Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/netgraph/deflate/@/dev/ctau/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/netgraph/deflate/@/dev/ctau/ctau.c |
/*- * Low-level subroutines for Cronyx-Tau adapter. * * Copyright (C) 1994-2001 Cronyx Engineering. * Author: Serge Vakulenko, <vak@cronyx.ru> * * Copyright (C) 2003 Cronyx Engineering. * Author: Roman Kurakin, <rik@cronyx.ru> * * This software is distributed with NO WARRANTIES, not even the implied * warranties for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * * Authors grant any other persons or organisations permission to use * or modify this software as long as this message is kept with the software, * all derivative works or modified versions. * * Cronyx Id: ctau.c,v 1.1.2.4 2003/12/11 17:33:43 rik Exp $ */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/dev/ctau/ctau.c 218909 2011-02-21 09:01:34Z brucec $"); #include <dev/cx/machdep.h> #include <dev/ctau/ctddk.h> #include <dev/ctau/ctaureg.h> #include <dev/ctau/hdc64570.h> #include <dev/ctau/ds2153.h> #include <dev/ctau/am8530.h> #include <dev/ctau/lxt318.h> #include <dev/cx/cronyxfw.h> #define DMA_MASK 0xd4 /* DMA mask register */ #define DMA_MASK_CLEAR 0x04 /* DMA clear mask */ #define DMA_MODE 0xd6 /* DMA mode register */ #define DMA_MODE_MASTER 0xc0 /* DMA master mode */ #define BYTE *(unsigned char*)& static unsigned char irqmask [] = { BCR0_IRQ_DIS, BCR0_IRQ_DIS, BCR0_IRQ_DIS, BCR0_IRQ_3, BCR0_IRQ_DIS, BCR0_IRQ_5, BCR0_IRQ_DIS, BCR0_IRQ_7, BCR0_IRQ_DIS, BCR0_IRQ_DIS, BCR0_IRQ_10, BCR0_IRQ_11, BCR0_IRQ_12, BCR0_IRQ_DIS, BCR0_IRQ_DIS, BCR0_IRQ_15, }; static unsigned char dmamask [] = { BCR0_DMA_DIS, BCR0_DMA_DIS, BCR0_DMA_DIS, BCR0_DMA_DIS, BCR0_DMA_DIS, BCR0_DMA_5, BCR0_DMA_6, BCR0_DMA_7, }; static short porttab [] = { /* standard base port set */ 0x200, 0x220, 0x240, 0x260, 0x280, 0x2a0, 0x2c0, 0x2e0, 0x300, 0x320, 0x340, 0x360, 0x380, 0x3a0, 0x3c0, 0x3e0, 0 }; static short irqtab [] = { 3, 5, 7, 10, 11, 12, 15, 0 }; static short dmatab [] = { 5, 6, 7, 0 }; static int valid (short value, short *list) { while (*list) if (value == *list++) return 1; return 0; } long ct_baud = 256000; /* default baud rate */ unsigned char ct_chan_mode = M_HDLC; /* default mode */ static void ct_init_chan (ct_board_t *b, int num); static void ct_enable_loop (ct_chan_t *c); static void ct_disable_loop (ct_chan_t *c); int ct_download (port_t port, const unsigned char *firmware, long bits, const cr_dat_tst_t *tst) { unsigned char cr1, sr2; long i, n, maxn = (bits + 7) >> 3; int v, b; inb (BSR3(port)); for (i=n=0; n<maxn; ++n) { v = ((firmware[n] ^ ' ') << 1) | ((firmware[n] >> 7) & 1); for (b=0; b<7; b+=2, i+=2) { if (i >= bits) break; cr1 = 0; if (v >> b & 1) cr1 |= BCR1_TMS; if (v >> b & 2) cr1 |= BCR1_TDI; outb (BCR1(port), cr1); sr2 = inb (BSR2(port)); outb (BCR0(port), BCR0_TCK); outb (BCR0(port), 0); if (i >= tst->end) ++tst; if (i >= tst->start && (sr2 & BSR2_LERR)) return (0); } } return (1); } /* * Firmware unpack algorithm. */ typedef struct { const unsigned char *ptr; unsigned char byte; unsigned char