Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/mvs/@/amd64/compile/hs32/modules/usr/src/sys/modules/runfw/@/contrib/octeon-sdk/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/mvs/@/amd64/compile/hs32/modules/usr/src/sys/modules/runfw/@/contrib/octeon-sdk/cvmx-l2c-defs.h |
/***********************license start*************** * Copyright (c) 2003-2010 Cavium Networks (support@cavium.com). All rights * reserved. * * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of Cavium Networks nor the names of * its contributors may be used to endorse or promote products * derived from this software without specific prior written * permission. * This Software, including technical data, may be subject to U.S. export control * laws, including the U.S. Export Administration Act and its associated * regulations, and may be subject to export or import regulations in other * countries. * TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS" * AND WITH ALL FAULTS AND CAVIUM NETWORKS MAKES NO PROMISES, REPRESENTATIONS OR * WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO * THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION OR * DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM * SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE, * MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF * VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR * CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT OF USE OR * PERFORMANCE OF THE SOFTWARE LIES WITH YOU. ***********************license end**************************************/ /** * cvmx-l2c-defs.h * * Configuration and status register (CSR) type definitions for * Octeon l2c. * * This file is auto generated. Do not edit. * * <hr>$Revision$<hr> * */ #ifndef __CVMX_L2C_TYPEDEFS_H__ #define __CVMX_L2C_TYPEDEFS_H__ #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_L2C_BIG_CTL CVMX_L2C_BIG_CTL_FUNC() static inline uint64_t CVMX_L2C_BIG_CTL_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN63XX))) cvmx_warn("CVMX_L2C_BIG_CTL not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x0001180080800030ull); } #else #define CVMX_L2C_BIG_CTL (CVMX_ADD_IO_SEG(0x0001180080800030ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_L2C_BST CVMX_L2C_BST_FUNC() static inline uint64_t CVMX_L2C_BST_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN63XX))) cvmx_warn("CVMX_L2C_BST not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x00011800808007F8ull); } #else #define CVMX_L2C_BST (CVMX_ADD_IO_SEG(0x00011800808007F8ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_L2C_BST0 CVMX_L2C_BST0_FUNC() static inline uint64_t CVMX_L2C_BST0_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN3XXX) || OCTEON_IS_MODEL(OCTEON_CN5XXX))) cvmx_warn("CVMX_L2C_BST0 not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x00011800800007F8ull); } #else #define CVMX_L2C_BST0 (CVMX_ADD_IO_SEG(0x00011800800007F8ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_L2C_BST1 CVMX_L2C_BST1_FUNC() static inline uint64_t CVMX_L2C_BST1_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN3XXX) || OCTEON_IS_MODEL(OCTEON_CN5XXX))) cvmx_warn("CVMX_L2C_BST1 not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x00011800800007F0ull); } #else #define CVMX_L2C_BST1 (CVMX_ADD_IO_SEG(0x00011800800007F0ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_L2C_BST2 CVMX_L2C_BST2_FUNC() static inline uint64_t CVMX_L2C_BST2_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN3XXX) || OCTEON_IS_MODEL(OCTEON_CN5XXX))) cvmx_warn("CVMX_L2C_BST2 not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x00011800800007E8ull); } #else #define CVMX_L2C_BST2 (CVMX_ADD_IO_SEG(0x00011800800007E8ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_L2C_BST_MEMX(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id == 0))))) cvmx_warn("CVMX_L2C_BST_MEMX(%lu) is invalid on this chip\n", block_id); return CVMX_ADD_IO_SEG(0x0001180080C007F8ull); } #else #define CVMX_L2C_BST_MEMX(block_id) (CVMX_ADD_IO_SEG(0x0001180080C007F8ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_L2C_BST_TDTX(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id == 0))))) cvmx_warn("CVMX_L2C_BST_TDTX(%lu) is invalid on this chip\n", block_id); return CVMX_ADD_IO_SEG(0x0001180080A007F0ull); } #else #define CVMX_L2C_BST_TDTX(block_id) (CVMX_ADD_IO_SEG(0x0001180080A007F0ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_L2C_BST_TTGX(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id == 0))))) cvmx_warn("CVMX_L2C_BST_TTGX(%lu) is invalid on this chip\n", block_id); return CVMX_ADD_IO_SEG(0x0001180080A007F8ull); } #else #define CVMX_L2C_BST_TTGX(block_id) (CVMX_ADD_IO_SEG(0x0001180080A007F8ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_L2C_CFG CVMX_L2C_CFG_FUNC() static inline uint64_t CVMX_L2C_CFG_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN3XXX) || OCTEON_IS_MODEL(OCTEON_CN5XXX))) cvmx_warn("CVMX_L2C_CFG not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x0001180080000000ull); } #else #define CVMX_L2C_CFG (CVMX_ADD_IO_SEG(0x0001180080000000ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_L2C_COP0_MAPX(unsigned long offset) { if (!( (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((offset <= 1535) || ((offset >= 16128) && (offset <= 16383)))))) cvmx_warn("CVMX_L2C_COP0_MAPX(%lu) is invalid on this chip\n", offset); return CVMX_ADD_IO_SEG(0x0001180080940000ull) + ((offset) & 16383) * 8; } #else #define CVMX_L2C_COP0_MAPX(offset) (CVMX_ADD_IO_SEG(0x0001180080940000ull) + ((offset) & 16383) * 8) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_L2C_CTL CVMX_L2C_CTL_FUNC() static inline uint64_t CVMX_L2C_CTL_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN63XX))) cvmx_warn("CVMX_L2C_CTL not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x0001180080800000ull); } #else #define CVMX_L2C_CTL (CVMX_ADD_IO_SEG(0x0001180080800000ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_L2C_DBG CVMX_L2C_DBG_FUNC() static inline uint64_t CVMX_L2C_DBG_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN3XXX) || OCTEON_IS_MODEL(OCTEON_CN5XXX))) cvmx_warn("CVMX_L2C_DBG not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x0001180080000030ull); } #else #define CVMX_L2C_DBG (CVMX_ADD_IO_SEG(0x0001180080000030ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_L2C_DUT CVMX_L2C_DUT_FUNC() static inline uint64_t CVMX_L2C_DUT_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN3XXX) || OCTEON_IS_MODEL(OCTEON_CN5XXX))) cvmx_warn("CVMX_L2C_DUT not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x0001180080000050ull); } #else #define CVMX_L2C_DUT (CVMX_ADD_IO_SEG(0x0001180080000050ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_L2C_DUT_MAPX(unsigned long offset) { if (!( (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((offset <= 1535))))) cvmx_warn("CVMX_L2C_DUT_MAPX(%lu) is invalid on this chip\n", offset); return CVMX_ADD_IO_SEG(0x0001180080E00000ull) + ((offset) & 2047) * 8; } #else #define CVMX_L2C_DUT_MAPX(offset) (CVMX_ADD_IO_SEG(0x0001180080E00000ull) + ((offset) & 2047) * 8) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_L2C_ERR_TDTX(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id == 0))))) cvmx_warn("CVMX_L2C_ERR_TDTX(%lu) is invalid on this chip\n", block_id); return CVMX_ADD_IO_SEG(0x0001180080A007E0ull); } #else #define CVMX_L2C_ERR_TDTX(block_id) (CVMX_ADD_IO_SEG(0x0001180080A007E0ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_L2C_ERR_TTGX(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id == 0))))) cvmx_warn("CVMX_L2C_ERR_TTGX(%lu) is invalid on this chip\n", block_id); return CVMX_ADD_IO_SEG(0x0001180080A007E8ull); } #else #define CVMX_L2C_ERR_TTGX(block_id) (CVMX_ADD_IO_SEG(0x0001180080A007E8ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_L2C_ERR_VBFX(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id == 0))))) cvmx_warn("CVMX_L2C_ERR_VBFX(%lu) is invalid on this chip\n", block_id); return CVMX_ADD_IO_SEG(0x0001180080C007F0ull); } #else #define CVMX_L2C_ERR_VBFX(block_id) (CVMX_ADD_IO_SEG(0x0001180080C007F0ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_L2C_ERR_XMC CVMX_L2C_ERR_XMC_FUNC() static inline uint64_t CVMX_L2C_ERR_XMC_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN63XX))) cvmx_warn("CVMX_L2C_ERR_XMC not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x00011800808007D8ull); } #else #define CVMX_L2C_ERR_XMC (CVMX_ADD_IO_SEG(0x00011800808007D8ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_L2C_GRPWRR0 CVMX_L2C_GRPWRR0_FUNC() static inline uint64_t CVMX_L2C_GRPWRR0_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN56XX))) cvmx_warn("CVMX_L2C_GRPWRR0 not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x00011800800000C8ull); } #else #define CVMX_L2C_GRPWRR0 (CVMX_ADD_IO_SEG(0x00011800800000C8ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_L2C_GRPWRR1 CVMX_L2C_GRPWRR1_FUNC() static inline uint64_t CVMX_L2C_GRPWRR1_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN56XX))) cvmx_warn("CVMX_L2C_GRPWRR1 not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x00011800800000D0ull); } #else #define CVMX_L2C_GRPWRR1 (CVMX_ADD_IO_SEG(0x00011800800000D0ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_L2C_INT_EN CVMX_L2C_INT_EN_FUNC() static inline uint64_t CVMX_L2C_INT_EN_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN56XX))) cvmx_warn("CVMX_L2C_INT_EN not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x0001180080000100ull); } #else #define CVMX_L2C_INT_EN (CVMX_ADD_IO_SEG(0x0001180080000100ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_L2C_INT_ENA CVMX_L2C_INT_ENA_FUNC() static inline uint64_t CVMX_L2C_INT_ENA_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN63XX))) cvmx_warn("CVMX_L2C_INT_ENA not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x0001180080800020ull); } #else #define CVMX_L2C_INT_ENA (CVMX_ADD_IO_SEG(0x0001180080800020ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_L2C_INT_REG CVMX_L2C_INT_REG_FUNC() static inline uint64_t CVMX_L2C_INT_REG_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN63XX))) cvmx_warn("CVMX_L2C_INT_REG not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x0001180080800018ull); } #else #define CVMX_L2C_INT_REG (CVMX_ADD_IO_SEG(0x0001180080800018ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_L2C_INT_STAT CVMX_L2C_INT_STAT_FUNC() static inline uint64_t CVMX_L2C_INT_STAT_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN56XX))) cvmx_warn("CVMX_L2C_INT_STAT not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x00011800800000F8ull); } #else #define CVMX_L2C_INT_STAT (CVMX_ADD_IO_SEG(0x00011800800000F8ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_L2C_IOCX_PFC(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id == 0))))) cvmx_warn("CVMX_L2C_IOCX_PFC(%lu) is invalid on this chip\n", block_id); return CVMX_ADD_IO_SEG(0x0001180080800420ull); } #else #define CVMX_L2C_IOCX_PFC(block_id) (CVMX_ADD_IO_SEG(0x0001180080800420ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_L2C_IORX_PFC(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id == 0))))) cvmx_warn("CVMX_L2C_IORX_PFC(%lu) is invalid on this chip\n", block_id); return CVMX_ADD_IO_SEG(0x0001180080800428ull); } #else #define CVMX_L2C_IORX_PFC(block_id) (CVMX_ADD_IO_SEG(0x0001180080800428ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_L2C_LCKBASE CVMX_L2C_LCKBASE_FUNC() static inline uint64_t CVMX_L2C_LCKBASE_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN3XXX) || OCTEON_IS_MODEL(OCTEON_CN5XXX))) cvmx_warn("CVMX_L2C_LCKBASE not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x0001180080000058ull); } #else #define CVMX_L2C_LCKBASE (CVMX_ADD_IO_SEG(0x0001180080000058ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_L2C_LCKOFF CVMX_L2C_LCKOFF_FUNC() static inline uint64_t CVMX_L2C_LCKOFF_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN3XXX) || OCTEON_IS_MODEL(OCTEON_CN5XXX))) cvmx_warn("CVMX_L2C_LCKOFF not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x0001180080000060ull); } #else #define CVMX_L2C_LCKOFF (CVMX_ADD_IO_SEG(0x0001180080000060ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_L2C_LFB0 CVMX_L2C_LFB0_FUNC() static inline uint64_t CVMX_L2C_LFB0_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN3XXX) || OCTEON_IS_MODEL(OCTEON_CN5XXX))) cvmx_warn("CVMX_L2C_LFB0 not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x0001180080000038ull); } #else #define CVMX_L2C_LFB0 (CVMX_ADD_IO_SEG(0x0001180080000038ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_L2C_LFB1 CVMX_L2C_LFB1_FUNC() static inline uint64_t CVMX_L2C_LFB1_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN3XXX) || OCTEON_IS_MODEL(OCTEON_CN5XXX))) cvmx_warn("CVMX_L2C_LFB1 not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x0001180080000040ull); } #else #define CVMX_L2C_LFB1 (CVMX_ADD_IO_SEG(0x0001180080000040ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_L2C_LFB2 CVMX_L2C_LFB2_FUNC() static inline uint64_t CVMX_L2C_LFB2_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN3XXX) || OCTEON_IS_MODEL(OCTEON_CN5XXX))) cvmx_warn("CVMX_L2C_LFB2 not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x0001180080000048ull); } #else #define CVMX_L2C_LFB2 (CVMX_ADD_IO_SEG(0x0001180080000048ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_L2C_LFB3 CVMX_L2C_LFB3_FUNC() static inline uint64_t CVMX_L2C_LFB3_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN3XXX) || OCTEON_IS_MODEL(OCTEON_CN5XXX))) cvmx_warn("CVMX_L2C_LFB3 not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x00011800800000B8ull); } #else #define CVMX_L2C_LFB3 (CVMX_ADD_IO_SEG(0x00011800800000B8ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_L2C_OOB CVMX_L2C_OOB_FUNC() static inline uint64_t CVMX_L2C_OOB_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN56XX))) cvmx_warn("CVMX_L2C_OOB not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x00011800800000D8ull); } #else #define CVMX_L2C_OOB (CVMX_ADD_IO_SEG(0x00011800800000D8ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_L2C_OOB1 CVMX_L2C_OOB1_FUNC() static inline uint64_t CVMX_L2C_OOB1_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN56XX))) cvmx_warn("CVMX_L2C_OOB1 not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x00011800800000E0ull); } #else #define CVMX_L2C_OOB1 (CVMX_ADD_IO_SEG(0x00011800800000E0ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_L2C_OOB2 CVMX_L2C_OOB2_FUNC() static inline uint64_t CVMX_L2C_OOB2_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN56XX))) cvmx_warn("CVMX_L2C_OOB2 not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x00011800800000E8ull); } #else #define CVMX_L2C_OOB2 (CVMX_ADD_IO_SEG(0x00011800800000E8ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_L2C_OOB3 CVMX_L2C_OOB3_FUNC() static inline uint64_t CVMX_L2C_OOB3_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN56XX))) cvmx_warn("CVMX_L2C_OOB3 not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x00011800800000F0ull); } #else #define CVMX_L2C_OOB3 (CVMX_ADD_IO_SEG(0x00011800800000F0ull)) #endif #define CVMX_L2C_PFC0 CVMX_L2C_PFCX(0) #define CVMX_L2C_PFC1 CVMX_L2C_PFCX(1) #define CVMX_L2C_PFC2 CVMX_L2C_PFCX(2) #define CVMX_L2C_PFC3 CVMX_L2C_PFCX(3) #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_L2C_PFCTL CVMX_L2C_PFCTL_FUNC() static inline uint64_t CVMX_L2C_PFCTL_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN3XXX) || OCTEON_IS_MODEL(OCTEON_CN5XXX))) cvmx_warn("CVMX_L2C_PFCTL not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x0001180080000090ull); } #else #define CVMX_L2C_PFCTL (CVMX_ADD_IO_SEG(0x0001180080000090ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_L2C_PFCX(unsigned long offset) { if (!( (OCTEON_IS_MODEL(OCTEON_CN30XX) && ((offset <= 3))) || (OCTEON_IS_MODEL(OCTEON_CN31XX) && ((offset <= 3))) || (OCTEON_IS_MODEL(OCTEON_CN38XX) && ((offset <= 3))) || (OCTEON_IS_MODEL(OCTEON_CN50XX) && ((offset <= 3))) || (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((offset <= 3))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((offset <= 3))) || (OCTEON_IS_MODEL(OCTEON_CN58XX) && ((offset <= 3))))) cvmx_warn("CVMX_L2C_PFCX(%lu) is invalid on this chip\n", offset); return CVMX_ADD_IO_SEG(0x0001180080000098ull) + ((offset) & 3) * 8; } #else #define CVMX_L2C_PFCX(offset) (CVMX_ADD_IO_SEG(0x0001180080000098ull) + ((offset) & 3) * 8) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_L2C_PPGRP CVMX_L2C_PPGRP_FUNC() static inline uint64_t CVMX_L2C_PPGRP_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN56XX))) cvmx_warn("CVMX_L2C_PPGRP not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x00011800800000C0ull); } #else #define CVMX_L2C_PPGRP (CVMX_ADD_IO_SEG(0x00011800800000C0ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_L2C_QOS_IOBX(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id == 0))))) cvmx_warn("CVMX_L2C_QOS_IOBX(%lu) is invalid on this chip\n", block_id); return CVMX_ADD_IO_SEG(0x0001180080880200ull); } #else #define CVMX_L2C_QOS_IOBX(block_id) (CVMX_ADD_IO_SEG(0x0001180080880200ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_L2C_QOS_PPX(unsigned long offset) { if (!( (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((offset <= 5))))) cvmx_warn("CVMX_L2C_QOS_PPX(%lu) is invalid on this chip\n", offset); return CVMX_ADD_IO_SEG(0x0001180080880000ull) + ((offset) & 7) * 8; } #else #define CVMX_L2C_QOS_PPX(offset) (CVMX_ADD_IO_SEG(0x0001180080880000ull) + ((offset) & 7) * 8) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_L2C_QOS_WGT CVMX_L2C_QOS_WGT_FUNC() static inline uint64_t CVMX_L2C_QOS_WGT_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN63XX))) cvmx_warn("CVMX_L2C_QOS_WGT not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x0001180080800008ull); } #else #define CVMX_L2C_QOS_WGT (CVMX_ADD_IO_SEG(0x0001180080800008ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_L2C_RSCX_PFC(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id == 0))))) cvmx_warn("CVMX_L2C_RSCX_PFC(%lu) is invalid on this chip\n", block_id); return CVMX_ADD_IO_SEG(0x0001180080800410ull); } #else #define CVMX_L2C_RSCX_PFC(block_id) (CVMX_ADD_IO_SEG(0x0001180080800410ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_L2C_RSDX_PFC(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id == 0))))) cvmx_warn("CVMX_L2C_RSDX_PFC(%lu) is invalid on this chip\n", block_id); return CVMX_ADD_IO_SEG(0x0001180080800418ull); } #else #define CVMX_L2C_RSDX_PFC(block_id) (CVMX_ADD_IO_SEG(0x0001180080800418ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_L2C_SPAR0 CVMX_L2C_SPAR0_FUNC() static inline uint64_t CVMX_L2C_SPAR0_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN3XXX) || OCTEON_IS_MODEL(OCTEON_CN5XXX))) cvmx_warn("CVMX_L2C_SPAR0 not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x0001180080000068ull); } #else #define CVMX_L2C_SPAR0 (CVMX_ADD_IO_SEG(0x0001180080000068ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_L2C_SPAR1 CVMX_L2C_SPAR1_FUNC() static inline uint64_t CVMX_L2C_SPAR1_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN38XX) || OCTEON_IS_MODEL(OCTEON_CN56XX) || OCTEON_IS_MODEL(OCTEON_CN58XX))) cvmx_warn("CVMX_L2C_SPAR1 not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x0001180080000070ull); } #else #define CVMX_L2C_SPAR1 (CVMX_ADD_IO_SEG(0x0001180080000070ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_L2C_SPAR2 CVMX_L2C_SPAR2_FUNC() static inline uint64_t CVMX_L2C_SPAR2_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN38XX) || OCTEON_IS_MODEL(OCTEON_CN56XX) || OCTEON_IS_MODEL(OCTEON_CN58XX))) cvmx_warn("CVMX_L2C_SPAR2 not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x0001180080000078ull); } #else #define CVMX_L2C_SPAR2 (CVMX_ADD_IO_SEG(0x0001180080000078ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_L2C_SPAR3 CVMX_L2C_SPAR3_FUNC() static inline uint64_t CVMX_L2C_SPAR3_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN38XX) || OCTEON_IS_MODEL(OCTEON_CN58XX))) cvmx_warn("CVMX_L2C_SPAR3 not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x0001180080000080ull); } #else #define CVMX_L2C_SPAR3 (CVMX_ADD_IO_SEG(0x0001180080000080ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_L2C_SPAR4 CVMX_L2C_SPAR4_FUNC() static inline uint64_t CVMX_L2C_SPAR4_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN3XXX) || OCTEON_IS_MODEL(OCTEON_CN5XXX))) cvmx_warn("CVMX_L2C_SPAR4 not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x0001180080000088ull); } #else #define CVMX_L2C_SPAR4 (CVMX_ADD_IO_SEG(0x0001180080000088ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_L2C_TADX_ECC0(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id == 0))))) cvmx_warn("CVMX_L2C_TADX_ECC0(%lu) is invalid on this chip\n", block_id); return CVMX_ADD_IO_SEG(0x0001180080A00018ull); } #else #define CVMX_L2C_TADX_ECC0(block_id) (CVMX_ADD_IO_SEG(0x0001180080A00018ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_L2C_TADX_ECC1(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id == 0))))) cvmx_warn("CVMX_L2C_TADX_ECC1(%lu) is invalid on this chip\n", block_id); return CVMX_ADD_IO_SEG(0x0001180080A00020ull); } #else #define CVMX_L2C_TADX_ECC1(block_id) (CVMX_ADD_IO_SEG(0x0001180080A00020ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_L2C_TADX_IEN(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id == 0))))) cvmx_warn("CVMX_L2C_TADX_IEN(%lu) is invalid on this chip\n", block_id); return CVMX_ADD_IO_SEG(0x0001180080A00000ull); } #else #define CVMX_L2C_TADX_IEN(block_id) (CVMX_ADD_IO_SEG(0x0001180080A00000ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_L2C_TADX_INT(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id == 0))))) cvmx_warn("CVMX_L2C_TADX_INT(%lu) is invalid on this chip\n", block_id); return CVMX_ADD_IO_SEG(0x0001180080A00028ull); } #else #define CVMX_L2C_TADX_INT(block_id) (CVMX_ADD_IO_SEG(0x0001180080A00028ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_L2C_TADX_PFC0(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id == 0))))) cvmx_warn("CVMX_L2C_TADX_PFC0(%lu) is invalid on this chip\n", block_id); return CVMX_ADD_IO_SEG(0x0001180080A00400ull); } #else #define CVMX_L2C_TADX_PFC0(block_id) (CVMX_ADD_IO_SEG(0x0001180080A00400ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_L2C_TADX_PFC1(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id == 0))))) cvmx_warn("CVMX_L2C_TADX_PFC1(%lu) is invalid on this chip\n", block_id); return CVMX_ADD_IO_SEG(0x0001180080A00408ull); } #else #define CVMX_L2C_TADX_PFC1(block_id) (CVMX_ADD_IO_SEG(0x0001180080A00408ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_L2C_TADX_PFC2(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id == 0))))) cvmx_warn("CVMX_L2C_TADX_PFC2(%lu) is invalid on this chip\n", block_id); return CVMX_ADD_IO_SEG(0x0001180080A00410ull); } #else #define CVMX_L2C_TADX_PFC2(block_id) (CVMX_ADD_IO_SEG(0x0001180080A00410ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_L2C_TADX_PFC3(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id == 0))))) cvmx_warn("CVMX_L2C_TADX_PFC3(%lu) is invalid on this chip\n", block_id); return CVMX_ADD_IO_SEG(0x0001180080A00418ull); } #else #define CVMX_L2C_TADX_PFC3(block_id) (CVMX_ADD_IO_SEG(0x0001180080A00418ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_L2C_TADX_PRF(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id == 0))))) cvmx_warn("CVMX_L2C_TADX_PRF(%lu) is invalid on this chip\n", block_id); return CVMX_ADD_IO_SEG(0x0001180080A00008ull); } #else #define CVMX_L2C_TADX_PRF(block_id) (CVMX_ADD_IO_SEG(0x0001180080A00008ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_L2C_TADX_TAG(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id == 0))))) cvmx_warn("CVMX_L2C_TADX_TAG(%lu) is invalid on this chip\n", block_id); return CVMX_ADD_IO_SEG(0x0001180080A00010ull); } #else #define CVMX_L2C_TADX_TAG(block_id) (CVMX_ADD_IO_SEG(0x0001180080A00010ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_L2C_VER_ID CVMX_L2C_VER_ID_FUNC() static inline uint64_t CVMX_L2C_VER_ID_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN63XX))) cvmx_warn("CVMX_L2C_VER_ID not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x00011800808007E0ull); } #else #define CVMX_L2C_VER_ID (CVMX_ADD_IO_SEG(0x00011800808007E0ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_L2C_VER_IOB CVMX_L2C_VER_IOB_FUNC() static inline uint64_t CVMX_L2C_VER_IOB_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN63XX))) cvmx_warn("CVMX_L2C_VER_IOB not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x00011800808007F0ull); } #else #define CVMX_L2C_VER_IOB (CVMX_ADD_IO_SEG(0x00011800808007F0ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_L2C_VER_MSC CVMX_L2C_VER_MSC_FUNC() static inline uint64_t CVMX_L2C_VER_MSC_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN63XX))) cvmx_warn("CVMX_L2C_VER_MSC not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x00011800808007D0ull); } #else #define CVMX_L2C_VER_MSC (CVMX_ADD_IO_SEG(0x00011800808007D0ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_L2C_VER_PP CVMX_L2C_VER_PP_FUNC() static inline uint64_t CVMX_L2C_VER_PP_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN63XX))) cvmx_warn("CVMX_L2C_VER_PP not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x00011800808007E8ull); } #else #define CVMX_L2C_VER_PP (CVMX_ADD_IO_SEG(0x00011800808007E8ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_L2C_VIRTID_IOBX(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id == 0))))) cvmx_warn("CVMX_L2C_VIRTID_IOBX(%lu) is invalid on this chip\n", block_id); return CVMX_ADD_IO_SEG(0x00011800808C0200ull); } #else #define CVMX_L2C_VIRTID_IOBX(block_id) (CVMX_ADD_IO_SEG(0x00011800808C0200ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_L2C_VIRTID_PPX(unsigned long offset) { if (!