Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/mvs/@/amd64/compile/hs32/modules/usr/src/sys/modules/runfw/@/netatalk/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/mvs/@/amd64/compile/hs32/modules/usr/src/sys/modules/runfw/@/netatalk/at_control.c |
/*- * Copyright (c) 1990,1991 Regents of The University of Michigan. * Copyright (c) 2009 Robert N. M. Watson * All Rights Reserved. * * Permission to use, copy, modify, and distribute this software and * its documentation for any purpose and without fee is hereby granted, * provided that the above copyright notice appears in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation, and that the name of The University * of Michigan not be used in advertising or publicity pertaining to * distribution of the software without specific, written prior * permission. This software is supplied as is without expressed or * implied warranties of any kind. * * This product includes software developed by the University of * California, Berkeley and its contributors. * * Research Systems Unix Group * The University of Michigan * c/o Wesley Craig * 535 W. William Street * Ann Arbor, Michigan * +1-313-764-2278 * netatalk@umich.edu */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/netatalk/at_control.c 233200 2012-03-19 20:49:16Z jhb $"); #include <sys/param.h> #include <sys/systm.h> #include <sys/sockio.h> #include <sys/lock.h> #include <sys/malloc.h> #include <sys/kernel.h> #include <sys/priv.h> #include <sys/rwlock.h> #include <sys/socket.h> #include <net/if.h> #include <net/route.h> #include <netinet/in.h> #undef s_net #include <netinet/if_ether.h> #include <netatalk/at.h> #include <netatalk/at_var.h> #include <netatalk/at_extern.h> struct rwlock at_ifaddr_rw; struct at_ifaddrhead at_ifaddrhead; RW_SYSINIT(at_ifaddr_rw, &at_ifaddr_rw, "at_ifaddr_rw"); static int aa_dorangeroute(struct ifaddr *ifa, u_int first, u_int last, int cmd); static int aa_addsingleroute(struct ifaddr *ifa, struct at_addr *addr, struct at_addr *mask); static int aa_delsingleroute(struct ifaddr *ifa, struct at_addr *addr, struct at_addr *mask); static int aa_dosingleroute(struct ifaddr *ifa, struct at_addr *addr, struct at_addr *mask, int cmd, int flags); static int at_scrub(struct ifnet *ifp, struct at_ifaddr *aa); static int at_ifinit(struct ifnet *ifp, struct at_ifaddr *aa, struct sockaddr_at *sat); static int aa_claim_addr(struct ifaddr *ifa, struct sockaddr *gw); #define sateqaddr(a,b) \ ((a)->sat_len == (b)->sat_len && \ (a)->sat_family == (b)->sat_family && \ (a)->sat_addr.s_net == (b)->sat_addr.s_net && \ (a)->sat_addr.s_node == (b)->sat_addr.s_node) int at_control(struct socket *so, u_long cmd, caddr_t data, struct ifnet *ifp, struct thread *td) { struct ifreq *ifr = (struct ifreq *)data; struct sockaddr_at *sat; struct netrange *nr; struct at_aliasreq *ifra = (struct at_aliasreq *)data; struct at_ifaddr *aa; struct ifaddr *ifa; int error; /* * If we have an ifp, then find the matching at_ifaddr if it exists */ aa = NULL; AT_IFADDR_RLOCK(); if (ifp != NULL) { TAILQ_FOREACH(aa, &at_ifaddrhead, aa_link) { if (aa->aa_ifp == ifp) break; } } if (aa != NULL) ifa_ref(&aa->aa_ifa); AT_IFADDR_RUNLOCK(); /* * In this first switch table we are basically getting ready for * the second one, by getting the atalk-specific things set up * so that they start to look more similar to other protocols etc. */ error = 0; switch (cmd) { case SIOCAIFADDR: case SIOCDIFADDR: /* * If we have an appletalk sockaddr, scan forward of where we * are now on the at_ifaddr list to find one with a matching * address on this interface. This may leave aa pointing to * the first address on the NEXT interface! */ if (ifra->ifra_addr.sat_family == AF_APPLETALK) { struct at_ifaddr *oaa; AT_IFADDR_RLOCK(); for (oaa = aa; aa; aa = TAILQ_NEXT(aa, aa_link)) { if (aa->aa_ifp == ifp && sateqaddr(&aa->aa_addr, &ifra->ifra_addr)) break; } if (oaa != NULL && oaa != aa) ifa_free(&oaa->aa_ifa); if (aa != NULL && oaa != aa) ifa_ref(&aa->aa_ifa); AT_IFADDR_RUNLOCK(); } /* * If we a retrying to delete an addres but didn't find such, * then rewurn with an error */ if (cmd == SIOCDIFADDR && aa == NULL) { error = EADDRNOTAVAIL; goto out; } /*FALLTHROUGH*/ case SIOCSIFADDR: /* * If we are not superuser, then we don't get to do these ops. * * XXXRW: Layering? */ if (priv_check(td, PRIV_NET_ADDIFADDR)) { error = EPERM; goto out; } sat = satosat(&ifr->ifr_addr); nr = (struct netrange *)sat->sat_zero; if (nr->nr_phase == 1) { struct at_ifaddr *oaa; /* * Look for a phase 1 address on this interface. * This may leave aa pointing to the first address on * the NEXT interface! */ AT_IFADDR_RLOCK(); for (oaa = aa; aa; aa = TAILQ_NEXT(aa, aa_link)) { if (aa->aa_ifp == ifp && (aa->aa_flags & AFA_PHASE2) == 0) break; } if (oaa != NULL && oaa != aa) ifa_free(&oaa->aa_ifa); if (aa != NULL && oaa != aa) ifa_ref(&aa->aa_ifa); AT_IFADDR_RUNLOCK(); } else { /* default to phase 2 */ struct at_ifaddr *oaa; /* * Look for a phase 2 address on this interface. * This may leave aa pointing to the first address on * the NEXT interface! */ AT_IFADDR_RLOCK(); for (oaa = aa; aa; aa = TAILQ_NEXT(aa, aa_link)) { if (aa->aa_ifp == ifp && (aa->aa_flags & AFA_PHASE2)) break; } if (oaa != NULL && oaa != aa) ifa_free(&oaa->aa_ifa); if (aa != NULL && oaa != aa) ifa_ref(&aa->aa_ifa); AT_IFADDR_RUNLOCK(); } if (ifp == NULL) panic("at_control"); /* * If we failed to find an existing at_ifaddr entry, then we * allocate a fresh one. */ if (aa == NULL) { aa = malloc(sizeof(struct at_ifaddr), M_IFADDR, M_NOWAIT | M_ZERO); if (aa == NULL) { error = ENOBUFS; goto out; } callout_init(&aa->aa_callout, CALLOUT_MPSAFE); ifa = (struct ifaddr *)aa; ifa_init(ifa); /* * As the at_ifaddr contains the actual sockaddrs, * and the ifaddr itself, link them all together * correctly. */ ifa->ifa_addr = (struct sockaddr *)&aa->aa_addr; ifa->ifa_dstaddr = (struct sockaddr *)&aa->aa_addr; ifa->ifa_netmask = (struct sockaddr *)&aa->aa_netmask; /* * Set/clear the phase 2 bit. */ if (nr->nr_phase == 1) aa->aa_flags &= ~AFA_PHASE2; else aa->aa_flags |= AFA_PHASE2; ifa_ref(&aa->aa_ifa); /* at_ifaddrhead */ AT_IFADDR_WLOCK(); if (!TAILQ_EMPTY(&at_ifaddrhead)) { /* * Don't let the loopback be first, since the * first address is the machine's default * address for binding. If it is, stick * ourself in front, otherwise go to the back * of the list. */ if (TAILQ_FIRST(&at_ifaddrhead)->aa_ifp-> if_flags & IFF_LOOPBACK) TAILQ_INSERT_HEAD(&at_ifaddrhead, aa, aa_link); else TAILQ_INSERT_TAIL(&at_ifaddrhead, aa, aa_link); } else TAILQ_INSERT_HEAD(&at_ifaddrhead, aa, aa_link); AT_IFADDR_WUNLOCK(); /* * and link it all together */ aa->aa_ifp = ifp; ifa_ref(&aa->aa_ifa); /* if_addrhead */ IF_ADDR_WLOCK(ifp); TAILQ_INSERT_TAIL(&ifp->if_addrhead, ifa, ifa_link); IF_ADDR_WUNLOCK(ifp); } else { /* * If we DID find one then we clobber any routes * dependent on it.. */ at_scrub(ifp, aa); } break; case SIOCGIFADDR : sat = satosat(&ifr->ifr_addr); nr = (struct netrange *)sat->sat_zero; if (nr->nr_phase == 1) { struct at_ifaddr *oaa; /* * If the request is specifying phase 1, then * only look at a phase one address */ AT_IFADDR_RLOCK(); for (oaa = aa; aa; aa = TAILQ_NEXT(aa, aa_link)) { if (aa->aa_ifp == ifp && (aa->aa_flags & AFA_PHASE2) == 0) break; } if (oaa != NULL && oaa != aa) ifa_free(&oaa->aa_ifa); if (aa != NULL && oaa != aa) ifa_ref(&aa->aa_ifa); AT_IFADDR_RUNLOCK(); } else { struct at_ifaddr *oaa; /* * default to phase 2 */ AT_IFADDR_RLOCK(); for (oaa = aa; aa; aa = TAILQ_NEXT(aa, aa_link)) { if (aa->aa_ifp == ifp && (aa->aa_flags & AFA_PHASE2)) break; } if (oaa != NULL && oaa != aa) ifa_free(&oaa->aa_ifa); if (aa != NULL && oaa != aa) ifa_ref(&aa->aa_ifa); AT_IFADDR_RUNLOCK(); } if (aa == NULL) { error = EADDRNOTAVAIL; goto out; } break; } /* * By the time this switch is run we should be able to assume that * the "aa" pointer is valid when needed. */ switch (cmd) { case SIOCGIFADDR: /* * copy the contents of the sockaddr blindly. */ sat = (struct sockaddr_at *)&ifr->ifr_addr; *sat = aa->aa_addr; /* * and do some cleanups */ ((struct netrange *)&sat->sat_zero)->nr_phase = (aa->aa_flags & AFA_PHASE2) ? 2 : 1; ((struct netrange *)&sat->sat_zero)->nr_firstnet = aa->aa_firstnet; ((struct netrange *)&sat->sat_zero)->nr_lastnet = aa->aa_lastnet; break; case SIOCSIFADDR: error = at_ifinit(ifp, aa, (struct sockaddr_at *)&ifr->ifr_addr); goto out; case SIOCAIFADDR: if (sateqaddr(&ifra->ifra_addr, &aa->aa_addr)) { error = 0; goto out; } error = at_ifinit(ifp, aa, (struct sockaddr_at *)&ifr->ifr_addr); goto out; case SIOCDIFADDR: /* * remove the ifaddr from the interface */ ifa = (struct ifaddr *)aa; IF_ADDR_WLOCK(ifp); TAILQ_REMOVE(&ifp->if_addrhead, ifa, ifa_link); IF_ADDR_WUNLOCK(ifp); ifa_free(ifa); /* if_addrhead */ /* * Now remove the at_ifaddr from the parallel structure * as well, or we'd be in deep trouble */ AT_IFADDR_WLOCK(); TAILQ_REMOVE(&at_ifaddrhead, aa, aa_link); AT_IFADDR_WUNLOCK(); ifa_free(ifa); /* at_ifaddrhead */ break; default: if (ifp == NULL || ifp->if_ioctl == NULL) { error = EOPNOTSUPP; goto out; } error = ((*ifp->if_ioctl)(ifp, cmd, data)); } out: if (aa != NULL) ifa_free(&aa->aa_ifa); return (error); } /* * Given an interface and an at_ifaddr (supposedly on that interface) * remove any routes that depend on this. * Why ifp is needed I'm not sure, * as aa->at_ifaddr.ifa_ifp should be the same. */ static int