config root man

Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/mwl/@/netatalk/

FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64
Upload File :
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/mwl/@/netatalk/at_control.c

/*-
 * Copyright (c) 1990,1991 Regents of The University of Michigan.
 * Copyright (c) 2009 Robert N. M. Watson
 * All Rights Reserved.
 *
 * Permission to use, copy, modify, and distribute this software and
 * its documentation for any purpose and without fee is hereby granted,
 * provided that the above copyright notice appears in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation, and that the name of The University
 * of Michigan not be used in advertising or publicity pertaining to
 * distribution of the software without specific, written prior
 * permission. This software is supplied as is without expressed or
 * implied warranties of any kind.
 *
 * This product includes software developed by the University of
 * California, Berkeley and its contributors.
 *
 *	Research Systems Unix Group
 *	The University of Michigan
 *	c/o Wesley Craig
 *	535 W. William Street
 *	Ann Arbor, Michigan
 *	+1-313-764-2278
 *	netatalk@umich.edu
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD: release/9.1.0/sys/netatalk/at_control.c 233200 2012-03-19 20:49:16Z jhb $");

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/priv.h>
#include <sys/rwlock.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/route.h>
#include <netinet/in.h>
#undef s_net
#include <netinet/if_ether.h>

#include <netatalk/at.h>
#include <netatalk/at_var.h>
#include <netatalk/at_extern.h>

struct rwlock		 at_ifaddr_rw;
struct at_ifaddrhead	 at_ifaddrhead;

RW_SYSINIT(at_ifaddr_rw, &at_ifaddr_rw, "at_ifaddr_rw");

static int aa_dorangeroute(struct ifaddr *ifa, u_int first, u_int last,
	    int cmd);
static int aa_addsingleroute(struct ifaddr *ifa, struct at_addr *addr,
	    struct at_addr *mask);
static int aa_delsingleroute(struct ifaddr *ifa, struct at_addr *addr,
	    struct at_addr *mask);
static int aa_dosingleroute(struct ifaddr *ifa, struct at_addr *addr,
	    struct at_addr *mask, int cmd, int flags);
static int at_scrub(struct ifnet *ifp, struct at_ifaddr *aa);
static int at_ifinit(struct ifnet *ifp, struct at_ifaddr *aa,
	    struct sockaddr_at *sat);
static int aa_claim_addr(struct ifaddr *ifa, struct sockaddr *gw);

#define	sateqaddr(a,b)							\
	((a)->sat_len == (b)->sat_len &&				\
	(a)->sat_family == (b)->sat_family &&				\
	(a)->sat_addr.s_net == (b)->sat_addr.s_net &&			\
	(a)->sat_addr.s_node == (b)->sat_addr.s_node)

int
at_control(struct socket *so, u_long cmd, caddr_t data, struct ifnet *ifp,
    struct thread *td)
{
	struct ifreq *ifr = (struct ifreq *)data;
	struct sockaddr_at *sat;
	struct netrange	*nr;
	struct at_aliasreq *ifra = (struct at_aliasreq *)data;
	struct at_ifaddr *aa;
	struct ifaddr *ifa;
	int error;

	/*
	 * If we have an ifp, then find the matching at_ifaddr if it exists
	 */
	aa = NULL;
	AT_IFADDR_RLOCK();
	if (ifp != NULL) {
		TAILQ_FOREACH(aa, &at_ifaddrhead, aa_link) {
			if (aa->aa_ifp == ifp)
				break;
		}
	}
	if (aa != NULL)
		ifa_ref(&aa->aa_ifa);
	AT_IFADDR_RUNLOCK();

	/*
	 * In this first switch table we are basically getting ready for
	 * the second one, by getting the atalk-specific things set up
	 * so that they start to look more similar to other protocols etc.
	 */
	error = 0;
	switch (cmd) {
	case SIOCAIFADDR:
	case SIOCDIFADDR:
		/*
		 * If we have an appletalk sockaddr, scan forward of where we
		 * are now on the at_ifaddr list to find one with a matching 
		 * address on this interface.  This may leave aa pointing to
		 * the first address on the NEXT interface!
		 */
		if (ifra->ifra_addr.sat_family == AF_APPLETALK) {
			struct at_ifaddr *oaa;