( (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((offset <= 5))))) cvmx_warn("CVMX_L2C_VIRTID_PPX(%lu) is invalid on this chip\n", offset); return CVMX_ADD_IO_SEG(0x00011800808C0000ull) + ((offset) & 7) * 8; } #else #define CVMX_L2C_VIRTID_PPX(offset) (CVMX_ADD_IO_SEG(0x00011800808C0000ull) + ((offset) & 7) * 8) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_L2C_VRT_CTL CVMX_L2C_VRT_CTL_FUNC() static inline uint64_t CVMX_L2C_VRT_CTL_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN63XX))) cvmx_warn("CVMX_L2C_VRT_CTL not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x0001180080800010ull); } #else #define CVMX_L2C_VRT_CTL (CVMX_ADD_IO_SEG(0x0001180080800010ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_L2C_VRT_MEMX(unsigned long offset) { if (!( (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((offset <= 1023))))) cvmx_warn("CVMX_L2C_VRT_MEMX(%lu) is invalid on this chip\n", offset); return CVMX_ADD_IO_SEG(0x0001180080900000ull) + ((offset) & 1023) * 8; } #else #define CVMX_L2C_VRT_MEMX(offset) (CVMX_ADD_IO_SEG(0x0001180080900000ull) + ((offset) & 1023) * 8) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_L2C_WPAR_IOBX(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id == 0))))) cvmx_warn("CVMX_L2C_WPAR_IOBX(%lu) is invalid on this chip\n", block_id); return CVMX_ADD_IO_SEG(0x0001180080840200ull); } #else #define CVMX_L2C_WPAR_IOBX(block_id) (CVMX_ADD_IO_SEG(0x0001180080840200ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_L2C_WPAR_PPX(unsigned long offset) { if (!( (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((offset <= 5))))) cvmx_warn("CVMX_L2C_WPAR_PPX(%lu) is invalid on this chip\n", offset); return CVMX_ADD_IO_SEG(0x0001180080840000ull) + ((offset) & 7) * 8; } #else #define CVMX_L2C_WPAR_PPX(offset) (CVMX_ADD_IO_SEG(0x0001180080840000ull) + ((offset) & 7) * 8) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_L2C_XMCX_PFC(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id == 0))))) cvmx_warn("CVMX_L2C_XMCX_PFC(%lu) is invalid on this chip\n", block_id); return CVMX_ADD_IO_SEG(0x0001180080800400ull); } #else #define CVMX_L2C_XMCX_PFC(block_id) (CVMX_ADD_IO_SEG(0x0001180080800400ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING #define CVMX_L2C_XMC_CMD CVMX_L2C_XMC_CMD_FUNC() static inline uint64_t CVMX_L2C_XMC_CMD_FUNC(void) { if (!(OCTEON_IS_MODEL(OCTEON_CN63XX))) cvmx_warn("CVMX_L2C_XMC_CMD not supported on this chip\n"); return CVMX_ADD_IO_SEG(0x0001180080800028ull); } #else #define CVMX_L2C_XMC_CMD (CVMX_ADD_IO_SEG(0x0001180080800028ull)) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_L2C_XMDX_PFC(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN63XX) && ((block_id == 0))))) cvmx_warn("CVMX_L2C_XMDX_PFC(%lu) is invalid on this chip\n", block_id); return CVMX_ADD_IO_SEG(0x0001180080800408ull); } #else #define CVMX_L2C_XMDX_PFC(block_id) (CVMX_ADD_IO_SEG(0x0001180080800408ull)) #endif /** * cvmx_l2c_big_ctl * * L2C_BIG_CTL = L2C Big memory control register * * * Notes: * (1) BIGRD interrupts can occur during normal operation as the PP's are allowed to prefetch to * non-existent memory locations. Therefore, BIGRD is for informational purposes only. * * (2) When HOLEWR/BIGWR blocks a store L2C_VER_ID, L2C_VER_PP, L2C_VER_IOB, and L2C_VER_MSC will be * loaded just like a store which is blocked by VRTWR. Additionally, L2C_ERR_XMC will be loaded. */ union cvmx_l2c_big_ctl { uint64_t u64; struct cvmx_l2c_big_ctl_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_8_63 : 56; uint64_t maxdram : 4; /**< Amount of configured DRAM 0 = reserved 1 = 512MB 2 = 1GB 3 = 2GB 4 = 4GB 5 = 8GB 6 = 16GB 7 = 32GB 8 = 64GB (**reserved in 63xx**) 9 = 128GB (**reserved in 63xx**) 10-15 reserved Violations of this limit causes L2C to set L2C_INT_REG[BIGRD/BIGWR]. */ uint64_t reserved_1_3 : 3; uint64_t disable : 1; /**< When set, disables the BIGWR/BIGRD logic completely and reverts HOLEWR to 63xx pass 1.x behavior. When clear, BIGWR and HOLEWR block stores in the same same manner as the VRT logic, and BIGRD is reported. */ #else uint64_t disable : 1; uint64_t reserved_1_3 : 3; uint64_t maxdram : 4; uint64_t reserved_8_63 : 56; #endif } s; struct cvmx_l2c_big_ctl_s cn63xx; }; typedef union cvmx_l2c_big_ctl cvmx_l2c_big_ctl_t; /** * cvmx_l2c_bst * * L2C_BST = L2C BIST Status * */ union cvmx_l2c_bst { uint64_t u64; struct cvmx_l2c_bst_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_38_63 : 26; uint64_t dutfl : 6; /**< BIST failure status for PP0-5 DUT */ uint64_t reserved_17_31 : 15; uint64_t ioccmdfl : 1; /**< BIST failure status for IOCCMD */ uint64_t reserved_13_15 : 3; uint64_t iocdatfl : 1; /**< BIST failure status for IOCDAT */ uint64_t reserved_9_11 : 3; uint64_t dutresfl : 1; /**< BIST failure status for DUTRES */ uint64_t reserved_5_7 : 3; uint64_t vrtfl : 1; /**< BIST failure status for VRT0 */ uint64_t reserved_1_3 : 3; uint64_t tdffl : 1; /**< BIST failure status for TDF0 */ #else uint64_t tdffl : 1; uint64_t reserved_1_3 : 3; uint64_t vrtfl : 1; uint64_t reserved_5_7 : 3; uint64_t dutresfl : 1; uint64_t reserved_9_11 : 3; uint64_t iocdatfl : 1; uint64_t reserved_13_15 : 3; uint64_t ioccmdfl : 1; uint64_t reserved_17_31 : 15; uint64_t dutfl : 6; uint64_t reserved_38_63 : 26; #endif } s; struct cvmx_l2c_bst_s cn63xx; struct cvmx_l2c_bst_s cn63xxp1; }; typedef union cvmx_l2c_bst cvmx_l2c_bst_t; /** * cvmx_l2c_bst0 * * L2C_BST0 = L2C BIST 0 CTL/STAT * */ union cvmx_l2c_bst0 { uint64_t u64; struct cvmx_l2c_bst0_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_24_63 : 40; uint64_t dtbnk : 1; /**< DuTag Bank# When DT=1(BAD), this field provides additional information about which DuTag Bank (0/1) failed. */ uint64_t wlb_msk : 4; /**< Bist Results for WLB-MSK RAM [DP0-3] - 0: GOOD (or bist in progress/never run) - 1: BAD */ uint64_t dtcnt : 13; /**< DuTag BiST Counter (used to help isolate the failure) [12]: i (0=FORWARD/1=REVERSE pass) [11:10]: j (Pattern# 1 of 4) [9:4]: k (DT Index 1 of 64) [3:0]: l (DT# 1 of 16 DTs) */ uint64_t dt : 1; /**< Bist Results for DuTAG RAM(s) - 0: GOOD (or bist in progress/never run) - 1: BAD */ uint64_t stin_msk : 1; /**< Bist Results for STIN-MSK RAM - 0: GOOD (or bist in progress/never run) - 1: BAD */ uint64_t wlb_dat : 4; /**< Bist Results for WLB-DAT RAM [DP0-3] - 0: GOOD (or bist in progress/never run) - 1: BAD */ #else uint64_t wlb_dat : 4; uint64_t stin_msk : 1; uint64_t dt : 1; uint64_t dtcnt : 13; uint64_t wlb_msk : 4; uint64_t dtbnk : 1; uint64_t reserved_24_63 : 40; #endif } s; struct cvmx_l2c_bst0_cn30xx { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_23_63 : 41; uint64_t wlb_msk : 4; /**< Bist Results for WLB-MSK RAM [DP0-3] - 0: GOOD (or bist in progress/never run) - 1: BAD */ uint64_t reserved_15_18 : 4; uint64_t dtcnt : 9; /**< DuTag BiST Counter (used to help isolate the failure) [8]: i (0=FORWARD/1=REVERSE pass) [7:6]: j (Pattern# 1 of 4) [5:0]: k (DT Index 1 of 64) */ uint64_t dt : 1; /**< Bist Results for DuTAG RAM(s) - 0: GOOD (or bist in progress/never run) - 1: BAD */ uint64_t reserved_4_4 : 1; uint64_t wlb_dat : 4; /**< Bist Results for WLB-DAT RAM [DP0-3] - 0: GOOD (or bist in progress/never run) - 1: BAD */ #else uint64_t wlb_dat : 4; uint64_t reserved_4_4 : 1; uint64_t dt : 1; uint64_t dtcnt : 9; uint64_t reserved_15_18 : 4; uint64_t wlb_msk : 4; uint64_t reserved_23_63 : 41; #endif } cn30xx; struct cvmx_l2c_bst0_cn31xx { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_23_63 : 41; uint64_t wlb_msk : 4; /**< Bist Results for WLB-MSK RAM [DP0-3] - 0: GOOD (or bist in progress/never run) - 1: BAD */ uint64_t reserved_16_18 : 3; uint64_t dtcnt : 10; /**< DuTag BiST Counter (used to help isolate the failure) [9]: i (0=FORWARD/1=REVERSE pass) [8:7]: j (Pattern# 1 of 4) [6:1]: k (DT Index 1 of 64) [0]: l (DT# 1 of 2 DTs) */ uint64_t dt : 1; /**< Bist Results for DuTAG RAM(s) - 0: GOOD (or bist in progress/never run) - 1: BAD */ uint64_t stin_msk : 1; /**< Bist Results for STIN-MSK RAM - 0: GOOD (or bist in progress/never run) - 1: BAD */ uint64_t wlb_dat : 4; /**< Bist Results for WLB-DAT RAM [DP0-3] - 0: GOOD (or bist in progress/never run) - 1: BAD */ #else uint64_t wlb_dat : 4; uint64_t stin_msk : 1; uint64_t dt : 1; uint64_t dtcnt : 10; uint64_t reserved_16_18 : 3; uint64_t wlb_msk : 4; uint64_t reserved_23_63 : 41; #endif } cn31xx; struct cvmx_l2c_bst0_cn38xx { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_19_63 : 45; uint64_t dtcnt : 13; /**< DuTag BiST Counter (used to help isolate the failure) [12]: i (0=FORWARD/1=REVERSE pass) [11:10]: j (Pattern# 1 of 4) [9:4]: k (DT Index 1 of 64) [3:0]: l (DT# 1 of 16 DTs) */ uint64_t dt : 1; /**< Bist Results for DuTAG RAM(s) - 0: GOOD (or bist in progress/never run) - 1: BAD */ uint64_t stin_msk : 1; /**< Bist Results for STIN-MSK RAM - 0: GOOD (or bist in progress/never run) - 1: BAD */ uint64_t wlb_dat : 4; /**< Bist Results for WLB-DAT RAM [DP0-3] - 0: GOOD (or bist in progress/never run) - 1: BAD */ #else uint64_t wlb_dat : 4; uint64_t stin_msk : 1; uint64_t dt : 1; uint64_t dtcnt : 13; uint64_t reserved_19_63 : 45; #endif } cn38xx; struct cvmx_l2c_bst0_cn38xx cn38xxp2; struct cvmx_l2c_bst0_cn50xx { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_24_63 : 40; uint64_t dtbnk : 1; /**< DuTag Bank# When DT=1(BAD), this field provides additional information about which DuTag Bank (0/1) failed. */ uint64_t wlb_msk : 4; /**< Bist Results for WLB-MSK RAM [DP0-3] - 0: GOOD (or bist in progress/never run) - 1: BAD */ uint64_t reserved_16_18 : 3; uint64_t dtcnt : 10; /**< DuTag BiST Counter (used to help isolate the failure) [9]: i (0=FORWARD/1=REVERSE pass) [8:7]: j (Pattern# 1 of 4) [6:1]: k (DT Index 1 of 64) [0]: l (DT# 1 of 2 DTs) */ uint64_t dt : 1; /**< Bist Results for DuTAG RAM(s) - 0: GOOD (or bist in progress/never run) - 1: BAD */ uint64_t stin_msk : 1; /**< Bist Results for STIN-MSK RAM - 0: GOOD (or bist in progress/never run) - 1: BAD */ uint64_t wlb_dat : 4; /**< Bist Results for WLB-DAT RAM [DP0-3] - 0: GOOD (or bist in progress/never run) - 1: BAD */ #else uint64_t wlb_dat : 4; uint64_t stin_msk : 1; uint64_t dt : 1; uint64_t dtcnt : 10; uint64_t reserved_16_18 : 3; uint64_t wlb_msk : 4; uint64_t dtbnk : 1; uint64_t reserved_24_63 : 40; #endif } cn50xx; struct cvmx_l2c_bst0_cn50xx cn52xx; struct cvmx_l2c_bst0_cn50xx cn52xxp1; struct cvmx_l2c_bst0_s cn56xx; struct cvmx_l2c_bst0_s cn56xxp1; struct cvmx_l2c_bst0_s cn58xx; struct cvmx_l2c_bst0_s cn58xxp1; }; typedef union cvmx_l2c_bst0 cvmx_l2c_bst0_t; /** * cvmx_l2c_bst1 * * L2C_BST1 = L2C BIST 1 CTL/STAT * */ union cvmx_l2c_bst1 { uint64_t u64; struct cvmx_l2c_bst1_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_9_63 : 55; uint64_t l2t : 9; /**< Bist Results for L2T (USE+8SET RAMs) - 0: GOOD (or bist in progress/never run) - 1: BAD */ #else uint64_t l2t : 9; uint64_t reserved_9_63 : 55; #endif } s; struct cvmx_l2c_bst1_cn30xx { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_16_63 : 48; uint64_t vwdf : 4; /**< Bist Results for VWDF RAMs - 0: GOOD (or bist in progress/never run) - 1: BAD */ uint64_t lrf : 2; /**< Bist Results for LRF RAMs (PLC+ILC) - 0: GOOD (or bist in progress/never run) - 1: BAD */ uint64_t vab_vwcf : 1; /**< Bist Results for VAB VWCF_MEM - 0: GOOD (or bist in progress/never run) - 1: BAD */ uint64_t reserved_5_8 : 4; uint64_t l2t : 5; /**< Bist Results for L2T (USE+4SET RAMs) - 0: GOOD (or bist in progress/never run) - 1: BAD */ #else uint64_t l2t : 5; uint64_t reserved_5_8 : 4; uint64_t vab_vwcf : 1; uint64_t lrf : 2; uint64_t vwdf : 4; uint64_t reserved_16_63 : 48; #endif } cn30xx; struct cvmx_l2c_bst1_cn30xx cn31xx; struct cvmx_l2c_bst1_cn38xx { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_16_63 : 48; uint64_t vwdf : 4; /**< Bist Results for VWDF RAMs - 0: GOOD (or bist in progress/never run) - 1: BAD */ uint64_t lrf : 2; /**< Bist Results for LRF RAMs (PLC+ILC) - 0: GOOD (or bist in progress/never run) - 1: BAD */ uint64_t vab_vwcf : 1; /**< Bist Results for VAB VWCF_MEM - 0: GOOD (or bist in progress/never run) - 1: BAD */ uint64_t l2t : 9; /**< Bist Results for L2T (USE+8SET RAMs) - 0: GOOD (or bist in progress/never run) - 1: BAD */ #else uint64_t l2t : 9; uint64_t vab_vwcf : 1; uint64_t lrf : 2; uint64_t vwdf : 4; uint64_t reserved_16_63 : 48; #endif } cn38xx; struct cvmx_l2c_bst1_cn38xx cn38xxp2; struct cvmx_l2c_bst1_cn38xx cn50xx; struct cvmx_l2c_bst1_cn52xx { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_19_63 : 45; uint64_t plc2 : 1; /**< Bist Results for PLC2 RAM - 0: GOOD (or bist in progress/never run) - 1: BAD */ uint64_t plc1 : 1; /**< Bist Results for PLC1 RAM - 0: GOOD (or bist in progress/never run) - 1: BAD */ uint64_t plc0 : 1; /**< Bist Results for PLC0 RAM - 0: GOOD (or bist in progress/never run) - 1: BAD */ uint64_t vwdf : 4; /**< Bist Results for VWDF RAMs - 0: GOOD (or bist in progress/never run) - 1: BAD */ uint64_t reserved_11_11 : 1; uint64_t ilc : 1; /**< Bist Results for ILC RAM - 0: GOOD (or bist in progress/never run) - 1: BAD */ uint64_t vab_vwcf : 1; /**< Bist Results for VAB VWCF_MEM - 0: GOOD (or bist in progress/never run) - 1: BAD */ uint64_t l2t : 9; /**< Bist Results for L2T (USE+8SET RAMs) - 0: GOOD (or bist in progress/never run) - 1: BAD */ #else uint64_t l2t : 9; uint64_t vab_vwcf : 1; uint64_t ilc : 1; uint64_t reserved_11_11 : 1; uint64_t vwdf : 4; uint64_t plc0 : 1; uint64_t plc1 : 1; uint64_t plc2 : 1; uint64_t reserved_19_63 : 45; #endif } cn52xx; struct cvmx_l2c_bst1_cn52xx cn52xxp1; struct cvmx_l2c_bst1_cn56xx { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_24_63 : 40; uint64_t plc2 : 1; /**< Bist Results for LRF RAMs (ILC) - 0: GOOD (or bist in progress/never run) - 1: BAD */ uint64_t plc1 : 1; /**< Bist Results for LRF RAMs (ILC) - 0: GOOD (or bist in progress/never run) - 1: BAD */ uint64_t plc0 : 1; /**< Bist Results for LRF RAMs (ILC) - 0: GOOD (or bist in progress/never run) - 1: BAD */ uint64_t ilc : 1; /**< Bist Results for LRF RAMs (ILC) - 0: GOOD (or bist in progress/never run) - 1: BAD */ uint64_t vwdf1 : 4; /**< Bist Results for VWDF1 RAMs - 0: GOOD (or bist in progress/never run) - 1: BAD */ uint64_t vwdf0 : 4; /**< Bist Results for VWDF0 RAMs - 0: GOOD (or bist in progress/never run) - 1: BAD */ uint64_t vab_vwcf1 : 1; /**< Bist Results for VAB VWCF1_MEM */ uint64_t reserved_10_10 : 1; uint64_t vab_vwcf0 : 1; /**< Bist Results for VAB VWCF0_MEM - 0: GOOD (or bist in progress/never run) - 1: BAD */ uint64_t l2t : 9; /**< Bist Results for L2T (USE+8SET RAMs) - 0: GOOD (or bist in progress/never run) - 1: BAD */ #else uint64_t l2t : 9; uint64_t vab_vwcf0 : 1; uint64_t reserved_10_10 : 1; uint64_t vab_vwcf1 : 1; uint64_t vwdf0 : 4; uint64_t vwdf1 : 4; uint64_t ilc : 1; uint64_t plc0 : 1; uint64_t plc1 : 1; uint64_t plc2 : 1; uint64_t reserved_24_63 : 40; #endif } cn56xx; struct cvmx_l2c_bst1_cn56xx cn56xxp1; struct cvmx_l2c_bst1_cn38xx cn58xx; struct cvmx_l2c_bst1_cn38xx cn58xxp1; }; typedef union cvmx_l2c_bst1 cvmx_l2c_bst1_t; /** * cvmx_l2c_bst2 * * L2C_BST2 = L2C BIST 2 CTL/STAT * */ union cvmx_l2c_bst2 { uint64_t u64; struct cvmx_l2c_bst2_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_16_63 : 48; uint64_t mrb : 4; /**< Bist Results for MRB RAMs - 0: GOOD (or bist in progress/never run) - 1: BAD */ uint64_t reserved_4_11 : 8; uint64_t ipcbst : 1; /**< Bist Results for RFB IPC RAM - 1: BAD */ uint64_t picbst : 1; /**< Bist Results for RFB PIC RAM - 1: BAD */ uint64_t xrdmsk : 1; /**< Bist Results for RFB XRD-MSK RAM - 0: GOOD (or bist in progress/never run) - 1: BAD */ uint64_t xrddat : 1; /**< Bist Results for RFB XRD-DAT RAM - 0: GOOD (or bist in progress/never run) - 1: BAD */ #else uint64_t xrddat : 1; uint64_t xrdmsk : 1; uint64_t picbst : 1; uint64_t ipcbst : 1; uint64_t reserved_4_11 : 8; uint64_t mrb : 4; uint64_t reserved_16_63 : 48; #endif } s; struct cvmx_l2c_bst2_cn30xx { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_16_63 : 48; uint64_t mrb : 4; /**< Bist Results for MRB RAMs - 0: GOOD (or bist in progress/never run) - 1: BAD */ uint64_t rmdf : 4; /**< Bist Results for RMDF RAMs - 0: GOOD (or bist in progress/never run) - 1: BAD */ uint64_t reserved_4_7 : 4; uint64_t ipcbst : 1; /**< Bist Results for RFB IPC RAM - 0: GOOD (or bist in progress/never run) - 1: BAD */ uint64_t reserved_2_2 : 1; uint64_t xrdmsk : 1; /**< Bist Results for RFB XRD-MSK RAM - 0: GOOD (or bist in progress/never run) - 1: BAD */ uint64_t xrddat : 1; /**< Bist Results for RFB XRD-DAT RAM - 0: GOOD (or bist in progress/never run) - 1: BAD */ #else uint64_t xrddat : 1; uint64_t xrdmsk : 1; uint64_t reserved_2_2 : 1; uint64_t ipcbst : 1; uint64_t reserved_4_7 : 4; uint64_t rmdf : 4; uint64_t mrb : 4; uint64_t reserved_16_63 : 48; #endif } cn30xx; struct cvmx_l2c_bst2_cn30xx cn31xx; struct cvmx_l2c_bst2_cn38xx { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_16_63 : 48; uint64_t mrb : 4; /**< Bist Results for MRB RAMs - 0: GOOD (or bist in progress/never run) - 1: BAD */ uint64_t rmdf : 4; /**< Bist Results for RMDF RAMs - 0: GOOD (or bist in progress/never run) - 1: BAD */ uint64_t rhdf : 4; /**< Bist Results for RHDF RAMs - 0: GOOD (or bist in progress/never run) - 1: BAD */ uint64_t ipcbst : 1; /**< Bist Results for RFB IPC RAM - 1: BAD */ uint64_t picbst : 1; /**< Bist Results for RFB PIC RAM - 1: BAD */ uint64_t xrdmsk : 1; /**< Bist Results for RFB XRD-MSK RAM - 0: GOOD (or bist in progress/never run) - 1: BAD */ uint64_t xrddat : 1; /**< Bist Results for RFB XRD-DAT RAM - 0: GOOD (or bist in progress/never run) - 1: BAD */ #else uint64_t xrddat : 1; uint64_t xrdmsk : 1; uint64_t picbst : 1; uint64_t ipcbst : 1; uint64_t rhdf : 4; uint64_t rmdf : 4; uint64_t mrb : 4; uint64_t reserved_16_63 : 48; #endif } cn38xx; struct cvmx_l2c_bst2_cn38xx cn38xxp2; struct cvmx_l2c_bst2_cn30xx cn50xx; struct cvmx_l2c_bst2_cn30xx cn52xx; struct cvmx_l2c_bst2_cn30xx cn52xxp1; struct cvmx_l2c_bst2_cn56xx { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_16_63 : 48; uint64_t mrb : 4; /**< Bist Results for MRB RAMs - 0: GOOD (or bist in progress/never run) - 1: BAD */ uint64_t rmdb : 4; /**< Bist Results for RMDB RAMs - 0: GOOD (or bist in progress/never run) - 1: BAD */ uint64_t rhdb : 4; /**< Bist Results for RHDB RAMs - 0: GOOD (or bist in progress/never run) - 1: BAD */ uint64_t ipcbst : 1; /**< Bist Results for RFB IPC RAM - 1: BAD */ uint64_t picbst : 1; /**< Bist Results for RFB PIC RAM - 1: BAD */ uint64_t xrdmsk : 1; /**< Bist Results for RFB XRD-MSK RAM - 0: GOOD (or bist in progress/never run) - 1: BAD */ uint64_t xrddat : 1; /**< Bist Results for RFB XRD-DAT RAM - 0: GOOD (or bist in progress/never run) - 1: BAD */ #else uint64_t xrddat : 1; uint64_t xrdmsk : 1; uint64_t picbst : 1; uint64_t ipcbst : 1; uint64_t rhdb : 4; uint64_t rmdb : 4; uint64_t mrb : 4; uint64_t reserved_16_63 : 48; #endif } cn56xx; struct cvmx_l2c_bst2_cn56xx cn56xxp1; struct cvmx_l2c_bst2_cn56xx cn58xx; struct cvmx_l2c_bst2_cn56xx cn58xxp1; }; typedef union cvmx_l2c_bst2 cvmx_l2c_bst2_t; /** * cvmx_l2c_bst_mem# * * L2C_BST_MEM = L2C MEM BIST Status * * * Notes: * (1) CLEAR_BIST must be written to 1 before START_BIST is written to 1 using a separate CSR write. * * (2) CLEAR_BIST must not be changed after writing START_BIST to 1 until the BIST operation completes * (indicated by START_BIST returning to 0) or operation is undefined. */ union cvmx_l2c_bst_memx { uint64_t u64; struct cvmx_l2c_bst_memx_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t start_bist : 1; /**< When written to 1, starts BIST. Will read 1 until BIST is complete (see Note). */ uint64_t clear_bist : 1; /**< When BIST is triggered, run clear BIST (see Note) */ uint64_t reserved_5_61 : 57; uint64_t rdffl : 1; /**< BIST failure status for RDF */ uint64_t vbffl : 4; /**< BIST failure status for VBF0-3 */ #else uint64_t vbffl : 4; uint64_t rdffl : 1; uint64_t reserved_5_61 : 57; uint64_t clear_bist : 1; uint64_t start_bist : 1; #endif } s; struct cvmx_l2c_bst_memx_s cn63xx; struct cvmx_l2c_bst_memx_s cn63xxp1; }; typedef union cvmx_l2c_bst_memx cvmx_l2c_bst_memx_t; /** * cvmx_l2c_bst_tdt# * * L2C_BST_TDT = L2C TAD DaTa BIST Status * */ union cvmx_l2c_bst_tdtx { uint64_t u64; struct cvmx_l2c_bst_tdtx_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_32_63 : 32; uint64_t fbfrspfl : 8; /**< BIST failure status for quad 0-7 FBF RSP read port */ uint64_t sbffl : 8; /**< BIST failure status for quad 0-7 SBF */ uint64_t fbffl : 8; /**< BIST failure status for quad 0-7 FBF */ uint64_t l2dfl : 8; /**< BIST failure status for quad 0-7 L2D */ #else uint64_t l2dfl : 8; uint64_t fbffl : 8; uint64_t sbffl : 8; uint64_t fbfrspfl : 8; uint64_t reserved_32_63 : 32; #endif } s; struct cvmx_l2c_bst_tdtx_s cn63xx; struct cvmx_l2c_bst_tdtx_cn63xxp1 { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_24_63 : 40; uint64_t sbffl : 8; /**< BIST failure status for quad 0-7 SBF */ uint64_t fbffl : 8; /**< BIST failure status for quad 0-7 FBF */ uint64_t l2dfl : 8; /**< BIST failure status for quad 0-7 L2D */ #else uint64_t l2dfl : 8; uint64_t fbffl : 8; uint64_t sbffl : 8; uint64_t reserved_24_63 : 40; #endif } cn63xxp1; }; typedef union cvmx_l2c_bst_tdtx cvmx_l2c_bst_tdtx_t; /** * cvmx_l2c_bst_ttg# * * L2C_BST_TTG = L2C TAD TaG BIST Status * */ union cvmx_l2c_bst_ttgx { uint64_t u64; struct cvmx_l2c_bst_ttgx_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_17_63 : 47; uint64_t lrufl : 1; /**< BIST failure status for tag LRU */ uint64_t tagfl : 16; /**< BIST failure status for tag ways 0-15 */ #else uint64_t tagfl : 16; uint64_t lrufl : 1; uint64_t reserved_17_63 : 47; #endif } s; struct cvmx_l2c_bst_ttgx_s cn63xx; struct cvmx_l2c_bst_ttgx_s cn63xxp1; }; typedef union cvmx_l2c_bst_ttgx cvmx_l2c_bst_ttgx_t; /** * cvmx_l2c_cfg * * Specify the RSL base addresses for the block * * L2C_CFG = L2C Configuration * * Description: */ union cvmx_l2c_cfg { uint64_t u64; struct cvmx_l2c_cfg_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_20_63 : 44; uint64_t bstrun : 1; /**< L2 Data Store Bist Running Indicates when the L2C HW Bist sequence(short or long) is running. [L2C ECC Bist FSM is not in the RESET/DONE state] */ uint64_t lbist : 1; /**< L2C Data Store Long Bist Sequence When the previous state was '0' and SW writes a '1', the long bist sequence (enhanced 13N March) is performed. SW can then read the L2C_CFG[BSTRUN] which will indicate that the long bist sequence is running. When BSTRUN-=0, the state of the L2D_BST[0-3] registers contain information which reflects the status of the recent long bist sequence. NOTE: SW must never write LBIST=0 while Long Bist is running (ie: when BSTRUN=1 never write LBIST=0). NOTE: LBIST is disabled if the MIO_FUS_DAT2.BIST_DIS Fuse is blown. */ uint64_t xor_bank : 1; /**< L2C XOR Bank Bit When both LMC's are enabled(DPRES1=1/DPRES0=1), this bit determines how addresses are assigned to LMC port(s). XOR_BANK| LMC# ----------+--------------------------------- 0 | byte address[7] 1 | byte address[7] XOR byte address[12] Example: If both LMC ports are enabled (DPRES1=1/DPRES0=1) and XOR_BANK=1, then addr[7] XOR addr[12] is used to determine which LMC Port# a reference is directed to. */ uint64_t dpres1 : 1; /**< DDR1 Present/LMC1 Enable When DPRES1 is set, LMC#1 is enabled(DDR1 pins at the BOTTOM of the chip are active). NOTE: When both LMC ports are enabled(DPRES1=1/DPRES0=1), see XOR_BANK bit to determine how a reference is assigned to a DDR/LMC port. (Also, in dual-LMC configuration, the address sent to the targeted LMC port is the address shifted right by one). NOTE: For power-savings, the DPRES1 is also used to disable DDR1/LMC1 clocks. */ uint64_t dpres0 : 1; /**< DDR0 Present/LMC0 Enable When DPRES0 is set, LMC#0 is enabled(DDR0 pins at the BOTTOM of the chip are active). NOTE: When both LMC ports are enabled(DPRES1=1/DPRES0=1), see XOR_BANK bit to determine how a reference is assigned to a DDR/LMC port. (Also, in dual-LMC configuration, the address sent to the targeted LMC port is the address shifted right by one). NOTE: For power-savings, the DPRES0 is also used to disable DDR0/LMC0 clocks. */ uint64_t dfill_dis : 1; /**< L2C Dual Fill Disable When set, the L2C dual-fill performance feature is disabled. NOTE: This bit is only intended to evaluate the effectiveness of the dual-fill feature. For OPTIMAL performance, this bit should ALWAYS be zero. */ uint64_t fpexp : 4; /**< [CYA] Forward Progress Counter Exponent NOTE: Should NOT be exposed to customer! [FOR DEBUG ONLY] When FPEN is enabled and the LFB is empty, the forward progress counter (FPCNT) is initialized to: FPCNT[24:0] = 2^(9+FPEXP) When the LFB is non-empty the FPCNT is decremented (every eclk interval). If the FPCNT reaches zero, the LFB no longer accepts new requests until either a) all of the current LFB entries have completed (to ensure forward progress). b) FPEMPTY=0 and another forward progress count interval timeout expires. EXAMPLE USE: If FPEXP=2, the FPCNT = 2048 eclks. (For eclk=500MHz(2ns), this would be ~4us). */ uint64_t fpempty : 1; /**< [CYA] Forward Progress Counter Empty NOTE: Should NOT be exposed to customer! [FOR DEBUG ONLY] When set, if the forward progress counter expires, all new LFB-NQs are stopped UNTIL all current LFB entries have completed. When clear, if the forward progress counter expires, all new LFB-NQs are stopped UNTIL either a) all current LFB entries have completed. b) another forward progress interval expires NOTE: We may want to FREEZE/HANG the system when we encounter an LFB entry cannot complete, and there may be times when we want to allow further LFB-NQs to be permitted to help in further analyzing the source */ uint64_t fpen : 1; /**< [CYA] Forward Progress Counter Enable NOTE: Should NOT be exposed to customer! [FOR DEBUG ONLY] When set, enables the Forward Progress Counter to prevent new LFB entries from enqueueing until ALL current LFB entries have completed. */ uint64_t idxalias : 1; /**< L2C Index Alias Enable When set, the L2 Tag/Data Store will alias the 11-bit index with the low order 11-bits of the tag. index[17:7] = (tag[28:18] ^ index[17:7]) NOTE: This bit must only be modified at boot time, when it can be guaranteed that no blocks have been loaded into the L2 Cache. The index aliasing is a performance enhancement feature which reduces the L2 cache thrashing experienced for regular stride references. NOTE: The index alias is stored in the LFB and VAB, and its effects are reversed for memory references (Victims, STT-Misses and Read-Misses) */ uint64_t mwf_crd : 4; /**< MWF Credit Threshold: When the remaining MWF credits become less than or equal to the MWF_CRD, the L2C will assert l2c__lmi_mwd_hiwater_a to signal the LMC to give writes (victims) higher priority. */ uint64_t rsp_arb_mode : 1; /**< RSP Arbitration Mode: - 0: Fixed Priority [HP=RFB, RMCF, RHCF, STRSP, LP=STRSC] - 1: Round Robin: [RFB(reflected I/O), RMCF(RdMiss), RHCF(RdHit), STRSP(ST RSP w/ invalidate), STRSC(ST RSP no invalidate)] */ uint64_t rfb_arb_mode : 1; /**< RFB Arbitration Mode: - 0: Fixed Priority - IOB->PP requests are higher priority than PP->IOB requests - 1: Round Robin - I/O requests from PP and IOB are serviced in round robin */ uint64_t lrf_arb_mode : 1; /**< RF Arbitration Mode: - 0: Fixed Priority - IOB memory requests are higher priority than PP memory requests. - 1: Round Robin - Memory requests from PP and IOB are serviced in round robin. */ #else uint64_t lrf_arb_mode : 1; uint64_t rfb_arb_mode : 1; uint64_t rsp_arb_mode : 1; uint64_t mwf_crd : 4; uint64_t idxalias : 1; uint64_t fpen : 1; uint64_t fpempty : 1; uint64_t fpexp : 4; uint64_t dfill_dis : 1; uint64_t dpres0 : 1; uint64_t dpres1 : 1; uint64_t xor_bank : 1; uint64_t lbist : 1; uint64_t bstrun : 1; uint64_t reserved_20_63 : 44; #endif } s; struct cvmx_l2c_cfg_cn30xx { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_14_63 : 50; uint64_t fpexp : 4; /**< [CYA] Forward Progress Counter Exponent NOTE: Should NOT be exposed to customer! [FOR DEBUG ONLY] When FPEN is enabled and the LFB is empty, the forward progress counter (FPCNT) is initialized to: FPCNT[24:0] = 2^(9+FPEXP) When the LFB is non-empty the FPCNT is decremented (every eclk interval). If the FPCNT reaches zero, the LFB no longer accepts new requests until either a) all of the current LFB entries have completed (to ensure forward progress). b) FPEMPTY=0 and another forward progress count interval timeout expires. EXAMPLE USE: If FPEXP=2, the FPCNT = 2048 eclks. (For eclk=500MHz(2ns), this would be ~4us). */ uint64_t fpempty : 1; /**< [CYA] Forward Progress Counter Empty NOTE: Should NOT be exposed to customer! [FOR DEBUG ONLY] When set, if the forward progress counter expires, all new LFB-NQs are stopped UNTIL all current LFB entries have completed. When clear, if the forward progress counter expires, all new LFB-NQs are stopped UNTIL either a) all current LFB entries have completed. b) another forward progress interval expires NOTE: We may want to FREEZE/HANG the system when we encounter an LFB entry cannot complete, and there may be times when we want to allow further LFB-NQs to be permitted to help in further analyzing the source */ uint64_t fpen : 1; /**< [CYA] Forward Progress Counter Enable NOTE: Should NOT be exposed to customer! [FOR DEBUG ONLY] When set, enables the Forward Progress Counter to prevent new LFB entries from enqueueing until ALL current LFB entries have completed. */ uint64_t idxalias : 1; /**< L2C Index Alias Enable When set, the L2 Tag/Data Store will alias the 8-bit index with the low order 8-bits of the tag. index[14:7] = (tag[22:15] ^ index[14:7]) NOTE: This bit must only be modified at boot time, when it can be guaranteed that no blocks have been loaded into the L2 Cache. The index aliasing is a performance enhancement feature which reduces the L2 cache thrashing experienced for regular stride references. NOTE: The index alias is stored in the LFB and VAB, and its effects are reversed for memory references (Victims, STT-Misses and Read-Misses) */ uint64_t mwf_crd : 4; /**< MWF Credit Threshold: When the remaining MWF credits become less than or equal to the MWF_CRD, the L2C will assert l2c__lmi_mwd_hiwater_a to signal the LMC to give writes (victims) higher priority. */ uint64_t rsp_arb_mode : 1; /**< RSP Arbitration Mode: - 0: Fixed Priority [HP=RFB, RMCF, RHCF, STRSP, LP=STRSC] - 1: Round Robin: [RFB(reflected I/O), RMCF(RdMiss), RHCF(RdHit), STRSP(ST RSP w/ invalidate), STRSC(ST RSP no invalidate)] */ uint64_t rfb_arb_mode : 1; /**< RFB Arbitration Mode: - 0: Fixed Priority - IOB->PP requests are higher priority than PP->IOB requests - 1: Round Robin - I/O requests from PP and IOB are serviced in round robin */ uint64_t lrf_arb_mode : 1; /**< RF Arbitration Mode: - 0: Fixed Priority - IOB memory requests are higher priority than PP memory requests. - 1: Round Robin - Memory requests from PP and IOB are serviced in round robin. */ #else uint64_t lrf_arb_mode : 1; uint64_t rfb_arb_mode : 1; uint64_t rsp_arb_mode : 1; uint64_t mwf_crd : 4; uint64_t idxalias : 1; uint64_t fpen : 1; uint64_t fpempty : 1; uint64_t fpexp : 4; uint64_t reserved_14_63 : 50; #endif } cn30xx; struct cvmx_l2c_cfg_cn30xx cn31xx; struct cvmx_l2c_cfg_cn30xx cn38xx; struct cvmx_l2c_cfg_cn30xx cn38xxp2; struct cvmx_l2c_cfg_cn50xx { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_20_63 : 44; uint64_t bstrun : 1; /**< L2 Data Store Bist Running Indicates when the L2C HW Bist sequence(short or long) is running. [L2C ECC Bist FSM is not in the RESET/DONE state] */ uint64_t lbist : 1; /**< L2C Data Store Long Bist Sequence When the previous state was '0' and SW writes a '1', the long bist sequence (enhanced 13N March) is performed. SW can then read the L2C_CFG[BSTRUN] which will indicate that the long bist sequence is running. When BSTRUN-=0, the state of the L2D_BST[0-3] registers contain information which reflects the status of the recent long bist sequence. NOTE: SW must never write LBIST=0 while Long Bist is running (ie: when BSTRUN=1 never write LBIST=0). */ uint64_t reserved_14_17 : 4; uint64_t fpexp : 4; /**< [CYA] Forward Progress Counter Exponent NOTE: Should NOT be exposed to customer! [FOR DEBUG ONLY] When FPEN is enabled and the LFB is empty, the forward progress counter (FPCNT) is initialized to: FPCNT[24:0] = 2^(9+FPEXP) When the LFB is non-empty the FPCNT is decremented (every eclk interval). If the FPCNT reaches zero, the LFB no longer accepts new requests until either a) all of the current LFB entries have completed (to ensure forward progress). b) FPEMPTY=0 and another forward progress count interval timeout expires. EXAMPLE USE: If FPEXP=2, the FPCNT = 2048 eclks. (For eclk=500MHz(2ns), this would be ~4us). */ uint64_t fpempty : 1; /**< [CYA] Forward Progress Counter Empty NOTE: Should NOT be exposed to customer! [FOR DEBUG ONLY] When set, if the forward progress counter expires, all new LFB-NQs are stopped UNTIL all current LFB entries have completed. When clear, if the forward progress counter expires, all new LFB-NQs are stopped UNTIL either a) all current LFB entries have completed. b) another forward progress interval expires NOTE: We may want to FREEZE/HANG the system when we encounter an LFB entry cannot complete, and there may be times when we want to allow further LFB-NQs to be permitted to help in further analyzing the source */ uint64_t fpen : 1; /**< [CYA] Forward Progress Counter Enable NOTE: Should NOT be exposed to customer! [FOR DEBUG ONLY] When set, enables the Forward Progress Counter to prevent new LFB entries from enqueueing until ALL current LFB entries have completed. */ uint64_t idxalias : 1; /**< L2C Index Alias Enable When set, the L2 Tag/Data Store will alias the 7-bit index with the low order 7-bits of the tag. index[13:7] = (tag[20:14] ^ index[13:7]) NOTE: This bit must only be modified at boot time, when it can be guaranteed that no blocks have been loaded into the L2 Cache. The index aliasing is a performance enhancement feature which reduces the L2 cache thrashing experienced for regular stride references. NOTE: The index alias is stored in the LFB and VAB, and its effects are reversed for memory references (Victims, STT-Misses and Read-Misses) */ uint64_t mwf_crd : 4; /**< MWF Credit Threshold: When the remaining MWF credits become less than or equal to the MWF_CRD, the L2C will assert l2c__lmi_mwd_hiwater_a to signal the LMC to give writes (victims) higher priority. */ uint64_t rsp_arb_mode : 1; /**< RSP Arbitration Mode: - 0: Fixed Priority [HP=RFB, RMCF, RHCF, STRSP, LP=STRSC] - 1: Round Robin: [RFB(reflected I/O), RMCF(RdMiss), RHCF(RdHit), STRSP(ST RSP w/ invalidate), STRSC(ST RSP no invalidate)] */ uint64_t rfb_arb_mode : 1; /**< RFB Arbitration Mode: - 0: Fixed Priority - IOB->PP requests are higher priority than PP->IOB requests - 1: Round Robin - I/O requests from PP and IOB are serviced in round robin */ uint64_t lrf_arb_mode : 1; /**< RF Arbitration Mode: - 0: Fixed Priority - IOB memory requests are higher priority than PP memory requests. - 1: Round Robin - Memory requests from PP and IOB are serviced in round robin. */ #else uint64_t lrf_arb_mode : 1; uint64_t rfb_arb_mode : 1; uint64_t rsp_arb_mode : 1; uint64_t mwf_crd : 4; uint64_t idxalias : 1; uint64_t fpen : 1; uint64_t fpempty : 1; uint64_t fpexp : 4; uint64_t reserved_14_17 : 4; uint64_t lbist : 1; uint64_t bstrun : 1; uint64_t reserved_20_63 : 44; #endif } cn50xx; struct cvmx_l2c_cfg_cn50xx cn52xx; struct cvmx_l2c_cfg_cn50xx cn52xxp1; struct cvmx_l2c_cfg_s cn56xx; struct cvmx_l2c_cfg_s cn56xxp1; struct cvmx_l2c_cfg_cn58xx { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_20_63 : 44; uint64_t bstrun : 1; /**< L2 Data Store Bist Running Indicates when the L2C HW Bist sequence(short or long) is running. [L2C ECC Bist FSM is not in the RESET/DONE state] */ uint64_t lbist : 1; /**< L2C Data Store Long Bist Sequence When the previous state was '0' and SW writes a '1', the long bist sequence (enhanced 13N March) is performed. SW can then read the L2C_CFG[BSTRUN] which will indicate that the long bist sequence is running. When BSTRUN-=0, the state of the L2D_BST[0-3] registers contain information which reflects the status of the recent long bist sequence. NOTE: SW must never write LBIST=0 while Long Bist is running (ie: when BSTRUN=1 never write LBIST=0). NOTE: LBIST is disabled if the MIO_FUS_DAT2.BIST_DIS Fuse is blown. */ uint64_t reserved_15_17 : 3; uint64_t dfill_dis : 1; /**< L2C Dual Fill Disable When set, the L2C dual-fill performance feature is disabled. NOTE: This bit is only intended to evaluate the effectiveness of the dual-fill feature. For OPTIMAL performance, this bit should ALWAYS be zero. */ uint64_t fpexp : 4; /**< [CYA] Forward Progress Counter Exponent NOTE: Should NOT be exposed to customer! [FOR DEBUG ONLY] When FPEN is enabled and the LFB is empty, the forward progress counter (FPCNT) is initialized to: FPCNT[24:0] = 2^(9+FPEXP) When the LFB is non-empty the FPCNT is decremented (every eclk interval). If the FPCNT reaches zero, the LFB no longer accepts new requests until either a) all of the current LFB entries have completed (to ensure forward progress). b) FPEMPTY=0 and another forward progress count interval timeout expires. EXAMPLE USE: If FPEXP=2, the FPCNT = 2048 eclks. (For eclk=500MHz(2ns), this would be ~4us). */ uint64_t fpempty : 1; /**< [CYA] Forward Progress Counter Empty NOTE: Should NOT be exposed to customer! [FOR DEBUG ONLY] When set, if the forward progress counter expires, all new LFB-NQs are stopped UNTIL all current LFB entries have completed. When clear, if the forward progress counter expires, all new LFB-NQs are stopped UNTIL either a) all current LFB entries have completed. b) another forward progress interval expires NOTE: We may want to FREEZE/HANG the system when we encounter an LFB entry cannot complete, and there may be times when we want to allow further LFB-NQs to be permitted to help in further analyzing the source */ uint64_t fpen : 1; /**< [CYA] Forward Progress Counter Enable NOTE: Should NOT be exposed to customer! [FOR DEBUG ONLY] When set, enables the Forward Progress Counter to prevent new LFB entries from enqueueing until ALL current LFB entries have completed. */ uint64_t idxalias : 1; /**< L2C Index Alias Enable When set, the L2 Tag/Data Store will alias the 11-bit index with the low order 11-bits of the tag. index[17:7] = (tag[28:18] ^ index[17:7]) NOTE: This bit must only be modified at boot time, when it can be guaranteed that no blocks have been loaded into the L2 Cache. The index aliasing is a performance enhancement feature which reduces the L2 cache thrashing experienced for regular stride references. NOTE: The index alias is stored in the LFB and VAB, and its effects are reversed for memory references (Victims, STT-Misses and Read-Misses) */ uint64_t mwf_crd : 4; /**< MWF Credit Threshold: When the remaining MWF credits become less than or equal to the MWF_CRD, the L2C will assert l2c__lmi_mwd_hiwater_a to signal the LMC to give writes (victims) higher priority. */ uint64_t rsp_arb_mode : 1; /**< RSP Arbitration Mode: - 0: Fixed Priority [HP=RFB, RMCF, RHCF, STRSP, LP=STRSC] - 1: Round Robin: [RFB(reflected I/O), RMCF(RdMiss), RHCF(RdHit), STRSP(ST RSP w/ invalidate), STRSC(ST RSP no invalidate)] */ uint64_t rfb_arb_mode : 1; /**< RFB Arbitration Mode: - 0: Fixed Priority - IOB->PP requests are higher priority than PP->IOB requests - 1: Round Robin - I/O requests from PP and IOB are serviced in round robin */ uint64_t lrf_arb_mode : 1; /**< RF Arbitration Mode: - 0: Fixed Priority - IOB memory requests are higher priority than PP memory requests. - 1: Round Robin - Memory requests from PP and IOB are serviced in round robin. */ #else uint64_t lrf_arb_mode : 1; uint64_t rfb_arb_mode : 1; uint64_t rsp_arb_mode : 1; uint64_t mwf_crd : 4; uint64_t idxalias : 1; uint64_t fpen : 1; uint64_t fpempty : 1; uint64_t fpexp : 4; uint64_t dfill_dis : 1; uint64_t reserved_15_17 : 3; uint64_t lbist : 1; uint64_t bstrun : 1; uint64_t reserved_20_63 : 44; #endif } cn58xx; struct cvmx_l2c_cfg_cn58xxp1 { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_15_63 : 49; uint64_t dfill_dis : 1; /**< L2C Dual Fill Disable When set, the L2C dual-fill performance feature is disabled. NOTE: This bit is only intended to evaluate the effectiveness of the dual-fill feature. For OPTIMAL performance, this bit should ALWAYS be zero. */ uint64_t fpexp : 4; /**< [CYA] Forward Progress Counter Exponent NOTE: Should NOT be exposed to customer! [FOR DEBUG ONLY] When FPEN is enabled and the LFB is empty, the forward progress counter (FPCNT) is initialized to: FPCNT[24:0] = 2^(9+FPEXP) When the LFB is non-empty the FPCNT is decremented (every eclk interval). If the FPCNT reaches zero, the LFB no longer accepts new requests until either a) all of the current LFB entries have completed (to ensure forward progress). b) FPEMPTY=0 and another forward progress count interval timeout expires. EXAMPLE USE: If FPEXP=2, the FPCNT = 2048 eclks. (For eclk=500MHz(2ns), this would be ~4us). */ uint64_t fpempty : 1; /**< [CYA] Forward Progress Counter Empty NOTE: Should NOT be exposed to customer! [FOR DEBUG ONLY] When set, if the forward progress counter expires, all new LFB-NQs are stopped UNTIL all current LFB entries have completed. When clear, if the forward progress counter expires, all new LFB-NQs are stopped UNTIL either a) all current LFB entries have completed. b) another forward progress interval expires NOTE: We may want to FREEZE/HANG the system when we encounter an LFB entry cannot complete, and there may be times when we want to allow further LFB-NQs to be permitted to help in further analyzing the source */ uint64_t fpen : 1; /**< [CYA] Forward Progress Counter Enable NOTE: Should NOT be exposed to customer! [FOR DEBUG ONLY] When set, enables the Forward Progress Counter to prevent new LFB entries from enqueueing until ALL current LFB entries have completed. */ uint64_t idxalias : 1; /**< L2C Index Alias Enable When set, the L2 Tag/Data Store will alias the 11-bit index with the low order 11-bits of the tag. index[17:7] = (tag[28:18] ^ index[17:7]) NOTE: This bit must only be modified at boot time, when it can be guaranteed that no blocks have been loaded into the L2 Cache. The index aliasing is a performance enhancement feature which reduces the L2 cache thrashing experienced for regular stride references. NOTE: The index alias is stored in the LFB and VAB, and its effects are reversed for memory references (Victims, STT-Misses and Read-Misses) */ uint64_t mwf_crd : 4; /**< MWF Credit Threshold: When the remaining MWF credits become less than or equal to the MWF_CRD, the L2C will assert l2c__lmi_mwd_hiwater_a to signal the LMC to give writes (victims) higher priority. */ uint64_t rsp_arb_mode : 1; /**< RSP Arbitration Mode: - 0: Fixed Priority [HP=RFB, RMCF, RHCF, STRSP, LP=STRSC] - 1: Round Robin: [RFB(reflected I/O), RMCF(RdMiss), RHCF(RdHit), STRSP(ST RSP w/ invalidate), STRSC(ST RSP no invalidate)] */ uint64_t rfb_arb_mode : 1; /**< RFB Arbitration Mode: - 0: Fixed Priority - IOB->PP requests are higher priority than PP->IOB requests - 1: Round Robin - I/O requests from PP and IOB are serviced in round robin */ uint64_t lrf_arb_mode : 1; /**< RF Arbitration Mode: - 0: Fixed Priority - IOB memory requests are higher priority than PP memory requests. - 1: Round Robin - Memory requests from PP and IOB are serviced in round robin. */ #else uint64_t lrf_arb_mode : 1; uint64_t rfb_arb_mode : 1; uint64_t rsp_arb_mode : 1; uint64_t mwf_crd : 4; uint64_t idxalias : 1; uint64_t fpen : 1; uint64_t fpempty : 1; uint64_t fpexp : 4; uint64_t dfill_dis : 1; uint64_t reserved_15_63 : 49; #endif } cn58xxp1; }; typedef union cvmx_l2c_cfg cvmx_l2c_cfg_t; /** * cvmx_l2c_cop0_map# * * L2C_COP0_MAP = PP COP0 register memory mapped region * * Description: PP COP0 register mapped region. * * NOTE: for 63xx, if the PPID is outside the range of 0-5,63 the write will be ignored and reads * will return 0x2bad2bad2bad2bad * * Notes: * (1) There are 256 COP0 registers per PP. Registers 0-255 map to PP0's COP0 registers, 256-511 are * mapped to PP1's, etc. A special set X PP63 (registers 16128-16383) are for broadcast writes. * Any write done to these registers will take effect in ALL PPs. Note the means the L2C_COP0_MAP * register to access can be gotten by: * * REGNUM = [ PPID[5:0], rd[4:0], sel[2:0] ] * * where rd and sel are as defined in the HRM description of Core Coprocessor 0 registers * and note 4 below. * * (2) if a COP0 register cannot be accessed by this mechanism the write be silently ignored and the * read data will be 0xBADDEED. * * (3) for 63xx, if the PPID is outside the range of 0-5,63 or if the PP in question is in reset a * write will be ignored and reads will timeout the RSL bus. * * (4) Referring to note (1) above, the following rd/sel values are supported: * * NOTE: Put only the "Customer type" in HRM. do not put the "Real type" in HRM. * * Customer Real * rd sel type Description type * ======+=======+==========+==============================================+========= * 4 2 RO COP0 UserLocal RW * 7 0 RO COP0 HWREna RW * 9 0 RO COP0 Count RW * 9 6 RO COP0 CvmCount RW * 9 7 RO COP0 CvmCtl RW * 11 0 RO COP0 Compare RW * 11 6 RW COP0 PowThrottle RW * 12 0 RO COP0 Status RW * 12 1 RO COP0 IntCtl RO * 12 2 RO COP0 SRSCtl RO * 13 0 RO COP0 Cause RW * 14 0 RO COP0 EPC RW * 15 0 RO COP0 PrID RO * 15 1 RO COP0 EBase RW * 16 0 RO PC Issue Debug Info (see details below) RO * 16 1 RO PC Fetch Debug Info (see details below) RO * 16 2 RO PC Fill Debug Info (see details below) RO * 16 3 RO PC Misc Debug Info (see details below) RO * 18 0 RO COP0 WatchLo0 RW * 19 0 RO COP0 WatchHi0 RW * 22 0 RO COP0 MultiCoreDebug RW * 