at_scrub(struct ifnet *ifp, struct at_ifaddr *aa) { int error; if (aa->aa_flags & AFA_ROUTE) { if (ifp->if_flags & IFF_LOOPBACK) { if ((error = aa_delsingleroute(&aa->aa_ifa, &aa->aa_addr.sat_addr, &aa->aa_netmask.sat_addr)) != 0) return (error); } else if (ifp->if_flags & IFF_POINTOPOINT) { if ((error = rtinit(&aa->aa_ifa, RTM_DELETE, RTF_HOST)) != 0) return (error); } else if (ifp->if_flags & IFF_BROADCAST) { error = aa_dorangeroute(&aa->aa_ifa, ntohs(aa->aa_firstnet), ntohs(aa->aa_lastnet), RTM_DELETE); } aa->aa_ifa.ifa_flags &= ~IFA_ROUTE; aa->aa_flags &= ~AFA_ROUTE; } return (0); } /* * given an at_ifaddr,a sockaddr_at and an ifp, * bang them all together at high speed and see what happens */ static int at_ifinit(struct ifnet *ifp, struct at_ifaddr *aa, struct sockaddr_at *sat) { struct netrange nr, onr; struct sockaddr_at oldaddr; int error = 0, i, j; int netinc, nodeinc, nnets; u_short net; /* * save the old addresses in the at_ifaddr just in case we need them. */ oldaddr = aa->aa_addr; onr.nr_firstnet = aa->aa_firstnet; onr.nr_lastnet = aa->aa_lastnet; /* * take the address supplied as an argument, and add it to the * at_ifnet (also given). Remember ing to update * those parts of the at_ifaddr that need special processing */ bzero(AA_SAT(aa), sizeof(struct sockaddr_at)); bcopy(sat->sat_zero, &nr, sizeof(struct netrange)); bcopy(sat->sat_zero, AA_SAT(aa)->sat_zero, sizeof(struct netrange)); nnets = ntohs(nr.nr_lastnet) - ntohs(nr.nr_firstnet) + 1; aa->aa_firstnet = nr.nr_firstnet; aa->aa_lastnet = nr.nr_lastnet; /* XXX ALC */ #if 0 printf("at_ifinit: %s: %u.%u range %u-%u phase %d\n", ifp->if_name, ntohs(sat->sat_addr.s_net), sat->sat_addr.s_node, ntohs(aa->aa_firstnet), ntohs(aa->aa_lastnet), (aa->aa_flags & AFA_PHASE2) ? 2 : 1); #endif /* * We could eliminate the need for a second phase 1 probe (post * autoconf) if we check whether we're resetting the node. Note * that phase 1 probes use only nodes, not net.node pairs. Under * phase 2, both the net and node must be the same. */ if (ifp->if_flags & IFF_LOOPBACK) { AA_SAT(aa)->sat_len = sat->sat_len; AA_SAT(aa)->sat_family = AF_APPLETALK; AA_SAT(aa)->sat_addr.s_net = sat->sat_addr.s_net; AA_SAT(aa)->sat_addr.s_node = sat->sat_addr.s_node; #if 0 } else if (fp->if_flags & IFF_POINTOPOINT) { /* unimplemented */ /* * we'd have to copy the dstaddr field over from the sat * but it's not clear that it would contain the right info.. */ #endif } else { /* * We are a normal (probably ethernet) interface. * apply the new address to the interface structures etc. * We will probe this address on the net first, before * applying it to ensure that it is free.. If it is not, then * we will try a number of other randomly generated addresses * in this net and then increment the net. etc.etc. until * we find an unused address. */ aa->aa_flags |= AFA_PROBING; /* not loopback we Must probe? */ AA_SAT(aa)->sat_len = sizeof(struct sockaddr_at); AA_SAT(aa)->sat_family = AF_APPLETALK; if (aa->aa_flags & AFA_PHASE2) { if (sat->sat_addr.s_net == ATADDR_ANYNET) { /* * If we are phase 2, and the net was not * specified then we select a random net * within