			AT_IFADDR_RLOCK();
			for (oaa = aa; aa; aa = TAILQ_NEXT(aa, aa_link)) {
				if (aa->aa_ifp == ifp &&
				    sateqaddr(&aa->aa_addr, &ifra->ifra_addr))
					break;
			}
			if (oaa != NULL && oaa != aa)
				ifa_free(&oaa->aa_ifa);
			if (aa != NULL && oaa != aa)
				ifa_ref(&aa->aa_ifa);
			AT_IFADDR_RUNLOCK();
		}
		/*
		 * If we a retrying to delete an addres but didn't find such,
		 * then rewurn with an error
		 */
		if (cmd == SIOCDIFADDR && aa == NULL) {
			error = EADDRNOTAVAIL;
			goto out;
		}
		/*FALLTHROUGH*/

	case SIOCSIFADDR:
		/* 
		 * If we are not superuser, then we don't get to do these ops.
		 *
		 * XXXRW: Layering?
		 */
		if (priv_check(td, PRIV_NET_ADDIFADDR)) {
			error = EPERM;
			goto out;
		}

		sat = satosat(&ifr->ifr_addr);
		nr = (struct netrange *)sat->sat_zero;
		if (nr->nr_phase == 1) {
			struct at_ifaddr *oaa;

			/*
			 * Look for a phase 1 address on this interface.
			 * This may leave aa pointing to the first address on
			 * the NEXT interface!
			 */
			AT_IFADDR_RLOCK();
			for (oaa = aa; aa; aa = TAILQ_NEXT(aa, aa_link)) {
				if (aa->aa_ifp == ifp &&
				    (aa->aa_flags & AFA_PHASE2) == 0)
					break;
			}
			if (oaa != NULL && oaa != aa)
				ifa_free(&oaa->aa_ifa);
			if (aa != NULL && oaa != aa)
				ifa_ref(&aa->aa_ifa);
			AT_IFADDR_RUNLOCK();
		} else {		/* default to phase 2 */
			struct at_ifaddr *oaa;

			/*
			 * Look for a phase 2 address on this interface.
			 * This may leave aa pointing to the first address on
			 * the NEXT interface!
			 */
			AT_IFADDR_RLOCK();
			for (oaa = aa; aa; aa = TAILQ_NEXT(aa, aa_link)) {
				if (aa->aa_ifp == ifp && (aa->aa_flags &
				    AFA_PHASE2))
					break;
			}
			if (oaa != NULL && oaa != aa)
				ifa_free(&oaa->aa_ifa);
			if (aa != NULL && oaa != aa)
				ifa_ref(&aa->aa_ifa);
			AT_IFADDR_RUNLOCK();
		}

		if (ifp == NULL)
			panic("at_control");

		/*
		 * If we failed to find an existing at_ifaddr entry, then we 
		 * allocate a fresh one. 
		 */
		if (aa == NULL) {
			aa = malloc(sizeof(struct at_ifaddr), M_IFADDR,
			    M_NOWAIT | M_ZERO);
			if (aa == NULL) {
				error = ENOBUFS;
				goto out;
			}
			callout_init(&aa->aa_callout, CALLOUT_MPSAFE);

			ifa = (struct ifaddr *)aa;
			ifa_init(ifa);

			/*
			 * As the at_ifaddr contains the actual sockaddrs,
			 * and the ifaddr itself, link them all together
			 * correctly.
			 */
			ifa->ifa_addr = (struct sockaddr *)&aa->aa_addr;
			ifa->ifa_dstaddr = (struct sockaddr *)&aa->aa_addr;
			ifa->ifa_netmask = (struct sockaddr *)&aa->aa_netmask;