23 0 RO COP0 Debug RW * 23 6 RO COP0 Debug2 RO * 24 0 RO COP0 DEPC RW * 25 0 RO COP0 PerfCnt Control0 RW * 25 1 RO COP0 PerfCnt Counter0 RW * 25 2 RO COP0 PerfCnt Control1 RW * 25 3 RO COP0 PerfCnt Counter1 RW * 27 0 RO COP0 CacheErr (icache) RW * 28 0 RO COP0 TagLo (icache) RW * 28 1 RO COP0 DataLo (icache) RW * 29 1 RO COP0 DataHi (icache) RW * 30 0 RO COP0 ErrorEPC RW * 31 0 RO COP0 DESAVE RW * 31 2 RO COP0 Scratch RW * 31 3 RO COP0 Scratch1 RW * 31 4 RO COP0 Scratch2 RW * * - PC Issue Debug Info * * - 63:2 pc0_5a<63:2> // often VA<63:2> of the next instruction to issue * // but can also be the VA of an instruction executing/replaying on pipe 0 * // or can also be a VA being filled into the instruction cache * // or can also be unpredictable * // <61:49> RAZ * 1 illegal // set when illegal VA * 0 delayslot // set when VA is delayslot (prior branch may be either taken or not taken) * * - PC Fetch Debug Info * * - 63:0 fetch_address_3a // VA being fetched from the instruction cache * // <61:49>, <1:0> RAZ * * - PC Fill Debug Info * * - 63:0 fill_address_4a<63:2> // VA<63:2> being filled into instruction cache * // valid when waiting_for_ifill_4a is set (see PC Misc Debug Info below) * // <61:49> RAZ * 1 illegal // set when illegal VA * 0 RAZ * * - PC Misc Debug Info * * - 63:3 RAZ * 2 mem_stall_3a // stall term from L1 memory system * 1 waiting_for_pfill_4a // when waiting_for_ifill_4a is set, indicates whether instruction cache fill is due to a prefetch * 0 waiting_for_ifill_4a // set when there is an outstanding instruction cache fill */ union cvmx_l2c_cop0_mapx { uint64_t u64; struct cvmx_l2c_cop0_mapx_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t data : 64; /**< Data to write to/read from designated PP's COP0 register. */ #else uint64_t data : 64; #endif } s; struct cvmx_l2c_cop0_mapx_s cn63xx; struct cvmx_l2c_cop0_mapx_s cn63xxp1; }; typedef union cvmx_l2c_cop0_mapx cvmx_l2c_cop0_mapx_t; /** * cvmx_l2c_ctl * * L2C_CTL = L2C Control * * * Notes: * (1) If MAXVAB is != 0, VAB_THRESH should be less than MAXVAB. * * (2) L2DFDBE and L2DFSBE allows software to generate L2DSBE, L2DDBE, VBFSBE, and VBFDBE errors for * the purposes of testing error handling code. When one (or both) of these bits are set a PL2 * which misses in the L2 will fill with the appropriate error in the first 2 OWs of the fill. * Software can determine which OW pair gets the error by choosing the desired fill order * (address<6:5>). A PL2 which hits in the L2 will not inject any errors. Therefore sending a * WBIL2 prior to the PL2 is recommended to make a miss likely (if multiple processors are involved * software must be careful to be sure no other processor or IO device can bring the block into the * L2). * * To generate a VBFSBE or VBFDBE, software must first get the cache block into the cache with an * error using a PL2 which misses the L2. Then a store partial to a portion of the cache block * without the error must change the block to dirty. Then, a subsequent WBL2/WBIL2/victim will * trigger the VBFSBE/VBFDBE error. */ union cvmx_l2c_ctl { uint64_t u64; struct cvmx_l2c_ctl_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_28_63 : 36; uint64_t disstgl2i : 1; /**< Disable STGL2I's from changing the tags */ uint64_t l2dfsbe : 1; /**< Force single bit ECC error on PL2 allocates (2) */ uint64_t l2dfdbe : 1; /**< Force double bit ECC error on PL2 allocates (2) */ uint64_t discclk : 1; /**< Disable conditional clocking in L2C PNR blocks */ uint64_t maxvab : 4; /**< Maximum VABs in use at once (0 means 16, 1-15 as expected) */ uint64_t maxlfb : 4; /**< Maximum LFBs in use at once (0 means 16, 1-15 as expected) */ uint64_t rsp_arb_mode : 1; /**< Arbitration mode for RSC/RSD bus == 0, round-robin == 1, static priority 1. IOR data 2. STIN/FILLs 3. STDN/SCDN/SCFL */ uint64_t xmc_arb_mode : 1; /**< Arbitration mode for XMC QOS queues == 0, fully determined through QOS == 1, QOS0 highest priority, QOS1-3 use normal mode */ uint64_t ef_ena : 1; /**< LMC early fill enable */ uint64_t ef_cnt : 7; /**< LMC early fill count Specifies the number of cycles after the first LMC fill cycle to wait before requesting a fill on the RSC/RSD bus. // 7 dclks (we've received 1st out of 8 // by the time we start counting) ef_cnt = (7 * dclk0_period) / rclk_period; // + 1 rclk if the dclk and rclk edges don't // stay in the same position if ((dclk0_gen.period % rclk_gen.period) != 0) ef_cnt = ef_cnt + 1; // + 2 rclk synchronization uncertainty ef_cnt = ef_cnt + 2; // - 3 rclks to recognize first write ef_cnt = ef_cnt - 3; // + 3 rclks to perform first write ef_cnt = ef_cnt + 3; // - 9 rclks minimum latency from counter expire // to final fbf read ef_cnt = ef_cnt - 9; */ uint64_t vab_thresh : 4; /**< VAB Threshold When the number of valid VABs exceeds this number the L2C increases the priority of all writes in the LMC. */ uint64_t disecc : 1; /**< Tag and Data ECC Disable */ uint64_t disidxalias : 1; /**< Index Alias Disable */ #else uint64_t disidxalias : 1; uint64_t disecc : 1; uint64_t vab_thresh : 4; uint64_t ef_cnt : 7; uint64_t ef_ena : 1; uint64_t xmc_arb_mode : 1; uint64_t rsp_arb_mode : 1; uint64_t maxlfb : 4; uint64_t maxvab : 4; uint64_t discclk : 1; uint64_t l2dfdbe : 1; uint64_t l2dfsbe : 1; uint64_t disstgl2i : 1; uint64_t reserved_28_63 : 36; #endif } s; struct cvmx_l2c_ctl_s cn63xx; struct cvmx_l2c_ctl_cn63xxp1 { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_25_63 : 39; uint64_t discclk : 1; /**< Disable conditional clocking in L2C PNR blocks */ uint64_t maxvab : 4; /**< Maximum VABs in use at once (0 means 16, 1-15 as expected) */ uint64_t maxlfb : 4; /**< Maximum LFBs in use at once (0 means 16, 1-15 as expected) */ uint64_t rsp_arb_mode : 1; /**< Arbitration mode for RSC/RSD bus == 0, round-robin == 1, static priority 1. IOR data 2. STIN/FILLs 3. STDN/SCDN/SCFL */ uint64_t xmc_arb_mode : 1; /**< Arbitration mode for XMC QOS queues == 0, fully determined through QOS == 1, QOS0 highest priority, QOS1-3 use normal mode */ uint64_t ef_ena : 1; /**< LMC early fill enable */ uint64_t ef_cnt : 7; /**< LMC early fill count Specifies the number of cycles after the first LMC fill cycle to wait before requesting a fill on the RSC/RSD bus. // 7 dclks (we've received 1st out of 8 // by the time we start counting) ef_cnt = (7 * dclk0_period) / rclk_period; // + 1 rclk if the dclk and rclk edges don't // stay in the same position if ((dclk0_gen.period % rclk_gen.period) != 0) ef_cnt = ef_cnt + 1; // + 2 rclk synchronization uncertainty ef_cnt = ef_cnt + 2; // - 3 rclks to recognize first write ef_cnt = ef_cnt - 3; // + 3 rclks to perform first write ef_cnt = ef_cnt + 3; // - 9 rclks minimum latency from counter expire // to final fbf read ef_cnt = ef_cnt - 9; */ uint64_t vab_thresh : 4; /**< VAB Threshold When the number of valid VABs exceeds this number the L2C increases the priority of all writes in the LMC. */ uint64_t disecc : 1; /**< Tag and Data ECC Disable */ uint64_t disidxalias : 1; /**< Index Alias Disable */ #else uint64_t disidxalias : 1; uint64_t disecc : 1; uint64_t vab_thresh : 4; uint64_t ef_cnt : 7; uint64_t ef_ena : 1; uint64_t xmc_arb_mode : 1; uint64_t rsp_arb_mode : 1; uint64_t maxlfb : 4; uint64_t maxvab : 4; uint64_t discclk : 1; uint64_t reserved_25_63 : 39; #endif } cn63xxp1; }; typedef union cvmx_l2c_ctl cvmx_l2c_ctl_t; /** * cvmx_l2c_dbg * * L2C_DBG = L2C DEBUG Register * * Description: L2C Tag/Data Store Debug Register * * Notes: * (1) When using the L2T, L2D or FINV Debug probe feature, the LDD command WILL NOT update the DuTags. * (2) L2T, L2D, FINV MUST BE mutually exclusive (only one set) * (3) Force Invalidate is intended as a means for SW to invalidate the L2 Cache while also writing back * dirty data to memory to maintain coherency. * (4) L2 Cache Lock Down feature MUST BE disabled (L2C_LCKBASE[LCK_ENA]=0) if ANY of the L2C debug * features (L2T, L2D, FINV) are enabled. */ union cvmx_l2c_dbg { uint64_t u64; struct cvmx_l2c_dbg_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_15_63 : 49; uint64_t lfb_enum : 4; /**< Specifies the LFB Entry# which is to be captured. */ uint64_t lfb_dmp : 1; /**< LFB Dump Enable: When written(=1), the contents of the LFB specified by LFB_ENUM[3:0] are captured into the L2C_LFB(0/1/2) registers. NOTE: Some fields of the LFB entry are unpredictable and dependent on usage. This is only intended to be used for HW debug. */ uint64_t ppnum : 4; /**< When L2C_DBG[L2T] or L2C_DBG[L2D] or L2C_DBG[FINV] is enabled, this field determines which one-of-16 PPs is selected as the diagnostic PP. */ uint64_t set : 3; /**< When L2C_DBG[L2T] or L2C_DBG[L2D] or L2C_DBG[FINV] is enabled, this field determines 1-of-n targeted sets to act upon. NOTE: L2C_DBG[SET] must never equal a crippled or unusable set (see UMSK* registers and Cripple mode fuses). */ uint64_t finv : 1; /**< Flush-Invalidate. When flush-invalidate is enable (FINV=1), all STF (L1 store-miss) commands generated from the diagnostic PP (L2C_DBG[PPNUM]) will invalidate the specified set (L2C_DBG[SET]) at the index specified in the STF address[17:7]. If a dirty block is detected (D=1), it is written back to memory. The contents of the invalid L2 Cache line is also 'scrubbed' with the STF write data. NOTE: If L2C_CFG[IDXALIAS]=1, the index specified in STF address[17:7] refers to the 'aliased' address. NOTE: An STF command with write data=ZEROES can be generated by SW using the Prefetch instruction with Hint=30d "prepare for Store", followed by a SYNCW. What is seen at the L2C as an STF w/wrdcnt=0 with all of its mask bits clear (indicates zero-fill data). A flush-invalidate will 'force-hit' the L2 cache at [index,set] and invalidate the entry (V=0/D=0/L=0/U=0). If the cache block is dirty, it is also written back to memory. The DuTag state is probed/updated as normal for an STF request. TYPICAL APPLICATIONS: 1) L2 Tag/Data ECC SW Recovery 2) Cache Unlocking NOTE: If the cacheline had been previously LOCKED(L=1), a flush-invalidate operation will explicitly UNLOCK (L=0) the set/index specified. NOTE: The diagnostic PP cores can generate STF commands to the L2 Cache whenever all 128 bytes in a block are written. SW must take this into consideration to avoid 'errant' Flush-Invalidates. */ uint64_t l2d : 1; /**< When enabled (and L2C_DBG[L2T]=0), fill data is returned directly from the L2 Data Store (regardless of hit/miss) when an LDD(L1 load-miss) command is issued from a PP determined by the L2C_DBG[PPNUM] field. The selected set# is determined by the L2C_DBG[SET] field, and the index is determined from the address[17:7] associated with the LDD command. This 'force-hit' will NOT alter the current L2 Tag state OR the DuTag state. */ uint64_t l2t : 1; /**< When enabled, L2 Tag information [V,D,L,U,phys_addr[33:18]] is returned on the data bus starting at +32(and +96) bytes offset from the beginning of cacheline when an LDD (L1 load-miss) command is issued from a PP determined by the L2C_DBG[PPNUM] field. The selected L2 set# is determined by the L2C_DBG[SET] field, and the L2 index is determined from the phys_addr[17:7] associated with the LDD command. This 'L2 force-hit' will NOT alter the current L2 Tag state OR the DuTag state. NOTE: The diagnostic PP should issue a d-stream load to an aligned cacheline+0x20(+0x60) in order to have the return VDLUTAG information (in OW2/OW6) written directly into the proper PP register. The diagnostic PP should also flush it's local L1 cache after use(to ensure data coherency). NOTE: The position of the VDLUTAG data in the destination register is dependent on the endian mode(big/little). NOTE: N3K-Pass2 modification. (This bit's functionality has changed since Pass1-in the following way). NOTE: (For L2C BitMap testing of L2 Data Store OW ECC): If L2D_ERR[ECC_ENA]=0, the OW ECC from the selected half cacheline (see: L2D_ERR[BMHCLSEL] is also conditionally latched into the L2D_FSYN0/1 CSRs if an LDD command is detected from the diagnostic PP(L2C_DBG[PPNUM]). */ #else uint64_t l2t : 1; uint64_t l2d : 1; uint64_t finv : 1; uint64_t set : 3; uint64_t ppnum : 4; uint64_t lfb_dmp : 1; uint64_t lfb_enum : 4; uint64_t reserved_15_63 : 49; #endif } s; struct cvmx_l2c_dbg_cn30xx { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_13_63 : 51; uint64_t lfb_enum : 2; /**< Specifies the LFB Entry# which is to be captured. */ uint64_t lfb_dmp : 1; /**< LFB Dump Enable: When written(=1), the contents of the LFB specified by LFB_ENUM are captured into the L2C_LFB(0/1/2) registers. NOTE: Some fields of the LFB entry are unpredictable and dependent on usage. This is only intended to be used for HW debug. */ uint64_t reserved_7_9 : 3; uint64_t ppnum : 1; /**< When L2C_DBG[L2T] or L2C_DBG[L2D] or L2C_DBG[FINV] is enabled, this field determines which PP is selected as the diagnostic PP. NOTE: For CN30XX single core PPNUM=0 (MBZ) */ uint64_t reserved_5_5 : 1; uint64_t set : 2; /**< When L2C_DBG[L2T] or L2C_DBG[L2D] or L2C_DBG[FINV] is enabled, this field determines 1-of-n targeted sets to act upon. NOTE: L2C_DBG[SET] must never equal a crippled or unusable set (see UMSK* registers and Cripple mode fuses). */ uint64_t finv : 1; /**< Flush-Invalidate. When flush-invalidate is enable (FINV=1), all STF (L1 store-miss) commands generated from the PP will invalidate the specified set(L2C_DBG[SET]) at the index specified in the STF address[14:7]. If a dirty block is detected(D=1), it is written back to memory. The contents of the invalid L2 Cache line is also 'scrubbed' with the STF write data. NOTE: If L2C_CFG[IDXALIAS]=1, the index specified in STF address[14:7] refers to the 'aliased' address. NOTE: An STF command with write data=ZEROES can be generated by SW using the Prefetch instruction with Hint=30d "prepare for Store", followed by a SYNCW. What is seen at the L2C as an STF w/wrdcnt=0 with all of its mask bits clear (indicates zero-fill data). A flush-invalidate will 'force-hit' the L2 cache at [index,set] and invalidate the entry (V=0/D=0/L=0/U=0). If the cache block is dirty, it is also written back to memory. The DuTag state is probed/updated as normal for an STF request. TYPICAL APPLICATIONS: 1) L2 Tag/Data ECC SW Recovery 2) Cache Unlocking NOTE: If the cacheline had been previously LOCKED(L=1), a flush-invalidate operation will explicitly UNLOCK (L=0) the set/index specified. NOTE: The PP can generate STF(L1 store-miss) commands to the L2 Cache whenever all 128 bytes in a block are written. SW must take this into consideration to avoid 'errant' Flush-Invalidates. */ uint64_t l2d : 1; /**< When enabled (and L2C_DBG[L2T]=0), fill data is returned directly from the L2 Data Store (regardless of hit/miss) when an LDD(L1 load-miss) command is issued from the PP. The selected set# is determined by the L2C_DBG[SET] field, and the index is determined from the address[14:7] associated with the LDD command. This 'force-hit' will NOT alter the current L2 Tag state OR the DuTag state. */ uint64_t l2t : 1; /**< When enabled, L2 Tag information [V,D,L,U,phys_addr[33:15]] is returned on the data bus starting at +32(and +96) bytes offset from the beginning of cacheline when an LDD (L1 load-miss) command is issued from the PP. The selected L2 set# is determined by the L2C_DBG[SET] field, and the L2 index is determined from the phys_addr[14:7] associated with the LDD command. This 'L2 force-hit' will NOT alter the current L2 Tag state OR the DuTag state. NOTE: The diagnostic PP should issue a d-stream load to an aligned cacheline+0x20(+0x60) in order to have the return VDLUTAG information (in OW2/OW6) written directly into the proper PP register. The diagnostic PP should also flush it's local L1 cache after use(to ensure data coherency). NOTE: The position of the VDLUTAG data in the destination register is dependent on the endian mode(big/little). NOTE: (For L2C BitMap testing of L2 Data Store OW ECC): If L2D_ERR[ECC_ENA]=0, the OW ECC from the selected half cacheline (see: L2D_ERR[BMHCLSEL] is also conditionally latched into the L2D_FSYN0/1 CSRs if an LDD(L1 load-miss) is detected. */ #else uint64_t l2t : 1; uint64_t l2d : 1; uint64_t finv : 1; uint64_t set : 2; uint64_t reserved_5_5 : 1; uint64_t ppnum : 1; uint64_t reserved_7_9 : 3; uint64_t lfb_dmp : 1; uint64_t lfb_enum : 2; uint64_t reserved_13_63 : 51; #endif } cn30xx; struct cvmx_l2c_dbg_cn31xx { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_14_63 : 50; uint64_t lfb_enum : 3; /**< Specifies the LFB Entry# which is to be captured. */ uint64_t lfb_dmp : 1; /**< LFB Dump Enable: When written(=1), the contents of the LFB specified by LFB_ENUM are captured into the L2C_LFB(0/1/2) registers. NOTE: Some fields of the LFB entry are unpredictable and dependent on usage. This is only intended to be used for HW debug. */ uint64_t reserved_7_9 : 3; uint64_t ppnum : 1; /**< When L2C_DBG[L2T] or L2C_DBG[L2D] or L2C_DBG[FINV] is enabled, this field determines which PP is selected as the diagnostic PP. */ uint64_t reserved_5_5 : 1; uint64_t set : 2; /**< When L2C_DBG[L2T] or L2C_DBG[L2D] or L2C_DBG[FINV] is enabled, this field determines 1-of-n targeted sets to act upon. NOTE: L2C_DBG[SET] must never equal a crippled or unusable set (see UMSK* registers and Cripple mode fuses). */ uint64_t finv : 1; /**< Flush-Invalidate. When flush-invalidate is enable (FINV=1), all STF (L1 store-miss) commands generated from the diagnostic PP (L2C_DBG[PPNUM]) will invalidate the specified set (L2C_DBG[SET]) at the index specified in the STF address[15:7]. If a dirty block is detected (D=1), it is written back to memory. The contents of the invalid L2 Cache line is also 'scrubbed' with the STF write data. NOTE: If L2C_CFG[IDXALIAS]=1, the index specified in STF address[15:7] refers to the 'aliased' address. NOTE: An STF command with write data=ZEROES can be generated by SW using the Prefetch instruction with Hint=30d "prepare for Store", followed by a SYNCW. What is seen at the L2C as an STF w/wrdcnt=0 with all of its mask bits clear (indicates zero-fill data). A flush-invalidate will 'force-hit' the L2 cache at [index,set] and invalidate the entry (V=0/D=0/L=0/U=0). If the cache block is dirty, it is also written back to memory. The DuTag state is probed/updated as normal for an STF request. TYPICAL APPLICATIONS: 1) L2 Tag/Data ECC SW Recovery 2) Cache Unlocking NOTE: If the cacheline had been previously LOCKED(L=1), a flush-invalidate operation will explicitly UNLOCK (L=0) the set/index specified. NOTE: The diagnostic PP cores can generate STF(L1 store-miss) commands to the L2 Cache whenever all 128 bytes in a block are written. SW must take this into consideration to avoid 'errant' Flush-Invalidates. */ uint64_t l2d : 1; /**< When enabled (and L2C_DBG[L2T]=0), fill data is returned directly from the L2 Data Store (regardless of hit/miss) when an LDD(L1 load-miss) command is issued from a PP determined by the L2C_DBG[PPNUM] field. The selected set# is determined by the L2C_DBG[SET] field, and the index is determined from the address[15:7] associated with the LDD command. This 'L2 force-hit' will NOT alter the current L2 Tag state OR the DuTag state. */ uint64_t l2t : 1; /**< When enabled, L2 Tag information [V,D,L,U,phys_addr[33:16]] is returned on the data bus starting at +32(and +96) bytes offset from the beginning of cacheline when an LDD (L1 load-miss) command is issued from a PP determined by the L2C_DBG[PPNUM] field. The selected L2 set# is determined by the L2C_DBG[SET] field, and the L2 index is determined from the phys_addr[15:7] associated with the LDD command. This 'L2 force-hit' will NOT alter the current L2 Tag state OR the DuTag state. NOTE: The diagnostic PP should issue a d-stream load to an aligned cacheline+0x20(+0x60) in order to have the return VDLUTAG information (in OW2/OW6) written directly into the proper PP register. The diagnostic PP should also flush it's local L1 cache after use(to ensure data coherency). NOTE: The position of the VDLUTAG data in the destination register is dependent on the endian mode(big/little). NOTE: (For L2C BitMap testing of L2 Data Store OW ECC): If L2D_ERR[ECC_ENA]=0, the OW ECC from the selected half cacheline (see: L2D_ERR[BMHCLSEL] is also conditionally latched into the L2D_FSYN0/1 CSRs if an LDD(L1 load-miss) is detected from the diagnostic PP (L2C_DBG[PPNUM]). */ #else uint64_t l2t : 1; uint64_t l2d : 1; uint64_t finv : 1; uint64_t set : 2; uint64_t reserved_5_5 : 1; uint64_t ppnum : 1; uint64_t reserved_7_9 : 3; uint64_t lfb_dmp : 1; uint64_t lfb_enum : 3; uint64_t reserved_14_63 : 50; #endif } cn31xx; struct cvmx_l2c_dbg_s cn38xx; struct cvmx_l2c_dbg_s cn38xxp2; struct cvmx_l2c_dbg_cn50xx { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_14_63 : 50; uint64_t lfb_enum : 3; /**< Specifies the LFB Entry# which is to be captured. */ uint64_t lfb_dmp : 1; /**< LFB Dump Enable: When written(=1), the contents of the LFB specified by LFB_ENUM[2:0] are captured into the L2C_LFB(0/1/2) registers. NOTE: Some fields of the LFB entry are unpredictable and dependent on usage. This is only intended to be used for HW debug. */ uint64_t reserved_7_9 : 3; uint64_t ppnum : 1; /**< When L2C_DBG[L2T] or L2C_DBG[L2D] or L2C_DBG[FINV] is enabled, this field determines which 1-of-2 PPs is selected as the diagnostic PP. */ uint64_t set : 3; /**< When L2C_DBG[L2T] or L2C_DBG[L2D] or L2C_DBG[FINV] is enabled, this field determines 1-of-n targeted sets to act upon. NOTE: L2C_DBG[SET] must never equal a crippled or unusable set (see UMSK* registers and Cripple mode fuses). */ uint64_t finv : 1; /**< Flush-Invalidate. When flush-invalidate is enable (FINV=1), all STF (L1 store-miss) commands generated from the diagnostic PP (L2C_DBG[PPNUM]) will invalidate the specified set (L2C_DBG[SET]) at the index specified in the STF address[13:7]. If a dirty block is detected (D=1), it is written back to memory. The contents of the invalid L2 Cache line is also 'scrubbed' with the STF write data. NOTE: If L2C_CFG[IDXALIAS]=1, the index specified in STF address[13:7] refers to the 'aliased' address. NOTE: An STF command with write data=ZEROES can be generated by SW using the Prefetch instruction with Hint=30d "prepare for Store", followed by a SYNCW. What is seen at the L2C as an STF w/wrdcnt=0 with all of its mask bits clear (indicates zero-fill data). A flush-invalidate will 'force-hit' the L2 cache at [index,set] and invalidate the entry (V=0/D=0/L=0/U=0). If the cache block is dirty, it is also written back to memory. The DuTag state is probed/updated as normal for an STF request. TYPICAL APPLICATIONS: 1) L2 Tag/Data ECC SW Recovery 2) Cache Unlocking NOTE: If the cacheline had been previously LOCKED(L=1), a flush-invalidate operation will explicitly UNLOCK (L=0) the set/index specified. NOTE: The diagnostic PP cores can generate STF commands to the L2 Cache whenever all 128 bytes in a block are written. SW must take this into consideration to avoid 'errant' Flush-Invalidates. */ uint64_t l2d : 1; /**< When enabled (and L2C_DBG[L2T]=0), fill data is returned directly from the L2 Data Store (regardless of hit/miss) when an LDD(L1 load-miss) command is issued from a PP determined by the L2C_DBG[PPNUM] field. The selected set# is determined by the L2C_DBG[SET] field, and the index is determined from the address[13:7] associated with the LDD command. This 'force-hit' will NOT alter the current L2 Tag state OR the DuTag state. */ uint64_t l2t : 1; /**< When enabled, L2 Tag information [V,D,L,U,phys_addr[33:14]] is returned on the data bus starting at +32(and +96) bytes offset from the beginning of cacheline when an LDD (L1 load-miss) command is issued from a PP determined by the L2C_DBG[PPNUM] field. The selected L2 set# is determined by the L2C_DBG[SET] field, and the L2 index is determined from the phys_addr[13:7] associated with the LDD command. This 