Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/mvs/@/amd64/compile/hs32/modules/usr/src/sys/modules/wlan_tkip/@/geom/raid/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/mvs/@/amd64/compile/hs32/modules/usr/src/sys/modules/wlan_tkip/@/geom/raid/tr_raid1.c |
/*- * Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org> * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/geom/raid/tr_raid1.c 240558 2012-09-16 11:02:22Z mav $"); #include <sys/param.h> #include <sys/bio.h> #include <sys/endian.h> #include <sys/kernel.h> #include <sys/kobj.h> #include <sys/limits.h> #include <sys/lock.h> #include <sys/malloc.h> #include <sys/mutex.h> #include <sys/sysctl.h> #include <sys/systm.h> #include <geom/geom.h> #include "geom/raid/g_raid.h" #include "g_raid_tr_if.h" SYSCTL_DECL(_kern_geom_raid_raid1); #define RAID1_REBUILD_SLAB (1 << 20) /* One transation in a rebuild */ static int g_raid1_rebuild_slab = RAID1_REBUILD_SLAB; TUNABLE_INT("kern.geom.raid.raid1.rebuild_slab_size", &g_raid1_rebuild_slab); SYSCTL_UINT(_kern_geom_raid_raid1, OID_AUTO, rebuild_slab_size, CTLFLAG_RW, &g_raid1_rebuild_slab, 0, "Amount of the disk to rebuild each read/write cycle of the rebuild."); #define RAID1_REBUILD_FAIR_IO 20 /* use 1/x of the available I/O */ static int g_raid1_rebuild_fair_io = RAID1_REBUILD_FAIR_IO; TUNABLE_INT("kern.geom.raid.raid1.rebuild_fair_io", &g_raid1_rebuild_fair_io); SYSCTL_UINT(_kern_geom_raid_raid1, OID_AUTO, rebuild_fair_io, CTLFLAG_RW, &g_raid1_rebuild_fair_io, 0, "Fraction of the I/O bandwidth to use when disk busy for rebuild."); #define RAID1_REBUILD_CLUSTER_IDLE 100 static int g_raid1_rebuild_cluster_idle = RAID1_REBUILD_CLUSTER_IDLE; TUNABLE_INT("kern.geom.raid.raid1.rebuild_cluster_idle", &g_raid1_rebuild_cluster_idle); SYSCTL_UINT(_kern_geom_raid_raid1, OID_AUTO, rebuild_cluster_idle, CTLFLAG_RW, &g_raid1_rebuild_cluster_idle, 0, "Number of slabs to do each time we trigger a rebuild cycle"); #define RAID1_REBUILD_META_UPDATE 1024 /* update meta data every 1GB or so */ static int g_raid1_rebuild_meta_update = RAID1_REBUILD_META_UPDATE; TUNABLE_INT("kern.geom.raid.raid1.rebuild_meta_update", &g_raid1_rebuild_meta_update); SYSCTL_UINT(_kern_geom_raid_raid1, OID_AUTO, rebuild_meta_update, CTLFLAG_RW, &g_raid1_rebuild_meta_update, 0, "When to update the meta data."); static MALLOC_DEFINE(M_TR_RAID1, "tr_raid1_data", "GEOM_RAID RAID1 data"); #define TR_RAID1_NONE 0 #define TR_RAID1_REBUILD 1 #define TR_RAID1_RESYNC 2 #define TR_RAID1_F_DOING_SOME 0x1 #define TR_RAID1_F_LOCKED 0x2 #define TR_RAID1_F_ABORT 0x4 struct g_raid_tr_raid1_object { struct g_raid_tr_object trso_base; int trso_starting; int trso_stopping; int trso_type; int trso_recover_slabs; /* slabs before rest */ int trso_fair_io; int trso_meta_update; int trso_flags; struct g_raid_subdisk *trso_failed_sd; /* like per volume */ void *trso_buffer; /* Buffer space */ struct bio trso_bio; }; static g_raid_tr_taste_t g_raid_tr_taste_raid1; static g_raid_tr_event_t g_raid_tr_event_raid1; static g_raid_tr_start_t g_raid_tr_start_raid1; static g_raid_tr_stop_t g_raid_tr_stop_raid1; static g_raid_tr_iostart_t g_raid_tr_iostart_raid1; static g_raid_tr_iodone_t g_raid_tr_iodone_raid1; static g_raid_tr_kerneldump_t g_raid_tr_kerneldump_raid1; static g_raid_tr_locked_t g_raid_tr_locked_raid1; static g_raid_tr_idle_t g_raid_tr_idle_raid1; static g_raid_tr_free_t g_raid_tr_free_raid1; static kobj_method_t