			/*
			 * Set/clear the phase 2 bit.
			 */
			if (nr->nr_phase == 1)
				aa->aa_flags &= ~AFA_PHASE2;
			else
				aa->aa_flags |= AFA_PHASE2;

			ifa_ref(&aa->aa_ifa);		/* at_ifaddrhead */
			AT_IFADDR_WLOCK();
			if (!TAILQ_EMPTY(&at_ifaddrhead)) {
				/*
				 * Don't let the loopback be first, since the
				 * first address is the machine's default
				 * address for binding.  If it is, stick
				 * ourself in front, otherwise go to the back
				 * of the list.
				 */
				if (TAILQ_FIRST(&at_ifaddrhead)->aa_ifp->
				    if_flags & IFF_LOOPBACK)
					TAILQ_INSERT_HEAD(&at_ifaddrhead, aa,
					    aa_link);
				else
					TAILQ_INSERT_TAIL(&at_ifaddrhead, aa,
					    aa_link);
			} else
				TAILQ_INSERT_HEAD(&at_ifaddrhead, aa,
				    aa_link);
			AT_IFADDR_WUNLOCK();

			/*
			 * and link it all together
			 */
			aa->aa_ifp = ifp;
			ifa_ref(&aa->aa_ifa);		/* if_addrhead */
			IF_ADDR_WLOCK(ifp);
			TAILQ_INSERT_TAIL(&ifp->if_addrhead, ifa, ifa_link);
			IF_ADDR_WUNLOCK(ifp);
		} else {
			/*
			 * If we DID find one then we clobber any routes
			 * dependent on it..
			 */
			at_scrub(ifp, aa);
		}
		break;

	case SIOCGIFADDR :
		sat = satosat(&ifr->ifr_addr);
		nr = (struct netrange *)sat->sat_zero;
		if (nr->nr_phase == 1) {
			struct at_ifaddr *oaa;

			/*
			 * If the request is specifying phase 1, then
			 * only look at a phase one address
			 */
			AT_IFADDR_RLOCK();
			for (oaa = aa; aa; aa = TAILQ_NEXT(aa, aa_link)) {
				if (aa->aa_ifp == ifp &&
				    (aa->aa_flags & AFA_PHASE2) == 0)
					break;
			}
			if (oaa != NULL && oaa != aa)
				ifa_free(&oaa->aa_ifa);
			if (aa != NULL && oaa != aa)
				ifa_ref(&aa->aa_ifa);
			AT_IFADDR_RUNLOCK();
		} else {
			struct at_ifaddr *oaa;

			/*
			 * default to phase 2
			 */
			AT_IFADDR_RLOCK();
			for (oaa = aa; aa; aa = TAILQ_NEXT(aa, aa_link)) {
				if (aa->aa_ifp == ifp && (aa->aa_flags &
				    AFA_PHASE2))
					break;
			}
			if (oaa != NULL && oaa != aa)
				ifa_free(&oaa->aa_ifa);
			if (aa != NULL && oaa != aa)
				ifa_ref(&aa->aa_ifa);
			AT_IFADDR_RUNLOCK();
		}

		if (aa == NULL) {
			error = EADDRNOTAVAIL;
			goto out;
		}
		break;
	}

	/*
	 * By the time this switch is run we should be able to assume that
	 * the "aa" pointer is valid when needed.
	 */
	switch (cmd) {
	case SIOCGIFADDR:

		/*
		 * copy the contents of the sockaddr blindly.
		 */
		sat = (struct sockaddr_at *)&ifr->ifr_addr;
		*sat = aa->aa_addr;

 		/* 
		 * and do some cleanups
		 */
		((struct netrange *)&sat->sat_zero)->nr_phase
		    = (aa->aa_flags & AFA_PHASE2) ? 2 : 1;
		((struct netrange *)&sat->sat_zero)->nr_firstnet =
		    aa->aa_firstnet;
		((struct netrange *)&sat->sat_zero)->nr_lastnet =
		    aa->aa_lastnet;
		break;

	case SIOCSIFADDR:
		error = at_ifinit(ifp, aa,
		    (struct sockaddr_at *)&ifr->ifr_addr);
		goto out;

	case SIOCAIFADDR:
		if (sateqaddr(&ifra->ifra_addr, &aa->aa_addr)) {
			error = 0;
			goto out;
		}
		error = at_ifinit(ifp, aa,
		    (struct sockaddr_at *)&ifr->ifr_addr);
		goto out;

	case SIOCDIFADDR:

