doorbell wedged\n"); return (MPT_FAIL); } /* Send the reset request to the IOC */ mpt_write(mpt, MPT_OFFSET_DOORBELL, MPI_FUNCTION_IOC_MESSAGE_UNIT_RESET << MPI_DOORBELL_FUNCTION_SHIFT); if (mpt_wait_db_ack(mpt) != MPT_OK) { mpt_prt(mpt, "soft reset failed: ack timeout\n"); return (MPT_FAIL); } /* Wait for the IOC to reload and come out of reset state */ if (mpt_wait_state(mpt, MPT_DB_STATE_READY) != MPT_OK) { mpt_prt(mpt, "soft reset failed: device did not restart\n"); return (MPT_FAIL); } return MPT_OK; } static int mpt_enable_diag_mode(struct mpt_softc *mpt) { int try; try = 20; while (--try) { if ((mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC) & MPI_DIAG_DRWE) != 0) break; /* Enable diagnostic registers */ mpt_write(mpt, MPT_OFFSET_SEQUENCE, 0xFF); mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_1ST_KEY_VALUE); mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_2ND_KEY_VALUE); mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_3RD_KEY_VALUE); mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_4TH_KEY_VALUE); mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_5TH_KEY_VALUE); DELAY(100000); } if (try == 0) return (EIO); return (0); } static void mpt_disable_diag_mode(struct mpt_softc *mpt) { mpt_write(mpt, MPT_OFFSET_SEQUENCE, 0xFFFFFFFF); } /* This is a magic diagnostic reset that resets all the ARM * processors in the chip. */ static void mpt_hard_reset(struct mpt_softc *mpt) { int error; int wait; uint32_t diagreg; mpt_lprt(mpt, MPT_PRT_DEBUG, "hard reset\n"); if (mpt->is_1078) { mpt_write(mpt, MPT_OFFSET_RESET_1078, 0x07); DELAY(1000); return; } error = mpt_enable_diag_mode(mpt); if (error) { mpt_prt(mpt, "WARNING - Could not enter diagnostic mode !\n"); mpt_prt(mpt, "Trying to reset anyway.\n"); } diagreg = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC); /* * This appears to be a workaround required for some * firmware or hardware revs. */ mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, diagreg | MPI_DIAG_DISABLE_ARM); DELAY(1000); /* Diag. port is now active so we can now hit the reset bit */ mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, diagreg | MPI_DIAG_RESET_ADAPTER); /* * Ensure that the reset has finished. We delay 1ms * prior to reading the register to make sure the chip * has sufficiently completed its reset to handle register * accesses. */ wait = 5000; do { DELAY(1000); diagreg = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC); } while (--wait && (diagreg & MPI_DIAG_RESET_ADAPTER) == 0); if (wait == 0) { mpt_prt(mpt, "WARNING - Failed hard reset! " "Trying to initialize anyway.\n"); } /* * If we have firmware to download, it must be loaded before * the controller will become operational. Do so now. */ if (mpt->fw_image != NULL) { error = mpt_download_fw(mpt); if (error) { mpt_prt(mpt, "WARNING - Firmware Download Failed!\n"); mpt_prt(mpt, "Trying to initialize anyway.\n"); } } /* * Reseting the controller should have disabled write * access to the diagnostic registers, but disable * manually to be sure. */ mpt_disable_diag_mode(mpt); } static void mpt_core_ioc_reset(struct mpt_softc *mpt, int type) { /* * Complete all pending requests with a status * appropriate for an IOC reset. */ mpt_complete_request_chain(mpt, &mpt->request_pending_list, MPI_IOCSTATUS_INVALID_STATE); } /* * Reset the IOC when needed. Try software command first then if needed * poke at the magic diagnostic reset. Note that a hard reset resets * *both* IOCs on dual function chips (FC929 && LSI1030) as well as * fouls up the PCI configuration registers. */ int mpt_reset(struct mpt_softc *mpt, int reinit) { struct mpt_personality *pers; int ret; int retry_cnt = 0; /* * Try a soft reset. If that fails, get out the big hammer. */ again: if ((ret = mpt_soft_reset(mpt)) != MPT_OK) { int cnt; for (cnt = 0; cnt < 5; cnt++) { /* Failed; do a hard reset */ mpt_hard_reset(mpt); /* * Wait for the IOC to reload * and come out of reset state */ ret = mpt_wait_state(mpt, MPT_DB_STATE_READY); if (ret == MPT_OK) { break; } /* * Okay- try to check again... */ ret = mpt_wait_state(mpt, MPT_DB_STATE_READY); if (ret == MPT_OK) { break; } mpt_prt(mpt, "mpt_reset: failed hard reset (%d:%d)\n", retry_cnt, cnt); } } if (retry_cnt == 0) { /* * Invoke reset handlers. We bump the reset count so * that mpt_wait_req() understands that regardless of * the specified wait condition, it should stop its wait. */ mpt->reset_cnt++; MPT_PERS_FOREACH(mpt, pers) pers->reset(mpt, ret); } if (reinit) { ret = mpt_enable_ioc(mpt, 1); if (ret == MPT_OK) { mpt_enable_ints(mpt); } } if (ret != MPT_OK && retry_cnt++ < 2) { goto again; } return ret; } /* Return a command buffer to the free queue */ void mpt_free_request(struct mpt_softc *mpt, request_t *req) { request_t *nxt; struct mpt_evtf_record *record; uint32_t offset, reply_baddr; if (req == NULL || req != &mpt->request_pool[req->index]) { panic("mpt_free_request: bad req ptr"); } if ((nxt = req->chain) != NULL) { req->chain = NULL; mpt_free_request(mpt, nxt); /* NB: recursion */ } KASSERT(req->state != REQ_STATE_FREE, ("freeing free request")); KASSERT(!(req->state & REQ_STATE_LOCKED), ("freeing locked request")); MPT_LOCK_ASSERT(mpt); KASSERT(mpt_req_on_free_list(mpt, req) == 0, ("mpt_free_request: req %p:%u func %x already on freelist", req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function)); KASSERT(mpt_req_on_pending_list(mpt, req) == 0, ("mpt_free_request: req %p:%u func %x on pending list", req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function)); #ifdef INVARIANTS mpt_req_not_spcl(mpt, req, "mpt_free_request", __LINE__); #endif req->ccb = NULL; if (LIST_EMPTY(&mpt->ack_frames)) { /* * Insert free ones at the tail */ req->serno = 0; req->state = REQ_STATE_FREE; #ifdef INVARIANTS memset(req->req_vbuf, 0xff, sizeof (MSG_REQUEST_HEADER)); #endif TAILQ_INSERT_TAIL(&mpt->request_free_list, req, links); if (mpt->getreqwaiter != 0) { mpt->getreqwaiter = 0; wakeup(&mpt->request_free_list); } return; } /* * Process an ack frame deferred due to resource shortage. */ record = LIST_FIRST(&mpt->ack_frames); LIST_REMOVE(record, links); req->state = REQ_STATE_ALLOCATED; mpt_assign_serno(mpt, req); mpt_send_event_ack(mpt, req, &record->reply, record->context); offset = (uint32_t)((uint8_t *)record - mpt->reply); reply_baddr = offset + (mpt->reply_phys & 0xFFFFFFFF); bus_dmamap_sync_range(mpt->reply_dmat, mpt->reply_dmap, offset, MPT_REPLY_SIZE, BUS_DMASYNC_PREREAD); mpt_free_reply(mpt, reply_baddr); } /* Get a command buffer from the free queue */ request_t * mpt_get_request(struct mpt_softc *mpt, int sleep_ok) { request_t *req; retry: MPT_LOCK_ASSERT(mpt); req = TAILQ_FIRST(&mpt->request_free_list); if (req != NULL) { KASSERT(req == &mpt->request_pool[req->index], ("mpt_get_request: corrupted request free list")); KASSERT(req->state == REQ_STATE_FREE, ("req %p:%u not free on free list %x index %d function %x", req, req->serno, req->state, req->index, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function)); TAILQ_REMOVE(&mpt->request_free_list, req, links); req->state = REQ_STATE_ALLOCATED; req->chain = NULL; mpt_assign_serno(mpt, req); } else if (sleep_ok != 0) { mpt->getreqwaiter = 1; mpt_sleep(mpt, &mpt->request_free_list, PUSER, "mptgreq", 0); goto retry; } return (req); } /* Pass the command to the IOC */ void mpt_send_cmd(struct mpt_softc *mpt, request_t *req) { if (mpt->verbose > MPT_PRT_DEBUG2) { mpt_dump_request(mpt, req); } bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); req->state |= REQ_STATE_QUEUED; KASSERT(mpt_req_on_free_list(mpt, req) == 0, ("req %p:%u func %x on freelist list in mpt_send_cmd", req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function)); KASSERT(mpt_req_on_pending_list(mpt, req) == 0, ("req %p:%u func %x already on pending list in mpt_send_cmd", req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function)); TAILQ_INSERT_HEAD(&mpt->request_pending_list, req, links); mpt_write(mpt, MPT_OFFSET_REQUEST_Q, (uint32_t) req->req_pbuf); } /* * Wait for a request to complete. * * Inputs: * mpt softc of controller executing request * req request to wait for * sleep_ok nonzero implies may sleep in this context * time_ms timeout in ms. 0 implies no timeout. * * Return Values: * 0 Request completed * non-0 Timeout fired before request completion. */ int mpt_wait_req(struct mpt_softc *mpt, request_t *req, mpt_req_state_t state, mpt_req_state_t mask, int sleep_ok, int time_ms) { int error; int timeout; u_int saved_cnt; /* * timeout is in ms. 0 indicates infinite wait. * Convert to ticks or 500us units depending on * our sleep mode. */ if (sleep_ok != 0) { timeout = (time_ms * hz) / 1000; } else { timeout = time_ms * 2; } req->state |= REQ_STATE_NEED_WAKEUP; mask &= ~REQ_STATE_NEED_WAKEUP; saved_cnt = mpt->reset_cnt; while ((req->state & mask) != state && mpt->reset_cnt == saved_cnt) { if (sleep_ok != 0) { error = mpt_sleep(mpt, req, PUSER, "mptreq", timeout); if (error == EWOULDBLOCK) { timeout = 0; break; } } else { if (time_ms != 0 && --timeout == 0) { break; } DELAY(500); mpt_intr(mpt); } } req->state &= ~REQ_STATE_NEED_WAKEUP; if (mpt->reset_cnt != saved_cnt) { return (EIO); } if (time_ms && timeout <= 0) { MSG_REQUEST_HEADER *msg_hdr = req->req_vbuf; req->state |= REQ_STATE_TIMEDOUT; mpt_prt(mpt, "mpt_wait_req(%x) timed out\n", msg_hdr->Function); return (ETIMEDOUT); } return (0); } /* * Send a command to the IOC via the handshake register. * * Only done at initialization time and for certain unusual * commands such as device/bus reset as specified by LSI. */ int mpt_send_handshake_cmd(struct mpt_softc *mpt, size_t len, void *cmd) { int i; uint32_t data, *data32; /* Check condition of the IOC */ data = mpt_rd_db(mpt); if ((MPT_STATE(data) != MPT_DB_STATE_READY && MPT_STATE(data) != MPT_DB_STATE_RUNNING && MPT_STATE(data) != MPT_DB_STATE_FAULT) || MPT_DB_IS_IN_USE(data)) { mpt_prt(mpt, "handshake aborted - invalid doorbell state\n"); mpt_print_db(data); return (EBUSY); } /* We move things in 32 bit chunks */ len = (len + 3) >> 2; data32 = cmd; /* Clear any left over pending doorbell interrupts */ if (MPT_DB_INTR(mpt_rd_intr(mpt))) mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0); /* * Tell the handshake reg. we are going to send a command * and how long it is going to be. */ data = (MPI_FUNCTION_HANDSHAKE << MPI_DOORBELL_FUNCTION_SHIFT) | (len << MPI_DOORBELL_ADD_DWORDS_SHIFT); mpt_write(mpt, MPT_OFFSET_DOORBELL, data); /* Wait for the chip to notice */ if (mpt_wait_db_int(mpt) != MPT_OK) { mpt_prt(mpt, "mpt_send_handshake_cmd: db ignored\n"); return (ETIMEDOUT); } /* Clear the interrupt */ mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0); if (mpt_wait_db_ack(mpt) != MPT_OK) { mpt_prt(mpt, "mpt_send_handshake_cmd: db ack timed out\n"); return (ETIMEDOUT); } /* Send the command */ for (i = 0; i < len; i++) { mpt_write(mpt, MPT_OFFSET_DOORBELL, htole32(*data32++)); if (mpt_wait_db_ack(mpt) != MPT_OK) { mpt_prt(mpt, "mpt_send_handshake_cmd: timeout @ index %d\n", i); return (ETIMEDOUT); } } return MPT_OK; } /* Get the response from the handshake register */ int mpt_recv_handshake_reply(struct mpt_softc *mpt, size_t reply_len, void *reply) { int left, reply_left; u_int16_t *data16; uint32_t data; MSG_DEFAULT_REPLY *hdr; /* We move things out in 16 bit chunks */ reply_len >>= 1; data16 = (u_int16_t *)reply; hdr = (MSG_DEFAULT_REPLY *)reply; /* Get first word */ if (mpt_wait_db_int(mpt) != MPT_OK) { mpt_prt(mpt, "mpt_recv_handshake_cmd timeout1\n"); return ETIMEDOUT; } data = mpt_read(mpt, MPT_OFFSET_DOORBELL); *data16++ = le16toh(data & MPT_DB_DATA_MASK); mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0); /* Get Second Word */ if (mpt_wait_db_int(mpt) != MPT_OK) { mpt_prt(mpt, "mpt_recv_handshake_cmd timeout2\n"); return ETIMEDOUT; } data = mpt_read(mpt, MPT_OFFSET_DOORBELL); *data16++ = le16toh(data & MPT_DB_DATA_MASK); mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0); /* * With the second word, we can now look at the length. * Warn about a reply that's too short (except for IOC FACTS REPLY) */ if ((reply_len >> 1) != hdr->MsgLength && (hdr->Function != MPI_FUNCTION_IOC_FACTS)){ #if __FreeBSD_version >= 500000 mpt_prt(mpt, "reply length does not match message length: " "got %x; expected %zx for function %x\n", hdr->MsgLength << 2, reply_len << 1, hdr->Function); #else mpt_prt(mpt, "reply length does not match message length: " "got %x; expected %x for function %x\n", hdr->MsgLength << 2, reply_len << 1, hdr->Function); #endif } /* Get rest of the reply; but don't overflow the provided buffer */ left = (hdr->MsgLength << 1) - 2; reply_left = reply_len - 2; while (left--) { u_int16_t datum; if (mpt_wait_db_int(mpt) != MPT_OK) { mpt_prt(mpt, "mpt_recv_handshake_cmd timeout3\n"); return ETIMEDOUT; } data = mpt_read(mpt, MPT_OFFSET_DOORBELL); datum = le16toh(data & MPT_DB_DATA_MASK); if (reply_left-- > 0) *data16++ = datum; mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0); } /* One more wait & clear at the end */ if (mpt_wait_db_int(mpt) != MPT_OK) { mpt_prt(mpt, "mpt_recv_handshake_cmd timeout4\n"); return ETIMEDOUT; } mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0); if ((hdr->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) { if (mpt->verbose >= MPT_PRT_TRACE) mpt_print_reply(hdr); return (MPT_FAIL | hdr->IOCStatus); } return (0); } static int mpt_get_iocfacts(struct mpt_softc *mpt, MSG_IOC_FACTS_REPLY *freplp) { MSG_IOC_FACTS f_req; int error; memset(&f_req, 0, sizeof f_req); f_req.Function = MPI_FUNCTION_IOC_FACTS; f_req.