g_raid_tr_raid1_methods[] = { KOBJMETHOD(g_raid_tr_taste, g_raid_tr_taste_raid1), KOBJMETHOD(g_raid_tr_event, g_raid_tr_event_raid1), KOBJMETHOD(g_raid_tr_start, g_raid_tr_start_raid1), KOBJMETHOD(g_raid_tr_stop, g_raid_tr_stop_raid1), KOBJMETHOD(g_raid_tr_iostart, g_raid_tr_iostart_raid1), KOBJMETHOD(g_raid_tr_iodone, g_raid_tr_iodone_raid1), KOBJMETHOD(g_raid_tr_kerneldump, g_raid_tr_kerneldump_raid1), KOBJMETHOD(g_raid_tr_locked, g_raid_tr_locked_raid1), KOBJMETHOD(g_raid_tr_idle, g_raid_tr_idle_raid1), KOBJMETHOD(g_raid_tr_free, g_raid_tr_free_raid1), { 0, 0 } }; static struct g_raid_tr_class g_raid_tr_raid1_class = { "RAID1", g_raid_tr_raid1_methods, sizeof(struct g_raid_tr_raid1_object), .trc_enable = 1, .trc_priority = 100 }; static void g_raid_tr_raid1_rebuild_abort(struct g_raid_tr_object *tr); static void g_raid_tr_raid1_maybe_rebuild(struct g_raid_tr_object *tr, struct g_raid_subdisk *sd); static int g_raid_tr_taste_raid1(struct g_raid_tr_object *tr, struct g_raid_volume *vol) { struct g_raid_tr_raid1_object *trs; trs = (struct g_raid_tr_raid1_object *)tr; if (tr->tro_volume->v_raid_level != G_RAID_VOLUME_RL_RAID1 || (tr->tro_volume->v_raid_level_qualifier != G_RAID_VOLUME_RLQ_R1SM && tr->tro_volume->v_raid_level_qualifier != G_RAID_VOLUME_RLQ_R1MM)) return (G_RAID_TR_TASTE_FAIL); trs->trso_starting = 1; return (G_RAID_TR_TASTE_SUCCEED); } static int g_raid_tr_update_state_raid1(struct g_raid_volume *vol, struct g_raid_subdisk *sd) { struct g_raid_tr_raid1_object *trs; struct g_raid_softc *sc; struct g_raid_subdisk *tsd, *bestsd; u_int s; int i, na, ns; sc = vol->v_softc; trs = (struct g_raid_tr_raid1_object *)vol->v_tr; if (trs->trso_stopping && (trs->trso_flags & TR_RAID1_F_DOING_SOME) == 0) s = G_RAID_VOLUME_S_STOPPED; else if (trs->trso_starting) s = G_RAID_VOLUME_S_STARTING; else { /* Make sure we have at least one ACTIVE disk. */ na = g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_ACTIVE); if (na == 0) { /* * Critical situation! We have no any active disk! * Choose the best disk we have to make it active. */ bestsd = &vol->v_subdisks[0]; for (i = 1; i < vol->v_disks_count; i++) { tsd = &vol->v_subdisks[i]; if (tsd->sd_state > bestsd->sd_state) bestsd = tsd; else if (tsd->sd_state == bestsd->sd_state && (tsd->sd_state == G_RAID_SUBDISK_S_REBUILD || tsd->sd_state == G_RAID_SUBDISK_S_RESYNC) && tsd->sd_rebuild_pos > bestsd->sd_rebuild_pos) bestsd = tsd; } if (bestsd->sd_state >= G_RAID_SUBDISK_S_UNINITIALIZED) { /* We found reasonable candidate. */ G_RAID_DEBUG1(1, sc, "Promote subdisk %s:%d from %s to ACTIVE.", vol->v_name, bestsd->sd_pos, g_raid_subdisk_state2str(bestsd->sd_state)); g_raid_change_subdisk_state(bestsd, G_RAID_SUBDISK_S_ACTIVE); g_raid_write_metadata(sc, vol, bestsd, bestsd->sd_disk); } } na = g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_ACTIVE); ns = g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_STALE) + g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_RESYNC); if (na == vol->v_disks_count) s = G_RAID_VOLUME_S_OPTIMAL; else if (na + ns == vol->v_disks_count) s = G_RAID_VOLUME_S_SUBOPTIMAL; else if (na > 0) s = G_RAID_VOLUME_S_DEGRADED; else s = G_RAID_VOLUME_S_BROKEN; g_raid_tr_raid1_maybe_rebuild(vol->v_tr, sd); } if (s != vol->v_state) { g_raid_event_send(vol, G_RAID_VOLUME_S_ALIVE(s) ? G_RAID_VOLUME_E_UP : G_RAID_VOLUME_E_DOWN, G_RAID_EVENT_VOLUME); g_raid_change_volume_state(vol, s); if (!trs->trso_starting && !trs->trso_stopping) g_raid_write_metadata(sc, vol, NULL, NULL); } return (0); } static void g_raid_tr_raid1_fail_disk(struct g_raid_softc *sc, struct g_raid_subdisk *sd, struct g_raid_disk *disk) { /* * We don't fail the last disk in the pack, since it still has decent * data on it and that's better than failing the disk if it is the root * file system. * * XXX should this be controlled via a tunable? It makes sense for * the volume that has / on it. I can't think of a case where we'd * want the volume to go away on this kind of event. */ if (g_raid_nsubdisks(sd->sd_volume, G_RAID_SUBDISK_S_ACTIVE) == 1 && g_raid_get_subdisk(sd->sd_volume, G_RAID_SUBDISK_S_ACTIVE) == sd) return; g_raid_fail_disk(sc, sd, disk); } static void g_raid_tr_raid1_rebuild_some(struct g_raid_tr_object *tr) { struct g_raid_tr_raid1_object *trs; struct g_raid_subdisk *sd, *good_sd; struct bio *bp; trs = (struct g_raid_tr_raid1_object *)tr; if (trs->trso_flags & TR_RAID1_F_DOING_SOME) return; sd = trs->trso_failed_sd; good_sd = g_raid_get_subdisk(sd->sd_volume, G_RAID_SUBDISK_S_ACTIVE); if (good_sd == NULL) { g_raid_tr_raid1_rebuild_abort(tr); return; } bp = &trs->trso_bio; memset(bp, 0, sizeof(*bp)); bp->bio_offset = sd->sd_rebuild_pos; bp->bio_length = MIN(g_raid1_rebuild_slab, sd->sd_size - sd->sd_rebuild_pos); bp->bio_data = trs->trso_buffer; bp->bio_cmd = BIO_READ; bp->bio_cflags = G_RAID_BIO_FLAG_SYNC; bp->bio_caller1 = good_sd; trs->trso_flags |= TR_RAID1_F_DOING_SOME; trs->trso_flags |= TR_RAID1_F_LOCKED; g_raid_lock_range(sd->sd_volume, /* Lock callback starts I/O */ bp->bio_offset, bp->bio_length, NULL, bp); } static void g_raid_tr_raid1_rebuild_done(struct g_raid_tr_raid1_object *trs) { struct g_raid_volume *vol; struct g_raid_subdisk *sd; vol = trs->trso_base.tro_volume; sd = trs->trso_failed_sd; g_raid_write_metadata(vol->v_softc, vol, sd, sd->sd_disk); free(trs->trso_buffer, M_TR_RAID1); trs->trso_buffer = NULL; trs->trso_flags &= ~TR_RAID1_F_DOING_SOME; trs->trso_type = TR_RAID1_NONE; trs->trso_recover_slabs = 0; trs->trso_failed_sd = NULL; g_raid_tr_update_state_raid1(vol, NULL); } static void g_raid_tr_raid1_rebuild_finish(struct g_raid_tr_object *tr) { struct g_raid_tr_raid1_object *trs; struct g_raid_subdisk *sd; trs = (struct g_raid_tr_raid1_object *)tr; sd = trs->trso_failed_sd; G_RAID_DEBUG1(0, tr->tro_volume->v_softc, "Subdisk %s:%d-%s rebuild completed.", sd->sd_volume->v_name, sd->sd_pos, sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]"); g_raid_change_subdisk_state(sd, G_RAID_SUBDISK_S_ACTIVE); sd->sd_rebuild_pos = 0; g_raid_tr_raid1_rebuild_done(trs); } static void g_raid_tr_raid1_rebuild_abort(struct g_raid_tr_object *tr) { struct g_raid_tr_raid1_object *trs; struct g_raid_subdisk *sd; struct g_raid_volume *vol; off_t len; vol = tr->tro_volume; trs = (struct g_raid_tr_raid1_object *)tr; sd = trs->trso_failed_sd; if (trs->trso_flags & TR_RAID1_F_DOING_SOME) { G_RAID_DEBUG1(1, vol->v_softc, "Subdisk %s:%d-%s rebuild is aborting.", sd->sd_volume->v_name, sd->sd_pos, sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]"); trs->trso_flags |= TR_RAID1_F_ABORT; } else { G_RAID_DEBUG1(0, vol->v_softc, "Subdisk %s:%d-%s rebuild aborted.", sd->sd_volume->v_name, sd->sd_pos, sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]"); trs->trso_flags &= ~TR_RAID1_F_ABORT; if (trs->trso_flags & TR_RAID1_F_LOCKED) { trs->trso_flags &= ~TR_RAID1_F_LOCKED; len = MIN(g_raid1_rebuild_slab, sd->sd_size - sd->sd_rebuild_pos); g_raid_unlock_range(tr->tro_volume, sd->sd_rebuild_pos, len); } g_raid_tr_raid1_rebuild_done(trs); } } static void g_raid_tr_raid1_rebuild_start(struct g_raid_tr_object *tr) { struct g_raid_volume *vol; struct g_raid_tr_raid1_object *trs; struct g_raid_subdisk *sd, *fsd; vol = tr->tro_volume; trs = (struct g_raid_tr_raid1_object *)tr; if (trs->trso_failed_sd) { G_RAID_DEBUG1(1, vol->v_softc, "Already rebuild in start rebuild. pos %jd\n", (intmax_t)trs->trso_failed_sd->sd_rebuild_pos); return; } sd = g_raid_get_subdisk(vol, G_RAID_SUBDISK_S_ACTIVE); if (sd == NULL) { G_RAID_DEBUG1(1, vol->v_softc, "No active disk to rebuild. night night."); return; } fsd = g_raid_get_subdisk(vol, G_RAID_SUBDISK_S_RESYNC); if (fsd == NULL) fsd = g_raid_get_subdisk(vol, G_RAID_SUBDISK_S_REBUILD); if (fsd == NULL) { fsd = g_raid_get_subdisk(vol, G_RAID_SUBDISK_S_STALE); if (fsd != NULL) { fsd->sd_rebuild_pos = 0; g_raid_change_subdisk_state(fsd, G_RAID_SUBDISK_S_RESYNC); g_raid_write_metadata(vol->v_softc, vol, fsd, NULL); } else { fsd = g_raid_get_subdisk(vol, G_RAID_SUBDISK_S_UNINITIALIZED); if (fsd == NULL) fsd = g_raid_get_subdisk(vol, G_RAID_SUBDISK_S_NEW); if (fsd != NULL) { fsd->sd_rebuild_pos = 0; g_raid_change_subdisk_state(fsd, G_RAID_SUBDISK_S_REBUILD); g_raid_write_metadata(vol->v_softc, vol, fsd, NULL); } } } if (fsd == NULL) { G_RAID_DEBUG1(1, vol->v_softc, "No failed disk to rebuild. night night."); return; } trs->trso_failed_sd = fsd; G_RAID_DEBUG1(0, vol->v_softc, "Subdisk %s:%d-%s rebuild start at %jd.", fsd->sd_volume->v_name, fsd->sd_pos, fsd->sd_disk ? g_raid_get_diskname(fsd->sd_disk) : "[none]", trs->trso_failed_sd->sd_rebuild_pos); trs->trso_type = TR_RAID1_REBUILD; trs->trso_buffer = malloc(g_raid1_rebuild_slab, M_TR_RAID1, M_WAITOK); trs->trso_meta_update = g_raid1_rebuild_meta_update; g_raid_tr_raid1_rebuild_some(tr); } static void g_raid_tr_raid1_maybe_rebuild(struct g_raid_tr_object *tr, struct g_raid_subdisk *sd) { struct g_raid_volume *vol; struct g_raid_tr_raid1_object *trs; int na, nr; /* * If we're stopping, don't do anything. If we don't have at least one * good disk and one bad disk, we don't do anything. And if there's a * 'good disk' stored in the trs, then we're in progress and we punt. * If we make it past all these checks, we need to rebuild. */ vol = tr->tro_volume; trs = (struct g_raid_tr_raid1_object *)tr; if (trs->trso_stopping) return; na = g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_ACTIVE); nr = g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_REBUILD) + g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_RESYNC); switch(trs->trso_type) { case TR_RAID1_NONE: if (na == 0) return; if (nr == 0) { nr = g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_NEW) + g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_STALE) + g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_UNINITIALIZED); if (nr == 0) return; } g_raid_tr_raid1_rebuild_start(tr); break; case TR_RAID1_REBUILD: if (na == 0 || nr == 0 || trs->trso_failed_sd == sd) g_raid_tr_raid1_rebuild_abort(tr); break; case TR_RAID1_RESYNC: break; } } static int g_raid_tr_event_raid1(struct g_raid_tr_object *tr, struct g_raid_subdisk *sd, u_int event) { g_raid_tr_update_state_raid1(tr->tro_volume, sd); return (0); } static int g_raid_tr_start_raid1(struct g_raid_tr_object *tr) { struct g_raid_tr_raid1_object *trs; struct g_raid_volume *vol; trs = (struct