count; } unpack_t; static unsigned short unpack_init (unpack_t *t, const unsigned char *ptr) { unsigned short len; len = *ptr++; len |= *ptr++ << 8; t->ptr = ptr; t->byte = 0; t->count = 0; return len; } static unsigned char unpack_getchar (unpack_t *t) { if (t->count > 0) { --t->count; return t->byte; } t->byte = *t->ptr++; if (t->byte == 0) t->count = *t->ptr++; return t->byte; } /* * Firmware download signals. */ #define nstatus(b) (inb(BSR3(b)) & BSR3_NSTATUS) #define confdone(b) (inb(BSR3(b)) & BSR3_CONF_DN) #define nconfig_set(b) outb (bcr1_port, (bcr1 &= ~BCR1_NCONFIGI)) #define nconfig_clr(b) outb (bcr1_port, (bcr1 |= BCR1_NCONFIGI)) #define dclk_tick(b) outb (BCR3(b), 0) #define putbit(b,bit) { if (bit) bcr1 |= BCR1_1KDAT; \ else bcr1 &= ~BCR1_1KDAT; \ outb (bcr1_port, bcr1); \ dclk_tick (b); } #define CTAU_DEBUG(x) /*trace_str x*/ int ct_download2 (port_t port, const unsigned char *fwaddr) { unsigned short bytes; unsigned char bcr1, val; port_t bcr1_port; unpack_t t; /* * Set NCONFIG and wait until NSTATUS is set. */ bcr1_port = BCR1(port); bcr1 = 0; nconfig_set(port); for (val=0; val<255; ++val) if (nstatus(port)) break; /* * Clear NCONFIG, wait 2 usec and check that NSTATUS is cleared. */ nconfig_clr(port); for (val=0; val<2*3; ++val) nconfig_clr(port); if (nstatus(port)) { CTAU_DEBUG (("Bad nstatus, downloading aborted (bsr3=0x%x).\n", inb(BSR3(port)))); nconfig_set(port); return 0; } /* * Set NCONFIG and wait 5 usec. */ nconfig_set(port); for (val=0; val<5*3; ++val) /* Delay 5 msec. */ nconfig_set(port); /* * С адреса `fwaddr' в памяти должны лежать упакованные данные * для загрузки firmware. Значение должно быть согласовано с параметром * вызова утилиты `megaprog' в скрипте загрузки (и Makefile). */ bytes = unpack_init (&t, fwaddr); for (; bytes>0; --bytes) { val = unpack_getchar (&t); if (nstatus(port) == 0) { CTAU_DEBUG (("Bad nstatus, %d bytes remaining.\n", bytes)); goto failed; } if (confdone(port)) { /* Ten extra clocks. Hope 50 is enough. */ for (val=0; val<50; ++val) dclk_tick (port); if (nstatus(port) == 0) { CTAU_DEBUG (("Bad nstatus after confdone, %d bytes remaining (%d).\n", bytes, t.ptr - fwaddr)); goto failed; } /* Succeeded. */ /*CTAU_DEBUG (("Download succeeded.\n"));*/ return 1; } putbit (port, val & 0x01); putbit (port, val & 0x02); putbit (port, val & 0x04); putbit (port, val & 0x08); putbit (port, val & 0x10); putbit (port, val & 0x20); putbit (port, val & 0x40); putbit (port, val & 0x80); /* if ((bytes & 1023) == 0) putch ('.'); */ } CTAU_DEBUG (("Bad confdone.\n")); failed: CTAU_DEBUG (("Downloading aborted.\n")); return 0; } /* * Detect Tau2 adapter. */ static int ct_probe2_board (port_t port) { unsigned char sr3, osr3; int i; if (! valid (port, porttab)) return 0; osr3 = inb (BSR3(port)); if ((osr3 & (BSR3_IB | BSR3_IB_NEG)) != BSR3_IB && (osr3 & (BSR3_IB | BSR3_IB_NEG)) != BSR3_IB_NEG) return (0); for (i=0; i<100; ++i) { /* Do it twice */ sr3 = inb (BSR3(port)); sr3 = inb (BSR3(port)); if (((sr3 ^ osr3) & (BSR3_IB | BSR3_IB_NEG | BSR3_ZERO)) != (BSR3_IB | BSR3_IB_NEG)) return (0); osr3 = sr3; } /* Reset the