'L2 force-hit' will NOT alter the current L2 Tag state OR the DuTag state. NOTE: The diagnostic PP should issue a d-stream load to an aligned cacheline+0x20(+0x60) in order to have the return VDLUTAG information (in OW2/OW6) written directly into the proper PP register. The diagnostic PP should also flush it's local L1 cache after use(to ensure data coherency). NOTE: The position of the VDLUTAG data in the destination register is dependent on the endian mode(big/little). NOTE: (For L2C BitMap testing of L2 Data Store OW ECC): If L2D_ERR[ECC_ENA]=0, the OW ECC from the selected half cacheline (see: L2D_ERR[BMHCLSEL] is also conditionally latched into the L2D_FSYN0/1 CSRs if an LDD command is detected from the diagnostic PP(L2C_DBG[PPNUM]). */ #else uint64_t l2t : 1; uint64_t l2d : 1; uint64_t finv : 1; uint64_t set : 3; uint64_t ppnum : 1; uint64_t reserved_7_9 : 3; uint64_t lfb_dmp : 1; uint64_t lfb_enum : 3; uint64_t reserved_14_63 : 50; #endif } cn50xx; struct cvmx_l2c_dbg_cn52xx { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_14_63 : 50; uint64_t lfb_enum : 3; /**< Specifies the LFB Entry# which is to be captured. */ uint64_t lfb_dmp : 1; /**< LFB Dump Enable: When written(=1), the contents of the LFB specified by LFB_ENUM[2:0] are captured into the L2C_LFB(0/1/2) registers. NOTE: Some fields of the LFB entry are unpredictable and dependent on usage. This is only intended to be used for HW debug. */ uint64_t reserved_8_9 : 2; uint64_t ppnum : 2; /**< When L2C_DBG[L2T] or L2C_DBG[L2D] or L2C_DBG[FINV] is enabled, this field determines which 1-of-4 PPs is selected as the diagnostic PP. */ uint64_t set : 3; /**< When L2C_DBG[L2T] or L2C_DBG[L2D] or L2C_DBG[FINV] is enabled, this field determines 1-of-n targeted sets to act upon. NOTE: L2C_DBG[SET] must never equal a crippled or unusable set (see UMSK* registers and Cripple mode fuses). */ uint64_t finv : 1; /**< Flush-Invalidate. When flush-invalidate is enable (FINV=1), all STF (L1 store-miss) commands generated from the diagnostic PP (L2C_DBG[PPNUM]) will invalidate the specified set (L2C_DBG[SET]) at the index specified in the STF address[15:7]. If a dirty block is detected (D=1), it is written back to memory. The contents of the invalid L2 Cache line is also 'scrubbed' with the STF write data. NOTE: If L2C_CFG[IDXALIAS]=1, the index specified in STF address[15:7] refers to the 'aliased' address. NOTE: An STF command with write data=ZEROES can be generated by SW using the Prefetch instruction with Hint=30d "prepare for Store", followed by a SYNCW. What is seen at the L2C as an STF w/wrdcnt=0 with all of its mask bits clear (indicates zero-fill data). A flush-invalidate will 'force-hit' the L2 cache at [index,set] and invalidate the entry (V=0/D=0/L=0/U=0). If the cache block is dirty, it is also written back to memory. The DuTag state is probed/updated as normal for an STF request. TYPICAL APPLICATIONS: 1) L2 Tag/Data ECC SW Recovery 2) Cache Unlocking NOTE: If the cacheline had been previously LOCKED(L=1), a flush-invalidate operation will explicitly UNLOCK (L=0) the set/index specified. NOTE: The diagnostic PP cores can generate STF commands to the L2 Cache whenever all 128 bytes in a block are written. SW must take this into consideration to avoid 'errant' Flush-Invalidates. */ uint64_t l2d : 1; /**< When enabled (and L2C_DBG[L2T]=0), fill data is returned directly from the L2 Data Store (regardless of hit/miss) when an LDD(L1 load-miss) command is issued from a PP determined by the L2C_DBG[PPNUM] field. The selected set# is determined by the L2C_DBG[SET] field, and the index is determined from the address[15:7] associated with the LDD command. This 'force-hit' will NOT alter the current L2 Tag state OR the DuTag state. */ uint64_t l2t : 1; /**< When enabled, L2 Tag information [V,D,L,U,phys_addr[33:16]] is returned on the data bus starting at +32(and +96) bytes offset from the beginning of cacheline when an LDD (L1 load-miss) command is issued from a PP determined by the L2C_DBG[PPNUM] field. The selected L2 set# is determined by the L2C_DBG[SET] field, and the L2 index is determined from the phys_addr[15:7] associated with the LDD command. This 'L2 force-hit' will NOT alter the current L2 Tag state OR the DuTag state. NOTE: The diagnostic PP should issue a d-stream load to an aligned cacheline+0x20(+0x60) in order to have the return VDLUTAG information (in OW2/OW6) written directly into the proper PP register. The diagnostic PP should also flush it's local L1 cache after use(to ensure data coherency). NOTE: The position of the VDLUTAG data in the destination register is dependent on the endian mode(big/little). NOTE: (For L2C BitMap testing of L2 Data Store OW ECC): If L2D_ERR[ECC_ENA]=0, the OW ECC from the selected half cacheline (see: L2D_ERR[BMHCLSEL] is also conditionally latched into the L2D_FSYN0/1 CSRs if an LDD command is detected from the diagnostic PP(L2C_DBG[PPNUM]). */ #else uint64_t l2t : 1; uint64_t l2d : 1; uint64_t finv : 1; uint64_t set : 3; uint64_t ppnum : 2; uint64_t reserved_8_9 : 2; uint64_t lfb_dmp : 1; uint64_t lfb_enum : 3; uint64_t reserved_14_63 : 50; #endif } cn52xx; struct cvmx_l2c_dbg_cn52xx cn52xxp1; struct cvmx_l2c_dbg_s cn56xx; struct cvmx_l2c_dbg_s cn56xxp1; struct cvmx_l2c_dbg_s cn58xx; struct cvmx_l2c_dbg_s cn58xxp1; }; typedef union cvmx_l2c_dbg cvmx_l2c_dbg_t; /** * cvmx_l2c_dut * * L2C_DUT = L2C DUTAG Register * * Description: L2C Duplicate Tag State Register * * Notes: * (1) When using the L2T, L2D or FINV Debug probe feature, an LDD command issued by the diagnostic PP * WILL NOT update the DuTags. * (2) L2T, L2D, FINV MUST BE mutually exclusive (only one enabled at a time). * (3) Force Invalidate is intended as a means for SW to invalidate the L2 Cache while also writing back * dirty data to memory to maintain coherency. (A side effect of FINV is that an LDD L2 fill is * launched which fills data into the L2 DS). */ union cvmx_l2c_dut { uint64_t u64; struct cvmx_l2c_dut_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_32_63 : 32; uint64_t dtena : 1; /**< DuTag Diagnostic read enable. When L2C_DUT[DTENA]=1, all LDD(L1 load-miss) commands issued from the diagnostic PP (L2C_DBG[PPNUM]) will capture the DuTag state (V|L1TAG) of the PP#(specified in the LDD address[29:26] into the L2C_DUT CSR register. This allows the diagPP to read ALL DuTags (from any PP). The DuTag Set# to capture is extracted from the LDD address[25:20]. The diagnostic PP would issue the LDD then read the L2C_DUT register (one at a time). This LDD 'L2 force-hit' will NOT alter the current L2 Tag State OR the DuTag state. NOTE: For CN58XX the DuTag SIZE has doubled (to 16KB) where each DuTag is organized as 2x 64-way entries. The LDD address[7] determines which 1(of-2) internal 64-ways to select. The fill data is returned directly from the L2 Data Store(regardless of hit/miss) when an LDD command is issued from a PP determined by the L2C_DBG[PPNUM] field. The selected L2 Set# is determined by the L2C_DBG[SET] field, and the index is determined from the address[17:7] associated with the LDD command. This 'L2 force-hit' will NOT alter the current L2 Tag state OR the DuTag state. NOTE: In order for the DiagPP to generate an LDD command to the L2C, it must first force an L1 Dcache flush. */ uint64_t reserved_30_30 : 1; uint64_t dt_vld : 1; /**< Duplicate L1 Tag Valid bit latched in for previous LDD(L1 load-miss) command sourced by diagnostic PP. */ uint64_t dt_tag : 29; /**< Duplicate L1 Tag[35:7] latched in for previous LDD(L1 load-miss) command sourced by diagnostic PP. */ #else uint64_t dt_tag : 29; uint64_t dt_vld : 1; uint64_t reserved_30_30 : 1; uint64_t dtena : 1; uint64_t reserved_32_63 : 32; #endif } s; struct cvmx_l2c_dut_s cn30xx; struct cvmx_l2c_dut_s cn31xx; struct cvmx_l2c_dut_s cn38xx; struct cvmx_l2c_dut_s cn38xxp2; struct cvmx_l2c_dut_s cn50xx; struct cvmx_l2c_dut_s cn52xx; struct cvmx_l2c_dut_s cn52xxp1; struct cvmx_l2c_dut_s cn56xx; struct cvmx_l2c_dut_s cn56xxp1; struct cvmx_l2c_dut_s cn58xx; struct cvmx_l2c_dut_s cn58xxp1; }; typedef union cvmx_l2c_dut cvmx_l2c_dut_t; /** * cvmx_l2c_dut_map# * * L2C_DUT_MAP = L2C DUT memory map region * * Description: Address of the start of the region mapped to the duplicate tag. Can be used to read * and write the raw duplicate tag CAM. Writes should be used only with great care as they can easily * destroy the coherency of the memory system. In any case this region is expected to only be used * for debug. * * This base address should be combined with PP virtual ID, L1 way and L1 set to produce the final * address as follows: * addr<63:14> L2C_DUT_MAP<63:14> * addr<13:11> PP VID * addr<10:6> L1 way * addr<5:3> L1 set * addr<2:0> UNUSED * * Notes: * (1) The tag is 37:10 from the 38-bit OCTEON physical address after hole removal. (The hole is between DR0 * and DR1. Remove the hole by subtracting 256MB from 38-bit OCTEON L2/DRAM physical addresses >= 512 MB.) */ union cvmx_l2c_dut_mapx { uint64_t u64; struct cvmx_l2c_dut_mapx_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_38_63 : 26; uint64_t tag : 28; /**< The tag value (see Note 1) */ uint64_t reserved_1_9 : 9; uint64_t valid : 1; /**< The valid bit */ #else uint64_t valid : 1; uint64_t reserved_1_9 : 9; uint64_t tag : 28; uint64_t reserved_38_63 : 26; #endif } s; struct cvmx_l2c_dut_mapx_s cn63xx; struct cvmx_l2c_dut_mapx_s cn63xxp1; }; typedef union cvmx_l2c_dut_mapx cvmx_l2c_dut_mapx_t; /** * cvmx_l2c_err_tdt# * * L2C_ERR_TDT = L2C TAD DaTa Error Info * * * Notes: * (1) If the status bit corresponding to the value of the TYPE field is not set the WAYIDX/SYN fields * are not associated with the errors currently logged by the status bits and should be ignored. * This can occur, for example, because of a race between a write to clear a DBE and a new, lower * priority, SBE error occuring. If the SBE arrives prior to the DBE clear the WAYIDX/SYN fields * will still be locked, but the new SBE error status bit will still be set. * * (2) The four types of errors have differing priorities. Priority (from lowest to highest) is SBE, * VSBE, DBE, VDBE. A error will lock the WAYIDX, and SYN fields for other errors of equal or * lower priority until cleared by software. This means that the error information is always * (assuming the TYPE field matches) for the highest priority error logged in the status bits. * * (3) If VSBE or VDBE are set (and the TYPE field matches), the WAYIDX fields are valid and the * syndrome can be found in L2C_ERR_VBF. * * (4) The syndrome is recorded for DBE errors, though the utility of the value is not clear. */ union cvmx_l2c_err_tdtx { uint64_t u64; struct cvmx_l2c_err_tdtx_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t dbe : 1; /**< L2D Double-Bit error has occurred */ uint64_t sbe : 1; /**< L2D Single-Bit error has occurred */ uint64_t vdbe : 1; /**< VBF Double-Bit error has occurred */ uint64_t vsbe : 1; /**< VBF Single-Bit error has occurred */ uint64_t syn : 10; /**< L2D syndrome (valid only for SBE/DBE, not VSBE/VDBE) */ uint64_t reserved_21_49 : 29; uint64_t wayidx : 17; /**< Way, index, OW of the L2 block containing the error */ uint64_t reserved_2_3 : 2; uint64_t type : 2; /**< The type of error the WAYIDX,SYN were latched for. 0 - VSBE 1 - VDBE 2 - SBE 3 - DBE */ #else uint64_t type : 2; uint64_t reserved_2_3 : 2; uint64_t wayidx : 17; uint64_t reserved_21_49 : 29; uint64_t syn : 10; uint64_t vsbe : 1; uint64_t vdbe : 1; uint64_t sbe : 1; uint64_t dbe : 1; #endif } s; struct cvmx_l2c_err_tdtx_s cn63xx; struct cvmx_l2c_err_tdtx_s cn63xxp1; }; typedef union cvmx_l2c_err_tdtx cvmx_l2c_err_tdtx_t; /** * cvmx_l2c_err_ttg# * * L2C_ERR_TTG = L2C TAD TaG Error Info * * * Notes: * (1) The priority of errors (highest to lowest) is DBE, SBE, NOWAY. An error will lock the SYN, and * WAYIDX fields for equal or lower priority errors until cleared by software. * * (2) The syndrome is recorded for DBE errors, though the utility of the value is not clear. * * (3) A NOWAY error does not change the value of the SYN field, and leaves WAYIDX[20:17] * unpredictable. WAYIDX[16:7] is the L2 block index associated with the command which had no way * to allocate. * * (4) If the status bit corresponding to the value of the TYPE field is not set the WAYIDX/SYN fields * are not associated with the errors currently logged by the status bits and should be ignored. * This can occur, for example, because of a race between a write to clear a DBE and a new, lower * priority, SBE error occuring. If the SBE arrives prior to the DBE clear the WAYIDX/SYN fields * will still be locked, but the new SBE error status bit will still be set. */ union cvmx_l2c_err_ttgx { uint64_t u64; struct cvmx_l2c_err_ttgx_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t dbe : 1; /**< Double-Bit ECC error */ uint64_t sbe : 1; /**< Single-Bit ECC error */ uint64_t noway : 1; /**< No way was available for allocation. L2C sets NOWAY during its processing of a transaction whenever it needed/wanted to allocate a WAY in the L2 cache, but was unable to. NOWAY==1 is (generally) not an indication that L2C failed to complete transactions. Rather, it is a hint of possible performance degradation. (For example, L2C must read-modify-write DRAM for every transaction that updates some, but not all, of the bytes in a cache block, misses in the L2 cache, and cannot allocate a WAY.) There is one "failure" case where L2C will set NOWAY: when it cannot leave a block locked in the L2 cache as part of a LCKL2 transaction. */ uint64_t reserved_56_60 : 5; uint64_t syn : 6; /**< Syndrome for the single-bit error */ uint64_t reserved_21_49 : 29; uint64_t wayidx : 14; /**< Way and index of the L2 block containing the error */ uint64_t reserved_2_6 : 5; uint64_t type : 2; /**< The type of error the WAYIDX,SYN were latched for. 0 - not valid 1 - NOWAY 2 - SBE 3 - DBE */ #else uint64_t type : 2; uint64_t reserved_2_6 : 5; uint64_t wayidx : 14; uint64_t reserved_21_49 : 29; uint64_t syn : 6; uint64_t reserved_56_60 : 5; uint64_t noway : 1; uint64_t sbe : 1; uint64_t dbe : 1; #endif } s; struct cvmx_l2c_err_ttgx_s cn63xx; struct cvmx_l2c_err_ttgx_s cn63xxp1; }; typedef union cvmx_l2c_err_ttgx cvmx_l2c_err_ttgx_t; /** * cvmx_l2c_err_vbf# * * L2C_ERR_VBF = L2C VBF Error Info * * * Notes: * (1) The way/index information is stored in L2C_ERR_TDT, assuming no later interrupt occurred to * overwrite the information. See the notes associated with L2C_ERR_TDT for full details. * * (2) The first VSBE will lock the register for other VSBE's. A VDBE, however, will overwrite a * previously logged VSBE. Once a VDBE has been logged all later errors will not be logged. This * means that if VDBE is set the information in the register is for the VDBE, if VDBE is clear and * VSBE is set the register contains information about the VSBE. * * (3) The syndrome is recorded for VDBE errors, though the utility of the value is not clear. * * (4) If the status bit corresponding to the value of the TYPE field is not set the SYN field is not * associated with the errors currently logged by the status bits and should be ignored. This can * occur, for example, because of a race between a write to clear a VDBE and a new, lower priority, * VSBE error occuring. If the VSBE arrives prior to the VDBE clear the SYN field will still be * locked, but the new VSBE error status bit will still be set. */ union cvmx_l2c_err_vbfx { uint64_t u64; struct cvmx_l2c_err_vbfx_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_62_63 : 2; uint64_t vdbe : 1; /**< VBF Double-Bit error has occurred */ uint64_t vsbe : 1; /**< VBF Single-Bit error has occurred */ uint64_t vsyn : 10; /**< VBF syndrome (valid only if VSBE/VDBE is set) */ uint64_t reserved_2_49 : 48; uint64_t type : 2; /**< The type of error the SYN were latched for. 0 - VSBE 1 - VDBE */ #else uint64_t type : 2; uint64_t reserved_2_49 : 48; uint64_t vsyn : 10; uint64_t vsbe : 1; uint64_t vdbe : 1; uint64_t reserved_62_63 : 2; #endif } s; struct cvmx_l2c_err_vbfx_s cn63xx; struct cvmx_l2c_err_vbfx_s cn63xxp1; }; typedef union cvmx_l2c_err_vbfx cvmx_l2c_err_vbfx_t; /** * cvmx_l2c_err_xmc * * L2C_ERR_XMC = L2C XMC request error * * Description: records error information for HOLE*, BIG* and VRT* interrupts. * * Notes: * (1) The first BIGWR/HOLEWR/VRT* interrupt will lock the register until L2C_INT_REG[6:1] are * cleared. * * (2) ADDR<15:0> will always be zero for VRT* interrupts. * * (3) ADDR is the 38-bit OCTEON physical address after hole removal. (The hole is between DR0 * and DR1. Remove the hole by subtracting 256MB from all 38-bit OCTEON L2/DRAM physical addresses * >= 512 MB.) * * (4) For 63xx pass 2.0 and all 68xx ADDR<15:0> will ALWAYS be zero. */ union cvmx_l2c_err_xmc { uint64_t u64; struct cvmx_l2c_err_xmc_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t cmd : 6; /**< XMC command or request causing error */ uint64_t reserved_52_57 : 6; uint64_t sid : 4; /**< XMC sid of request causing error */ uint64_t reserved_38_47 : 10; uint64_t addr : 38; /**< XMC address causing the error (see Notes 2 and 3) */ #else uint64_t addr : 38; uint64_t reserved_38_47 : 10; uint64_t sid : 4; uint64_t reserved_52_57 : 6; uint64_t cmd : 6; #endif } s; struct cvmx_l2c_err_xmc_s cn63xx; struct cvmx_l2c_err_xmc_s cn63xxp1; }; typedef union cvmx_l2c_err_xmc cvmx_l2c_err_xmc_t; /** * cvmx_l2c_grpwrr0 * * L2C_GRPWRR0 = L2C PP Weighted Round \#0 Register * * Description: Defines Weighted rounds(32) for Group PLC0,PLC1 * * Notes: * - Starvation of a group 'could' occur, unless SW takes the precaution to ensure that each GROUP * participates in at least 1(of 32) rounds (ie: At least 1 bit(of 32) should be clear). */ union cvmx_l2c_grpwrr0 { uint64_t u64; struct cvmx_l2c_grpwrr0_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t plc1rmsk : 32; /**< PLC1 Group#1 Weighted Round Mask Each bit represents 1 of 32 rounds for Group \#1's participation. When a 'round' bit is set, Group#1 is 'masked' and DOES NOT participate. When a 'round' bit is clear, Group#1 WILL participate in the arbitration for this round. */ uint64_t plc0rmsk : 32; /**< PLC Group#0 Weighted Round Mask Each bit represents 1 of 32 rounds for Group \#0's participation. When a 'round' bit is set, Group#0 is 'masked' and DOES NOT participate. When a 'round' bit is clear, Group#0 WILL participate in the arbitration for this round. */ #else uint64_t plc0rmsk : 32; uint64_t plc1rmsk : 32; #endif } s; struct cvmx_l2c_grpwrr0_s cn52xx; struct cvmx_l2c_grpwrr0_s cn52xxp1; struct cvmx_l2c_grpwrr0_s cn56xx; struct cvmx_l2c_grpwrr0_s cn56xxp1; }; typedef union cvmx_l2c_grpwrr0 cvmx_l2c_grpwrr0_t; /** * cvmx_l2c_grpwrr1 * * L2C_GRPWRR1 = L2C PP Weighted Round \#1 Register * * Description: Defines Weighted Rounds(32) for Group PLC2,ILC * * Notes: * - Starvation of a group 'could' occur, unless SW takes the precaution to ensure that each GROUP * participates in at least 1(of 32) rounds (ie: At least 1 bit(of 32) should be clear). */ union cvmx_l2c_grpwrr1 { uint64_t u64; struct cvmx_l2c_grpwrr1_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t ilcrmsk : 32; /**< ILC (IOB) Weighted Round Mask Each bit represents 1 of 32 rounds for IOB participation. When a 'round' bit is set, IOB is 'masked' and DOES NOT participate. When a 'round' bit is clear, IOB WILL participate in the arbitration for this round. */ uint64_t plc2rmsk : 32; /**< PLC Group#2 Weighted Round Mask Each bit represents 1 of 32 rounds for Group \#2's participation. When a 'round' bit is set, Group#2 is 'masked' and DOES NOT participate. When a 'round' bit is clear, Group#2 WILL participate in the arbitration for this round. */ #else uint64_t plc2rmsk : 32; uint64_t ilcrmsk : 32; #endif } s; struct cvmx_l2c_grpwrr1_s cn52xx; struct cvmx_l2c_grpwrr1_s cn52xxp1; struct cvmx_l2c_grpwrr1_s cn56xx; struct cvmx_l2c_grpwrr1_s cn56xxp1; }; typedef union cvmx_l2c_grpwrr1 cvmx_l2c_grpwrr1_t; /** * cvmx_l2c_int_en * * L2C_INT_EN = L2C Global Interrupt Enable Register * * Description: */ union cvmx_l2c_int_en { uint64_t u64; struct cvmx_l2c_int_en_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_9_63 : 55; uint64_t lck2ena : 1; /**< L2 Tag Lock Error2 Interrupt Enable bit NOTE: This is the 'same' bit as L2T_ERR[LCK_INTENA2] */ uint64_t lckena : 1; /**< L2 Tag Lock Error Interrupt Enable bit NOTE: This is the 'same' bit as L2T_ERR[LCK_INTENA] */ uint64_t l2ddeden : 1; /**< L2 Data ECC Double Error Detect(DED) Interrupt Enable bit When set, allows interrupts to be reported on double bit (uncorrectable) errors from the L2 Data Arrays. NOTE: This is the 'same' bit as L2D_ERR[DED_INTENA] */ uint64_t l2dsecen : 1; /**< L2 Data ECC Single Error Correct(SEC) Interrupt Enable bit When set, allows interrupts to be reported on single bit (correctable) errors from the L2 Data Arrays. NOTE: This is the 'same' bit as L2D_ERR[SEC_INTENA] */ uint64_t l2tdeden : 1; /**< L2 Tag ECC Double Error Detect(DED) Interrupt NOTE: This is the 'same' bit as L2T_ERR[DED_INTENA] */ uint64_t l2tsecen : 1; /**< L2 Tag ECC Single Error Correct(SEC) Interrupt Enable bit. When set, allows interrupts to be reported on single bit (correctable) errors from the L2 Tag Arrays. NOTE: This is the 'same' bit as L2T_ERR[SEC_INTENA] */ uint64_t oob3en : 1; /**< DMA Out of Bounds Interrupt Enable Range#3 */ uint64_t oob2en : 1; /**< DMA Out of Bounds Interrupt Enable Range#2 */ uint64_t oob1en : 1; /**< DMA Out of Bounds Interrupt Enable Range#1 */ #else uint64_t oob1en : 1; uint64_t oob2en : 1; uint64_t oob3en : 1; uint64_t l2tsecen : 1; uint64_t l2tdeden : 1; uint64_t l2dsecen : 1; uint64_t l2ddeden : 1; uint64_t lckena : 1; uint64_t lck2ena : 1; uint64_t reserved_9_63 : 55; #endif } s; struct cvmx_l2c_int_en_s cn52xx; struct cvmx_l2c_int_en_s cn52xxp1; struct cvmx_l2c_int_en_s cn56xx; struct cvmx_l2c_int_en_s cn56xxp1; }; typedef union cvmx_l2c_int_en cvmx_l2c_int_en_t; /** * cvmx_l2c_int_ena * * L2C_INT_ENA = L2C Interrupt Enable * */ union cvmx_l2c_int_ena { uint64_t u64; struct cvmx_l2c_int_ena_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_8_63 : 56; uint64_t bigrd : 1; /**< Read reference past MAXDRAM enable */ uint64_t bigwr : 1; /**< Write reference past MAXDRAM enable */ uint64_t vrtpe : 1; /**< Virtualization memory parity error */ uint64_t vrtadrng : 1; /**< Address outside of virtualization range enable */ uint64_t vrtidrng : 1; /**< Virtualization ID out of range enable */ uint64_t vrtwr : 1; /**< Virtualization ID prevented a write enable */ uint64_t holewr : 1; /**< Write reference to 256MB hole enable */ uint64_t holerd : 1; /**< Read reference to 256MB hole enable */ #else uint64_t holerd : 1; uint64_t holewr : 1; uint64_t vrtwr : 1; uint64_t vrtidrng : 1; uint64_t vrtadrng : 1; uint64_t vrtpe : 1; uint64_t bigwr : 1; uint64_t bigrd : 1; uint64_t reserved_8_63 : 56; #endif } s; struct cvmx_l2c_int_ena_s cn63xx; struct cvmx_l2c_int_ena_cn63xxp1 { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_6_63 : 58; uint64_t vrtpe : 1; /**< Virtualization memory parity error */ uint64_t vrtadrng : 1; /**< Address outside of virtualization range enable */ uint64_t vrtidrng : 1; /**< Virtualization ID out of range enable */ uint64_t vrtwr : 1; /**< Virtualization ID prevented a write enable */ uint64_t holewr : 1; /**< Write reference to 256MB hole enable */ uint64_t holerd : 1; /**< Read reference to 256MB hole enable */ #else uint64_t holerd : 1; uint64_t holewr : 1; uint64_t vrtwr : 1; uint64_t vrtidrng : 1; uint64_t vrtadrng : 1; uint64_t vrtpe : 1; uint64_t reserved_6_63 : 58; #endif } cn63xxp1; }; typedef union cvmx_l2c_int_ena cvmx_l2c_int_ena_t; /** * cvmx_l2c_int_reg * * L2C_INT_REG = L2C Interrupt Register * */ union cvmx_l2c_int_reg { uint64_t u64; struct cvmx_l2c_int_reg_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_17_63 : 47; uint64_t tad0 : 1; /**< When