g_raid_tr_raid1_object *)tr; vol = tr->tro_volume; trs->trso_starting = 0; g_raid_tr_update_state_raid1(vol, NULL); return (0); } static int g_raid_tr_stop_raid1(struct g_raid_tr_object *tr) { struct g_raid_tr_raid1_object *trs; struct g_raid_volume *vol; trs = (struct g_raid_tr_raid1_object *)tr; vol = tr->tro_volume; trs->trso_starting = 0; trs->trso_stopping = 1; g_raid_tr_update_state_raid1(vol, NULL); return (0); } /* * Select the disk to read from. Take into account: subdisk state, running * error recovery, average disk load, head position and possible cache hits. */ #define ABS(x) (((x) >= 0) ? (x) : (-(x))) static struct g_raid_subdisk * g_raid_tr_raid1_select_read_disk(struct g_raid_volume *vol, struct bio *bp, u_int mask) { struct g_raid_subdisk *sd, *best; int i, prio, bestprio; best = NULL; bestprio = INT_MAX; for (i = 0; i < vol->v_disks_count; i++) { sd = &vol->v_subdisks[i]; if (sd->sd_state != G_RAID_SUBDISK_S_ACTIVE && ((sd->sd_state != G_RAID_SUBDISK_S_REBUILD && sd->sd_state != G_RAID_SUBDISK_S_RESYNC) || bp->bio_offset + bp->bio_length > sd->sd_rebuild_pos)) continue; if ((mask & (1 << i)) != 0) continue; prio = G_RAID_SUBDISK_LOAD(sd); prio += min(sd->sd_recovery, 255) << 22; prio += (G_RAID_SUBDISK_S_ACTIVE - sd->sd_state) << 16; /* If disk head is precisely in position - highly prefer it. */ if (G_RAID_SUBDISK_POS(sd) == bp->bio_offset) prio -= 2 * G_RAID_SUBDISK_LOAD_SCALE; else /* If disk head is close to position - prefer it. */ if (ABS(G_RAID_SUBDISK_POS(sd) - bp->bio_offset) < G_RAID_SUBDISK_TRACK_SIZE) prio -= 1 * G_RAID_SUBDISK_LOAD_SCALE; if (prio < bestprio) { best = sd; bestprio = prio; } } return (best); } static void g_raid_tr_iostart_raid1_read(struct g_raid_tr_object *tr, struct bio *bp) { struct g_raid_subdisk *sd; struct bio *cbp; sd = g_raid_tr_raid1_select_read_disk(tr->tro_volume, bp, 0); KASSERT(sd != NULL, ("No active disks in volume %s.", tr->tro_volume->v_name)); cbp = g_clone_bio(bp); if (cbp == NULL) { g_raid_iodone(bp, ENOMEM); return; } g_raid_subdisk_iostart(sd, cbp); } static void g_raid_tr_iostart_raid1_write(struct g_raid_tr_object *tr, struct bio *bp) { struct g_raid_volume *vol; struct g_raid_subdisk *sd; struct bio_queue_head queue; struct bio *cbp; int i; vol = tr->tro_volume; /* * Allocate all bios before sending any request, so we can return * ENOMEM in nice and clean way. */ bioq_init(&queue); for (i = 0; i < vol->v_disks_count; i++) { sd = &vol->v_subdisks[i]; switch (sd->sd_state) { case G_RAID_SUBDISK_S_ACTIVE: break; case G_RAID_SUBDISK_S_REBUILD: /* * When rebuilding, only part of this subdisk is * writable, the rest will be written as part of the * that process. */ if (bp->bio_offset >= sd->sd_rebuild_pos) continue; break; case G_RAID_SUBDISK_S_STALE: case G_RAID_SUBDISK_S_RESYNC: /* * Resyncing still writes on the theory that the * resync'd disk is very close and writing it will * keep it that way better if we keep up while * resyncing. */ break; default: continue; } cbp = g_clone_bio(bp); if (cbp == NULL) goto failure; cbp->bio_caller1 = sd; bioq_insert_tail(&queue, cbp); } for (cbp = bioq_first(&queue); cbp != NULL; cbp = bioq_first(&queue)) { bioq_remove(&queue, cbp); sd = cbp->bio_caller1; cbp->bio_caller1 = NULL; g_raid_subdisk_iostart(sd, cbp); } return; failure: for (cbp = bioq_first(&queue); cbp != NULL; cbp = bioq_first(&queue)) { bioq_remove(&queue, cbp); g_destroy_bio(cbp); } if (bp->bio_error == 