the supplied netrange. * XXX use /dev/random? */ if (nnets != 1) net = ntohs(nr.nr_firstnet) + time_second % (nnets - 1); else net = ntohs(nr.nr_firstnet); } else { /* * if a net was supplied, then check that it * is within the netrange. If it is not then * replace the old values and return an error */ if (ntohs(sat->sat_addr.s_net) < ntohs(nr.nr_firstnet) || ntohs(sat->sat_addr.s_net) > ntohs(nr.nr_lastnet)) { aa->aa_addr = oldaddr; aa->aa_firstnet = onr.nr_firstnet; aa->aa_lastnet = onr.nr_lastnet; return (EINVAL); } /* * otherwise just use the new net number.. */ net = ntohs(sat->sat_addr.s_net); } } else { /* * we must be phase one, so just use whatever we were * given. I guess it really isn't going to be * used... RIGHT? */ net = ntohs(sat->sat_addr.s_net); } /* * set the node part of the address into the ifaddr. * If it's not specified, be random about it... * XXX use /dev/random? */ if (sat->sat_addr.s_node == ATADDR_ANYNODE) AA_SAT(aa)->sat_addr.s_node = time_second; else AA_SAT(aa)->sat_addr.s_node = sat->sat_addr.s_node; /* * Copy the phase. */ AA_SAT(aa)->sat_range.r_netrange.nr_phase = ((aa->aa_flags & AFA_PHASE2) ? 2:1); /* * step through the nets in the range * starting at the (possibly random) start point. */ for (i = nnets, netinc = 1; i > 0; net = ntohs(nr.nr_firstnet) + ((net - ntohs(nr.nr_firstnet) + netinc) % nnets), i--) { AA_SAT(aa)->sat_addr.s_net = htons(net); /* * using a rather strange stepping method, * stagger through the possible node addresses * Once again, starting at the (possibly random) * initial node address. */ for (j = 0, nodeinc = time_second | 1; j < 256; j++, AA_SAT(aa)->sat_addr.s_node += nodeinc) { if (AA_SAT(aa)->sat_addr.s_node > 253 || AA_SAT(aa)->sat_addr.s_node < 1) continue; aa->aa_probcnt = 10; /* * start off the probes as an asynchronous * activity. though why wait 200mSec? */ AARPTAB_LOCK(); callout_reset(&aa->aa_callout, hz / 5, aarpprobe, ifp); if (msleep(aa, &aarptab_mtx, PPAUSE|PCATCH, "at_ifinit", 0)) { AARPTAB_UNLOCK(); /* * theoretically we shouldn't time * out here so if we returned with an * error.. */ printf("at_ifinit: why did this " "happen?!\n"); aa->aa_addr = oldaddr; aa->aa_firstnet = onr.nr_firstnet; aa->aa_lastnet = onr.nr_lastnet; return (EINTR); } AARPTAB_UNLOCK(); /* * The async activity should have woken us * up. We need to see if it was successful * in finding a free spot, or if we need to * iterate to the next address to try. */ if ((aa->aa_flags & AFA_PROBING) == 0) break; } /* * of course we need to break out through two loops... */ if ((aa->aa_flags & AFA_PROBING) == 0) break; /* reset node for next network */ AA_SAT(aa)->sat_addr.s_node = time_second; } /* * if we are still trying to probe, then we have finished all * the possible addresses, so we need to give up */ if (aa->aa_flags & AFA_PROBING) { aa->aa_addr = oldaddr; aa->aa_firstnet = onr.nr_firstnet; aa->aa_lastnet = onr.nr_lastnet; return (EADDRINUSE); } } /* * Now that we have selected an address, we need to tell the interface * about it, just in case it needs to adjust something. */ if (ifp->if_ioctl != NULL && (error = (*ifp->if_ioctl)(ifp, SIOCSIFADDR, (caddr_t)aa))) { /* * of course this could mean that it objects violently * so if it does, we back out again.. */ aa->aa_addr = oldaddr; aa->aa_firstnet = onr.nr_firstnet; aa->aa_lastnet = onr.nr_lastnet; return (error); } /* * set up the netmask part of the at_ifaddr * and point the appropriate pointer in the ifaddr to it. * probably pointless, but what the heck.. XXX */ bzero(&aa->aa_netmask, sizeof(aa->aa_netmask)); aa->aa_netmask.sat_len = sizeof(struct sockaddr_at); aa->aa_netmask.sat_family = AF_APPLETALK; aa->aa_netmask.sat_addr.s_net = 0xffff; aa->aa_netmask.sat_addr.s_node = 0; aa->aa_ifa.ifa_netmask =(struct sockaddr *) &(aa->aa_netmask); /* XXX */ /* * Initialize broadcast (or remote p2p) address */ bzero(&aa->aa_broadaddr, sizeof(aa->aa_broadaddr)); aa->aa_broadaddr.sat_len = sizeof(struct sockaddr_at); aa->aa_broadaddr.sat_family = AF_APPLETALK; aa->aa_ifa.ifa_metric = ifp->if_metric; if (ifp->if_flags & IFF_BROADCAST) { aa->aa_broadaddr.sat_addr.s_net = htons(0); aa->aa_broadaddr.sat_addr.s_node = 0xff; aa->aa_ifa.ifa_broadaddr = (struct sockaddr *) &aa->aa_broadaddr; /* add the range of routes needed */ error = aa_dorangeroute(&aa->aa_ifa, ntohs(aa->aa_firstnet), ntohs(aa->aa_lastnet), RTM_ADD); } else if (ifp->if_flags & IFF_POINTOPOINT) { struct at_addr rtaddr, rtmask; bzero(&rtaddr, sizeof(rtaddr)); bzero(&rtmask, sizeof(rtmask)); /* fill in the far end if we know it here XXX */ aa->aa_ifa.ifa_dstaddr = (struct sockaddr *) &aa->aa_dstaddr; error = aa_addsingleroute(&aa->aa_ifa, &rtaddr, &rtmask); } else if (ifp->if_flags & IFF_LOOPBACK) { struct at_addr rtaddr, rtmask; bzero(&rtaddr, sizeof(rtaddr)); bzero(&rtmask, sizeof(rtmask)); rtaddr.s_net = AA_SAT(aa)->sat_addr.s_net; rtaddr.s_node = AA_SAT(aa)->sat_addr.s_node; rtmask.s_net = 0xffff; /* XXX should not be so.. should be HOST route */ rtmask.s_node = 0x0; error = aa_addsingleroute(&aa->aa_ifa, &rtaddr, &rtmask); } /* * set the address of our "check if this addr is ours" routine. */ aa->aa_ifa.ifa_claim_addr = aa_claim_addr; /* * of course if we can't add these routes we back out, but it's * getting risky by now XXX */ if (error) { at_scrub(ifp, aa); aa->aa_addr = oldaddr; aa->aa_firstnet = onr.nr_firstnet; aa->aa_lastnet = onr.nr_lastnet; return (error); } /* * note that the address has a route associated with it.... */ aa->aa_ifa.ifa_flags |= IFA_ROUTE; aa->aa_flags |= AFA_ROUTE; return (0); } /* * check whether a given address is a broadcast address for us.. */ int at_broadcast(struct sockaddr_at *sat) { struct at_ifaddr *aa; AT_IFADDR_LOCK_ASSERT(); /* * If the node is not right, it can't be a broadcast */ if (sat->sat_addr.s_node != ATADDR_BCAST) return (0); /* * If the node was right then if the net is right, it's a broadcast */ if (sat->sat_addr.s_net == ATADDR_ANYNET) return (1); /* * failing that, if the net is one we have, it's a broadcast as well. */ TAILQ_FOREACH(aa, &at_ifaddrhead, aa_link) { if ((aa->aa_ifp->if_flags & IFF_BROADCAST) && (ntohs(sat->sat_addr.s_net) >= ntohs(aa->aa_firstnet) && ntohs(sat->sat_addr.s_net) <= ntohs(aa->aa_lastnet))) return (1); } return (0); } /* * aa_dorangeroute() * * Add a route for a range of networks from bot to top - 1. * Algorithm: * * Split the range into two subranges such that the middle * of the two ranges is the point where the highest bit of difference * between the two addresses makes its transition. * Each of the upper and lower ranges might not exist, or might be * representable by 1 or more netmasks. In addition, if both * ranges can be represented by the same netmask, then they can be merged * by using the next higher netmask.. */ static int aa_dorangeroute(struct ifaddr *ifa, u_int bot, u_int top, int cmd) { u_int mask1; struct at_addr addr; struct at_addr mask; int error; /* * slight sanity check */ if (bot > top) return (EINVAL); addr.s_node = 0; mask.s_node = 0; /* * just start out with the lowest boundary * and keep extending the mask till it's too big. */ while (bot <= top) { mask1 = 1; while (((bot & ~mask1) >= bot) && ((bot | mask1) <= top)) { mask1 <<= 1; mask1 |= 1; } mask1 >>= 1; mask.s_net = htons(~mask1); addr.s_net = htons(bot); if (cmd == RTM_ADD) { error = aa_addsingleroute(ifa,&addr,&mask); if (error) { /* XXX clean up? */ return (error); } } else error = aa_delsingleroute(ifa,&addr,&mask); bot = (bot | mask1) + 1; } return (0); } static int aa_addsingleroute(struct ifaddr *ifa, struct at_addr *addr, struct at_addr *mask) { #if 0 printf("aa_addsingleroute: %x.%x mask %x.%x ...\n", ntohs(addr->s_net), addr->s_node, ntohs(mask->s_net), mask->s_node); #endif return (aa_dosingleroute(ifa, addr, mask, RTM_ADD, RTF_UP)); } static int aa_delsingleroute(struct ifaddr *ifa, struct at_addr *addr, struct at_addr *mask) { return (aa_dosingleroute(ifa, addr, mask, RTM_DELETE, 0)); } static int aa_dosingleroute(struct ifaddr *ifa, struct at_addr *at_addr, struct at_addr *at_mask, int cmd, int flags) { struct sockaddr_at addr, mask; bzero(&addr, sizeof(addr)); bzero(&mask, sizeof(mask)); addr.sat_family = AF_APPLETALK; addr.sat_len = sizeof(struct sockaddr_at); addr.sat_addr.s_net = at_addr->s_net; addr.sat_addr.s_node = at_addr->s_node; mask.sat_family = AF_APPLETALK; mask.sat_len = sizeof(struct sockaddr_at); mask.sat_addr.s_net = at_mask->s_net; mask.sat_addr.s_node = at_mask->s_node; if (at_mask->s_node) flags |= RTF_HOST; return (rtrequest(cmd, (struct sockaddr *) &addr, (flags & RTF_HOST)?(ifa->ifa_dstaddr):(ifa->ifa_addr), (struct sockaddr *) &mask, flags, NULL)); } static int aa_claim_addr(struct ifaddr *ifa, struct sockaddr *gw0) { struct sockaddr_at *addr = (struct sockaddr_at *)ifa->ifa_addr; struct sockaddr_at *gw = (struct sockaddr_at *)gw0; switch (gw->sat_range.r_netrange.nr_phase) { case 1: if(addr->sat_range.r_netrange.nr_phase == 1) return (1); case 0: case 2: /* * if it's our net (including 0), * or netranges are valid, and we are in the range, * then it's ours. */ if ((addr->sat_addr.s_net == gw->sat_addr.s_net) || ((addr->sat_range.r_netrange.nr_lastnet) && (ntohs(gw->sat_addr.s_net) >= ntohs(addr->sat_range.r_netrange.nr_firstnet)) && (ntohs(gw->sat_addr.s_net) <= ntohs(addr->sat_range.r_netrange.nr_lastnet)))) return (1); break; default: printf("atalk: bad phase\n"); } return (0); }