set, the enabled interrupt is in either the L2C_ERR_TDT0 or L2C_ERR_TTG0 CSR */ uint64_t reserved_8_15 : 8; uint64_t bigrd : 1; /**< Read reference past L2C_BIG_CTL[MAXDRAM] occurred */ uint64_t bigwr : 1; /**< Write reference past L2C_BIG_CTL[MAXDRAM] occurred */ uint64_t vrtpe : 1; /**< L2C_VRT_MEM read found a parity error Whenever an L2C_VRT_MEM read finds a parity error, that L2C_VRT_MEM cannot cause stores to be blocked. Software should correct the error. */ uint64_t vrtadrng : 1; /**< Address outside of virtualization range Set when a L2C_VRT_CTL[MEMSZ] violation blocked a store. L2C_VRT_CTL[OOBERR] must be set for L2C to set this. */ uint64_t vrtidrng : 1; /**< Virtualization ID out of range Set when a L2C_VRT_CTL[NUMID] violation blocked a store. */ uint64_t vrtwr : 1; /**< Virtualization ID prevented a write Set when L2C_VRT_MEM blocked a store. */ uint64_t holewr : 1; /**< Write reference to 256MB hole occurred */ uint64_t holerd : 1; /**< Read reference to 256MB hole occurred */ #else uint64_t holerd : 1; uint64_t holewr : 1; uint64_t vrtwr : 1; uint64_t vrtidrng : 1; uint64_t vrtadrng : 1; uint64_t vrtpe : 1; uint64_t bigwr : 1; uint64_t bigrd : 1; uint64_t reserved_8_15 : 8; uint64_t tad0 : 1; uint64_t reserved_17_63 : 47; #endif } s; struct cvmx_l2c_int_reg_s cn63xx; struct cvmx_l2c_int_reg_cn63xxp1 { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_17_63 : 47; uint64_t tad0 : 1; /**< When set, the enabled interrupt is in either the L2C_ERR_TDT0 or L2C_ERR_TTG0 CSR */ uint64_t reserved_6_15 : 10; uint64_t vrtpe : 1; /**< L2C_VRT_MEM read found a parity error Whenever an L2C_VRT_MEM read finds a parity error, that L2C_VRT_MEM cannot cause stores to be blocked. Software should correct the error. */ uint64_t vrtadrng : 1; /**< Address outside of virtualization range Set when a L2C_VRT_CTL[MEMSZ] violation blocked a store. L2C_VRT_CTL[OOBERR] must be set for L2C to set this. */ uint64_t vrtidrng : 1; /**< Virtualization ID out of range Set when a L2C_VRT_CTL[NUMID] violation blocked a store. */ uint64_t vrtwr : 1; /**< Virtualization ID prevented a write Set when L2C_VRT_MEM blocked a store. */ uint64_t holewr : 1; /**< Write reference to 256MB hole occurred */ uint64_t holerd : 1; /**< Read reference to 256MB hole occurred */ #else uint64_t holerd : 1; uint64_t holewr : 1; uint64_t vrtwr : 1; uint64_t vrtidrng : 1; uint64_t vrtadrng : 1; uint64_t vrtpe : 1; uint64_t reserved_6_15 : 10; uint64_t tad0 : 1; uint64_t reserved_17_63 : 47; #endif } cn63xxp1; }; typedef union cvmx_l2c_int_reg cvmx_l2c_int_reg_t; /** * cvmx_l2c_int_stat * * L2C_INT_STAT = L2C Global Interrupt Status Register * * Description: */ union cvmx_l2c_int_stat { uint64_t u64; struct cvmx_l2c_int_stat_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_9_63 : 55; uint64_t lck2 : 1; /**< HW detected a case where a Rd/Wr Miss from PP#n could not find an available/unlocked set (for replacement). Most likely, this is a result of SW mixing SET PARTITIONING with ADDRESS LOCKING. If SW allows another PP to LOCKDOWN all SETs available to PP#n, then a Rd/Wr Miss from PP#n will be unable to determine a 'valid' replacement set (since LOCKED addresses should NEVER be replaced). If such an event occurs, the HW will select the smallest available SET(specified by UMSK'x)' as the replacement set, and the address is unlocked. NOTE: This is the 'same' bit as L2T_ERR[LCKERR2] */ uint64_t lck : 1; /**< SW attempted to LOCK DOWN the last available set of the INDEX (which is ignored by HW - but reported to SW). The LDD(L1 load-miss) for the LOCK operation is completed successfully, however the address is NOT locked. NOTE: 'Available' sets takes the L2C_SPAR*[UMSK*] into account. For example, if diagnostic PPx has UMSKx defined to only use SETs [1:0], and SET1 had been previously LOCKED, then an attempt to LOCK the last available SET0 would result in a LCKERR. (This is to ensure that at least 1 SET at each INDEX is not LOCKED for general use by other PPs). NOTE: This is the 'same' bit as L2T_ERR[LCKERR] */ uint64_t l2dded : 1; /**< L2D Double Error detected (DED) NOTE: This is the 'same' bit as L2D_ERR[DED_ERR] */ uint64_t l2dsec : 1; /**< L2D Single Error corrected (SEC) NOTE: This is the 'same' bit as L2D_ERR[SEC_ERR] */ uint64_t l2tded : 1; /**< L2T Double Bit Error detected (DED) During every L2 Tag Probe, all 8 sets Tag's (at a given index) are checked for double bit errors(DBEs). This bit is set if ANY of the 8 sets contains a DBE. DBEs also generated an interrupt(if enabled). NOTE: This is the 'same' bit as L2T_ERR[DED_ERR] */ uint64_t l2tsec : 1; /**< L2T Single Bit Error corrected (SEC) status During every L2 Tag Probe, all 8 sets Tag's (at a given index) are checked for single bit errors(SBEs). This bit is set if ANY of the 8 sets contains an SBE. SBEs are auto corrected in HW and generate an interrupt(if enabled). NOTE: This is the 'same' bit as L2T_ERR[SEC_ERR] */ uint64_t oob3 : 1; /**< DMA Out of Bounds Interrupt Status Range#3 */ uint64_t oob2 : 1; /**< DMA Out of Bounds Interrupt Status Range#2 */ uint64_t oob1 : 1; /**< DMA Out of Bounds Interrupt Status Range#1 */ #else uint64_t oob1 : 1; uint64_t oob2 : 1; uint64_t oob3 : 1; uint64_t l2tsec : 1; uint64_t l2tded : 1; uint64_t l2dsec : 1; uint64_t l2dded : 1; uint64_t lck : 1; uint64_t lck2 : 1; uint64_t reserved_9_63 : 55; #endif } s; struct cvmx_l2c_int_stat_s cn52xx; struct cvmx_l2c_int_stat_s cn52xxp1; struct cvmx_l2c_int_stat_s cn56xx; struct cvmx_l2c_int_stat_s cn56xxp1; }; typedef union cvmx_l2c_int_stat cvmx_l2c_int_stat_t; /** * cvmx_l2c_ioc#_pfc * * L2C_IOC_PFC = L2C IOC Performance Counter(s) * */ union cvmx_l2c_iocx_pfc { uint64_t u64; struct cvmx_l2c_iocx_pfc_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t count : 64; /**< Current counter value */ #else uint64_t count : 64; #endif } s; struct cvmx_l2c_iocx_pfc_s cn63xx; struct cvmx_l2c_iocx_pfc_s cn63xxp1; }; typedef union cvmx_l2c_iocx_pfc cvmx_l2c_iocx_pfc_t; /** * cvmx_l2c_ior#_pfc * * L2C_IOR_PFC = L2C IOR Performance Counter(s) * */ union cvmx_l2c_iorx_pfc { uint64_t u64; struct cvmx_l2c_iorx_pfc_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t count : 64; /**< Current counter value */ #else uint64_t count : 64; #endif } s; struct cvmx_l2c_iorx_pfc_s cn63xx; struct cvmx_l2c_iorx_pfc_s cn63xxp1; }; typedef union cvmx_l2c_iorx_pfc cvmx_l2c_iorx_pfc_t; /** * cvmx_l2c_lckbase * * L2C_LCKBASE = L2C LockDown Base Register * * Description: L2C LockDown Base Register * * Notes: * (1) SW RESTRICTION \#1: SW must manage the L2 Data Store lockdown space such that at least 1 * set per cache line remains in the 'unlocked' (normal) state to allow general caching operations. * If SW violates this restriction, a status bit is set (LCK_ERR) and an interrupt is posted. * [this limits the total lockdown space to 7/8ths of the total L2 data store = 896KB] * (2) IOB initiated LDI commands are ignored (only PP initiated LDI/LDD commands are considered * for lockdown). * (3) To 'unlock' a locked cache line, SW can use the FLUSH-INVAL CSR mechanism (see L2C_DBG[FINV]). * (4) LCK_ENA MUST only be activated when debug modes are disabled (L2C_DBG[L2T], L2C_DBG[L2D], L2C_DBG[FINV]). */ union cvmx_l2c_lckbase { uint64_t u64; struct cvmx_l2c_lckbase_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_31_63 : 33; uint64_t lck_base : 27; /**< Base Memory block address[33:7]. Specifies the starting address of the lockdown region. */ uint64_t reserved_1_3 : 3; uint64_t lck_ena : 1; /**< L2 Cache Lock Enable When the LCK_ENA=1, all LDI(I-stream Load) or LDD(L1 load-miss) commands issued from the diagnostic PP (specified by the L2C_DBG[PPNUM]), which fall within a predefined lockdown address range (specified by: [lck_base:lck_base+lck_offset]) are LOCKED in the L2 cache. The LOCKED state is denoted using an explicit L2 Tag bit (L=1). If the LOCK request L2-Hits (on ANY SET), then data is returned from the L2 and the hit set is updated to the LOCKED state. NOTE: If the Hit Set# is outside the available sets for a given PP (see UMSK'x'), the the LOCK bit is still SET. If the programmer's intent is to explicitly LOCK addresses into 'available' sets, care must be taken to flush-invalidate the cache first (to avoid such situations). Not following this procedure can lead to LCKERR2 interrupts. If the LOCK request L2-Misses, a replacment set is chosen(from the available sets (UMSK'x'). If the replacement set contains a dirty-victim it is written back to memory. Memory read data is then written into the replacement set, and the replacment SET is updated to the LOCKED state(L=1). NOTE: SETs that contain LOCKED addresses are excluded from the replacement set selection algorithm. NOTE: The LDD command will allocate the DuTag as normal. NOTE: If L2C_CFG[IDXALIAS]=1, the address is 'aliased' first before being checked against the lockdown address range. To ensure an 'aliased' address is properly locked, it is recommmended that SW preload the 'aliased' locked adddress into the L2C_LCKBASE[LCK_BASE] register (while keeping L2C_LCKOFF[LCK_OFFSET]=0). NOTE: The OCTEON(N3) implementation only supports 16GB(MAX) of physical memory. Therefore, only byte address[33:0] are used (ie: address[35:34] are ignored). */ #else uint64_t lck_ena : 1; uint64_t reserved_1_3 : 3; uint64_t lck_base : 27; uint64_t reserved_31_63 : 33; #endif } s; struct cvmx_l2c_lckbase_s cn30xx; struct cvmx_l2c_lckbase_s cn31xx; struct cvmx_l2c_lckbase_s cn38xx; struct cvmx_l2c_lckbase_s cn38xxp2; struct cvmx_l2c_lckbase_s cn50xx; struct cvmx_l2c_lckbase_s cn52xx; struct cvmx_l2c_lckbase_s cn52xxp1; struct cvmx_l2c_lckbase_s cn56xx; struct cvmx_l2c_lckbase_s cn56xxp1; struct cvmx_l2c_lckbase_s cn58xx; struct cvmx_l2c_lckbase_s cn58xxp1; }; typedef union cvmx_l2c_lckbase cvmx_l2c_lckbase_t; /** * cvmx_l2c_lckoff * * L2C_LCKOFF = L2C LockDown OFFSET Register * * Description: L2C LockDown OFFSET Register * * Notes: * (1) The generation of the end lockdown block address will 'wrap'. * (2) The minimum granularity for lockdown is 1 cache line (= 128B block) */ union cvmx_l2c_lckoff { uint64_t u64; struct cvmx_l2c_lckoff_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_10_63 : 54; uint64_t lck_offset : 10; /**< LockDown block Offset. Used in determining the ending block address of the lockdown region: End Lockdown block Address[33:7] = LCK_BASE[33:7]+LCK_OFFSET[9:0] */ #else uint64_t lck_offset : 10; uint64_t reserved_10_63 : 54; #endif } s; struct cvmx_l2c_lckoff_s cn30xx; struct cvmx_l2c_lckoff_s cn31xx; struct cvmx_l2c_lckoff_s cn38xx; struct cvmx_l2c_lckoff_s cn38xxp2; struct cvmx_l2c_lckoff_s cn50xx; struct cvmx_l2c_lckoff_s cn52xx; struct cvmx_l2c_lckoff_s cn52xxp1; struct cvmx_l2c_lckoff_s cn56xx; struct cvmx_l2c_lckoff_s cn56xxp1; struct cvmx_l2c_lckoff_s cn58xx; struct cvmx_l2c_lckoff_s cn58xxp1; }; typedef union cvmx_l2c_lckoff cvmx_l2c_lckoff_t; /** * cvmx_l2c_lfb0 * * L2C_LFB0 = L2C LFB DEBUG 0 Register * * Description: L2C LFB Contents (Status Bits) */ union cvmx_l2c_lfb0 { uint64_t u64; struct cvmx_l2c_lfb0_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_32_63 : 32; uint64_t stcpnd : 1; /**< LFB STC Pending Status */ uint64_t stpnd : 1; /**< LFB ST* Pending Status */ uint64_t stinv : 1; /**< LFB ST* Invalidate Status */ uint64_t stcfl : 1; /**< LFB STC=FAIL Status */ uint64_t vam : 1; /**< Valid Full Address Match Status */ uint64_t inxt : 4; /**< Next LFB Pointer(invalid if ITL=1) */ uint64_t itl : 1; /**< LFB Tail of List Indicator */ uint64_t ihd : 1; /**< LFB Head of List Indicator */ uint64_t set : 3; /**< SET# used for DS-OP (hit=hset/miss=rset) */ uint64_t vabnum : 4; /**< VAB# used for LMC Miss Launch(valid only if VAM=1) */ uint64_t sid : 9; /**< LFB Source ID */ uint64_t cmd : 4; /**< LFB Command */ uint64_t vld : 1; /**< LFB Valid */ #else uint64_t vld : 1; uint64_t cmd : 4; uint64_t sid : 9; uint64_t vabnum : 4; uint64_t set : 3; uint64_t ihd : 1; uint64_t itl : 1; uint64_t inxt : 4; uint64_t vam : 1; uint64_t stcfl : 1; uint64_t stinv : 1; uint64_t stpnd : 1; uint64_t stcpnd : 1; uint64_t reserved_32_63 : 32; #endif } s; struct cvmx_l2c_lfb0_cn30xx { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_32_63 : 32; uint64_t stcpnd : 1; /**< LFB STC Pending Status */ uint64_t stpnd : 1; /**< LFB ST* Pending Status */ uint64_t stinv : 1; /**< LFB ST* Invalidate Status */ uint64_t stcfl : 1; /**< LFB STC=FAIL Status */ uint64_t vam : 1; /**< Valid Full Address Match Status */ uint64_t reserved_25_26 : 2; uint64_t inxt : 2; /**< Next LFB Pointer(invalid if ITL=1) */ uint64_t itl : 1; /**< LFB Tail of List Indicator */ uint64_t ihd : 1; /**< LFB Head of List Indicator */ uint64_t reserved_20_20 : 1; uint64_t set : 2; /**< SET# used for DS-OP (hit=hset/miss=rset) */ uint64_t reserved_16_17 : 2; uint64_t vabnum : 2; /**< VAB# used for LMC Miss Launch(valid only if VAM=1) */ uint64_t sid : 9; /**< LFB Source ID */ uint64_t cmd : 4; /**< LFB Command */ uint64_t vld : 1; /**< LFB Valid */ #else uint64_t vld : 1; uint64_t cmd : 4; uint64_t sid : 9; uint64_t vabnum : 2; uint64_t reserved_16_17 : 2; uint64_t set : 2; uint64_t reserved_20_20 : 1; uint64_t ihd : 1; uint64_t itl : 1; uint64_t inxt : 2; uint64_t reserved_25_26 : 2; uint64_t vam : 1; uint64_t stcfl : 1; uint64_t stinv : 1; uint64_t stpnd : 1; uint64_t stcpnd : 1; uint64_t reserved_32_63 : 32; #endif } cn30xx; struct cvmx_l2c_lfb0_cn31xx { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_32_63 : 32; uint64_t stcpnd : 1; /**< LFB STC Pending Status */ uint64_t stpnd : 1; /**< LFB ST* Pending Status */ uint64_t stinv : 1; /**< LFB ST* Invalidate Status */ uint64_t stcfl : 1; /**< LFB STC=FAIL Status */ uint64_t vam : 1; /**< Valid Full Address Match Status */ uint64_t reserved_26_26 : 1; uint64_t inxt : 3; /**< Next LFB Pointer(invalid if ITL=1) */ uint64_t itl : 1; /**< LFB Tail of List Indicator */ uint64_t ihd : 1; /**< LFB Head of List Indicator */ uint64_t reserved_20_20 : 1; uint64_t set : 2; /**< SET# used for DS-OP (hit=hset/miss=rset) */ uint64_t reserved_17_17 : 1; uint64_t vabnum : 3; /**< VAB# used for LMC Miss Launch(valid only if VAM=1) */ uint64_t sid : 9; /**< LFB Source ID */ uint64_t cmd : 4; /**< LFB Command */ uint64_t vld : 1; /**< LFB Valid */ #else uint64_t vld : 1; uint64_t cmd : 4; uint64_t sid : 9; uint64_t vabnum : 3; uint64_t reserved_17_17 : 1; uint64_t set : 2; uint64_t reserved_20_20 : 1; uint64_t ihd : 1; uint64_t itl : 1; uint64_t inxt : 3; uint64_t reserved_26_26 : 1; uint64_t vam : 1; uint64_t stcfl : 1; uint64_t stinv : 1; uint64_t stpnd : 1; uint64_t stcpnd : 1; uint64_t reserved_32_63 : 32; #endif } cn31xx; struct cvmx_l2c_lfb0_s cn38xx; struct cvmx_l2c_lfb0_s cn38xxp2; struct cvmx_l2c_lfb0_cn50xx { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_32_63 : 32; uint64_t stcpnd : 1; /**< LFB STC Pending Status */ uint64_t stpnd : 1; /**< LFB ST* Pending Status */ uint64_t stinv : 1; /**< LFB ST* Invalidate Status */ uint64_t stcfl : 1; /**< LFB STC=FAIL Status */ uint64_t vam : 1; /**< Valid Full Address Match Status */ uint64_t reserved_26_26 : 1; uint64_t inxt : 3; /**< Next LFB Pointer(invalid if ITL=1) */ uint64_t itl : 1; /**< LFB Tail of List Indicator */ uint64_t ihd : 1; /**< LFB Head of List Indicator */ uint64_t set : 3; /**< SET# used for DS-OP (hit=hset/miss=rset) */ uint64_t reserved_17_17 : 1; uint64_t vabnum : 3; /**< VAB# used for LMC Miss Launch(valid only if VAM=1) */ uint64_t sid : 9; /**< LFB Source ID */ uint64_t cmd : 4; /**< LFB Command */ uint64_t vld : 1; /**< LFB Valid */ #else uint64_t vld : 1; uint64_t cmd : 4; uint64_t sid : 9; uint64_t vabnum : 3; uint64_t reserved_17_17 : 1; uint64_t set : 3; uint64_t ihd : 1; uint64_t itl : 1; uint64_t inxt : 3; uint64_t reserved_26_26 : 1; uint64_t vam : 1; uint64_t stcfl : 1; uint64_t stinv : 1; uint64_t stpnd : 1; uint64_t stcpnd : 1; uint64_t reserved_32_63 : 32; #endif } cn50xx; struct cvmx_l2c_lfb0_cn50xx cn52xx; struct cvmx_l2c_lfb0_cn50xx cn52xxp1; struct cvmx_l2c_lfb0_s cn56xx; struct cvmx_l2c_lfb0_s cn56xxp1; struct cvmx_l2c_lfb0_s cn58xx; struct cvmx_l2c_lfb0_s cn58xxp1; }; typedef union cvmx_l2c_lfb0 cvmx_l2c_lfb0_t; /** * cvmx_l2c_lfb1 * * L2C_LFB1 = L2C LFB DEBUG 1 Register * * Description: L2C LFB Contents (Wait Bits) */ union cvmx_l2c_lfb1 { uint64_t u64; struct cvmx_l2c_lfb1_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_19_63 : 45; uint64_t dsgoing : 1; /**< LFB DS Going (in flight) */ uint64_t bid : 2; /**< LFB DS Bid# */ uint64_t wtrsp : 1; /**< LFB Waiting for RSC Response [FILL,STRSP] completion */ uint64_t wtdw : 1; /**< LFB Waiting for DS-WR completion */ uint64_t wtdq : 1; /**< LFB Waiting for LFB-DQ */ uint64_t wtwhp : 1; /**< LFB Waiting for Write-Hit Partial L2 DS-WR completion */ uint64_t wtwhf : 1; /**< LFB Waiting for Write-Hit Full L2 DS-WR completion */ uint64_t wtwrm : 1; /**< LFB Waiting for Write-Miss L2 DS-WR completion */ uint64_t wtstm : 1; /**< LFB Waiting for Write-Miss L2 DS-WR completion */ uint64_t wtrda : 1; /**< LFB Waiting for Read-Miss L2 DS-WR completion */ uint64_t wtstdt : 1; /**< LFB Waiting for all ST write Data to arrive on XMD bus */ uint64_t wtstrsp : 1; /**< LFB Waiting for ST RSC/RSD to be issued on RSP (with invalidates) */ uint64_t wtstrsc : 1; /**< LFB Waiting for ST RSC-Only to be issued on RSP (no-invalidates) */ uint64_t wtvtm : 1; /**< LFB Waiting for Victim Read L2 DS-RD completion */ uint64_t wtmfl : 1; /**< LFB Waiting for Memory Fill completion to MRB */ uint64_t prbrty : 1; /**< Probe-Retry Detected - waiting for probe completion */ uint64_t wtprb : 1; /**< LFB Waiting for Probe */ uint64_t vld : 1; /**< LFB Valid */ #else uint64_t vld : 1; uint64_t wtprb : 1; uint64_t prbrty : 1; uint64_t wtmfl : 1; uint64_t wtvtm : 1; uint64_t wtstrsc : 1; uint64_t wtstrsp : 1; uint64_t wtstdt : 1; uint64_t wtrda : 1; uint64_t wtstm : 1; uint64_t wtwrm : 1; uint64_t wtwhf : 1; uint64_t wtwhp : 1; uint64_t wtdq : 1; uint64_t wtdw : 1; uint64_t wtrsp : 1; uint64_t bid : 2; uint64_t dsgoing : 1; uint64_t reserved_19_63 : 45; #endif } s; struct cvmx_l2c_lfb1_s cn30xx; struct cvmx_l2c_lfb1_s cn31xx; struct cvmx_l2c_lfb1_s cn38xx; struct cvmx_l2c_lfb1_s cn38xxp2; struct cvmx_l2c_lfb1_s cn50xx; struct cvmx_l2c_lfb1_s cn52xx; struct cvmx_l2c_lfb1_s cn52xxp1; struct cvmx_l2c_lfb1_s cn56xx; struct cvmx_l2c_lfb1_s cn56xxp1; struct cvmx_l2c_lfb1_s cn58xx; struct cvmx_l2c_lfb1_s cn58xxp1; }; typedef union cvmx_l2c_lfb1 cvmx_l2c_lfb1_t; /** * cvmx_l2c_lfb2 * * L2C_LFB2 = L2C LFB DEBUG 2 Register * * Description: L2C LFB Contents Tag/Index */ union cvmx_l2c_lfb2 { uint64_t u64; struct cvmx_l2c_lfb2_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_0_63 : 64; #else uint64_t reserved_0_63 : 64; #endif } s; struct cvmx_l2c_lfb2_cn30xx { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_27_63 : 37; uint64_t lfb_tag : 19; /**< LFB TAG[33:15] */ uint64_t lfb_idx : 8; /**< LFB IDX[14:7] */ #else uint64_t lfb_idx : 8; uint64_t lfb_tag : 19; uint64_t reserved_27_63 : 37; #endif } cn30xx; struct cvmx_l2c_lfb2_cn31xx { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_27_63 : 37; uint64_t lfb_tag : 17; /**< LFB TAG[33:16] */ uint64_t lfb_idx : 10; /**< LFB IDX[15:7] */ #else uint64_t lfb_idx : 10; uint64_t lfb_tag : 17; uint64_t reserved_27_63 : 37; #endif } cn31xx; struct cvmx_l2c_lfb2_cn31xx cn38xx; struct cvmx_l2c_lfb2_cn31xx cn38xxp2; struct cvmx_l2c_lfb2_cn50xx { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_27_63 : 37; uint64_t lfb_tag : 20; /**< LFB TAG[33:14] */ uint64_t lfb_idx : 7; /**< LFB IDX[13:7] */ #else uint64_t lfb_idx : 7; uint64_t lfb_tag : 20; uint64_t reserved_27_63 : 37; #endif } cn50xx; struct cvmx_l2c_lfb2_cn52xx { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_27_63 : 37; uint64_t lfb_tag : 18; /**< LFB TAG[33:16] */ uint64_t lfb_idx : 9; /**< LFB IDX[15:7] */ #else uint64_t lfb_idx : 9; uint64_t lfb_tag : 18; uint64_t reserved_27_63 : 37; #endif } cn52xx; struct cvmx_l2c_lfb2_cn52xx cn52xxp1; struct cvmx_l2c_lfb2_cn56xx { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_27_63 : 37; uint64_t lfb_tag : 16; /**< LFB TAG[33:18] */ uint64_t lfb_idx : 11; /**< LFB IDX[17:7] */ #else uint64_t lfb_idx : 11; uint64_t lfb_tag : 16; uint64_t reserved_27_63 : 37; #endif } cn56xx; struct cvmx_l2c_lfb2_cn56xx cn56xxp1; struct cvmx_l2c_lfb2_cn56xx cn58xx; struct cvmx_l2c_lfb2_cn56xx cn58xxp1; }; typedef union cvmx_l2c_lfb2 cvmx_l2c_lfb2_t; /** * cvmx_l2c_lfb3 * * L2C_LFB3 = L2C LFB DEBUG 3 Register * * Description: LFB High Water Mark Register */ union cvmx_l2c_lfb3 { uint64_t u64; struct cvmx_l2c_lfb3_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_5_63 : 59; uint64_t stpartdis : 1; /**< STP/C Performance Enhancement Disable When clear, all STP/C(store partials) will take 2 cycles to complete (power-on default). When set, all STP/C(store partials) will take 4 cycles to complete. NOTE: It is recommended to keep this bit ALWAYS ZERO. */ uint64_t lfb_hwm : 4; /**< LFB High Water Mark Determines \#of LFB Entries in use before backpressure is asserted. HWM=0: 1 LFB Entry available - ... HWM=15: 16 LFB Entries available */ #else uint64_t lfb_hwm : 4; uint64_t stpartdis : 1; uint64_t reserved_5_63 : 59; #endif } s; struct cvmx_l2c_lfb3_cn30xx { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_5_63 : 59; uint64_t stpartdis : 1; /**< STP/C Performance Enhancement Disable When clear, all STP/C(store partials) will take 2 cycles to complete (power-on default). When set, all STP/C(store partials) will take 4 cycles to complete. NOTE: It is recommended to keep this bit ALWAYS ZERO. */ uint64_t reserved_2_3 : 2; uint64_t lfb_hwm : 2; /**< LFB High Water Mark Determines \#of LFB Entries in use before backpressure is asserted. HWM=0: 1 LFB Entry available - ... HWM=3: 4 LFB Entries available */ #else uint64_t lfb_hwm : 2; uint64_t reserved_2_3 : 2; uint64_t stpartdis : 1; uint64_t reserved_5_63 : 59; #endif } cn30xx; struct cvmx_l2c_lfb3_cn31xx { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_5_63 : 59; uint64_t stpartdis : 1; /**< STP/C Performance Enhancement Disable When clear, all STP/C(store partials) will take 2 cycles to complete (power-on default). When set, all STP/C(store partials) will take 4 cycles to complete. NOTE: It is recommended to keep this bit ALWAYS ZERO. */ uint64_t reserved_3_3 : 1; uint64_t lfb_hwm : 3; /**< LFB High Water Mark Determines \#of LFB Entries in use before backpressure is asserted. HWM=0: 1 LFB Entry available - ... HWM=7: 8 LFB Entries available */ #else uint64_t lfb_hwm : 3; uint64_t reserved_3_3 : 1; uint64_t stpartdis : 1; uint64_t reserved_5_63 : 59; #endif } cn31xx; struct cvmx_l2c_lfb3_s cn38xx; struct cvmx_l2c_lfb3_s cn38xxp2; struct cvmx_l2c_lfb3_cn31xx cn50xx; struct cvmx_l2c_lfb3_cn31xx cn52xx; struct cvmx_l2c_lfb3_cn31xx cn52xxp1; struct cvmx_l2c_lfb3_s cn56xx; struct cvmx_l2c_lfb3_s cn56xxp1; struct cvmx_l2c_lfb3_s cn58xx; struct cvmx_l2c_lfb3_s cn58xxp1; }; typedef union cvmx_l2c_lfb3 cvmx_l2c_lfb3_t; /** * cvmx_l2c_oob * * L2C_OOB = L2C Out of Bounds Global Enables * * Description: Defines DMA "Out of Bounds" global enables. */ union cvmx_l2c_oob { uint64_t u64; struct cvmx_l2c_oob_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_2_63 : 62; uint64_t dwbena : 1; /**< DMA Out of Bounds Range Checker for DMA DWB commands (Don't WriteBack). When enabled, any DMA DWB commands which hit 1-of-3 out of bounds regions will be logged into L2C_INT_STAT[OOB*] CSRs and the DMA store WILL NOT occur. If the corresponding L2C_INT_EN[OOB*] is enabled, an interrupt will also be reported. */ uint64_t stena : 1; /**< DMA Out of Bounds Range Checker for DMA store commands (STF/P/T). When enabled, any DMA store commands (STF/P/T) which hit 1-of-3 out of bounds regions will be logged into L2C_INT_STAT[OOB*] CSRs and the DMA store WILL NOT occur. If the corresponding