0) bp->bio_error = ENOMEM; g_raid_iodone(bp, bp->bio_error); } static void g_raid_tr_iostart_raid1(struct g_raid_tr_object *tr, struct bio *bp) { struct g_raid_volume *vol; struct g_raid_tr_raid1_object *trs; vol = tr->tro_volume; trs = (struct g_raid_tr_raid1_object *)tr; if (vol->v_state != G_RAID_VOLUME_S_OPTIMAL && vol->v_state != G_RAID_VOLUME_S_SUBOPTIMAL && vol->v_state != G_RAID_VOLUME_S_DEGRADED) { g_raid_iodone(bp, EIO); return; } /* * If we're rebuilding, squeeze in rebuild activity every so often, * even when the disk is busy. Be sure to only count real I/O * to the disk. All 'SPECIAL' I/O is traffic generated to the disk * by this module. */ if (trs->trso_failed_sd != NULL && !(bp->bio_cflags & G_RAID_BIO_FLAG_SPECIAL)) { /* Make this new or running now round short. */ trs->trso_recover_slabs = 0; if (--trs->trso_fair_io <= 0) { trs->trso_fair_io = g_raid1_rebuild_fair_io; g_raid_tr_raid1_rebuild_some(tr); } } switch (bp->bio_cmd) { case BIO_READ: g_raid_tr_iostart_raid1_read(tr, bp); break; case BIO_WRITE: g_raid_tr_iostart_raid1_write(tr, bp); break; case BIO_DELETE: g_raid_iodone(bp, EIO); break; case BIO_FLUSH: g_raid_tr_flush_common(tr, bp); break; default: KASSERT(1 == 0, ("Invalid command here: %u (volume=%s)", bp->bio_cmd, vol->v_name)); break; } } static void g_raid_tr_iodone_raid1(struct g_raid_tr_object *tr, struct g_raid_subdisk *sd, struct bio *bp) { struct bio *cbp; struct g_raid_subdisk *nsd; struct g_raid_volume *vol; struct bio *pbp; struct g_raid_tr_raid1_object *trs; uintptr_t *mask; int error, do_write; trs = (struct g_raid_tr_raid1_object *)tr; vol = tr->tro_volume; if (bp->bio_cflags & G_RAID_BIO_FLAG_SYNC) { /* * This operation is part of a rebuild or resync operation. * See what work just got done, then schedule the next bit of * work, if any. Rebuild/resync is done a little bit at a * time. Either when a timeout happens, or after we get a * bunch of I/Os to the disk (to make sure an active system * will complete in a sane amount of time). * * We are setup to do differing amounts of work for each of * these cases. so long as the slabs is smallish (less than * 50 or so, I'd guess, but that's just a WAG), we shouldn't * have any bio starvation issues. For active disks, we do * 5MB of data, for inactive ones, we do 50MB. */ if (trs->trso_type == TR_RAID1_REBUILD) { if (bp->bio_cmd == BIO_READ) { /* Immediately abort rebuild, if requested. */ if (trs->trso_flags & TR_RAID1_F_ABORT) { trs->trso_flags &= ~TR_RAID1_F_DOING_SOME; g_raid_tr_raid1_rebuild_abort(tr); return; } /* On read error, skip and cross fingers. */ if (bp->bio_error != 0) { G_RAID_LOGREQ(0, bp, "Read error during rebuild (%d), " "possible data loss!", bp->bio_error); goto rebuild_round_done; } /* * The read operation finished, queue the * write and get out. */ G_RAID_LOGREQ(4, bp, "rebuild read done. %d", bp->bio_error); bp->bio_cmd = BIO_WRITE; bp->bio_cflags = G_RAID_BIO_FLAG_SYNC; G_RAID_LOGREQ(4, bp, "Queueing rebuild write."); g_raid_subdisk_iostart(trs->trso_failed_sd, bp); } else { /* * The write operation just finished. Do * another. We keep cloning the master bio * since it has the right buffers allocated to * it. */ G_RAID_LOGREQ(4, bp, "rebuild write done. Error %d", bp->bio_error); nsd = trs->trso_failed_sd; if (bp->bio_error != 0 || trs->trso_flags & TR_RAID1_F_ABORT) { if ((trs->trso_flags & TR_RAID1_F_ABORT) == 0) { g_raid_tr_raid1_fail_disk(sd->sd_softc, nsd, nsd->sd_disk); } trs->trso_flags &= ~TR_RAID1_F_DOING_SOME; g_raid_tr_raid1_rebuild_abort(tr); return; } rebuild_round_done: nsd = trs->trso_failed_sd; trs->trso_flags &= ~TR_RAID1_F_LOCKED; g_raid_unlock_range(sd->sd_volume, bp->bio_offset, bp->bio_length); nsd->sd_rebuild_pos += bp->bio_length; if (nsd->sd_rebuild_pos >= nsd->sd_size) { g_raid_tr_raid1_rebuild_finish(tr); return; } /* Abort rebuild if we are stopping */ if (trs->trso_stopping) { trs->trso_flags &= ~TR_RAID1_F_DOING_SOME; g_raid_tr_raid1_rebuild_abort(tr); return; } if (--trs->trso_meta_update <= 0) { g_raid_write_metadata(vol->v_softc, vol, nsd, nsd->sd_disk); trs->trso_meta_update = g_raid1_rebuild_meta_update; } trs->trso_flags &= ~TR_RAID1_F_DOING_SOME; if (--trs->trso_recover_slabs <= 0) return; g_raid_tr_raid1_rebuild_some(tr); } } else if (trs->trso_type == TR_RAID1_RESYNC) { /* * read good sd, read bad sd in parallel. when both * done, compare the buffers. write good to the bad * if different. do the next bit of work. */ panic("Somehow, we think we're doing a resync"); } return; } pbp = bp->bio_parent; pbp->bio_inbed++; if (bp->bio_cmd == BIO_READ && bp->bio_error != 0) { /* * Read failed on first drive. Retry the read error on * another disk drive, if available, before erroring out the * read. */ sd->sd_disk->d_read_errs++; G_RAID_LOGREQ(0, bp, "Read error (%d), %d read errors total", bp->bio_error, sd->sd_disk->d_read_errs); /* * If there are too many read errors, we move to degraded. * XXX Do we want to FAIL the drive (eg, make the user redo * everything to get it back in sync), or just degrade the * drive, which kicks off a resync? */ do_write = 1; if (sd->sd_disk->d_read_errs > g_raid_read_err_thresh) { g_raid_tr_raid1_fail_disk(sd->sd_softc, sd, sd->sd_disk); if (pbp->bio_children == 1) do_write = 0; } /* * Find the other disk, and try to do the I/O to it. */ mask = (uintptr_t *)(&pbp->bio_driver2); if (pbp->bio_children == 1) { /* Save original subdisk. */ pbp->bio_driver1 = do_write ? sd : NULL; *mask = 0; } *mask |= 1 << sd->sd_pos; nsd = g_raid_tr_raid1_select_read_disk(vol, pbp, *mask); if (nsd != NULL && (cbp = g_clone_bio(pbp)) != NULL) { g_destroy_bio(bp); G_RAID_LOGREQ(2, cbp, "Retrying read from %d", nsd->sd_pos); if (pbp->bio_children == 2 && do_write) { sd->sd_recovery++; cbp->bio_caller1 = nsd; pbp->bio_pflags = G_RAID_BIO_FLAG_LOCKED; /* Lock callback starts I/O */ g_raid_lock_range(sd->sd_volume, cbp->bio_offset, cbp->bio_length, pbp, cbp); } else { g_raid_subdisk_iostart(nsd, cbp); } return; } /* * We can't retry. Return the original error by falling * through. This will happen when there's only one good disk. * We don't need to fail the raid, since its actual state is * based on the state of the subdisks. */ G_RAID_LOGREQ(2, bp, "Couldn't retry read, failing it"); } if (bp->bio_cmd == BIO_READ && bp->bio_error == 0 && pbp->bio_children > 1 && pbp->bio_driver1 != NULL) { /* * If it was a read, and bio_children is >1, then we just * recovered the data from the second drive. We should try to * write that data to the first drive if sector remapping is * enabled. A write should put the data in a new place on the * disk, remapping the bad sector. Do we need to do that by * queueing a request to the main worker thread? It doesn't * affect the return code of this current read, and can be * done at our liesure. However, to make the code simpler, it * is done syncrhonously. */ G_RAID_LOGREQ(3, bp, "Recovered