		/*
		 * remove the ifaddr from the interface
		 */
		ifa = (struct ifaddr *)aa;
		IF_ADDR_WLOCK(ifp);
		TAILQ_REMOVE(&ifp->if_addrhead, ifa, ifa_link);
		IF_ADDR_WUNLOCK(ifp);
		ifa_free(ifa);				/* if_addrhead */

		/*
		 * Now remove the at_ifaddr from the parallel structure
		 * as well, or we'd be in deep trouble
		 */

		AT_IFADDR_WLOCK();
		TAILQ_REMOVE(&at_ifaddrhead, aa, aa_link);
		AT_IFADDR_WUNLOCK();
		ifa_free(ifa);				/* at_ifaddrhead */
		break;

	default:
		if (ifp == NULL || ifp->if_ioctl == NULL) {
			error = EOPNOTSUPP;
			goto out;
		}
		error = ((*ifp->if_ioctl)(ifp, cmd, data));
	}

out:
	if (aa != NULL)
		ifa_free(&aa->aa_ifa);
	return (error);
}

/* 
 * Given an interface and an at_ifaddr (supposedly on that interface)
 * remove  any routes that depend on this.
 * Why ifp is needed I'm not sure,
 * as aa->at_ifaddr.ifa_ifp should be the same.
 */
static int
at_scrub(struct ifnet *ifp, struct at_ifaddr *aa)
{
	int error;

	if (aa->aa_flags & AFA_ROUTE) {
		if (ifp->if_flags & IFF_LOOPBACK) {
			if ((error = aa_delsingleroute(&aa->aa_ifa,
			    &aa->aa_addr.sat_addr, &aa->aa_netmask.sat_addr))
			    != 0)
	    			return (error);
		} else if (ifp->if_flags & IFF_POINTOPOINT) {
			if ((error = rtinit(&aa->aa_ifa, RTM_DELETE,
			    RTF_HOST)) != 0)
	    			return (error);
		} else if (ifp->if_flags & IFF_BROADCAST) {
			error = aa_dorangeroute(&aa->aa_ifa,
			    ntohs(aa->aa_firstnet), ntohs(aa->aa_lastnet),
			    RTM_DELETE);
		}
		aa->aa_ifa.ifa_flags &= ~IFA_ROUTE;
		aa->aa_flags &= ~AFA_ROUTE;
	}
	return (0);
}

/*
 * given an at_ifaddr,a sockaddr_at and an ifp,
 * bang them all together at high speed and see what happens
 */
static int 
at_ifinit(struct ifnet *ifp, struct at_ifaddr *aa, struct sockaddr_at *sat)
{
	struct netrange nr, onr;
	struct sockaddr_at oldaddr;
	int error = 0, i, j;
	int netinc, nodeinc, nnets;
	u_short net;

	/* 
	 * save the old addresses in the at_ifaddr just in case we need them.
	 */
	oldaddr = aa->aa_addr;
	onr.nr_firstnet = aa->aa_firstnet;
	onr.nr_lastnet = aa->aa_lastnet;

	/*
	 * take the address supplied as an argument, and add it to the 
	 * at_ifnet (also given). Remember ing to update
	 * those parts of the at_ifaddr that need special processing
	 */
	bzero(AA_SAT(aa), sizeof(struct sockaddr_at));
	bcopy(sat->sat_zero, &nr, sizeof(struct netrange));
	bcopy(sat->sat_zero, AA_SAT(aa)->sat_zero, sizeof(struct netrange));
	nnets = ntohs(nr.nr_lastnet) - ntohs(nr.nr_firstnet) + 1;
	aa->aa_firstnet = nr.nr_firstnet;
	aa->aa_lastnet = nr.nr_lastnet;