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE); error = mpt_send_handshake_cmd(mpt, sizeof f_req, &f_req); if (error) { return(error); } error = mpt_recv_handshake_reply(mpt, sizeof (*freplp), freplp); return (error); } static int mpt_get_portfacts(struct mpt_softc *mpt, U8 port, MSG_PORT_FACTS_REPLY *freplp) { MSG_PORT_FACTS f_req; int error; memset(&f_req, 0, sizeof f_req); f_req.Function = MPI_FUNCTION_PORT_FACTS; f_req.PortNumber = port; f_req.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE); error = mpt_send_handshake_cmd(mpt, sizeof f_req, &f_req); if (error) { return(error); } error = mpt_recv_handshake_reply(mpt, sizeof (*freplp), freplp); return (error); } /* * Send the initialization request. This is where we specify how many * SCSI busses and how many devices per bus we wish to emulate. * This is also the command that specifies the max size of the reply * frames from the IOC that we will be allocating. */ static int mpt_send_ioc_init(struct mpt_softc *mpt, uint32_t who) { int error = 0; MSG_IOC_INIT init; MSG_IOC_INIT_REPLY reply; memset(&init, 0, sizeof init); init.WhoInit = who; init.Function = MPI_FUNCTION_IOC_INIT; init.MaxDevices = 0; /* at least 256 devices per bus */ init.MaxBuses = 16; /* at least 16 busses */ init.MsgVersion = htole16(MPI_VERSION); init.HeaderVersion = htole16(MPI_HEADER_VERSION); init.ReplyFrameSize = htole16(MPT_REPLY_SIZE); init.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE); if ((error = mpt_send_handshake_cmd(mpt, sizeof init, &init)) != 0) { return(error); } error = mpt_recv_handshake_reply(mpt, sizeof reply, &reply); return (error); } /* * Utiltity routine to read configuration headers and pages */ int mpt_issue_cfg_req(struct mpt_softc *mpt, request_t *req, cfgparms_t *params, bus_addr_t addr, bus_size_t len, int sleep_ok, int timeout_ms) { MSG_CONFIG *cfgp; SGE_SIMPLE32 *se; cfgp = req->req_vbuf; memset(cfgp, 0, sizeof *cfgp); cfgp->Action = params->Action; cfgp->Function = MPI_FUNCTION_CONFIG; cfgp->Header.PageVersion = params->PageVersion; cfgp->Header.PageNumber = params->PageNumber; cfgp->PageAddress = htole32(params->PageAddress); if ((params->PageType & MPI_CONFIG_PAGETYPE_MASK) == MPI_CONFIG_PAGETYPE_EXTENDED) { cfgp->Header.PageType = MPI_CONFIG_PAGETYPE_EXTENDED; cfgp->Header.PageLength = 0; cfgp->ExtPageLength = htole16(params->ExtPageLength); cfgp->ExtPageType = params->ExtPageType; } else { cfgp->Header.PageType = params->PageType; cfgp->Header.PageLength = params->PageLength; } se = (SGE_SIMPLE32 *)&cfgp->PageBufferSGE; se->Address = htole32(addr); MPI_pSGE_SET_LENGTH(se, len); MPI_pSGE_SET_FLAGS(se, (MPI_SGE_FLAGS_SIMPLE_ELEMENT | MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER | MPI_SGE_FLAGS_END_OF_LIST | ((params->Action == MPI_CONFIG_ACTION_PAGE_WRITE_CURRENT || params->Action == MPI_CONFIG_ACTION_PAGE_WRITE_NVRAM) ? MPI_SGE_FLAGS_HOST_TO_IOC : MPI_SGE_FLAGS_IOC_TO_HOST))); se->FlagsLength = htole32(se->FlagsLength); cfgp->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_CONFIG); mpt_check_doorbell(mpt); mpt_send_cmd(mpt, req); return (mpt_wait_req(mpt, req, REQ_STATE_DONE, REQ_STATE_DONE, sleep_ok, timeout_ms)); } int mpt_read_extcfg_header(struct mpt_softc *mpt, int PageVersion, int PageNumber, uint32_t PageAddress, int ExtPageType, CONFIG_EXTENDED_PAGE_HEADER *rslt, int sleep_ok, int timeout_ms) { request_t *req; cfgparms_t params; MSG_CONFIG_REPLY *cfgp; int error; req = mpt_get_request(mpt, sleep_ok); if (req == NULL) { mpt_prt(mpt, "mpt_extread_cfg_header: Get request failed!\n"); return (ENOMEM); } params.Action = MPI_CONFIG_ACTION_PAGE_HEADER; params.PageVersion = PageVersion; params.PageLength = 0; params.PageNumber = PageNumber; params.PageType = MPI_CONFIG_PAGETYPE_EXTENDED; params.PageAddress = PageAddress; params.ExtPageType = ExtPageType; params.ExtPageLength = 0; error = mpt_issue_cfg_req(mpt, req, ¶ms, /*addr*/0, /*len*/0, sleep_ok, timeout_ms); if (error != 0) { /* * Leave the request. Without resetting the chip, it's * still owned by it and we'll just get into trouble * freeing it now. Mark it as abandoned so that if it * shows up later it can be freed. */ mpt_prt(mpt, "read_extcfg_header timed out\n"); return (ETIMEDOUT); } switch (req->IOCStatus & MPI_IOCSTATUS_MASK) { case MPI_IOCSTATUS_SUCCESS: cfgp = req->req_vbuf; rslt->PageVersion = cfgp->Header.PageVersion; rslt->PageNumber = cfgp->Header.PageNumber; rslt->PageType = cfgp->Header.PageType; rslt->ExtPageLength = le16toh(cfgp->ExtPageLength); rslt->ExtPageType = cfgp->ExtPageType; error = 0; break; case MPI_IOCSTATUS_CONFIG_INVALID_PAGE: mpt_lprt(mpt, MPT_PRT_DEBUG, "Invalid Page Type %d Number %d Addr 0x%0x\n", MPI_CONFIG_PAGETYPE_EXTENDED, PageNumber, PageAddress); error = EINVAL; break; default: mpt_prt(mpt, "mpt_read_extcfg_header: Config Info Status %x\n", req->IOCStatus); error = EIO; break; } mpt_free_request(mpt, req); return (error); } int mpt_read_extcfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress, CONFIG_EXTENDED_PAGE_HEADER *hdr, void *buf, size_t len, int sleep_ok, int timeout_ms) { request_t *req; cfgparms_t params; int error; req = mpt_get_request(mpt, sleep_ok); if (req == NULL) { mpt_prt(mpt, "mpt_read_extcfg_page: Get request failed!\n"); return (-1); } params.Action = Action; params.PageVersion = hdr->PageVersion; params.PageLength = 0; params.PageNumber = hdr->PageNumber; params.PageType = MPI_CONFIG_PAGETYPE_EXTENDED; params.PageAddress = PageAddress; params.ExtPageType = hdr->ExtPageType; params.ExtPageLength = hdr->ExtPageLength; error = mpt_issue_cfg_req(mpt, req, ¶ms, req->req_pbuf + MPT_RQSL(mpt), len, sleep_ok, timeout_ms); if (error != 0) { mpt_prt(mpt, "read_extcfg_page(%d) timed out\n", Action); return (-1); } if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) { mpt_prt(mpt, "mpt_read_extcfg_page: Config Info Status %x\n", req->IOCStatus); mpt_free_request(mpt, req); return (-1); } memcpy(buf, ((uint8_t *)req->req_vbuf)+MPT_RQSL(mpt), len); mpt_free_request(mpt, req); return (0); } int mpt_read_cfg_header(struct mpt_softc *mpt, int PageType, int PageNumber, uint32_t PageAddress, CONFIG_PAGE_HEADER *rslt, int sleep_ok, int timeout_ms) { request_t *req; cfgparms_t params; MSG_CONFIG *cfgp; int error; req = mpt_get_request(mpt, sleep_ok); if (req == NULL) { mpt_prt(mpt, "mpt_read_cfg_header: Get request failed!