data from other drive"); cbp = g_clone_bio(pbp); if (cbp != NULL) { g_destroy_bio(bp); cbp->bio_cmd = BIO_WRITE; cbp->bio_cflags = G_RAID_BIO_FLAG_REMAP; G_RAID_LOGREQ(2, cbp, "Attempting bad sector remap on failing drive."); g_raid_subdisk_iostart(pbp->bio_driver1, cbp); return; } } if (pbp->bio_pflags & G_RAID_BIO_FLAG_LOCKED) { /* * We're done with a recovery, mark the range as unlocked. * For any write errors, we agressively fail the disk since * there was both a READ and a WRITE error at this location. * Both types of errors generally indicates the drive is on * the verge of total failure anyway. Better to stop trusting * it now. However, we need to reset error to 0 in that case * because we're not failing the original I/O which succeeded. */ if (bp->bio_cmd == BIO_WRITE && bp->bio_error) { G_RAID_LOGREQ(0, bp, "Remap write failed: " "failing subdisk."); g_raid_tr_raid1_fail_disk(sd->sd_softc, sd, sd->sd_disk); bp->bio_error = 0; } if (pbp->bio_driver1 != NULL) { ((struct g_raid_subdisk *)pbp->bio_driver1) ->sd_recovery--; } G_RAID_LOGREQ(2, bp, "REMAP done %d.", bp->bio_error); g_raid_unlock_range(sd->sd_volume, bp->bio_offset, bp->bio_length); } if (pbp->bio_cmd != BIO_READ) { if (pbp->bio_inbed == 1 || pbp->bio_error != 0) pbp->bio_error = bp->bio_error; if (bp->bio_error != 0) { G_RAID_LOGREQ(0, bp, "Write failed: failing subdisk."); g_raid_tr_raid1_fail_disk(sd->sd_softc, sd, sd->sd_disk); } error = pbp->bio_error; } else error = bp->bio_error; g_destroy_bio(bp); if (pbp->bio_children == pbp->bio_inbed) { pbp->bio_completed = pbp->bio_length; g_raid_iodone(pbp, error); } } static int g_raid_tr_kerneldump_raid1(struct g_raid_tr_object *tr, void *virtual, vm_offset_t physical, off_t offset, size_t length) { struct g_raid_volume *vol; struct g_raid_subdisk *sd; int error, i, ok; vol = tr->tro_volume; error = 0; ok = 0; for (i = 0; i < vol->v_disks_count; i++) { sd = &vol->v_subdisks[i]; switch (sd->sd_state) { case G_RAID_SUBDISK_S_ACTIVE: break; case G_RAID_SUBDISK_S_REBUILD: /* * When rebuilding, only part of this subdisk is * writable, the rest will be written as part of the * that process. */ if (offset >= sd->sd_rebuild_pos) continue; break; case G_RAID_SUBDISK_S_STALE: case G_RAID_SUBDISK_S_RESYNC: /* * Resyncing still writes on the theory that the * resync'd disk is very close and writing it will * keep it that way better if we keep up while * resyncing. */ break; default: continue; } error = g_raid_subdisk_kerneldump(sd, virtual, physical, offset, length); if (error == 0) ok++; } return (ok > 0 ? 0 : error); } static int g_raid_tr_locked_raid1(struct g_raid_tr_object *tr, void *argp) { struct bio *bp; struct g_raid_subdisk *sd; bp = (struct bio *)argp; sd = (struct g_raid_subdisk *)bp->bio_caller1; g_raid_subdisk_iostart(sd, bp); return (0); } static int g_raid_tr_idle_raid1(struct g_raid_tr_object *tr) { struct g_raid_tr_raid1_object *trs; trs = (struct g_raid_tr_raid1_object *)tr; trs->trso_fair_io = g_raid1_rebuild_fair_io; trs->trso_recover_slabs = g_raid1_rebuild_cluster_idle; if (trs->trso_type == TR_RAID1_REBUILD) g_raid_tr_raid1_rebuild_some(tr); return (0); } static int g_raid_tr_free_raid1(struct g_raid_tr_object *tr) { struct g_raid_tr_raid1_object *trs; trs = (struct g_raid_tr_raid1_object *)tr; if (trs->trso_buffer != NULL) { free(trs->trso_buffer, M_TR_RAID1); trs->trso_buffer = NULL; } return (0); } G_RAID_TR_DECLARE(raid1, "RAID1");