L2C_INT_EN[OOB*] is enabled, an interrupt will also be reported. */ #else uint64_t stena : 1; uint64_t dwbena : 1; uint64_t reserved_2_63 : 62; #endif } s; struct cvmx_l2c_oob_s cn52xx; struct cvmx_l2c_oob_s cn52xxp1; struct cvmx_l2c_oob_s cn56xx; struct cvmx_l2c_oob_s cn56xxp1; }; typedef union cvmx_l2c_oob cvmx_l2c_oob_t; /** * cvmx_l2c_oob1 * * L2C_OOB1 = L2C Out of Bounds Range Checker * * Description: Defines DMA "Out of Bounds" region \#1. If a DMA initiated write transaction generates an address * within the specified region, the write is 'ignored' and an interrupt is generated to alert software. */ union cvmx_l2c_oob1 { uint64_t u64; struct cvmx_l2c_oob1_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t fadr : 27; /**< DMA initated Memory Range Checker Failing Address When L2C_INT_STAT[OOB1]=1, this field indicates the DMA cacheline address. (addr[33:7] = full cacheline address captured) NOTE: FADR is locked down until L2C_INT_STAT[OOB1] is cleared. */ uint64_t fsrc : 1; /**< DMA Out of Bounds Failing Source Command When L2C_INT_STAT[OOB1]=1, this field indicates the type of DMA command. - 0: ST* (STF/P/T) - 1: DWB (Don't WriteBack) NOTE: FSRC is locked down until L2C_INT_STAT[OOB1] is cleared. */ uint64_t reserved_34_35 : 2; uint64_t sadr : 14; /**< DMA initated Memory Range Checker Starting Address (1MB granularity) */ uint64_t reserved_14_19 : 6; uint64_t size : 14; /**< DMA Out of Bounds Range Checker Size (1MB granularity) Example: 0: 0MB / 1: 1MB The range check is for: (SADR<<20) <= addr[33:0] < (((SADR+SIZE) & 0x3FFF)<<20) SW NOTE: SADR+SIZE could be setup to potentially wrap the 34bit ending bounds address. */ #else uint64_t size : 14; uint64_t reserved_14_19 : 6; uint64_t sadr : 14; uint64_t reserved_34_35 : 2; uint64_t fsrc : 1; uint64_t fadr : 27; #endif } s; struct cvmx_l2c_oob1_s cn52xx; struct cvmx_l2c_oob1_s cn52xxp1; struct cvmx_l2c_oob1_s cn56xx; struct cvmx_l2c_oob1_s cn56xxp1; }; typedef union cvmx_l2c_oob1 cvmx_l2c_oob1_t; /** * cvmx_l2c_oob2 * * L2C_OOB2 = L2C Out of Bounds Range Checker * * Description: Defines DMA "Out of Bounds" region \#2. If a DMA initiated write transaction generates an address * within the specified region, the write is 'ignored' and an interrupt is generated to alert software. */ union cvmx_l2c_oob2 { uint64_t u64; struct cvmx_l2c_oob2_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t fadr : 27; /**< DMA initated Memory Range Checker Failing Address When L2C_INT_STAT[OOB2]=1, this field indicates the DMA cacheline address. (addr[33:7] = full cacheline address captured) NOTE: FADR is locked down until L2C_INT_STAT[OOB2] is cleared. */ uint64_t fsrc : 1; /**< DMA Out of Bounds Failing Source Command When L2C_INT_STAT[OOB2]=1, this field indicates the type of DMA command. - 0: ST* (STF/P/T) - 1: DWB (Don't WriteBack) NOTE: FSRC is locked down until L2C_INT_STAT[OOB2] is cleared. */ uint64_t reserved_34_35 : 2; uint64_t sadr : 14; /**< DMA initated Memory Range Checker Starting Address (1MB granularity) */ uint64_t reserved_14_19 : 6; uint64_t size : 14; /**< DMA Out of Bounds Range Checker Size (1MB granularity) Example: 0: 0MB / 1: 1MB The range check is for: (SADR<<20) <= addr[33:0] < (((SADR+SIZE) & 0x3FFF)<<20) SW NOTE: SADR+SIZE could be setup to potentially wrap the 34bit ending bounds address. */ #else uint64_t size : 14; uint64_t reserved_14_19 : 6; uint64_t sadr : 14; uint64_t reserved_34_35 : 2; uint64_t fsrc : 1; uint64_t fadr : 27; #endif } s; struct cvmx_l2c_oob2_s cn52xx; struct cvmx_l2c_oob2_s cn52xxp1; struct cvmx_l2c_oob2_s cn56xx; struct cvmx_l2c_oob2_s cn56xxp1; }; typedef union cvmx_l2c_oob2 cvmx_l2c_oob2_t; /** * cvmx_l2c_oob3 * * L2C_OOB3 = L2C Out of Bounds Range Checker * * Description: Defines DMA "Out of Bounds" region \#3. If a DMA initiated write transaction generates an address * within the specified region, the write is 'ignored' and an interrupt is generated to alert software. */ union cvmx_l2c_oob3 { uint64_t u64; struct cvmx_l2c_oob3_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t fadr : 27; /**< DMA initated Memory Range Checker Failing Address When L2C_INT_STAT[OOB3]=1, this field indicates the DMA cacheline address. (addr[33:7] = full cacheline address captured) NOTE: FADR is locked down until L2C_INT_STAT[00B3] is cleared. */ uint64_t fsrc : 1; /**< DMA Out of Bounds Failing Source Command When L2C_INT_STAT[OOB3]=1, this field indicates the type of DMA command. - 0: ST* (STF/P/T) - 1: DWB (Don't WriteBack) NOTE: FSRC is locked down until L2C_INT_STAT[00B3] is cleared. */ uint64_t reserved_34_35 : 2; uint64_t sadr : 14; /**< DMA initated Memory Range Checker Starting Address (1MB granularity) */ uint64_t reserved_14_19 : 6; uint64_t size : 14; /**< DMA Out of Bounds Range Checker Size (1MB granularity) Example: 0: 0MB / 1: 1MB The range check is for: (SADR<<20) <= addr[33:0] < (((SADR+SIZE) & 0x3FFF)<<20) SW NOTE: SADR+SIZE could be setup to potentially wrap the 34bit ending bounds address. */ #else uint64_t size : 14; uint64_t reserved_14_19 : 6; uint64_t sadr : 14; uint64_t reserved_34_35 : 2; uint64_t fsrc : 1; uint64_t fadr : 27; #endif } s; struct cvmx_l2c_oob3_s cn52xx; struct cvmx_l2c_oob3_s cn52xxp1; struct cvmx_l2c_oob3_s cn56xx; struct cvmx_l2c_oob3_s cn56xxp1; }; typedef union cvmx_l2c_oob3 cvmx_l2c_oob3_t; /** * cvmx_l2c_pfc# * * L2C_PFC0 = L2 Performance Counter \#0 * * Description: */ union cvmx_l2c_pfcx { uint64_t u64; struct cvmx_l2c_pfcx_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_36_63 : 28; uint64_t pfcnt0 : 36; /**< Performance Counter \#0 */ #else uint64_t pfcnt0 : 36; uint64_t reserved_36_63 : 28; #endif } s; struct cvmx_l2c_pfcx_s cn30xx; struct cvmx_l2c_pfcx_s cn31xx; struct cvmx_l2c_pfcx_s cn38xx; struct cvmx_l2c_pfcx_s cn38xxp2; struct cvmx_l2c_pfcx_s cn50xx; struct cvmx_l2c_pfcx_s cn52xx; struct cvmx_l2c_pfcx_s cn52xxp1; struct cvmx_l2c_pfcx_s cn56xx; struct cvmx_l2c_pfcx_s cn56xxp1; struct cvmx_l2c_pfcx_s cn58xx; struct cvmx_l2c_pfcx_s cn58xxp1; }; typedef union cvmx_l2c_pfcx cvmx_l2c_pfcx_t; /** * cvmx_l2c_pfctl * * L2C_PFCTL = L2 Performance Counter Control Register * * Description: Controls the actions of the 4 Performance Counters * * Notes: * - There are four 36b performance counter registers which can simultaneously count events. * Each Counter's event is programmably selected via the corresponding CNTxSEL field: * CNTxSEL[5:0] Event * -----------------+----------------------- * 0 | Cycles * 1 | L2 LDI Command Miss (NOTE: Both PP and IOB are cabable of generating LDI) * 2 | L2 LDI Command Hit (NOTE: Both PP and IOB are cabable of generating LDI) * 3 | L2 non-LDI Command Miss * 4 | L2 non-LDI Command Hit * 5 | L2 Miss (total) * 6 | L2 Hit (total) * 7 | L2 Victim Buffer Hit (Retry Probe) * 8 | LFB-NQ Index Conflict * 9 | L2 Tag Probe (issued - could be VB-Retried) * 10 | L2 Tag Update (completed - note: some CMD types do not update) * 11 | L2 Tag Probe Completed (beyond VB-RTY window) * 12 | L2 Tag Dirty Victim * 13 | L2 Data Store NOP * 14 | L2 Data Store READ * 15 | L2 Data Store WRITE * 16 | Memory Fill Data valid (1 strobe/32B) * 17 | Memory Write Request * 18 | Memory Read Request * 19 | Memory Write Data valid (1 strobe/32B) * 20 | XMC NOP (XMC Bus Idle) * 21 | XMC LDT (Load-Through Request) * 22 | XMC LDI (L2 Load I-Stream Request) * 23 | XMC LDD (L2 Load D-stream Request) * 24 | XMC STF (L2 Store Full cacheline Request) * 25 | XMC STT (L2 Store Through Request) * 26 | XMC STP (L2 Store Partial Request) * 27 | XMC STC (L2 Store Conditional Request) * 28 | XMC DWB (L2 Don't WriteBack Request) * 29 | XMC PL2 (L2 Prefetch Request) * 30 | XMC PSL1 (L1 Prefetch Request) * 31 | XMC IOBLD * 32 | XMC IOBST * 33 | XMC IOBDMA * 34 | XMC IOBRSP * 35 | XMD Bus valid (all) * 36 | XMD Bus valid (DST=L2C) Memory Data * 37 | XMD Bus valid (DST=IOB) REFL Data * 38 | XMD Bus valid (DST=PP) IOBRSP Data * 39 | RSC NOP * 40 | RSC STDN * 41 | RSC FILL * 42 | RSC REFL * 43 | RSC STIN * 44 | RSC SCIN * 45 | RSC SCFL * 46 | RSC SCDN * 47 | RSD Data Valid * 48 | RSD Data Valid (FILL) * 49 | RSD Data Valid (STRSP) * 50 | RSD Data Valid (REFL) * 51 | LRF-REQ (LFB-NQ) * 52 | DT RD-ALLOC (LDD/PSL1 Commands) * 53 | DT WR-INVAL (ST* Commands) */ union cvmx_l2c_pfctl { uint64_t u64; struct cvmx_l2c_pfctl_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_36_63 : 28; uint64_t cnt3rdclr : 1; /**< Performance Counter 3 Read Clear When set, all CSR reads of the L2C_PFC3 register will auto-clear the counter. This allows SW to maintain 'cumulative' counters in SW. NOTE: If the CSR read occurs in the same cycle as the 'event' to be counted, the counter will properly reflect the event. */ uint64_t cnt2rdclr : 1; /**< Performance Counter 2 Read Clear When set, all CSR reads of the L2C_PFC2 register will auto-clear the counter. This allows SW to maintain 'cumulative' counters in SW. NOTE: If the CSR read occurs in the same cycle as the 'event' to be counted, the counter will properly reflect the event. */ uint64_t cnt1rdclr : 1; /**< Performance Counter 1 Read Clear When set, all CSR reads of the L2C_PFC1 register will auto-clear the counter. This allows SW to maintain 'cumulative' counters in SW. NOTE: If the CSR read occurs in the same cycle as the 'event' to be counted, the counter will properly reflect the event. */ uint64_t cnt0rdclr : 1; /**< Performance Counter 0 Read Clear When set, all CSR reads of the L2C_PFC0 register will 'auto-clear' the counter. This allows SW to maintain accurate 'cumulative' counters. NOTE: If the CSR read occurs in the same cycle as the 'event' to be counted, the counter will properly reflect the event. */ uint64_t cnt3ena : 1; /**< Performance Counter 3 Enable When this bit is set, the performance counter is enabled. */ uint64_t cnt3clr : 1; /**< Performance Counter 3 Clear When the CSR write occurs, if this bit is set, the performance counter is cleared. Otherwise, it will resume counting from its current value. */ uint64_t cnt3sel : 6; /**< Performance Counter 3 Event Selector (see list of selectable events to count in NOTES) */ uint64_t cnt2ena : 1; /**< Performance Counter 2 Enable When this bit is set, the performance counter is enabled. */ uint64_t cnt2clr : 1; /**< Performance Counter 2 Clear When the CSR write occurs, if this bit is set, the performance counter is cleared. Otherwise, it will resume counting from its current value. */ uint64_t cnt2sel : 6; /**< Performance Counter 2 Event Selector (see list of selectable events to count in NOTES) */ uint64_t cnt1ena : 1; /**< Performance Counter 1 Enable When this bit is set, the performance counter is enabled. */ uint64_t cnt1clr : 1; /**< Performance Counter 1 Clear When the CSR write occurs, if this bit is set, the performance counter is cleared. Otherwise, it will resume counting from its current value. */ uint64_t cnt1sel : 6; /**< Performance Counter 1 Event Selector (see list of selectable events to count in NOTES) */ uint64_t cnt0ena : 1; /**< Performance Counter 0 Enable When this bit is set, the performance counter is enabled. */ uint64_t cnt0clr : 1; /**< Performance Counter 0 Clear When the CSR write occurs, if this bit is set, the performance counter is cleared. Otherwise, it will resume counting from its current value. */ uint64_t cnt0sel : 6; /**< Performance Counter 0 Event Selector (see list of selectable events to count in NOTES) */ #else uint64_t cnt0sel : 6; uint64_t cnt0clr : 1; uint64_t cnt0ena : 1; uint64_t cnt1sel : 6; uint64_t cnt1clr : 1; uint64_t cnt1ena : 1; uint64_t cnt2sel : 6; uint64_t cnt2clr : 1; uint64_t cnt2ena : 1; uint64_t cnt3sel : 6; uint64_t cnt3clr : 1; uint64_t cnt3ena : 1; uint64_t cnt0rdclr : 1; uint64_t cnt1rdclr : 1; uint64_t cnt2rdclr : 1; uint64_t cnt3rdclr : 1; uint64_t reserved_36_63 : 28; #endif } s; struct cvmx_l2c_pfctl_s cn30xx; struct cvmx_l2c_pfctl_s cn31xx; struct cvmx_l2c_pfctl_s cn38xx; struct cvmx_l2c_pfctl_s cn38xxp2; struct cvmx_l2c_pfctl_s cn50xx; struct cvmx_l2c_pfctl_s cn52xx; struct cvmx_l2c_pfctl_s cn52xxp1; struct cvmx_l2c_pfctl_s cn56xx; struct cvmx_l2c_pfctl_s cn56xxp1; struct cvmx_l2c_pfctl_s cn58xx; struct cvmx_l2c_pfctl_s cn58xxp1; }; typedef union cvmx_l2c_pfctl cvmx_l2c_pfctl_t; /** * cvmx_l2c_ppgrp * * L2C_PPGRP = L2C PP Group Number * * Description: Defines the PP(Packet Processor) PLC Group \# (0,1,2) */ union cvmx_l2c_ppgrp { uint64_t u64; struct cvmx_l2c_ppgrp_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_24_63 : 40; uint64_t pp11grp : 2; /**< PP11 PLC Group# (0,1,2) */ uint64_t pp10grp : 2; /**< PP10 PLC Group# (0,1,2) */ uint64_t pp9grp : 2; /**< PP9 PLC Group# (0,1,2) */ uint64_t pp8grp : 2; /**< PP8 PLC Group# (0,1,2) */ uint64_t pp7grp : 2; /**< PP7 PLC Group# (0,1,2) */ uint64_t pp6grp : 2; /**< PP6 PLC Group# (0,1,2) */ uint64_t pp5grp : 2; /**< PP5 PLC Group# (0,1,2) */ uint64_t pp4grp : 2; /**< PP4 PLC Group# (0,1,2) */ uint64_t pp3grp : 2; /**< PP3 PLC Group# (0,1,2) */ uint64_t pp2grp : 2; /**< PP2 PLC Group# (0,1,2) */ uint64_t pp1grp : 2; /**< PP1 PLC Group# (0,1,2) */ uint64_t pp0grp : 2; /**< PP0 PLC Group# (0,1,2) */ #else uint64_t pp0grp : 2; uint64_t pp1grp : 2; uint64_t pp2grp : 2; uint64_t pp3grp : 2; uint64_t pp4grp : 2; uint64_t pp5grp : 2; uint64_t pp6grp : 2; uint64_t pp7grp : 2; uint64_t pp8grp : 2; uint64_t pp9grp : 2; uint64_t pp10grp : 2; uint64_t pp11grp : 2; uint64_t reserved_24_63 : 40; #endif } s; struct cvmx_l2c_ppgrp_cn52xx { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_8_63 : 56; uint64_t pp3grp : 2; /**< PP3 PLC Group# (0,1,2) */ uint64_t pp2grp : 2; /**< PP2 PLC Group# (0,1,2) */ uint64_t pp1grp : 2; /**< PP1 PLC Group# (0,1,2) */ uint64_t pp0grp : 2; /**< PP0 PLC Group# (0,1,2) */ #else uint64_t pp0grp : 2; uint64_t pp1grp : 2; uint64_t pp2grp : 2; uint64_t pp3grp : 2; uint64_t reserved_8_63 : 56; #endif } cn52xx; struct cvmx_l2c_ppgrp_cn52xx cn52xxp1; struct cvmx_l2c_ppgrp_s cn56xx; struct cvmx_l2c_ppgrp_s cn56xxp1; }; typedef union cvmx_l2c_ppgrp cvmx_l2c_ppgrp_t; /** * cvmx_l2c_qos_iob# * * L2C_QOS_IOB = L2C IOB QOS level * * Description: */ union cvmx_l2c_qos_iobx { uint64_t u64; struct cvmx_l2c_qos_iobx_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_6_63 : 58; uint64_t dwblvl : 2; /**< QOS level for DWB commands. */ uint64_t reserved_2_3 : 2; uint64_t lvl : 2; /**< QOS level for non-DWB commands. */ #else uint64_t lvl : 2; uint64_t reserved_2_3 : 2; uint64_t dwblvl : 2; uint64_t reserved_6_63 : 58; #endif } s; struct cvmx_l2c_qos_iobx_s cn63xx; struct cvmx_l2c_qos_iobx_s cn63xxp1; }; typedef union cvmx_l2c_qos_iobx cvmx_l2c_qos_iobx_t; /** * cvmx_l2c_qos_pp# * * L2C_QOS_PP = L2C PP QOS level * * Description: */ union cvmx_l2c_qos_ppx { uint64_t u64; struct cvmx_l2c_qos_ppx_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_2_63 : 62; uint64_t lvl : 2; /**< QOS level to use for this PP. */ #else uint64_t lvl : 2; uint64_t reserved_2_63 : 62; #endif } s; struct cvmx_l2c_qos_ppx_s cn63xx; struct cvmx_l2c_qos_ppx_s cn63xxp1; }; typedef union cvmx_l2c_qos_ppx cvmx_l2c_qos_ppx_t; /** * cvmx_l2c_qos_wgt * * L2C_QOS_WGT = L2C QOS weights * */ union cvmx_l2c_qos_wgt { uint64_t u64; struct cvmx_l2c_qos_wgt_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_32_63 : 32; uint64_t wgt3 : 8; /**< Weight for QOS level 3 */ uint64_t wgt2 : 8; /**< Weight for QOS level 2 */ uint64_t wgt1 : 8; /**< Weight for QOS level 1 */ uint64_t wgt0 : 8; /**< Weight for QOS level 0 */ #else uint64_t wgt0 : 8; uint64_t wgt1 : 8; uint64_t wgt2 : 8; uint64_t wgt3 : 8; uint64_t reserved_32_63 : 32; #endif } s; struct cvmx_l2c_qos_wgt_s cn63xx; struct cvmx_l2c_qos_wgt_s cn63xxp1; }; typedef union cvmx_l2c_qos_wgt cvmx_l2c_qos_wgt_t; /** * cvmx_l2c_rsc#_pfc * * L2C_RSC_PFC = L2C RSC Performance Counter(s) * */ union cvmx_l2c_rscx_pfc { uint64_t u64; struct cvmx_l2c_rscx_pfc_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t count : 64; /**< Current counter value */ #else uint64_t count : 64; #endif } s; struct cvmx_l2c_rscx_pfc_s cn63xx; struct cvmx_l2c_rscx_pfc_s cn63xxp1; }; typedef union cvmx_l2c_rscx_pfc cvmx_l2c_rscx_pfc_t; /** * cvmx_l2c_rsd#_pfc * * L2C_RSD_PFC = L2C RSD Performance Counter(s) * */ union cvmx_l2c_rsdx_pfc { uint64_t u64; struct cvmx_l2c_rsdx_pfc_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t count : 64; /**< Current counter value */ #else uint64_t count : 64; #endif } s; struct cvmx_l2c_rsdx_pfc_s cn63xx; struct cvmx_l2c_rsdx_pfc_s cn63xxp1; }; typedef union cvmx_l2c_rsdx_pfc cvmx_l2c_rsdx_pfc_t; /** * cvmx_l2c_spar0 * * L2C_SPAR0 = L2 Set Partitioning Register (PP0-3) * * Description: L2 Set Partitioning Register * * Notes: * - When a bit is set in the UMSK'x' register, a memory command issued from PP='x' will NOT select that * set for replacement. * - There MUST ALWAYS BE at least 1 bit clear in each UMSK'x' register for proper L2 cache operation * - NOTES: When L2C FUSE[136] is blown(CRIP_256K), then SETS#7-4 are SET in all UMSK'x' registers * When L2C FUSE[137] is blown(CRIP_128K), then SETS#7-2 are SET in all UMSK'x' registers */ union cvmx_l2c_spar0 { uint64_t u64; struct cvmx_l2c_spar0_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_32_63 : 32; uint64_t umsk3 : 8; /**< PP[3] L2 'DO NOT USE' set partition mask */ uint64_t umsk2 : 8; /**< PP[2] L2 'DO NOT USE' set partition mask */ uint64_t umsk1 : 8; /**< PP[1] L2 'DO NOT USE' set partition mask */ uint64_t umsk0 : 8; /**< PP[0] L2 'DO NOT USE' set partition mask */ #else uint64_t umsk0 : 8; uint64_t umsk1 : 8; uint64_t umsk2 : 8; uint64_t umsk3 : 8; uint64_t reserved_32_63 : 32; #endif } s; struct cvmx_l2c_spar0_cn30xx { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_4_63 : 60; uint64_t umsk0 : 4; /**< PP[0] L2 'DO NOT USE' set partition mask */ #else uint64_t umsk0 : 4; uint64_t reserved_4_63 : 60; #endif } cn30xx; struct cvmx_l2c_spar0_cn31xx { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_12_63 : 52; uint64_t umsk1 : 4; /**< PP[1] L2 'DO NOT USE' set partition mask */ uint64_t reserved_4_7 : 4; uint64_t umsk0 : 4; /**< PP[0] L2 'DO NOT USE' set partition mask */ #else uint64_t umsk0 : 4; uint64_t reserved_4_7 : 4; uint64_t umsk1 : 4; uint64_t reserved_12_63 : 52; #endif } cn31xx; struct cvmx_l2c_spar0_s cn38xx; struct cvmx_l2c_spar0_s cn38xxp2; struct cvmx_l2c_spar0_cn50xx { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_16_63 : 48; uint64_t umsk1 : 8; /**< PP[1] L2 'DO NOT USE' set partition mask */ uint64_t umsk0 : 8; /**< PP[0] L2 'DO NOT USE' set partition mask */ #else uint64_t umsk0 : 8; uint64_t umsk1 : 8; uint64_t reserved_16_63 : 48; #endif } cn50xx; struct cvmx_l2c_spar0_s cn52xx; struct cvmx_l2c_spar0_s cn52xxp1; struct cvmx_l2c_spar0_s cn56xx; struct cvmx_l2c_spar0_s cn56xxp1; struct cvmx_l2c_spar0_s cn58xx; struct cvmx_l2c_spar0_s cn58xxp1; }; typedef union cvmx_l2c_spar0 cvmx_l2c_spar0_t; /** * cvmx_l2c_spar1 * * L2C_SPAR1 = L2 Set Partitioning Register (PP4-7) * * Description: L2 Set Partitioning Register * * Notes: * - When a bit is set in the UMSK'x' register, a memory command issued from PP='x' will NOT select that * set for replacement. * - There should ALWAYS BE at least 1 bit clear in each UMSK'x' register for proper L2 cache operation * - NOTES: When L2C FUSE[136] is blown(CRIP_1024K), then SETS#7-4 are SET in all UMSK'x' registers * When L2C FUSE[137] is blown(CRIP_512K), then SETS#7-2 are SET in all UMSK'x' registers */ union cvmx_l2c_spar1 { uint64_t u64; struct cvmx_l2c_spar1_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_32_63 : 32; uint64_t umsk7 : 8; /**< PP[7] L2 'DO NOT USE' set partition mask */ uint64_t umsk6 : 8; /**< PP[6] L2 'DO NOT USE' set partition mask */ uint64_t umsk5 : 8; /**< PP[5] L2 'DO NOT USE' set partition mask */ uint64_t umsk4 : 8; /**< PP[4] L2 'DO NOT USE' set partition mask */ #else uint64_t umsk4 : 8; uint64_t umsk5 : 8; uint64_t umsk6 : 8; uint64_t umsk7 : 8; uint64_t reserved_32_63 : 32; #endif } s; struct cvmx_l2c_spar1_s cn38xx; struct cvmx_l2c_spar1_s cn38xxp2; struct cvmx_l2c_spar1_s cn56xx; struct cvmx_l2c_spar1_s cn56xxp1; struct cvmx_l2c_spar1_s cn58xx; struct cvmx_l2c_spar1_s cn58xxp1; }; typedef union cvmx_l2c_spar1 cvmx_l2c_spar1_t; /** * cvmx_l2c_spar2 * * L2C_SPAR2 = L2 Set Partitioning Register (PP8-11) * * Description: L2 Set Partitioning Register * * Notes: * - When a bit is set in the UMSK'x' register, a memory command issued from PP='x' will NOT select that * set for replacement. * - There should ALWAYS BE at least 1 bit clear in each UMSK'x' register for proper L2 cache operation * - NOTES: When L2C FUSE[136] is blown(CRIP_1024K), then SETS#7-4 are SET in all UMSK'x' registers * When L2C FUSE[137] is blown(CRIP_512K), then SETS#7-2 are SET in all UMSK'x' registers */ union cvmx_l2c_spar2 { uint64_t u64; struct cvmx_l2c_spar2_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_32_63 : 32; uint64_t umsk11 : 8; /**< PP[11] L2 'DO NOT USE' set partition mask */ uint64_t umsk10 : 8; /**< PP[10] L2 'DO NOT USE' set partition mask */ uint64_t umsk9 : 8; /**< PP[9] L2 'DO NOT USE' set partition mask */ uint64_t umsk8 : 8; /**< PP[8] L2 'DO NOT USE' set partition mask */ #else uint64_t umsk8 : 8; uint64_t umsk9 : 8; uint64_t umsk10 : 8; uint64_t umsk11 : 8; uint64_t reserved_32_63 : 32; #endif } s; struct cvmx_l2c_spar2_s cn38xx; struct cvmx_l2c_spar2_s cn38xxp2; struct cvmx_l2c_spar2_s cn56xx; struct cvmx_l2c_spar2_s cn56xxp1; struct cvmx_l2c_spar2_s cn58xx; struct cvmx_l2c_spar2_s cn58xxp1; }; typedef union cvmx_l2c_spar2 cvmx_l2c_spar2_t; /** * cvmx_l2c_spar3 * * L2C_SPAR3 = L2 Set Partitioning Register (PP12-15) * * Description: L2 Set Partitioning Register * * Notes: * - When a bit is set in the UMSK'x' register, a memory command issued from PP='x' will NOT select that * set for replacement. * - There should ALWAYS BE at least 1 bit clear in each UMSK'x' register for proper L2 cache operation * - NOTES: When L2C FUSE[136] is blown(CRIP_1024K), then SETS#7-4 are SET in all UMSK'x' registers * When L2C FUSE[137] is blown(CRIP_512K), then SETS#7-2 are SET in all UMSK'x' registers */ union cvmx_l2c_spar3 { uint64_t u64; struct cvmx_l2c_spar3_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_32_63 : 32; uint64_t umsk15 : 8; /**< PP[15] L2 'DO NOT USE' set partition mask */ uint64_t umsk14 : 8; /**< PP[14] L2 'DO NOT USE' set partition mask */ uint64_t umsk13 : 8; /**< PP[13] L2 'DO NOT USE' set partition mask */ uint64_t umsk12 : 8; /**< PP[12] L2 'DO NOT USE' set partition mask */ #else uint64_t umsk12 : 8; uint64_t umsk13 : 8; uint64_t umsk14 : 8; uint64_t umsk15 : 8; uint64_t reserved_32_63 : 32; #endif } s; struct cvmx_l2c_spar3_s cn38xx; struct cvmx_l2c_spar3_s cn38xxp2; struct cvmx_l2c_spar3_s cn58xx; struct cvmx_l2c_spar3_s cn58xxp1; }; typedef union cvmx_l2c_spar3 cvmx_l2c_spar3_t; /** * cvmx_l2c_spar4 * * L2C_SPAR4 = L2 Set Partitioning Register (IOB) * * Description: L2 Set Partitioning Register * * Notes: * - When a bit is set in the UMSK'x' register, a memory command issued from PP='x' will NOT select that * set for replacement. * - There should ALWAYS BE at least 1 bit clear in each UMSK'x' register for proper L2 cache operation * - NOTES: When L2C FUSE[136] is blown(CRIP_256K), then SETS#7-4 are SET in all UMSK'x' registers * When L2C FUSE[137] is blown(CRIP_128K), then SETS#7-2 are SET in all UMSK'x' registers */ union cvmx_l2c_spar4 { uint64_t u64; struct cvmx_l2c_spar4_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_8_63 : 56; uint64_t umskiob : 8; /**< IOB L2 'DO NOT USE' set partition mask */ #else uint64_t umskiob : 8; uint64_t reserved_8_63 : 56; #endif } s; struct cvmx_l2c_spar4_cn30xx { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_4_63 : 60; uint64_t umskiob : 4; /**< IOB L2 'DO NOT USE' set partition mask */ #else uint64_t umskiob : 4; uint64_t reserved_4_63 : 60; #endif } cn30xx; struct cvmx_l2c_spar4_cn30xx cn31xx; struct cvmx_l2c_spar4_s