\n"); return (ENOMEM); } params.Action = MPI_CONFIG_ACTION_PAGE_HEADER; params.PageVersion = 0; params.PageLength = 0; params.PageNumber = PageNumber; params.PageType = PageType; params.PageAddress = PageAddress; error = mpt_issue_cfg_req(mpt, req, ¶ms, /*addr*/0, /*len*/0, sleep_ok, timeout_ms); if (error != 0) { /* * Leave the request. Without resetting the chip, it's * still owned by it and we'll just get into trouble * freeing it now. Mark it as abandoned so that if it * shows up later it can be freed. */ mpt_prt(mpt, "read_cfg_header timed out\n"); return (ETIMEDOUT); } switch (req->IOCStatus & MPI_IOCSTATUS_MASK) { case MPI_IOCSTATUS_SUCCESS: cfgp = req->req_vbuf; bcopy(&cfgp->Header, rslt, sizeof(*rslt)); error = 0; break; case MPI_IOCSTATUS_CONFIG_INVALID_PAGE: mpt_lprt(mpt, MPT_PRT_DEBUG, "Invalid Page Type %d Number %d Addr 0x%0x\n", PageType, PageNumber, PageAddress); error = EINVAL; break; default: mpt_prt(mpt, "mpt_read_cfg_header: Config Info Status %x\n", req->IOCStatus); error = EIO; break; } mpt_free_request(mpt, req); return (error); } int mpt_read_cfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress, CONFIG_PAGE_HEADER *hdr, size_t len, int sleep_ok, int timeout_ms) { request_t *req; cfgparms_t params; int error; req = mpt_get_request(mpt, sleep_ok); if (req == NULL) { mpt_prt(mpt, "mpt_read_cfg_page: Get request failed!\n"); return (-1); } params.Action = Action; params.PageVersion = hdr->PageVersion; params.PageLength = hdr->PageLength; params.PageNumber = hdr->PageNumber; params.PageType = hdr->PageType & MPI_CONFIG_PAGETYPE_MASK; params.PageAddress = PageAddress; error = mpt_issue_cfg_req(mpt, req, ¶ms, req->req_pbuf + MPT_RQSL(mpt), len, sleep_ok, timeout_ms); if (error != 0) { mpt_prt(mpt, "read_cfg_page(%d) timed out\n", Action); return (-1); } if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) { mpt_prt(mpt, "mpt_read_cfg_page: Config Info Status %x\n", req->IOCStatus); mpt_free_request(mpt, req); return (-1); } memcpy(hdr, ((uint8_t *)req->req_vbuf)+MPT_RQSL(mpt), len); mpt_free_request(mpt, req); return (0); } int mpt_write_cfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress, CONFIG_PAGE_HEADER *hdr, size_t len, int sleep_ok, int timeout_ms) { request_t *req; cfgparms_t params; u_int hdr_attr; int error; hdr_attr = hdr->PageType & MPI_CONFIG_PAGEATTR_MASK; if (hdr_attr != MPI_CONFIG_PAGEATTR_CHANGEABLE && hdr_attr != MPI_CONFIG_PAGEATTR_PERSISTENT) { mpt_prt(mpt, "page type 0x%x not changeable\n", hdr->PageType & MPI_CONFIG_PAGETYPE_MASK); return (-1); } #if 0 /* * We shouldn't mask off other bits here. */ hdr->PageType &= MPI_CONFIG_PAGETYPE_MASK; #endif req = mpt_get_request(mpt, sleep_ok); if (req == NULL) return (-1); memcpy(((caddr_t)req->req_vbuf) + MPT_RQSL(mpt), hdr, len); /* * There isn't any point in restoring stripped out attributes * if you then mask them going down to issue the request. */ params.Action = Action; params.PageVersion = hdr->PageVersion; params.PageLength = hdr->PageLength; params.PageNumber = hdr->PageNumber; params.PageAddress = PageAddress; #if 0 /* Restore stripped out attributes */ hdr->PageType |= hdr_attr; params.PageType = hdr->PageType & MPI_CONFIG_PAGETYPE_MASK; #else params.PageType = hdr->PageType; #endif error = mpt_issue_cfg_req(mpt, req, ¶ms, req->req_pbuf + MPT_RQSL(mpt), len, sleep_ok, timeout_ms); if (error != 0) { mpt_prt(mpt, "mpt_write_cfg_page timed out\n"); return (-1); } if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) { mpt_prt(mpt, "mpt_write_cfg_page: Config Info Status %x\n", req->IOCStatus); mpt_free_request(mpt, req); return (-1); } mpt_free_request(mpt, req); return (0); } /* * Read IOC configuration information */ static int mpt_read_config_info_ioc(struct mpt_softc *mpt) { CONFIG_PAGE_HEADER hdr; struct mpt_raid_volume *mpt_raid; int rv; int i; size_t len; rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_IOC, 2, 0, &hdr, FALSE, 5000); /* * If it's an invalid page, so what? Not a supported function.... */ if (rv == EINVAL) { return (0); } if (rv) { return (rv); } mpt_lprt(mpt, MPT_PRT_DEBUG, "IOC Page 2 Header: Version %x len %x PageNumber %x PageType %x\n", hdr.PageVersion, hdr.PageLength << 2, hdr.PageNumber, hdr.PageType); len = hdr.PageLength * sizeof(uint32_t); mpt->ioc_page2 = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO); if (mpt->ioc_page2 == NULL) { mpt_prt(mpt, "unable to allocate memory for IOC page 2\n"); mpt_raid_free_mem(mpt); return (ENOMEM); } memcpy(&mpt->ioc_page2->Header, &hdr, sizeof(hdr)); rv = mpt_read_cur_cfg_page(mpt, 0, &mpt->ioc_page2->Header, len, FALSE, 5000); if (rv) { mpt_prt(mpt, "failed to read IOC Page 2\n"); mpt_raid_free_mem(mpt); return (EIO); } mpt2host_config_page_ioc2(mpt->ioc_page2); if (mpt->ioc_page2->CapabilitiesFlags != 0) { uint32_t mask; mpt_prt(mpt, "Capabilities: ("); for (mask = 1; mask != 0; mask <<= 1) { if ((mpt->ioc_page2->CapabilitiesFlags & mask) == 0) { continue; } switch (mask) { case MPI_IOCPAGE2_CAP_FLAGS_IS_SUPPORT: mpt_prtc(mpt, " RAID-0"); break; case MPI_IOCPAGE2_CAP_FLAGS_IME_SUPPORT: mpt_prtc(mpt, " RAID-1E"); break; case MPI_IOCPAGE2_CAP_FLAGS_IM_SUPPORT: mpt_prtc(mpt, " RAID-1"); break; case MPI_IOCPAGE2_CAP_FLAGS_SES_SUPPORT: mpt_prtc(mpt, " SES"); break; case MPI_IOCPAGE2_CAP_FLAGS_SAFTE_SUPPORT: mpt_prtc(mpt, " SAFTE"); break; case MPI_IOCPAGE2_CAP_FLAGS_CROSS_CHANNEL_SUPPORT: mpt_prtc(mpt, " Multi-Channel-Arrays"); default: break; } } mpt_prtc(mpt, " )\n"); if ((mpt->ioc_page2->CapabilitiesFlags & (MPI_IOCPAGE2_CAP_FLAGS_IS_SUPPORT | MPI_IOCPAGE2_CAP_FLAGS_IME_SUPPORT | MPI_IOCPAGE2_CAP_FLAGS_IM_SUPPORT)) != 0) { mpt_prt(mpt, "%d Active Volume%s(%d Max)\n", mpt->ioc_page2->NumActiveVolumes, mpt->ioc_page2->NumActiveVolumes != 1 ? "s " : " ", mpt->ioc_page2->MaxVolumes); mpt_prt(mpt, "%d Hidden Drive Member%s(%d Max)\n", mpt->ioc_page2->NumActivePhysDisks, mpt->ioc_page2->NumActivePhysDisks != 1 ? "s " : " ", mpt->ioc_page2->MaxPhysDisks); } } len = mpt->ioc_page2->MaxVolumes * sizeof(struct mpt_raid_volume); mpt->raid_volumes = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO); if (mpt->raid_volumes == NULL) { mpt_prt(mpt, "Could not allocate RAID volume data\n"); mpt_raid_free_mem(mpt); return (ENOMEM); } /* * Copy critical data out of ioc_page2 so that we can * safely refresh the page without windows of unreliable * data. */ mpt->raid_max_volumes = mpt->ioc_page2->MaxVolumes; len = sizeof(*mpt->raid_volumes->config_page) + (sizeof (RAID_VOL0_PHYS_DISK) * (mpt->ioc_page2->MaxPhysDisks - 1)); for (i = 0; i < mpt->ioc_page2->MaxVolumes; i++) { mpt_raid = &mpt->raid_volumes[i]; mpt_raid->config_page = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO); if (mpt_raid->config_page == NULL) { mpt_prt(mpt, "Could not allocate RAID page data\n"); mpt_raid_free_mem(mpt); return (ENOMEM); } } mpt->raid_page0_len = len; len = mpt->ioc_page2->MaxPhysDisks * sizeof(struct mpt_raid_disk); mpt->raid_disks = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO); if (mpt->raid_disks == NULL) { mpt_prt(mpt, "Could not allocate RAID disk data\n"); mpt_raid_free_mem(mpt); return (ENOMEM); } mpt->raid_max_disks = mpt->ioc_page2->MaxPhysDisks; /* * Load page 3. */ rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_IOC, 3, 0, &hdr, FALSE, 5000); if (rv) { mpt_raid_free_mem(mpt); return (EIO); } mpt_lprt(mpt, MPT_PRT_DEBUG, "IOC Page 3 Header: %x %x %x %x\n", hdr.PageVersion, hdr.PageLength, hdr.PageNumber, hdr.PageType); len = hdr.PageLength * sizeof(uint32_t); mpt->ioc_page3 = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO); if (mpt->ioc_page3 == NULL) { mpt_prt(mpt, "unable to allocate memory for IOC page 3\n"); mpt_raid_free_mem(mpt); return (ENOMEM); } memcpy(&mpt->ioc_page3->Header, &hdr, sizeof(hdr)); rv = mpt_read_cur_cfg_page(mpt, 0, &mpt->ioc_page3->Header, len, FALSE, 5000); if (rv) { mpt_raid_free_mem(mpt); return (EIO); } mpt2host_config_page_ioc3(mpt->ioc_page3); mpt_raid_wakeup(mpt); return (0); } /* * Enable IOC port */ static int mpt_send_port_enable(struct mpt_softc *mpt, int port) { request_t *req; MSG_PORT_ENABLE *enable_req; int error; req = mpt_get_request(mpt, /*sleep_ok*/FALSE); if (req == NULL) return (-1); enable_req = req->req_vbuf; memset(enable_req, 0, MPT_RQSL(mpt)); enable_req->Function = MPI_FUNCTION_PORT_ENABLE; enable_req->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_CONFIG); enable_req->PortNumber = port; mpt_check_doorbell(mpt); mpt_lprt(mpt, MPT_PRT_DEBUG, "enabling port %d\n", port); mpt_send_cmd(mpt, req); error = mpt_wait_req(mpt, req, REQ_STATE_DONE, REQ_STATE_DONE, FALSE, (mpt->is_sas || mpt->is_fc)? 300000 : 30000); if (error != 0) { mpt_prt(mpt, "port %d enable timed out\n", port); return (-1); } mpt_free_request(mpt, req); mpt_lprt(mpt, MPT_PRT_DEBUG, "enabled port %d\n", port); return (0); } /* * Enable/Disable asynchronous event reporting. */ static int mpt_send_event_request(struct mpt_softc *mpt, int onoff) { request_t *req; MSG_EVENT_NOTIFY *enable_req; req = mpt_get_request(mpt, FALSE); if (req == NULL) { return (ENOMEM); } enable_req = req->req_vbuf; memset(enable_req, 0, sizeof *enable_req); enable_req->Function = MPI_FUNCTION_EVENT_NOTIFICATION; enable_req->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_EVENTS); enable_req->Switch = onoff; mpt_check_doorbell(mpt); mpt_lprt(mpt, MPT_PRT_DEBUG, "%sabling async events\n", onoff ? "en" : "dis"); /* * Send the command off, but don't wait for it. */ mpt_send_cmd(mpt, req); return (0); } /* * Un-mask the interrupts on the chip. */ void mpt_enable_ints(struct mpt_softc *mpt) { /* Unmask every thing except door bell int */ mpt_write(mpt, MPT_OFFSET_INTR_MASK, MPT_INTR_DB_MASK); } /* * Mask the interrupts on the chip. */ void mpt_disable_ints(struct mpt_softc *mpt) { /* Mask all interrupts */ mpt_write(mpt, MPT_OFFSET_INTR_MASK, MPT_INTR_REPLY_MASK | MPT_INTR_DB_MASK); } static void mpt_sysctl_attach(struct mpt_softc *mpt) { #if __FreeBSD_version >= 500000 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(mpt->dev); struct sysctl_oid *tree = device_get_sysctl_tree(mpt->dev); SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "debug", CTLFLAG_RW, &mpt->verbose, 0, "Debugging/Verbose level"); SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "role", CTLFLAG_RD, &mpt->role, 0, "HBA role"); #ifdef MPT_TEST_MULTIPATH SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "failure_id", CTLFLAG_RW, &mpt->failure_id, -1, "Next Target to Fail"); #endif #endif } int mpt_attach(struct mpt_softc *mpt) { struct mpt_personality *pers; int i; int error; mpt_core_attach(mpt); mpt_core_enable(mpt); TAILQ_INSERT_TAIL(&mpt_tailq, mpt, links); for (i = 0; i < MPT_MAX_PERSONALITIES; i++) { pers = mpt_personalities[i]; if (pers == NULL) { continue; } if (pers->probe(mpt) == 0) { error = pers->attach(mpt); if (error != 0) { mpt_detach(mpt); return (error); } mpt->mpt_pers_mask |= (0x1 << pers->id); pers->use_count++; } } /* * Now that we've attached everything, do the enable function * for all of the personalities. This allows the personalities * to do setups that are appropriate for them prior to enabling * any ports. */ for (i = 0; i < MPT_MAX_PERSONALITIES; i++) { pers = mpt_personalities[i]; if (pers != NULL && MPT_PERS_ATTACHED(pers, mpt) != 0) { error = pers->enable(mpt); if (error != 0) { mpt_prt(mpt, "personality %s attached but would" " not enable (%d)\n", pers->name, error); mpt_detach(mpt); return (error); } } } return (0); } int mpt_shutdown(struct mpt_softc *mpt) { struct mpt_personality *pers; MPT_PERS_FOREACH_REVERSE(mpt, pers) { pers->shutdown(mpt); } return (0); } int mpt_detach(struct mpt_softc *mpt) { struct mpt_personality *pers; MPT_PERS_FOREACH_REVERSE(mpt, pers) { pers->detach(mpt); mpt->mpt_pers_mask &= ~(0x1 << pers->id); pers->use_count--; } TAILQ_REMOVE(&mpt_tailq, mpt, links); return (0); } static int mpt_core_load(struct mpt_personality *pers) { int i; /* * Setup core handlers and insert the default handler * into all "empty slots". */ for (i = 0; i < MPT_NUM_REPLY_HANDLERS; i++) { mpt_reply_handlers[i] = mpt_default_reply_handler; } mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_EVENTS)] = mpt_event_reply_handler; mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_CONFIG)] = mpt_config_reply_handler; mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_HANDSHAKE)] = mpt_handshake_reply_handler; return (0); } /* * Initialize per-instance driver data and perform * initial controller configuration. */ static int mpt_core_attach(struct mpt_softc *mpt) { int val, error; LIST_INIT(&mpt->ack_frames); /* Put all request buffers on the free list */ TAILQ_INIT(&mpt->request_pending_list); TAILQ_INIT(&mpt->request_free_list); TAILQ_INIT(&mpt->request_timeout_list); for (val = 0; val < MPT_MAX_LUNS; val++) { STAILQ_INIT(&mpt->trt[val].atios); STAILQ_INIT(&mpt->trt[val].inots); } STAILQ_INIT(&mpt->trt_wildcard.atios); STAILQ_INIT(&mpt->trt_wildcard.inots); #ifdef MPT_TEST_MULTIPATH mpt->failure_id = -1; #endif mpt->scsi_tgt_handler_id = MPT_HANDLER_ID_NONE; mpt_sysctl_attach(mpt); mpt_lprt(mpt, MPT_PRT_DEBUG, "doorbell req = %s\n", mpt_ioc_diag(mpt_read(mpt, MPT_OFFSET_DOORBELL))); MPT_LOCK(mpt); error = mpt_configure_ioc(mpt, 0, 0); MPT_UNLOCK(mpt); return (error); } static int mpt_core_enable(struct mpt_softc *mpt) { /* * We enter with the IOC enabled, but async events * not enabled, ports not enabled and interrupts * not enabled. */ MPT_LOCK(mpt); /* * Enable asynchronous event reporting- all personalities * have attached so that they should be able to now field * async events. */ mpt_send_event_request(mpt, 1); /* * Catch any pending interrupts * * This seems to be crucial- otherwise * the portenable below times out. */ mpt_intr(mpt); /* * Enable Interrupts */ mpt_enable_ints(mpt); /* * Catch any pending interrupts * * This seems to be crucial- otherwise * the portenable below times out. */ mpt_intr(mpt); /* * Enable the port. */ if (mpt_send_port_enable(mpt, 0) != MPT_OK) { mpt_prt(mpt, "failed to enable port 0\n"); MPT_UNLOCK(mpt); return (ENXIO); } MPT_UNLOCK(mpt); return (0); } static void mpt_core_shutdown(struct mpt_softc *mpt) { mpt_disable_ints(mpt); } static void mpt_core_detach(struct mpt_softc *mpt) { int val; /* * XXX: FREE MEMORY */ mpt_disable_ints(mpt); /* Make sure no request has pending timeouts. */ for (val = 0; val < MPT_MAX_REQUESTS(mpt); val++) { request_t *req = &mpt->request_pool[val]; mpt_callout_drain(mpt, &req->callout); } mpt_dma_buf_free(mpt); } static int mpt_core_unload(struct mpt_personality *pers) { /* Unload is always successful. */ return (0); } #define FW_UPLOAD_REQ_SIZE \ (sizeof(MSG_FW_UPLOAD) - sizeof(SGE_MPI_UNION) \ + sizeof(FW_UPLOAD_TCSGE) + sizeof(SGE_SIMPLE32)) static int mpt_upload_fw(struct mpt_softc *mpt) { uint8_t fw_req_buf[FW_UPLOAD_REQ_SIZE]; MSG_FW_UPLOAD_REPLY fw_reply; MSG_FW_UPLOAD *fw_req; FW_UPLOAD_TCSGE *tsge; SGE_SIMPLE32 *sge; uint32_t flags; int error; memset(&fw_req_buf, 0, sizeof(fw_req_buf)); fw_req = (MSG_FW_UPLOAD *)fw_req_buf; fw_req->ImageType = MPI_FW_UPLOAD_ITYPE_FW_IOC_MEM; fw_req->Function = MPI_FUNCTION_FW_UPLOAD; fw_req->MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE); tsge = (FW_UPLOAD_TCSGE *)&fw_req->SGL; tsge->DetailsLength = 12; tsge->Flags = MPI_SGE_FLAGS_TRANSACTION_ELEMENT; tsge->ImageSize = htole32(mpt->fw_image_size); sge = (SGE_SIMPLE32 *)(tsge + 1); flags = (MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER | MPI_SGE_FLAGS_END_OF_LIST | MPI_SGE_FLAGS_SIMPLE_ELEMENT | MPI_SGE_FLAGS_32_BIT_ADDRESSING | MPI_SGE_FLAGS_IOC_TO_HOST); flags <<= MPI_SGE_FLAGS_SHIFT; sge->FlagsLength = htole32(flags | mpt->fw_image_size); sge->Address = htole32(mpt->fw_phys); bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_PREREAD); error = mpt_send_handshake_cmd(mpt, sizeof(fw_req_buf), &fw_req_buf); if (error) return(error); error = mpt_recv_handshake_reply(mpt, sizeof(fw_reply), &fw_reply); bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_POSTREAD); return (error); } static void mpt_diag_outsl(struct mpt_softc *mpt, uint32_t addr, uint32_t *data, bus_size_t len) { uint32_t *data_end; data_end = data + (roundup2(len, sizeof(uint32_t)) / 4); if (mpt->is_sas) { pci_enable_io(mpt->dev, SYS_RES_IOPORT); } mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, addr); while (data != data_end) { mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, *data); data++; } if (mpt->is_sas) { pci_disable_io(mpt->dev, SYS_RES_IOPORT); } } static int mpt_download_fw(struct mpt_softc *mpt) { MpiFwHeader_t *fw_hdr; int error; uint32_t ext_offset; uint32_t data; if (mpt->pci_pio_reg == NULL) { mpt_prt(mpt, "No PIO resource!\n"); return (ENXIO); } mpt_prt(mpt, "Downloading Firmware - Image Size %d\n", mpt->fw_image_size); error = mpt_enable_diag_mode(mpt); if (error != 0) { mpt_prt(mpt, "Could not enter diagnostic mode!\n"); return (EIO); } mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, MPI_DIAG_RW_ENABLE|MPI_DIAG_DISABLE_ARM); fw_hdr = (MpiFwHeader_t *)mpt->fw_image; bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_PREWRITE); mpt_diag_outsl(mpt, fw_hdr->LoadStartAddress, (uint32_t*)fw_hdr, fw_hdr->ImageSize); bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_POSTWRITE); ext_offset = fw_hdr->NextImageHeaderOffset; while (ext_offset != 0) { MpiExtImageHeader_t *ext; ext = (MpiExtImageHeader_t *)((uintptr_t)fw_hdr + ext_offset); ext_offset = ext->NextImageHeaderOffset; bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_PREWRITE); mpt_diag_outsl(mpt, ext->LoadStartAddress, (uint32_t*)ext, ext->ImageSize); bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_POSTWRITE); } if (mpt->is_sas) { pci_enable_io(mpt->dev, SYS_RES_IOPORT); } /* Setup the address to jump to on reset. */ mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, fw_hdr->IopResetRegAddr); mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, fw_hdr->IopResetVectorValue); /* * The controller sets the "flash bad" status after attempting * to auto-boot from flash. Clear the status so that the controller * will continue the boot process with our newly installed firmware. */ mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, MPT_DIAG_MEM_CFG_BASE); data = mpt_pio_read(mpt, MPT_OFFSET_DIAG_DATA) | MPT_DIAG_MEM_CFG_BADFL; mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, MPT_DIAG_MEM_CFG_BASE); mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, data); if (mpt->is_sas) { pci_disable_io(mpt->dev, SYS_RES_IOPORT); } /* * Re-enable the processor and clear the boot halt flag. */ data = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC); data &= ~(MPI_DIAG_PREVENT_IOC_BOOT|MPI_DIAG_DISABLE_ARM); mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, data); mpt_disable_diag_mode(mpt); return (0); } static int mpt_dma_buf_alloc(struct mpt_softc *mpt) { struct mpt_map_info mi; uint8_t *vptr; uint32_t pptr, end; int i, error; /* Create a child tag for data buffers */ if (mpt_dma_tag_create(mpt, mpt->parent_dmat, 1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, (mpt->max_cam_seg_cnt - 1) * PAGE_SIZE, mpt->max_cam_seg_cnt, BUS_SPACE_MAXSIZE_32BIT, 0, &mpt->buffer_dmat) != 0) { mpt_prt(mpt, "cannot create a dma tag for data buffers\n"); return (1); } /* Create a child tag for request buffers */ if (mpt_dma_tag_create(mpt, mpt->parent_dmat, PAGE_SIZE, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MPT_REQ_MEM_SIZE(mpt), 1, BUS_SPACE_MAXSIZE_32BIT, 0, &mpt->request_dmat) != 0) { mpt_prt(mpt, "cannot create a dma tag for requests\n"); return (1); } /* Allocate some DMA accessible memory for requests */ if (bus_dmamem_alloc(mpt->request_dmat, (void **)&mpt->request, BUS_DMA_NOWAIT | BUS_DMA_COHERENT, &mpt->request_dmap) != 0) { mpt_prt(mpt, "cannot allocate %d bytes of request memory\n", MPT_REQ_MEM_SIZE(mpt)); return (1); } mi.mpt = mpt; mi.error = 0; /* Load and lock it into "bus space" */ bus_dmamap_load(mpt->request_dmat, mpt->request_dmap, mpt->request, MPT_REQ_MEM_SIZE(mpt), mpt_map_rquest, &mi, 0); if (mi.error) { mpt_prt(mpt, "error %d loading dma map for DMA request queue\n", mi.error); return (1); } mpt->request_phys = mi.phys; /* * Now create per-request dma maps */ i = 0; pptr = mpt->request_phys; vptr = mpt->request; end = pptr + MPT_REQ_MEM_SIZE(mpt); while(pptr < end) { request_t *req = &mpt->request_pool[i]; req->index = i++; /* Store location of Request Data */ req->req_pbuf = pptr; req->req_vbuf = vptr; pptr += MPT_REQUEST_AREA; vptr += MPT_REQUEST_AREA; req->sense_pbuf = (pptr - MPT_SENSE_SIZE); req->sense_vbuf = (vptr - MPT_SENSE_SIZE); error = bus_dmamap_create(mpt->buffer_dmat, 0, &req->dmap); if (error) { mpt_prt(mpt, "error %d creating per-cmd DMA maps\n", error); return (1); } } return (0); } static void mpt_dma_buf_free(struct mpt_softc *mpt) { int i; if (mpt->request_dmat == 0) { mpt_lprt(mpt, MPT_PRT_DEBUG, "already released dma memory\n"); return; } for (i = 0; i < MPT_MAX_REQUESTS(mpt); i++) { bus_dmamap_destroy(mpt->buffer_dmat, mpt->request_pool[i].dmap); } bus_dmamap_unload(mpt->request_dmat, mpt->request_dmap); bus_dmamem_free(mpt->request_dmat, mpt->request, mpt->request_dmap); bus_dma_tag_destroy(mpt->request_dmat); mpt->request_dmat = 0; bus_dma_tag_destroy(mpt->buffer_dmat); } /* * Allocate/Initialize data structures for the controller. Called * once at instance startup. */ static int mpt_configure_ioc(struct mpt_softc *mpt, int tn, int needreset) { PTR_MSG_PORT_FACTS_REPLY pfp; int error, port, val; size_t len; if (tn == MPT_MAX_TRYS) { return (-1); } /* * No need to reset if the IOC is already in the READY state. * * Force reset if initialization failed previously. * Note that a hard_reset of the second channel of a '929 * will stop operation of the first channel. Hopefully, if the * first channel is ok, the second will not require a hard * reset. */ if (needreset || MPT_STATE(mpt_rd_db(mpt)) != MPT_DB_STATE_READY) { if (mpt_reset(mpt, FALSE) != MPT_OK) { return (mpt_configure_ioc(mpt, tn++, 1)); } needreset = 0; } if (mpt_get_iocfacts(mpt, &mpt->ioc_facts) != MPT_OK) { mpt_prt(mpt, "mpt_get_iocfacts failed\n"); return (mpt_configure_ioc(mpt, tn++, 1)); } mpt2host_iocfacts_reply(&mpt->ioc_facts); mpt_prt(mpt, "MPI Version=%d.%d.%d.%d\n", mpt->ioc_facts.MsgVersion >> 8, mpt->ioc_facts.MsgVersion & 0xFF, mpt->ioc_facts.HeaderVersion >> 8, mpt->ioc_facts.HeaderVersion & 0xFF); /* * Now that we know request frame size, we can calculate * the actual (reasonable) segment limit for read/write I/O. * * This limit is constrained by: * * + The size of each area we allocate per command (and how * many chain segments we can fit into it). * + The total number of areas we've set up. * + The actual chain depth the card will allow. * * The first area's segment count is limited by the I/O request * at the head of it. We cannot allocate realistically more * than MPT_MAX_REQUESTS areas. Therefore, to account for both * conditions, we'll just start out with MPT_MAX_REQUESTS-2. * */ /* total number of request areas we (can) allocate */ mpt->max_seg_cnt = MPT_MAX_REQUESTS(mpt) - 2; /* converted to the number of chain areas possible */ mpt->max_seg_cnt *= MPT_NRFM(mpt); /* limited by the number of chain areas the card will support */ if (mpt->max_seg_cnt > mpt->ioc_facts.MaxChainDepth) { mpt_lprt(mpt, MPT_PRT_INFO, "chain depth limited to %u (from %u)\n", mpt->ioc_facts.MaxChainDepth, mpt->max_seg_cnt); mpt->max_seg_cnt = mpt->ioc_facts.MaxChainDepth; } /* converted to the number of simple sges in chain segments. */ mpt->max_seg_cnt *= (MPT_NSGL(mpt) - 1); /* * Use this as the basis for reporting the maximum I/O size to CAM. */ mpt->max_cam_seg_cnt = min(mpt->max_seg_cnt, (MAXPHYS / PAGE_SIZE) + 1); error = mpt_dma_buf_alloc(mpt); if (error != 0) { mpt_prt(mpt, "mpt_dma_buf_alloc() failed!\n"); return (EIO); } for (val = 0; val < MPT_MAX_REQUESTS(mpt); val++) { request_t *req = &mpt->request_pool[val]; req->state = REQ_STATE_ALLOCATED; mpt_callout_init(mpt, &req->callout); mpt_free_request(mpt, req); } mpt_lprt(mpt, MPT_PRT_INFO, "Maximum Segment Count: %u, Maximum " "CAM Segment Count: %u\n", mpt->max_seg_cnt, mpt->max_cam_seg_cnt); mpt_lprt(mpt, MPT_PRT_INFO, "MsgLength=%u IOCNumber = %d\n", mpt->ioc_facts.MsgLength, mpt->ioc_facts.IOCNumber); mpt_lprt(mpt, MPT_PRT_INFO, "IOCFACTS: GlobalCredits=%d BlockSize=%u bytes " "Request Frame Size %u bytes Max Chain Depth %u\n", mpt->ioc_facts.GlobalCredits, mpt->ioc_facts.BlockSize, mpt->ioc_facts.RequestFrameSize << 2, mpt->ioc_facts.MaxChainDepth); mpt_lprt(mpt, MPT_PRT_INFO, "IOCFACTS: Num Ports %d, FWImageSize %d, " "Flags=%#x\n", mpt->ioc_facts.NumberOfPorts, mpt->ioc_facts.FWImageSize, mpt->ioc_facts.Flags); len = mpt->ioc_facts.NumberOfPorts * sizeof (MSG_PORT_FACTS_REPLY); mpt->port_facts = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO); if (mpt->port_facts == NULL) { mpt_prt(mpt, "unable to allocate memory for port facts\n"); return (ENOMEM); } if ((mpt->ioc_facts.Flags & MPI_IOCFACTS_FLAGS_FW_DOWNLOAD_BOOT) && (mpt->fw_uploaded == 0)) { struct mpt_map_info mi; /* * In some configurations, the IOC's firmware is * stored in a shared piece of system NVRAM that * is only accessible via the BIOS. In this * case, the firmware keeps a copy of firmware in * RAM until the OS driver retrieves it. Once * retrieved, we are responsible for re-downloading * the firmware after any hard-reset. */ mpt->fw_image_size = mpt->ioc_facts.FWImageSize; error = mpt_dma_tag_create(mpt, mpt->parent_dmat, 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, mpt->fw_image_size, 1, mpt->fw_image_size, 0, &mpt->fw_dmat); if (error != 0) { mpt_prt(mpt, "cannot create firmware dma tag\n"); return (ENOMEM); } error = bus_dmamem_alloc(mpt->fw_dmat, (void **)&mpt->fw_image, BUS_DMA_NOWAIT | BUS_DMA_COHERENT, &mpt->fw_dmap); if (error != 0) { mpt_prt(mpt, "cannot allocate firmware memory\n"); bus_dma_tag_destroy(mpt->fw_dmat); return (ENOMEM); } mi.mpt = mpt; mi.error = 0; bus_dmamap_load(mpt->fw_dmat, mpt->fw_dmap, mpt->fw_image, mpt->fw_image_size, mpt_map_rquest, &mi, 0); mpt->fw_phys = mi.phys; error = mpt_upload_fw(mpt); if (error != 0) { mpt_prt(mpt, "firmware upload failed.\n"); bus_dmamap_unload(mpt->fw_dmat, mpt->fw_dmap); bus_dmamem_free(mpt->fw_dmat, mpt->fw_image, mpt->fw_dmap); bus_dma_tag_destroy(mpt->fw_dmat); mpt->fw_image = NULL; return (EIO); } mpt->fw_uploaded = 1; } for (port = 0; port < mpt->ioc_facts.NumberOfPorts; port++) { pfp = &mpt->port_facts[port]; error = mpt_get_portfacts(mpt, 0, pfp); if (error != MPT_OK) { mpt_prt(mpt, "mpt_get_portfacts on port %d failed\n", port); free(mpt->port_facts, M_DEVBUF); mpt->port_facts = NULL; return (mpt_configure_ioc(mpt, tn++, 1)); } mpt2host_portfacts_reply(pfp); if (port > 0) { error = MPT_PRT_INFO; } else { error = MPT_PRT_DEBUG; } mpt_lprt(mpt, error, "PORTFACTS[%d]: Type %x PFlags %x IID %d MaxDev %d\n", port, pfp->PortType, pfp->ProtocolFlags, pfp->PortSCSIID, pfp->MaxDevices); } /* * XXX: Not yet supporting more than port 0 */ pfp = &mpt->port_facts[0]; if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_FC) { mpt->is_fc = 1; mpt->is_sas = 0; mpt->is_spi = 0; } else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_SAS) { mpt->is_fc = 0; mpt->is_sas = 1; mpt->is_spi = 0; } else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_SCSI) { mpt->is_fc = 0; mpt->is_sas = 0; mpt->is_spi = 1; if (mpt->mpt_ini_id == MPT_INI_ID_NONE) mpt->mpt_ini_id = pfp->PortSCSIID; } else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_ISCSI) { mpt_prt(mpt, "iSCSI not supported yet\n"); return (ENXIO); } else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_INACTIVE) { mpt_prt(mpt, "Inactive Port\n"); return (ENXIO); } else { mpt_prt(mpt, "unknown Port Type %#x\n", pfp->PortType); return (ENXIO); } /* * Set our role with what this port supports. * * Note this might be changed later in different modules * if this is different from what is wanted. */ mpt->role = MPT_ROLE_NONE; if (pfp->ProtocolFlags & MPI_PORTFACTS_PROTOCOL_INITIATOR) { mpt->role |= MPT_ROLE_INITIATOR; } if (pfp->ProtocolFlags & MPI_PORTFACTS_PROTOCOL_TARGET) { mpt->role |= MPT_ROLE_TARGET; } /* * Enable the IOC */ if (mpt_enable_ioc(mpt, 1) != MPT_OK) { mpt_prt(mpt, "unable to initialize IOC\n"); return (ENXIO); } /* * Read IOC configuration information. * * We need this to determine whether or not we have certain * settings for Integrated Mirroring (e.g.). */ mpt_read_config_info_ioc(mpt); return (0); } static int mpt_enable_ioc(struct mpt_softc *mpt, int portenable) { uint32_t pptr; int val; if (mpt_send_ioc_init(mpt, MPI_WHOINIT_HOST_DRIVER) != MPT_OK) { mpt_prt(mpt, "mpt_send_ioc_init failed\n"); return (EIO); } mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_send_ioc_init ok\n"); if (mpt_wait_state(mpt, MPT_DB_STATE_RUNNING) != MPT_OK) { mpt_prt(mpt, "IOC failed to go to run state\n"); return (ENXIO); } mpt_lprt(mpt, MPT_PRT_DEBUG, "IOC now at RUNSTATE\n"); /* * Give it reply buffers * * Do *not* exceed global credits. */ for (val = 0, pptr = mpt->reply_phys; (pptr + MPT_REPLY_SIZE) < (mpt->reply_phys + PAGE_SIZE); pptr += MPT_REPLY_SIZE) { mpt_free_reply(mpt, pptr); if (++val == mpt->ioc_facts.GlobalCredits - 1) break; } /* * Enable the port if asked. This is only done if we're resetting * the IOC after initial startup. */ if (portenable) { /* * Enable asynchronous event reporting */ mpt_send_event_request(mpt, 1); if (mpt_send_port_enable(mpt, 0) != MPT_OK) { mpt_prt(mpt, "%s: failed to enable port 0\n", __func__); return (ENXIO); } } return (MPT_OK); } /* * Endian Conversion Functions- only used on Big Endian machines */ #if _BYTE_ORDER == _BIG_ENDIAN void mpt2host_sge_simple_union(SGE_SIMPLE_UNION *sge) { MPT_2_HOST32(sge, FlagsLength); MPT_2_HOST32(sge, u.Address64.Low); MPT_2_HOST32(sge, u.Address64.High); } void mpt2host_iocfacts_reply(MSG_IOC_FACTS_REPLY *rp) { MPT_2_HOST16(rp, MsgVersion); MPT_2_HOST16(rp, HeaderVersion); MPT_2_HOST32(rp, MsgContext); MPT_2_HOST16(rp, IOCExceptions); MPT_2_HOST16(rp, IOCStatus); MPT_2_HOST32(rp, IOCLogInfo); MPT_2_HOST16(rp, ReplyQueueDepth); MPT_2_HOST16(rp, RequestFrameSize); MPT_2_HOST16(rp, Reserved_0101_FWVersion); MPT_2_HOST16(rp, ProductID); MPT_2_HOST32(rp, CurrentHostMfaHighAddr); MPT_2_HOST16(rp, GlobalCredits); MPT_2_HOST32(rp, CurrentSenseBufferHighAddr); MPT_2_HOST16(rp, CurReplyFrameSize); MPT_2_HOST32(rp, FWImageSize); MPT_2_HOST32(rp, IOCCapabilities); MPT_2_HOST32(rp, FWVersion.Word); MPT_2_HOST16(rp, HighPriorityQueueDepth); MPT_2_HOST16(rp, Reserved2); mpt2host_sge_simple_union(&rp->HostPageBufferSGE); MPT_2_HOST32(rp, ReplyFifoHostSignalingAddr); } void mpt2host_portfacts_reply(MSG_PORT_FACTS_REPLY *pfp) { MPT_2_HOST16(pfp, Reserved); MPT_2_HOST16(pfp, Reserved1); MPT_2_HOST32(pfp, MsgContext); MPT_2_HOST16(pfp, Reserved2); MPT_2_HOST16(pfp, IOCStatus); MPT_2_HOST32(pfp, IOCLogInfo); MPT_2_HOST16(pfp, MaxDevices); MPT_2_HOST16(pfp, PortSCSIID); MPT_2_HOST16(pfp, ProtocolFlags); MPT_2_HOST16(pfp, MaxPostedCmdBuffers); MPT_2_HOST16(pfp, MaxPersistentIDs); MPT_2_HOST16(pfp, MaxLanBuckets); MPT_2_HOST16(pfp, Reserved4); MPT_2_HOST32(pfp, Reserved5); } void mpt2host_config_page_ioc2(CONFIG_PAGE_IOC_2 *ioc2) { int i; MPT_2_HOST32(ioc2, CapabilitiesFlags); for (i = 0; i < MPI_IOC_PAGE_2_RAID_VOLUME_MAX; i++) { MPT_2_HOST16(ioc2, RaidVolume[i].Reserved3); } } void mpt2host_config_page_ioc3(CONFIG_PAGE_IOC_3 *ioc3) { MPT_2_HOST16(ioc3, Reserved2); } void mpt2host_config_page_scsi_port_0(CONFIG_PAGE_SCSI_PORT_0 *sp0) { MPT_2_HOST32(sp0, Capabilities); MPT_2_HOST32(sp0, PhysicalInterface); } void mpt2host_config_page_scsi_port_1(CONFIG_PAGE_SCSI_PORT_1 *sp1) { MPT_2_HOST32(sp1, Configuration); MPT_2_HOST32(sp1, OnBusTimerValue); MPT_2_HOST16(sp1, IDConfig); } void host2mpt_config_page_scsi_port_1(CONFIG_PAGE_SCSI_PORT_1 *sp1) { HOST_2_MPT32(sp1, Configuration); HOST_2_MPT32(sp1, OnBusTimerValue); HOST_2_MPT16(sp1, IDConfig); } void mpt2host_config_page_scsi_port_2(CONFIG_PAGE_SCSI_PORT_2 *sp2) { int i; MPT_2_HOST32(sp2, PortFlags); MPT_2_HOST32(sp2, PortSettings); for (i = 0; i < sizeof(sp2->DeviceSettings) / sizeof(*sp2->DeviceSettings); i++) { MPT_2_HOST16(sp2, DeviceSettings[i].DeviceFlags); } } void mpt2host_config_page_scsi_device_0(CONFIG_PAGE_SCSI_DEVICE_0 *sd0) { MPT_2_HOST32(sd0, NegotiatedParameters); MPT_2_HOST32(sd0, Information); } void mpt2host_config_page_scsi_device_1(CONFIG_PAGE_SCSI_DEVICE_1 *sd1) { MPT_2_HOST32(sd1, RequestedParameters); MPT_2_HOST32(sd1, Reserved); MPT_2_HOST32(sd1, Configuration); } void host2mpt_config_page_scsi_device_1(CONFIG_PAGE_SCSI_DEVICE_1 *sd1) { HOST_2_MPT32(sd1, RequestedParameters); HOST_2_MPT32(sd1, Reserved); HOST_2_MPT32(sd1, Configuration); } void mpt2host_config_page_fc_port_0(CONFIG_PAGE_FC_PORT_0 *fp0) { MPT_2_HOST32(fp0, Flags); MPT_2_HOST32(fp0, PortIdentifier); MPT_2_HOST32(fp0, WWNN.Low); MPT_2_HOST32(fp0, WWNN.High); MPT_2_HOST32(fp0, WWPN.Low); MPT_2_HOST32(fp0, WWPN.High); MPT_2_HOST32(fp0, SupportedServiceClass); MPT_2_HOST32(fp0, SupportedSpeeds); MPT_2_HOST32(fp0, CurrentSpeed); MPT_2_HOST32(fp0, MaxFrameSize); MPT_2_HOST32(fp0, FabricWWNN.Low); MPT_2_HOST32(fp0, FabricWWNN.High); MPT_2_HOST32(fp0, FabricWWPN.Low); MPT_2_HOST32(fp0, FabricWWPN.High); MPT_2_HOST32(fp0, DiscoveredPortsCount); MPT_2_HOST32(fp0, MaxInitiators); } void mpt2host_config_page_fc_port_1(CONFIG_PAGE_FC_PORT_1 *fp1) { MPT_2_HOST32(fp1, Flags); MPT_2_HOST32(fp1, NoSEEPROMWWNN.Low); MPT_2_HOST32(fp1, NoSEEPROMWWNN.High); MPT_2_HOST32(fp1, NoSEEPROMWWPN.Low); MPT_2_HOST32(fp1, NoSEEPROMWWPN.High); } void host2mpt_config_page_fc_port_1(CONFIG_PAGE_FC_PORT_1 *fp1) { HOST_2_MPT32(fp1, Flags); HOST_2_MPT32(fp1, NoSEEPROMWWNN.Low); HOST_2_MPT32(fp1, NoSEEPROMWWNN.High); HOST_2_MPT32(fp1, NoSEEPROMWWPN.Low); HOST_2_MPT32(fp1, NoSEEPROMWWPN.High); } void mpt2host_config_page_raid_vol_0(CONFIG_PAGE_RAID_VOL_0 *volp) { int i; MPT_2_HOST16(volp, VolumeStatus.Reserved); MPT_2_HOST16(volp, VolumeSettings.Settings); MPT_2_HOST32(volp, MaxLBA); MPT_2_HOST32(volp, MaxLBAHigh); MPT_2_HOST32(volp, StripeSize); MPT_2_HOST32(volp, Reserved2); MPT_2_HOST32(volp, Reserved3); for (i = 0; i < MPI_RAID_VOL_PAGE_0_PHYSDISK_MAX; i++) { MPT_2_HOST16(volp, PhysDisk[i].Reserved); } } void mpt2host_config_page_raid_phys_disk_0(CONFIG_PAGE_RAID_PHYS_DISK_0 *rpd0) { MPT_2_HOST32(rpd0, Reserved1); MPT_2_HOST16(rpd0, PhysDiskStatus.Reserved); MPT_2_HOST32(rpd0, MaxLBA); MPT_2_HOST16(rpd0, ErrorData.Reserved); MPT_2_HOST16(rpd0, ErrorData.ErrorCount); MPT_2_HOST16(rpd0, ErrorData.SmartCount); } void mpt2host_mpi_raid_vol_indicator(MPI_RAID_VOL_INDICATOR *vi) { MPT_2_HOST16(vi, TotalBlocks.High); MPT_2_HOST16(vi, TotalBlocks.Low); MPT_2_HOST16(vi, BlocksRemaining.High); MPT_2_HOST16(vi, BlocksRemaining.Low); } #endif