/* XXX ALC */
#if 0
	printf("at_ifinit: %s: %u.%u range %u-%u phase %d\n",
	    ifp->if_name,
	    ntohs(sat->sat_addr.s_net), sat->sat_addr.s_node,
	    ntohs(aa->aa_firstnet), ntohs(aa->aa_lastnet),
	    (aa->aa_flags & AFA_PHASE2) ? 2 : 1);
#endif

	/*
	 * We could eliminate the need for a second phase 1 probe (post
	 * autoconf) if we check whether we're resetting the node. Note
	 * that phase 1 probes use only nodes, not net.node pairs.  Under
	 * phase 2, both the net and node must be the same.
	 */
	if (ifp->if_flags & IFF_LOOPBACK) {
		AA_SAT(aa)->sat_len = sat->sat_len;
		AA_SAT(aa)->sat_family = AF_APPLETALK;
		AA_SAT(aa)->sat_addr.s_net = sat->sat_addr.s_net;
		AA_SAT(aa)->sat_addr.s_node = sat->sat_addr.s_node;
#if 0
	} else if (fp->if_flags & IFF_POINTOPOINT) {
		/* unimplemented */
		/*
		 * we'd have to copy the dstaddr field over from the sat 
		 * but it's not clear that it would contain the right info..
		 */
#endif
	} else {
		/*
		 * We are a normal (probably ethernet) interface.
		 * apply the new address to the interface structures etc.
		 * We will probe this address on the net first, before
		 * applying it to ensure that it is free.. If it is not, then
		 * we will try a number of other randomly generated addresses
		 * in this net and then increment the net.  etc.etc. until
		 * we find an unused address.
		 */
		aa->aa_flags |= AFA_PROBING; /* not loopback we Must probe? */
		AA_SAT(aa)->sat_len = sizeof(struct sockaddr_at);
		AA_SAT(aa)->sat_family = AF_APPLETALK;
		if (aa->aa_flags & AFA_PHASE2) {
			if (sat->sat_addr.s_net == ATADDR_ANYNET) {
				/*
				 * If we are phase 2, and the net was not
				 * specified then we select a random net
				 * within the supplied netrange.
				 * XXX use /dev/random?
				 */
				if (nnets != 1)
					net = ntohs(nr.nr_firstnet) +
					    time_second % (nnets - 1);
				else
					net = ntohs(nr.nr_firstnet);
			} else {
				/*
				 * if a net was supplied, then check that it
				 * is within the netrange. If it is not then
				 * replace the old values and return an error
				 */
				if (ntohs(sat->sat_addr.s_net) <
				    ntohs(nr.nr_firstnet) ||
				    ntohs(sat->sat_addr.s_net) >
				    ntohs(nr.nr_lastnet)) {
					aa->aa_addr = oldaddr;
					aa->aa_firstnet = onr.nr_firstnet;
					aa->aa_lastnet = onr.nr_lastnet;
					return (EINVAL);
				}
				/*
				 * otherwise just use the new net number..
				 */
				net = ntohs(sat->sat_addr.s_net);
			}
		} else {
			/*
			 * we must be phase one, so just use whatever we were
			 * given.  I guess it really isn't going to be
			 * used... RIGHT?
			 */
			net = ntohs(sat->sat_addr.s_net);
		}

		/* 
		 * set the node part of the address into the ifaddr.
		 * If it's not specified, be random about it...
		 * XXX use /dev/random?
		 */
		if (sat->sat_addr.s_node == ATADDR_ANYNODE)
			AA_SAT(aa)->sat_addr.s_node = time_second;
		else
			AA_SAT(aa)->sat_addr.s_node = sat->sat_addr.s_node;

		/* 
		 * Copy the phase.
		 */
		AA_SAT(aa)->sat_range.r_netrange.nr_phase =
		    ((aa->aa_flags & AFA_PHASE2) ? 2:1);