cn38xx; struct cvmx_l2c_spar4_s cn38xxp2; struct cvmx_l2c_spar4_s cn50xx; struct cvmx_l2c_spar4_s cn52xx; struct cvmx_l2c_spar4_s cn52xxp1; struct cvmx_l2c_spar4_s cn56xx; struct cvmx_l2c_spar4_s cn56xxp1; struct cvmx_l2c_spar4_s cn58xx; struct cvmx_l2c_spar4_s cn58xxp1; }; typedef union cvmx_l2c_spar4 cvmx_l2c_spar4_t; /** * cvmx_l2c_tad#_ecc0 * * L2C_TAD_ECC0 = L2C ECC logging * * Description: holds the syndromes for a L2D read generated from L2C_XMC_CMD */ union cvmx_l2c_tadx_ecc0 { uint64_t u64; struct cvmx_l2c_tadx_ecc0_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_58_63 : 6; uint64_t ow3ecc : 10; /**< ECC for OW3 of cache block */ uint64_t reserved_42_47 : 6; uint64_t ow2ecc : 10; /**< ECC for OW2 of cache block */ uint64_t reserved_26_31 : 6; uint64_t ow1ecc : 10; /**< ECC for OW1 of cache block */ uint64_t reserved_10_15 : 6; uint64_t ow0ecc : 10; /**< ECC for OW0 of cache block */ #else uint64_t ow0ecc : 10; uint64_t reserved_10_15 : 6; uint64_t ow1ecc : 10; uint64_t reserved_26_31 : 6; uint64_t ow2ecc : 10; uint64_t reserved_42_47 : 6; uint64_t ow3ecc : 10; uint64_t reserved_58_63 : 6; #endif } s; struct cvmx_l2c_tadx_ecc0_s cn63xx; struct cvmx_l2c_tadx_ecc0_s cn63xxp1; }; typedef union cvmx_l2c_tadx_ecc0 cvmx_l2c_tadx_ecc0_t; /** * cvmx_l2c_tad#_ecc1 * * L2C_TAD_ECC1 = L2C ECC logging * * Description: holds the syndromes for a L2D read generated from L2C_XMC_CMD */ union cvmx_l2c_tadx_ecc1 { uint64_t u64; struct cvmx_l2c_tadx_ecc1_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_58_63 : 6; uint64_t ow7ecc : 10; /**< ECC for OW7 of cache block */ uint64_t reserved_42_47 : 6; uint64_t ow6ecc : 10; /**< ECC for OW6 of cache block */ uint64_t reserved_26_31 : 6; uint64_t ow5ecc : 10; /**< ECC for OW5 of cache block */ uint64_t reserved_10_15 : 6; uint64_t ow4ecc : 10; /**< ECC for OW4 of cache block */ #else uint64_t ow4ecc : 10; uint64_t reserved_10_15 : 6; uint64_t ow5ecc : 10; uint64_t reserved_26_31 : 6; uint64_t ow6ecc : 10; uint64_t reserved_42_47 : 6; uint64_t ow7ecc : 10; uint64_t reserved_58_63 : 6; #endif } s; struct cvmx_l2c_tadx_ecc1_s cn63xx; struct cvmx_l2c_tadx_ecc1_s cn63xxp1; }; typedef union cvmx_l2c_tadx_ecc1 cvmx_l2c_tadx_ecc1_t; /** * cvmx_l2c_tad#_ien * * L2C_TAD_IEN = L2C TAD Interrupt Enable * */ union cvmx_l2c_tadx_ien { uint64_t u64; struct cvmx_l2c_tadx_ien_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_9_63 : 55; uint64_t wrdislmc : 1; /**< Illegal Write to Disabled LMC Error enable Enables L2C_TADX_INT[WRDISLMC] to assert L2C_INT_REG[TADX] (and cause an interrupt) */ uint64_t rddislmc : 1; /**< Illegal Read to Disabled LMC Error enable Enables L2C_TADX_INT[RDDISLMC] to assert L2C_INT_REG[TADX] (and cause an interrupt) */ uint64_t noway : 1; /**< No way available interrupt enable Enables L2C_ERR_TTGX[NOWAY] to assert L2C_INT_REG[TADX] (and cause an interrupt) */ uint64_t vbfdbe : 1; /**< VBF Double-Bit Error enable Enables L2C_ERR_TDTX[VSBE] to assert L2C_INT_REG[TADX] (and cause an interrupt) */ uint64_t vbfsbe : 1; /**< VBF Single-Bit Error enable Enables L2C_ERR_TDTX[VSBE] to assert L2C_INT_REG[TADX] (and cause an interrupt) */ uint64_t tagdbe : 1; /**< TAG Double-Bit Error enable Enables L2C_ERR_TTGX[DBE] to assert L2C_INT_REG[TADX] (and cause an interrupt) */ uint64_t tagsbe : 1; /**< TAG Single-Bit Error enable Enables L2C_ERR_TTGX[SBE] to assert L2C_INT_REG[TADX] (and cause an interrupt) */ uint64_t l2ddbe : 1; /**< L2D Double-Bit Error enable Enables L2C_ERR_TDTX[DBE] to assert L2C_INT_REG[TADX] (and cause an interrupt) */ uint64_t l2dsbe : 1; /**< L2D Single-Bit Error enable Enables L2C_ERR_TDTX[SBE] to assert L2C_INT_REG[TADX] (and cause an interrupt) */ #else uint64_t l2dsbe : 1; uint64_t l2ddbe : 1; uint64_t tagsbe : 1; uint64_t tagdbe : 1; uint64_t vbfsbe : 1; uint64_t vbfdbe : 1; uint64_t noway : 1; uint64_t rddislmc : 1; uint64_t wrdislmc : 1; uint64_t reserved_9_63 : 55; #endif } s; struct cvmx_l2c_tadx_ien_s cn63xx; struct cvmx_l2c_tadx_ien_cn63xxp1 { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_7_63 : 57; uint64_t noway : 1; /**< No way available interrupt enable Enables L2C_ERR_TTGX[NOWAY] to assert L2C_INT_REG[TADX] (and cause an interrupt) */ uint64_t vbfdbe : 1; /**< VBF Double-Bit Error enable Enables L2C_ERR_TDTX[VSBE] to assert L2C_INT_REG[TADX] (and cause an interrupt) */ uint64_t vbfsbe : 1; /**< VBF Single-Bit Error enable Enables L2C_ERR_TDTX[VSBE] to assert L2C_INT_REG[TADX] (and cause an interrupt) */ uint64_t tagdbe : 1; /**< TAG Double-Bit Error enable Enables L2C_ERR_TTGX[DBE] to assert L2C_INT_REG[TADX] (and cause an interrupt) */ uint64_t tagsbe : 1; /**< TAG Single-Bit Error enable Enables L2C_ERR_TTGX[SBE] to assert L2C_INT_REG[TADX] (and cause an interrupt) */ uint64_t l2ddbe : 1; /**< L2D Double-Bit Error enable Enables L2C_ERR_TDTX[DBE] to assert L2C_INT_REG[TADX] (and cause an interrupt) */ uint64_t l2dsbe : 1; /**< L2D Single-Bit Error enable Enables L2C_ERR_TDTX[SBE] to assert L2C_INT_REG[TADX] (and cause an interrupt) */ #else uint64_t l2dsbe : 1; uint64_t l2ddbe : 1; uint64_t tagsbe : 1; uint64_t tagdbe : 1; uint64_t vbfsbe : 1; uint64_t vbfdbe : 1; uint64_t noway : 1; uint64_t reserved_7_63 : 57; #endif } cn63xxp1; }; typedef union cvmx_l2c_tadx_ien cvmx_l2c_tadx_ien_t; /** * cvmx_l2c_tad#_int * * L2C_TAD_INT = L2C TAD Interrupt Register (not present in pass 1 O63) * * * Notes: * L2C_TAD_IEN is the interrupt enable register corresponding to this register. * */ union cvmx_l2c_tadx_int { uint64_t u64; struct cvmx_l2c_tadx_int_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_9_63 : 55; uint64_t wrdislmc : 1; /**< Illegal Write to Disabled LMC Error A DRAM write arrived before the LMC(s) were enabled */ uint64_t rddislmc : 1; /**< Illegal Read to Disabled LMC Error A DRAM read arrived before the LMC(s) were enabled */ uint64_t noway : 1; /**< No way available interrupt Shadow copy of L2C_ERR_TTGX[NOWAY] Writes of 1 also clear L2C_ERR_TTGX[NOWAY] */ uint64_t vbfdbe : 1; /**< VBF Double-Bit Error Shadow copy of L2C_ERR_TDTX[VDBE] Writes of 1 also clear L2C_ERR_TDTX[VDBE] */ uint64_t vbfsbe : 1; /**< VBF Single-Bit Error Shadow copy of L2C_ERR_TDTX[VSBE] Writes of 1 also clear L2C_ERR_TDTX[VSBE] */ uint64_t tagdbe : 1; /**< TAG Double-Bit Error Shadow copy of L2C_ERR_TTGX[DBE] Writes of 1 also clear L2C_ERR_TTGX[DBE] */ uint64_t tagsbe : 1; /**< TAG Single-Bit Error Shadow copy of L2C_ERR_TTGX[SBE] Writes of 1 also clear L2C_ERR_TTGX[SBE] */ uint64_t l2ddbe : 1; /**< L2D Double-Bit Error Shadow copy of L2C_ERR_TDTX[DBE] Writes of 1 also clear L2C_ERR_TDTX[DBE] */ uint64_t l2dsbe : 1; /**< L2D Single-Bit Error Shadow copy of L2C_ERR_TDTX[SBE] Writes of 1 also clear L2C_ERR_TDTX[SBE] */ #else uint64_t l2dsbe : 1; uint64_t l2ddbe : 1; uint64_t tagsbe : 1; uint64_t tagdbe : 1; uint64_t vbfsbe : 1; uint64_t vbfdbe : 1; uint64_t noway : 1; uint64_t rddislmc : 1; uint64_t wrdislmc : 1; uint64_t reserved_9_63 : 55; #endif } s; struct cvmx_l2c_tadx_int_s cn63xx; }; typedef union cvmx_l2c_tadx_int cvmx_l2c_tadx_int_t; /** * cvmx_l2c_tad#_pfc0 * * L2C_TAD_PFC0 = L2C TAD Performance Counter 0 * */ union cvmx_l2c_tadx_pfc0 { uint64_t u64; struct cvmx_l2c_tadx_pfc0_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t count : 64; /**< Current counter value */ #else uint64_t count : 64; #endif } s; struct cvmx_l2c_tadx_pfc0_s cn63xx; struct cvmx_l2c_tadx_pfc0_s cn63xxp1; }; typedef union cvmx_l2c_tadx_pfc0 cvmx_l2c_tadx_pfc0_t; /** * cvmx_l2c_tad#_pfc1 * * L2C_TAD_PFC1 = L2C TAD Performance Counter 1 * */ union cvmx_l2c_tadx_pfc1 { uint64_t u64; struct cvmx_l2c_tadx_pfc1_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t count : 64; /**< Current counter value */ #else uint64_t count : 64; #endif } s; struct cvmx_l2c_tadx_pfc1_s cn63xx; struct cvmx_l2c_tadx_pfc1_s cn63xxp1; }; typedef union cvmx_l2c_tadx_pfc1 cvmx_l2c_tadx_pfc1_t; /** * cvmx_l2c_tad#_pfc2 * * L2C_TAD_PFC2 = L2C TAD Performance Counter 2 * */ union cvmx_l2c_tadx_pfc2 { uint64_t u64; struct cvmx_l2c_tadx_pfc2_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t count : 64; /**< Current counter value */ #else uint64_t count : 64; #endif } s; struct cvmx_l2c_tadx_pfc2_s cn63xx; struct cvmx_l2c_tadx_pfc2_s cn63xxp1; }; typedef union cvmx_l2c_tadx_pfc2 cvmx_l2c_tadx_pfc2_t; /** * cvmx_l2c_tad#_pfc3 * * L2C_TAD_PFC3 = L2C TAD Performance Counter 3 * */ union cvmx_l2c_tadx_pfc3 { uint64_t u64; struct cvmx_l2c_tadx_pfc3_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t count : 64; /**< Current counter value */ #else uint64_t count : 64; #endif } s; struct cvmx_l2c_tadx_pfc3_s cn63xx; struct cvmx_l2c_tadx_pfc3_s cn63xxp1; }; typedef union cvmx_l2c_tadx_pfc3 cvmx_l2c_tadx_pfc3_t; /** * cvmx_l2c_tad#_prf * * L2C_TAD_PRF = L2C TAD Performance Counter Control * * * Notes: * (1) All four counters are equivalent and can use any of the defined selects. * * (2) the CNTnSEL legal values are: * 0x00 -- Nothing (disabled) * 0x01 -- L2 Tag Hit * 0x02 -- L2 Tag Miss * 0x03 -- L2 Tag NoAlloc (forced no-allocate) * 0x04 -- L2 Victim * 0x05 -- SC Fail * 0x06 -- SC Pass * 0x07 -- LFB Occupancy (each cycle adds \# of LFBs valid) * 0x08 -- LFB Wait LFB (each cycle adds \# LFBs waiting for other LFBs) * 0x09 -- LFB Wait VAB (each cycle adds \# LFBs waiting for VAB) * 0x80 -- Quad 0 index bus inuse * 0x81 -- Quad 0 read data bus inuse * 0x82 -- Quad 0 \# banks inuse (0-4/cycle) * 0x83 -- Quad 0 wdat flops inuse (0-4/cycle) * 0x90 -- Quad 1 index bus inuse * 0x91 -- Quad 1 read data bus inuse * 0x92 -- Quad 1 \# banks inuse (0-4/cycle) * 0x93 -- Quad 1 wdat flops inuse (0-4/cycle) * 0xA0 -- Quad 2 index bus inuse * 0xA1 -- Quad 2 read data bus inuse * 0xA2 -- Quad 2 \# banks inuse (0-4/cycle) * 0xA3 -- Quad 2 wdat flops inuse (0-4/cycle) * 0xB0 -- Quad 3 index bus inuse * 0xB1 -- Quad 3 read data bus inuse * 0xB2 -- Quad 3 \# banks inuse (0-4/cycle) * 0xB3 -- Quad 3 wdat flops inuse (0-4/cycle) */ union cvmx_l2c_tadx_prf { uint64_t u64; struct cvmx_l2c_tadx_prf_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_32_63 : 32; uint64_t cnt3sel : 8; /**< Selects event to count for L2C_TAD_PFC3 */ uint64_t cnt2sel : 8; /**< Selects event to count for L2C_TAD_PFC2 */ uint64_t cnt1sel : 8; /**< Selects event to count for L2C_TAD_PFC1 */ uint64_t cnt0sel : 8; /**< Selects event to count for L2C_TAD_PFC0 */ #else uint64_t cnt0sel : 8; uint64_t cnt1sel : 8; uint64_t cnt2sel : 8; uint64_t cnt3sel : 8; uint64_t reserved_32_63 : 32; #endif } s; struct cvmx_l2c_tadx_prf_s cn63xx; struct cvmx_l2c_tadx_prf_s cn63xxp1; }; typedef union cvmx_l2c_tadx_prf cvmx_l2c_tadx_prf_t; /** * cvmx_l2c_tad#_tag * * L2C_TAD_TAG = L2C tag data * * Description: holds the tag information for LTGL2I and STGL2I commands * * Notes: * (1) For 63xx TAG[35] must be written zero for STGL2I's or operation is undefined. During normal * operation, TAG[35] will also read 0. * * (2) If setting the LOCK bit, the USE bit should also be set or operation is undefined. * * (3) The tag is the corresponding bits from the L2C+LMC internal L2/DRAM byte address. */ union cvmx_l2c_tadx_tag { uint64_t u64; struct cvmx_l2c_tadx_tag_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_46_63 : 18; uint64_t ecc : 6; /**< The tag ECC */ uint64_t reserved_36_39 : 4; uint64_t tag : 19; /**< The tag (see notes 1 and 3) */ uint64_t reserved_4_16 : 13; uint64_t use : 1; /**< The LRU use bit */ uint64_t valid : 1; /**< The valid bit */ uint64_t dirty : 1; /**< The dirty bit */ uint64_t lock : 1; /**< The lock bit */ #else uint64_t lock : 1; uint64_t dirty : 1; uint64_t valid : 1; uint64_t use : 1; uint64_t reserved_4_16 : 13; uint64_t tag : 19; uint64_t reserved_36_39 : 4; uint64_t ecc : 6; uint64_t reserved_46_63 : 18; #endif } s; struct cvmx_l2c_tadx_tag_s cn63xx; struct cvmx_l2c_tadx_tag_s cn63xxp1; }; typedef union cvmx_l2c_tadx_tag cvmx_l2c_tadx_tag_t; /** * cvmx_l2c_ver_id * * L2C_VER_ID = L2C Virtualization ID Error Register * * Description: records virtualization IDs associated with HOLEWR/BIGWR/VRTWR/VRTIDRNG/VRTADRNG interrupts. */ union cvmx_l2c_ver_id { uint64_t u64; struct cvmx_l2c_ver_id_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t mask : 64; /**< Mask of virtualization IDs which had an error */ #else uint64_t mask : 64; #endif } s; struct cvmx_l2c_ver_id_s cn63xx; struct cvmx_l2c_ver_id_s cn63xxp1; }; typedef union cvmx_l2c_ver_id cvmx_l2c_ver_id_t; /** * cvmx_l2c_ver_iob * * L2C_VER_IOB = L2C Virtualization ID IOB Error Register * * Description: records IOBs associated with HOLEWR/BIGWR/VRTWR/VRTIDRNG/VRTADRNG interrupts. */ union cvmx_l2c_ver_iob { uint64_t u64; struct cvmx_l2c_ver_iob_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_1_63 : 63; uint64_t mask : 1; /**< Mask of IOBs which had a virtualization error */ #else uint64_t mask : 1; uint64_t reserved_1_63 : 63; #endif } s; struct cvmx_l2c_ver_iob_s cn63xx; struct cvmx_l2c_ver_iob_s cn63xxp1; }; typedef union cvmx_l2c_ver_iob cvmx_l2c_ver_iob_t; /** * cvmx_l2c_ver_msc * * L2C_VER_MSC = L2C Virtualization Miscellaneous Error Register (not in 63xx pass 1.x) * * Description: records type of command associated with HOLEWR/BIGWR/VRTWR/VRTIDRNG/VRTADRNG interrupts */ union cvmx_l2c_ver_msc { uint64_t u64; struct cvmx_l2c_ver_msc_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_2_63 : 62; uint64_t invl2 : 1; /**< If set, a INVL2 caused HOLEWR/BIGWR/VRT* to set */ uint64_t dwb : 1; /**< If set, a DWB caused HOLEWR/BIGWR/VRT* to set */ #else uint64_t dwb : 1; uint64_t invl2 : 1; uint64_t reserved_2_63 : 62; #endif } s; struct cvmx_l2c_ver_msc_s cn63xx; }; typedef union cvmx_l2c_ver_msc cvmx_l2c_ver_msc_t; /** * cvmx_l2c_ver_pp * * L2C_VER_PP = L2C Virtualization ID PP Error Register * * Description: records PPs associated with HOLEWR/BIGWR/VRTWR/VRTIDRNG/VRTADRNG interrupts. */ union cvmx_l2c_ver_pp { uint64_t u64; struct cvmx_l2c_ver_pp_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_6_63 : 58; uint64_t mask : 6; /**< Mask of PPs which had a virtualization error */ #else uint64_t mask : 6; uint64_t reserved_6_63 : 58; #endif } s; struct cvmx_l2c_ver_pp_s cn63xx; struct cvmx_l2c_ver_pp_s cn63xxp1; }; typedef union cvmx_l2c_ver_pp cvmx_l2c_ver_pp_t; /** * cvmx_l2c_virtid_iob# * * L2C_VIRTID_IOB = L2C IOB virtualization ID * * Description: */ union cvmx_l2c_virtid_iobx { uint64_t u64; struct cvmx_l2c_virtid_iobx_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_14_63 : 50; uint64_t dwbid : 6; /**< Virtualization ID to use for DWB commands */ uint64_t reserved_6_7 : 2; uint64_t id : 6; /**< Virtualization ID to use for non-DWB commands */ #else uint64_t id : 6; uint64_t reserved_6_7 : 2; uint64_t dwbid : 6; uint64_t reserved_14_63 : 50; #endif } s; struct cvmx_l2c_virtid_iobx_s cn63xx; struct cvmx_l2c_virtid_iobx_s cn63xxp1; }; typedef union cvmx_l2c_virtid_iobx cvmx_l2c_virtid_iobx_t; /** * cvmx_l2c_virtid_pp# * * L2C_VIRTID_PP = L2C PP virtualization ID * * Description: */ union cvmx_l2c_virtid_ppx { uint64_t u64; struct cvmx_l2c_virtid_ppx_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_6_63 : 58; uint64_t id : 6; /**< Virtualization ID to use for this PP. */ #else uint64_t id : 6; uint64_t reserved_6_63 : 58; #endif } s; struct cvmx_l2c_virtid_ppx_s cn63xx; struct cvmx_l2c_virtid_ppx_s cn63xxp1; }; typedef union cvmx_l2c_virtid_ppx cvmx_l2c_virtid_ppx_t; /** * cvmx_l2c_vrt_ctl * * L2C_VRT_CTL = L2C Virtualization control register * */ union cvmx_l2c_vrt_ctl { uint64_t u64; struct cvmx_l2c_vrt_ctl_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_9_63 : 55; uint64_t ooberr : 1; /**< Whether out of bounds writes are an error Determines virtualization hardware behavior for a store to an L2/DRAM address larger than indicated by MEMSZ. If OOBERR is set, all these stores (from any virtualization ID) are blocked. If OOBERR is clear, none of these stores are blocked. */ uint64_t reserved_7_7 : 1; uint64_t memsz : 3; /**< Memory space coverage of L2C_VRT_MEM (encoded) 0 = 1GB 1 = 2GB 2 = 4GB 3 = 8GB 4 = 16GB 5 = 32GB 6 = 64GB (**reserved in 63xx**) 7 = 128GB (**reserved in 63xx**) */ uint64_t numid : 3; /**< Number of allowed virtualization IDs (encoded) 0 = 2 1 = 4 2 = 8 3 = 16 4 = 32 5 = 64 6,7 illegal Violations of this limit causes L2C to set L2C_INT_REG[VRTIDRNG]. */ uint64_t enable : 1; /**< Global virtualization enable When ENABLE is clear, stores are never blocked by the L2C virtualization hardware and none of NUMID, MEMSZ, OOBERR are used. */ #else uint64_t enable : 1; uint64_t numid : 3; uint64_t memsz : 3; uint64_t reserved_7_7 : 1; uint64_t ooberr : 1; uint64_t reserved_9_63 : 55; #endif } s; struct cvmx_l2c_vrt_ctl_s cn63xx; struct cvmx_l2c_vrt_ctl_s cn63xxp1; }; typedef union cvmx_l2c_vrt_ctl cvmx_l2c_vrt_ctl_t; /** * cvmx_l2c_vrt_mem# * * L2C_VRT_MEM = L2C Virtualization Memory * * Description: Virtualization memory mapped region. There are 1024 32b * byte-parity protected entries. * * Notes: * When a DATA bit is set in L2C_VRT_MEM when L2C virtualization is enabled, L2C * prevents the selected virtual machine from storing to the selected L2/DRAM region. * L2C uses L2C_VRT_MEM to block stores when: * - L2C_VRT_CTL[ENABLE] is set, and * - the address of the store exists in L2C+LMC internal L2/DRAM Address space * and is within the L2C_VRT_CTL[MEMSZ] bounds, and * - the virtID of the store is within the L2C_VRT_CTL[NUMID] bounds * * L2C_VRT_MEM is never used for these L2C transactions which are always allowed: * - L2C CMI L2/DRAM transactions that cannot modify L2/DRAM, and * - any L2/DRAM transaction originated from L2C_XMC_CMD * * L2C_VRT_MEM contains one DATA bit per L2C+LMC internal L2/DRAM region and virtID indicating whether the store * to the region is allowed. The granularity of the checking is the region size, which is: * 2 ^^ (L2C_VRT_CTL[NUMID]+L2C_VRT_CTL[MEMSZ]+16) * which ranges from a minimum of 64KB to a maximum of 256MB, depending on the size * of L2/DRAM that is protected and the number of virtual machines. * * The L2C_VRT_MEM DATA bit that L2C uses is: * * l2c_vrt_mem_bit_index = address >> (L2C_VRT_CTL[MEMSZ]+L2C_VRT_CTL[NUMID]+16); // address is a byte address * l2c_vrt_mem_bit_index = l2c_vrt_mem_bit_index | (virtID << (14-L2C_VRT_CTL[NUMID])); * * L2C_VRT_MEM(l2c_vrt_mem_bit_index >> 5)[DATA<l2c_vrt_mem_bit_index & 0x1F>] is used * * A specific example: * * L2C_VRT_CTL[NUMID]=2 (i.e. 8 virtual machine ID's used) * L2C_VRT_CTL[MEMSZ]=4 (i.e. L2C_VRT_MEM covers 16 GB) * * L2/DRAM region size (granularity) is 4MB * * l2c_vrt_mem_bit_index<14:12> = virtID<2:0> * l2c_vrt_mem_bit_index<11:0> = address<33:22> * * For L2/DRAM physical address 0x51000000 with virtID=5: * L2C_VRT_MEM648[DATA<4>] determines when the store is allowed (648 is decimal, not hex) */ union cvmx_l2c_vrt_memx { uint64_t u64; struct cvmx_l2c_vrt_memx_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_36_63 : 28; uint64_t parity : 4; /**< Parity to write into (or read from) the virtualization memory. PARITY<i> is the even parity of DATA<(i*8)+7:i*8> */ uint64_t data : 32; /**< Data to write into (or read from) the virtualization memory. */ #else uint64_t data : 32; uint64_t parity : 4; uint64_t reserved_36_63 : 28; #endif } s; struct cvmx_l2c_vrt_memx_s cn63xx; struct cvmx_l2c_vrt_memx_s cn63xxp1; }; typedef union cvmx_l2c_vrt_memx cvmx_l2c_vrt_memx_t; /** * cvmx_l2c_wpar_iob# * * L2C_WPAR_IOB = L2C IOB way partitioning * * * Notes: * (1) The read value of MASK will include bits set because of the L2C cripple fuses. * */ union cvmx_l2c_wpar_iobx { uint64_t u64; struct cvmx_l2c_wpar_iobx_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_16_63 : 48; uint64_t mask : 16; /**< Way partitioning mask. (1 means do not use) */ #else uint64_t mask : 16; uint64_t reserved_16_63 : 48; #endif } s; struct cvmx_l2c_wpar_iobx_s cn63xx; struct cvmx_l2c_wpar_iobx_s cn63xxp1; }; typedef union cvmx_l2c_wpar_iobx cvmx_l2c_wpar_iobx_t; /** * cvmx_l2c_wpar_pp# * * L2C_WPAR_PP = L2C PP way partitioning * * * Notes: * (1) The read value of MASK will include bits set because of the L2C cripple fuses. * */ union cvmx_l2c_wpar_ppx { uint64_t u64; struct cvmx_l2c_wpar_ppx_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t reserved_16_63 : 48; uint64_t mask : 16; /**< Way partitioning mask. (1 means do not use) */ #else uint64_t mask : 16; uint64_t reserved_16_63 : 48; #endif } s; struct cvmx_l2c_wpar_ppx_s cn63xx; struct cvmx_l2c_wpar_ppx_s cn63xxp1; }; typedef union cvmx_l2c_wpar_ppx cvmx_l2c_wpar_ppx_t; /** * cvmx_l2c_xmc#_pfc * * L2C_XMC_PFC = L2C XMC Performance Counter(s) * */ union cvmx_l2c_xmcx_pfc { uint64_t u64; struct cvmx_l2c_xmcx_pfc_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t count : 64; /**< Current counter value */ #else uint64_t count : 64; #endif } s; struct cvmx_l2c_xmcx_pfc_s cn63xx; struct cvmx_l2c_xmcx_pfc_s cn63xxp1; }; typedef union cvmx_l2c_xmcx_pfc cvmx_l2c_xmcx_pfc_t; /** * cvmx_l2c_xmc_cmd * * L2C_XMC_CMD = L2C XMC command register * * * Notes: * (1) the XMC command chosen MUST NOT be a IOB destined command or operation is UNDEFINED. * * (2) the XMC command will have sid forced to IOB, did forced to L2C, no virtualization checks * performed (always pass), and xmdmsk forced to 0. Note that this implies that commands which * REQUIRE an XMD cycle (STP,STC,SAA,FAA,FAS) should not be used or the results are unpredictable. * The sid=IOB means that the way partitioning used for the command is L2C_WPAR_IOB. * None of L2C_QOS_IOB, L2C_QOS_PP, L2C_VIRTID_IOB, L2C_VIRTID_PP are used for these commands. * * (3) any responses generated by the XMC command will be forced to PP7 (a non-existant PP) effectively * causing them to be ignored. Generated STINs, however, will correctly invalidate the required * PPs. * * (4) any L2D read generated by the XMC command will record the syndrome information in * L2C_TAD_ECC0/1. If ECC is disabled prior to the CSR write this provides the ability to read the * ECC bits directly. If ECC is not disabled this should log 0's (assuming no ECC errors were * found in the block). * * (5) A write which arrives while the INUSE bit is set will block until the INUSE bit clears. This * gives software 2 options when needing to issue a stream of writes to L2C_XMC_CMD: polling on the * INUSE bit, or allowing HW to handle the interlock -- at the expense of locking up the RSL bus * for potentially tens of cycles at a time while waiting for an available LFB/VAB entry. * * (6) The address written to L2C_XMC_CMD is a 38-bit OCTEON physical address. L2C performs hole removal and * index aliasing (if enabled) on the written address and uses that for the command. This hole * removed/index aliased 38-bit address is what is returned on a read of the L2C_XMC_CMD register. */ union cvmx_l2c_xmc_cmd { uint64_t u64; struct cvmx_l2c_xmc_cmd_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t inuse : 1; /**< Set to 1 by HW upon receiving a write, cleared when command has issued (not necessarily completed, but ordered relative to other traffic) and HW can accept another command. */ uint64_t cmd : 6; /**< Command to use for simulated XMC request a new request can be accepted */ uint64_t reserved_38_56 : 19; uint64_t addr : 38; /**< Address to use for simulated XMC request (see Note 6) */ #else uint64_t addr : 38; uint64_t reserved_38_56 : 19; uint64_t cmd : 6; uint64_t inuse : 1; #endif } s; struct cvmx_l2c_xmc_cmd_s cn63xx; struct cvmx_l2c_xmc_cmd_s cn63xxp1; }; typedef union cvmx_l2c_xmc_cmd cvmx_l2c_xmc_cmd_t; /** * cvmx_l2c_xmd#_pfc * * L2C_XMD_PFC = L2C XMD Performance Counter(s) * */ union cvmx_l2c_xmdx_pfc { uint64_t u64; struct cvmx_l2c_xmdx_pfc_s { #if __BYTE_ORDER == __BIG_ENDIAN uint64_t count : 64; /**< Current counter value */ #else uint64_t count : 64; #endif } s; struct cvmx_l2c_xmdx_pfc_s cn63xx; struct cvmx_l2c_xmdx_pfc_s cn63xxp1; }; typedef union cvmx_l2c_xmdx_pfc cvmx_l2c_xmdx_pfc_t; #endif