		/* 
		 * step through the nets in the range
		 * starting at the (possibly random) start point.
		 */
		for (i = nnets, netinc = 1; i > 0; net =
		    ntohs(nr.nr_firstnet) + ((net - ntohs(nr.nr_firstnet) +
		    netinc) % nnets), i--) {
			AA_SAT(aa)->sat_addr.s_net = htons(net);

			/*
			 * using a rather strange stepping method,
			 * stagger through the possible node addresses
			 * Once again, starting at the (possibly random)
			 * initial node address.
			 */
			for (j = 0, nodeinc = time_second | 1; j < 256;
			    j++, AA_SAT(aa)->sat_addr.s_node += nodeinc) {
				if (AA_SAT(aa)->sat_addr.s_node > 253 ||
				    AA_SAT(aa)->sat_addr.s_node < 1)
					continue;
				aa->aa_probcnt = 10;
	
				/*
				 * start off the probes as an asynchronous
				 * activity.  though why wait 200mSec?
				 */
				AARPTAB_LOCK();
				callout_reset(&aa->aa_callout, hz / 5,
				    aarpprobe, ifp);
				if (msleep(aa, &aarptab_mtx, PPAUSE|PCATCH,
				    "at_ifinit", 0)) {
					AARPTAB_UNLOCK();
					/*
					 * theoretically we shouldn't time
					 * out here so if we returned with an
					 * error..
					 */
					printf("at_ifinit: why did this "
					    "happen?!\n");
					aa->aa_addr = oldaddr;
					aa->aa_firstnet = onr.nr_firstnet;
					aa->aa_lastnet = onr.nr_lastnet;
					return (EINTR);
				}
				AARPTAB_UNLOCK();

				/* 
				 * The async activity should have woken us
				 * up.  We need to see if it was successful
				 * in finding a free spot, or if we need to
				 * iterate to the next address to try.
				 */
				if ((aa->aa_flags & AFA_PROBING) == 0)
					break;
			}

			/*
			 * of course we need to break out through two loops...
			 */
			if ((aa->aa_flags & AFA_PROBING) == 0)
				break;
			/* reset node for next network */
			AA_SAT(aa)->sat_addr.s_node = time_second;
		}

		/*
		 * if we are still trying to probe, then we have finished all
		 * the possible addresses, so we need to give up
		 */
		if (aa->aa_flags & AFA_PROBING) {
			aa->aa_addr = oldaddr;
			aa->aa_firstnet = onr.nr_firstnet;
			aa->aa_lastnet = onr.nr_lastnet;
			return (EADDRINUSE);
		}
	}

	/* 
	 * Now that we have selected an address, we need to tell the interface
	 * about it, just in case it needs to adjust something.
	 */
	if (ifp->if_ioctl != NULL &&
	    (error = (*ifp->if_ioctl)(ifp, SIOCSIFADDR, (caddr_t)aa))) {
		/*
		 * of course this could mean that it objects violently
		 * so if it does, we back out again..
		 */
		aa->aa_addr = oldaddr;
		aa->aa_firstnet = onr.nr_firstnet;
		aa->aa_lastnet = onr.nr_lastnet;
		return (error);
	}

	/* 
	 * set up the netmask part of the at_ifaddr
	 * and point the appropriate pointer in the ifaddr to it.
	 * probably pointless, but what the heck.. XXX
	 */
	bzero(&aa->aa_netmask, sizeof(aa->aa_netmask));
	aa->aa_netmask.sat_len = sizeof(struct sockaddr_at);
	aa->aa_netmask.sat_family = AF_APPLETALK;
	aa->aa_netmask.sat_addr.s_net = 0xffff;
	aa->aa_netmask.sat_addr.s_node = 0;
	aa->aa_ifa.ifa_netmask =(struct sockaddr *) &(aa->aa_netmask); /* XXX */

	/*
	 * Initialize broadcast (or remote p2p) address
	 */
	bzero(&aa->aa_broadaddr, sizeof(aa->aa_broadaddr));
	aa->aa_broadaddr.sat_len = sizeof(struct sockaddr_at);
	aa->aa_broadaddr.sat_family = AF_APPLETALK;

	aa->aa_ifa.ifa_metric = ifp->if_metric;
	if (ifp->if_flags & IFF_BROADCAST) {
		aa->aa_broadaddr.sat_addr.s_net = htons(0);
		aa->aa_broadaddr.sat_addr.s_node = 0xff;
		aa->aa_ifa.ifa_broadaddr = (struct sockaddr *)
		    &aa->aa_broadaddr;
		/* add the range of routes needed */
		error = aa_dorangeroute(&aa->aa_ifa, ntohs(aa->aa_firstnet),
		    ntohs(aa->aa_lastnet), RTM_ADD);
	} else if (ifp->if_flags & IFF_POINTOPOINT) {
		struct at_addr	rtaddr, rtmask;

		bzero(&rtaddr, sizeof(rtaddr));
		bzero(&rtmask, sizeof(rtmask));
		/* fill in the far end if we know it here XXX */
		aa->aa_ifa.ifa_dstaddr = (struct sockaddr *) &aa->aa_dstaddr;
		error = aa_addsingleroute(&aa->aa_ifa, &rtaddr, &rtmask);
	} else if (ifp->if_flags & IFF_LOOPBACK) {
		struct at_addr	rtaddr, rtmask;

		bzero(&rtaddr, sizeof(rtaddr));
		bzero(&rtmask, sizeof(rtmask));
		rtaddr.s_net = AA_SAT(aa)->sat_addr.s_net;
		rtaddr.s_node = AA_SAT(aa)->sat_addr.s_node;
		rtmask.s_net = 0xffff;
		 /* XXX should not be so.. should be HOST route */
		rtmask.s_node = 0x0;
		error = aa_addsingleroute(&aa->aa_ifa, &rtaddr, &rtmask);
	}

	/*
	 * set the address of our "check if this addr is ours" routine.
	 */
	aa->aa_ifa.ifa_claim_addr = aa_claim_addr;

	/*
	 * of course if we can't add these routes we back out, but it's
	 * getting risky by now XXX
	 */
	if (error) {
		at_scrub(ifp, aa);
		aa->aa_addr = oldaddr;
		aa->aa_firstnet = onr.nr_firstnet;
		aa->aa_lastnet = onr.nr_lastnet;
		return (error);
	}

	/*
	 * note that the address has a route associated with it....
	 */
	aa->aa_ifa.ifa_flags |= IFA_ROUTE;
	aa->aa_flags |= AFA_ROUTE;
	return (0);
}

/*
 * check whether a given address is a broadcast address for us..
 */
int
at_broadcast(struct sockaddr_at *sat)
{
	struct at_ifaddr *aa;

	AT_IFADDR_LOCK_ASSERT();

	/*
	 * If the node is not right, it can't be a broadcast 
	 */
	if (sat->sat_addr.s_node != ATADDR_BCAST)
		return (0);

	/*
	 * If the node was right then if the net is right, it's a broadcast
	 */
	if (sat->sat_addr.s_net == ATADDR_ANYNET)
		return (1);

	/*
	 * failing that, if the net is one we have, it's a broadcast as well.
	 */
	TAILQ_FOREACH(aa, &at_ifaddrhead, aa_link) {
		if ((aa->aa_ifp->if_flags & IFF_BROADCAST)
		    && (ntohs(sat->sat_addr.s_net) >= ntohs(aa->aa_firstnet)
		    && ntohs(sat->sat_addr.s_net) <= ntohs(aa->aa_lastnet)))
			return (1);
	}
	return (0);
}

/*
 * aa_dorangeroute()
 *
 * Add a route for a range of networks from bot to top - 1.
 * Algorithm:
 *
 * Split the range into two subranges such that the middle
 * of the two ranges is the point where the highest bit of difference
 * between the two addresses makes its transition.
 * Each of the upper and lower ranges might not exist, or might be 
 * representable by 1 or more netmasks. In addition, if both
 * ranges can be represented by the same netmask, then they can be merged
 * by using the next higher netmask..
 */

static int
aa_dorangeroute(struct ifaddr *ifa, u_int bot, u_int top, int cmd)
{
	u_int mask1;
	struct at_addr addr;
	struct at_addr mask;
	int error;

	/*
	 * slight sanity check
	 */
	if (bot > top) return (EINVAL);

	addr.s_node = 0;
	mask.s_node = 0;
	/*
	 * just start out with the lowest boundary
	 * and keep extending the mask till it's too big.
	 */
	
	 while (bot <= top) {
	 	mask1 = 1;
	 	while (((bot & ~mask1) >= bot) && ((bot | mask1) <= top)) {
			mask1 <<= 1;
			mask1 |= 1;
		}
		mask1 >>= 1;
		mask.s_net = htons(~mask1);
		addr.s_net = htons(bot);
		if (cmd == RTM_ADD) {
			error =	 aa_addsingleroute(ifa,&addr,&mask);
			if (error) {
				/* XXX clean up? */
				return (error);
			}
		} else
			error =	 aa_delsingleroute(ifa,&addr,&mask);
		bot = (bot | mask1) + 1;
	}
	return (0);
}

static int
aa_addsingleroute(struct ifaddr *ifa, struct at_addr *addr,
    struct at_addr *mask)
{

#if 0
	printf("aa_addsingleroute: %x.%x mask %x.%x ...\n",
	    ntohs(addr->s_net), addr->s_node, ntohs(mask->s_net),
	    mask->s_node);
#endif

	return (aa_dosingleroute(ifa, addr, mask, RTM_ADD, RTF_UP));
}

static int
aa_delsingleroute(struct ifaddr *ifa, struct at_addr *addr,
    struct at_addr *mask)
{

	return (aa_dosingleroute(ifa, addr, mask, RTM_DELETE, 0));
}

static int
aa_dosingleroute(struct ifaddr *ifa, struct at_addr *at_addr,
    struct at_addr *at_mask, int cmd, int flags)
{
	struct sockaddr_at addr, mask;

	bzero(&addr, sizeof(addr));
	bzero(&mask, sizeof(mask));
	addr.sat_family = AF_APPLETALK;
	addr.sat_len = sizeof(struct sockaddr_at);
	addr.sat_addr.s_net = at_addr->s_net;
	addr.sat_addr.s_node = at_addr->s_node;
	mask.sat_family = AF_APPLETALK;
	mask.sat_len = sizeof(struct sockaddr_at);
	mask.sat_addr.s_net = at_mask->s_net;
	mask.sat_addr.s_node = at_mask->s_node;
	if (at_mask->s_node)
		flags |= RTF_HOST;
	return (rtrequest(cmd, (struct sockaddr *) &addr,
	    (flags & RTF_HOST)?(ifa->ifa_dstaddr):(ifa->ifa_addr),
	    (struct sockaddr *) &mask, flags, NULL));
}

static int
aa_claim_addr(struct ifaddr *ifa, struct sockaddr *gw0)
{
	struct sockaddr_at *addr = (struct sockaddr_at *)ifa->ifa_addr;
	struct sockaddr_at *gw = (struct sockaddr_at *)gw0;

	switch (gw->sat_range.r_netrange.nr_phase) {
	case 1:
		if(addr->sat_range.r_netrange.nr_phase == 1)
			return (1);

	case 0:
	case 2:
		/*
		 * if it's our net (including 0),
		 * or netranges are valid, and we are in the range,
		 * then it's ours.
		 */
		if ((addr->sat_addr.s_net == gw->sat_addr.s_net)
		    || ((addr->sat_range.r_netrange.nr_lastnet)
		    && (ntohs(gw->sat_addr.s_net) >=
		    ntohs(addr->sat_range.r_netrange.nr_firstnet))
		    && (ntohs(gw->sat_addr.s_net) <=
		    ntohs(addr->sat_range.r_netrange.nr_lastnet))))
			return (1);
		break;
	default:
		printf("atalk: bad phase\n");
	}
	return (0);
}

Man Man