controller. */ outb (BCR0(port), 0); return 1; } /* * Check if the Tau board is present at the given base port. * Read board status register 1 and check identification bits * which should invert every next read. * The "zero" bit should remain stable. */ int ct_probe_board (port_t port, int irq, int dma) { unsigned char sr3, osr3; int i; if (! valid (port, porttab)) return 0; if ((irq > 0) && (!valid (irq, irqtab))) return 0; if ((dma > 0) && (!valid (dma, dmatab))) return 0; osr3 = inb (BSR3(port)); if ((osr3 & (BSR3_IB | BSR3_IB_NEG)) != BSR3_IB && (osr3 & (BSR3_IB | BSR3_IB_NEG)) != BSR3_IB_NEG) return (0); for (i=0; i<100; ++i) { sr3 = inb (BSR3(port)); if (((sr3 ^ osr3) & (BSR3_IB | BSR3_IB_NEG | BSR3_ZERO)) != (BSR3_IB | BSR3_IB_NEG)) return ct_probe2_board (port); osr3 = sr3; } /* Reset the controller. */ outb (BCR0(port), 0); return (1); } /* * Check that the irq is functional. * irq>0 - activate the interrupt from the adapter (irq=on) * irq<0 - deactivate the interrupt (irq=off) * irq==0 - free the interrupt line (irq=tri-state) * Return the interrupt mask _before_ activating irq. */ int ct_probe_irq (ct_board_t *b, int irq) { int mask; outb (0x20, 0x0a); mask = inb (0x20); outb (0xa0, 0x0a); mask |= inb (0xa0) << 8; if (irq > 0) { outb (BCR0(b->port), BCR0_HDRUN | irqmask[irq]); outb (R(b->port,HD_TEPR_0R), 0); outw (R(b->port,HD_TCONR_0R), 1); outw (R(b->port,HD_TCNT_0R), 0); outb (R(b->port,HD_TCSR_0R), TCSR_ENABLE | TCSR_INTR); outb (IER2(b->port), IER2_RX_TME_0); } else if (irq < 0) { outb (BCR0(b->port), BCR0_HDRUN | irqmask[-irq]); outb (IER0(b->port), 0); outb (IER1(b->port), 0); outb (IER2(b->port), 0); outb (R(b->port,HD_TCSR_0R), 0); cte_out (E1CS0 (b->port), DS_IMR2, 0); cte_out (E1CS1 (b->port), DS_IMR2, 0); if (-irq > 7) { outb (0xa0, 0x60 | ((-irq) & 7)); outb (0x20, 0x62); } else outb (0x20, 0x60 | (-irq)); } else { outb (BCR0(b->port), b->bcr0); cte_out (E1CS0 (b->port), DS_IMR2, SR2_SEC); cte_out (E1CS1 (b->port), DS_IMR2, SR2_SEC); } return mask; } void ct_init_board (ct_board_t *b, int num, port_t port, int irq, int dma, int type, long osc) { int i; /* Initialize board structure. */ b->type = type; b->port = port; b->num = num; b->irq = irq; b->dma = dma; b->osc = osc; /* Get the board type. */ if (b->type == B_TAU) strcpy (b->name, "Tau"); else if (b->type == B_TAU_E1) strcpy (b->name, "Tau/E1"); else if (b->type == B_TAU_E1C) strcpy (b->name, "Tau/E1c"); else if (b->type == B_TAU_E1D) strcpy (b->name, "Tau/E1d"); else if (b->type == B_TAU_G703) strcpy (b->name, "Tau/G.703"); else if (b->type == B_TAU_G703C) strcpy (b->name, "Tau/G.703c"); else if (b->type == B_TAU2) strcpy (b->name, "Tau2"); else if (b->type == B_TAU2_E1) strcpy (b->name, "Tau2/E1"); else if (b->type == B_TAU2_E1D) strcpy (b->name, "Tau2/E1d"); else if (b->type == B_TAU2_G703) strcpy (b->name, "Tau2/G.703"); else strcpy (b->name, "Tau/???"); /* Set DMA and IRQ. */ b->bcr0 = BCR0_HDRUN | dmamask[b->dma] | irqmask[b->irq]; /* Clear DTR[0..1]. */ b->bcr1 = 0; b->e1cfg = 0; /* Initialize channel structures. */ for (i=0; i<NCHAN; ++i) ct_init_chan (b, i); ct_reinit_board (b); } /* * Initialize the board structure. */ void ct_init (ct_board_t *b, int num, port_t port, int irq, int dma, const unsigned char *firmware, long bits, const cr_dat_tst_t *tst, const unsigned char *firmware2) { static long tlen = 182; static cr_dat_tst_t tvec [] = {{ 114, 178 }, { 182, 182 }}; static cr_dat_tst_t tvec2 [] = {{ 50, 178 }, { 182, 182 }}; static unsigned char tau [] = { 155,153,113,48,64,236, 48,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,183,}; static unsigned char e1 [] = { 155,153,113,48,64,236, 112,37,49,37,33,116,101,100,112,37,49,37,33,116,101,100,230,}; static unsigned char e1_2 [] = { 155,153,113,48,64,236, 112,37,49,37,33,116,101,100,96,97,53,49,49,96,97,100,230,}; static unsigned char e1_3 [] = { 155,153,113,48,64,236, 96,97,53,49,49,96,97,100,96,97,53,49,49,96,97,100,230,}; static unsigned char e1_4 [] = { 155,153,113,48,64,236, 96,97,53,49,49,96,97,100,112,37,49,37,33,116,101,100,230,}; static unsigned char g703 [] = { 155,153,113,48,64,236, 112,37,49,37,33,116,101,32,117,37,49,37,33,116,101,100,230,}; static unsigned char g703_2 [] = { 155,153,113,48,64,236, 112,37,49,37,33,116,101,32,101,97,53,49,49,96,97,100,230,}; static unsigned char g703_3 [] = { 155,153,113,48,64,236, 96,97,53,49,49,96,97,32,101,97,53,49,49,96,97,100,230,}; static unsigned char g703_4 [] = { 155,153,113,48,64,236, 96,97,53,49,49,96,97,32,117,37,49,37,33,116,101,100,230,}; int type = B_TAU; long osc = (inb (BSR3(port)) & BSR3_ZERO) ? 8192000 : 10000000; /* Get the board type. */ if (ct_probe2_board (port) && ct_download2 (port, firmware2)) { /* Tau2, 1k30-based model */ unsigned char sr0 = inb (BSR0(port)); if (! (sr0 & BSR0_T703)) type = B_TAU2_G703; else if (sr0 & BSR0_TE1) type = B_TAU2; else if (inb(E1SR(port)) & E1SR_REV) type = B_TAU2_E1D; else type = B_TAU2_E1; } else if (ct_download (port, tau, tlen, tvec)) { if (! ct_download (port, firmware, bits, tst)) type = B_TAU; else { unsigned char sr0 = inb (BSR0(port)); if (! (sr0 & BSR0_T703)) type = B_TAU_G703C; else if (sr0 & BSR0_TE1) type = B_TAU; else if (inb(E1SR(port)) & E1SR_REV) type = B_TAU_E1D; else type = B_TAU_E1C; } } else if (ct_download (port, e1, tlen, tvec2) || ct_download (port, e1_2, tlen, tvec2) || ct_download (port, e1_3, tlen, tvec2) || ct_download (port, e1_4, tlen, tvec2)) type = B_TAU_E1; else if (ct_download (port, g703, tlen, tvec2) || ct_download (port, g703_2, tlen, tvec2) || ct_download (port, g703_3, tlen, tvec2) || ct_download (port, g703_4, tlen, tvec2)) type = B_TAU_G703; ct_init_board (b, num, port, irq, dma, type, osc); } /* * Initialize the channel structure. */ static void ct_init_chan (ct_board_t *b, int i) { ct_chan_t *c = b->chan + i; port_t port = b->port; c->num = i; c->board = b; switch (b->type) { case B_TAU: case B_TAU2: c->type = T_SERIAL; break; case B_TAU_E1: case B_TAU_E1C: case B_TAU_E1D: case B_TAU2_E1: case B_TAU2_E1D: c->type = T_E1; break; case B_TAU_G703: case B_TAU_G703C: case B_TAU2_G703: c->type = T_G703; break; } if (c->num) c->type |= T_SERIAL; #define reg(X,N) HD_##X##_##N #define set(X,N) c->X = R(port,reg(X,N)) #define srx(X,N) c->RX.X = R(port,reg(X,N##R)) #define stx(X,N) c->TX.X = R(port,reg(X,N##T)) if (i == 0) { set(MD0, 0); set(MD1, 0); set(MD2, 0); set(CTL, 0); set(RXS, 0); set(TXS, 0); set(TMC, 0); set(CMD, 0); set(ST0, 0); set(ST1, 0); set(ST2, 0); set(ST3, 0); set(FST, 0); set(IE0, 0); set(IE1, 0); set(IE2, 0); set(FST, 0); set(IE0, 0); set(IE1, 0); set(IE2, 0); set(FIE, 0); set(SA0, 0); set(SA1, 0); set(IDL, 0); set(TRB, 0); set(RRC, 0); set(TRC0,0); set(TRC1,0); set(CST, 0); srx(DAR, 0); srx(DARB,0); srx(SAR, 0); srx(SARB,0); srx(CDA, 0); srx(EDA, 0); srx(BFL, 0); srx(BCR, 0); srx(DSR, 0); srx(DMR, 0); srx(FCT, 0); srx(DIR, 0); srx(DCR, 0); srx(TCNT,0); srx(TCONR,0); srx(TCSR,0); srx(TEPR,0); stx(DAR, 0); stx(DARB,0); stx(SAR, 0); stx(SARB,0); stx(CDA, 0); stx(EDA, 0); stx(BCR, 0); stx(DSR, 0); stx(DMR, 0); stx(FCT, 0); stx(DIR, 0); stx(DCR, 0); stx(TCNT,0); stx(TCONR,0); stx(TCSR,0); stx(TEPR,0); } else { set(MD0, 1); set(MD1, 1); set(MD2, 1); set(CTL, 1); set(RXS, 1); set(TXS, 1); set(TMC, 1); set(CMD, 1); set(ST0, 1); set(ST1, 1); set(ST2, 1); set(ST3, 1); set(FST, 1); set(IE0, 1); set(IE1, 1); set(IE2, 1); set(FST, 1); set(IE0, 1); set(IE1, 1); set(IE2, 1); set(FIE, 1); set(SA0, 1); set(SA1, 1); set(IDL, 1); set(TRB, 1); set(RRC, 1); set(TRC0,1); set(TRC1,1); set(CST, 1); srx(DAR, 1); srx(DARB,1); srx(SAR, 1); srx(SARB,1); srx(CDA, 1); srx(EDA, 1); srx(BFL, 1); srx(BCR, 1); srx(DSR, 1); srx(DMR, 1); srx(FCT, 1); srx(DIR, 1); srx(DCR, 1); srx(TCNT,1); srx(TCONR,1); srx(TCSR,1); srx(TEPR,1); stx(DAR, 1); stx(DARB,1); stx(SAR, 1); stx(SARB,1); stx(CDA, 1); stx(EDA, 1); stx(BCR, 1); stx(DSR, 1); stx(DMR, 1); stx(FCT, 1); stx(DIR, 1); stx(DCR, 1); stx(TCNT,1); stx(TCONR,1); stx(TCSR,1); stx(TEPR,1); } #undef set #undef srx #undef stx #undef reg } /* * Reinitialize the channels, using new options. */ void ct_reinit_chan (ct_chan_t *c) { ct_board_t *b = c->board; long s; int i; if (c->hopt.txs == CLK_LINE) { /* External clock mode -- set zero baud rate. */ if (c->mode != M_ASYNC) c->baud = 0; } else if (c->baud == 0) { /* No baud rate in internal clock mode -- set default values. */ if (c->mode == M_ASYNC) c->baud = 9600; else if (c->mode == M_HDLC) c->baud = 64000; } switch (c->type) { case T_E1_SERIAL: if (b->opt.cfg == CFG_B) break; /* Fall through... */ case T_E1: c->mode = M_E1; c->hopt.txs = CLK_LINE; /* Compute the baud value. */ if (c->num) { s = b->opt.s1; if (b->opt.cfg == CFG_C) s &=~ b->opt.s0; } else s = b->opt.s0; /* Skip timeslot 16 in CAS mode. */ if (c->gopt.cas) s &=~ (1L << 16); c->baud = 0; for (i=0; i<32; ++i) if ((s >> i) & 1) c->baud += 64000; c->gopt.rate = c->baud / 1000; /* Set NRZ and clear INVCLK. */ c->opt.md2.encod = MD2_ENCOD_NRZ; c->board->opt.bcr2 &= c->num ? ~(BCR2_INVTXC1 | BCR2_INVRXC1) : ~(BCR2_INVTXC0 | BCR2_INVRXC0); break; case T_G703_SERIAL: if (b->opt.cfg == CFG_B) break; /* Fall through... */ case T_G703: c->mode = M_G703; c->hopt.txs = CLK_LINE; c->baud = c->gopt.rate * 1000L; /* Set NRZ/NRZI and clear INVCLK. */ if (c->opt.md2.encod != MD2_ENCOD_NRZ && c->opt.md2.encod != MD2_ENCOD_NRZI) c->opt.md2.encod = MD2_ENCOD_NRZ; c->board->opt.bcr2 &= c->num ? ~(BCR2_INVTXC1 | BCR2_INVRXC1) : ~(BCR2_INVTXC0 | BCR2_INVRXC0); break; } } /* * Reinitialize all channels, using new options and baud rate. */ void ct_reinit_board (ct_board_t *b) { ct_chan_t *c; b->opt = ct_board_opt_dflt; for (c=b->chan; c<b->chan+NCHAN; ++c) { c->opt = ct_chan_opt_dflt; c->hopt = ct_opt_hdlc_dflt; c->gopt = ct_opt_g703_dflt; c->mode = ct_chan_mode; c->baud = ct_baud; ct_reinit_chan (c); } } /* * Set up the E1 controller of the Tau/E1 board. * Frame sync signals: * Configuration Rsync0 Tsync0 Rsync1 Tsync1 * --------------------------------------------------- * A (II) out out out out * B,C,D (HI,K,D) in out in out * --------------------------------------------------- * BI out out in in -- not implemented * old B,C,D (HI,K,D) out in out in -- old */ static void ct_setup_ctlr (ct_chan_t *c) { ct_board_t *b = c->board; port_t p = c->num ? E1CS1 (b->port) : E1CS0 (b->port); unsigned char rcr1, rcr2, tcr1, tcr2, ccr1, licr; unsigned long xcbr, tir; int i; rcr2 = RCR2_RSCLKM; tcr1 = TCR1_TSIS | TCR1_TSO; tcr2 = 0; ccr1 = 0; licr = 0; if (b->opt.cfg != CFG_D) { /* Enable monitoring channel, when not in telephony mode. */ rcr2 |= RCR2_SA_4; tcr2 |= TCR2_SA_4; } if (b->opt.cfg == CFG_A) { rcr1 = RCR1_RSO; } else { rcr1 = RCR1_RSI; rcr2 |= RCR2_RESE; } if (c->gopt.cas) tcr1 |= TCR1_T16S; else ccr1 |= CCR1_CCS; if (c->gopt.hdb3) ccr1 |= CCR1_THDB3 | CCR1_RHDB3; if (c->gopt.crc4) { ccr1 |= CCR1_TCRC4 | CCR1_RCRC4; tcr2 |= TCR2_AEBE; } if (c->gopt.higain) licr |= LICR_HIGAIN; if (inb (E1SR (b->port)) & (c->num ? E1SR_TP1 : E1SR_TP0)) licr |= LICR_LB120P; else licr |= LICR_LB75P; cte_out (p, DS_RCR1, rcr1); /* receive control 1 */ cte_out (p, DS_RCR2, rcr2); /* receive control 2 */ cte_out (p, DS_TCR1, tcr1); /* transmit control 1 */ cte_out (p, DS_TCR2, tcr2); /* transmit control 2 */ cte_out (p, DS_CCR1, ccr1); /* common control 1 */ cte_out (p, DS_CCR2, CCR2_CNTCV | CCR2_AUTORA | CCR2_LOFA1); /* common control 2 */ cte_out (p, DS_CCR3, CCR3_TSCLKM); /* common control 3 */ cte_out (p, DS_LICR, licr); /* line interface control */ cte_out (p, DS_IMR1, 0); /* interrupt mask 1 */ cte_out (p, DS_IMR2, SR2_SEC); /* interrupt mask 2 */ cte_out (p, DS_TEST1, 0); cte_out (p, DS_TEST2, 0); cte_out (p, DS_TAF, 0x9b); /* transmit align frame */ cte_out (p, DS_TNAF, 0xdf); /* transmit non-align frame */ cte_out (p, DS_TIDR, 0xff); /* transmit idle definition */ cte_out (p, DS_TS, 0x0b); /* transmit signaling 1 */ for (i=1; i<16; ++i) /* transmit signaling 2..16 */ cte_out (p, (unsigned char) (DS_TS+i), 0xff); /* * S0 == list of timeslots for channel 0 * S1 == list of timeslots for channel 1 * S2 == list of timeslots for E1 subchannel (pass through) * * Each channel uses the same timeslots for receive and transmit, * i.e. RCBRi == TCBRi. */ if (b->opt.cfg == CFG_B) b->opt.s1 = 0; else if (b->opt.cfg == CFG_C) b->opt.s1 &=~ b->opt.s0; if (c->gopt.cas) { /* Skip timeslot 16 in CAS mode. */ b->opt.s0 &=~ (1L << 16); b->opt.s1 &=~ (1L << 16); } b->opt.s2 &=~ b->opt.s0; b->opt.s2 &=~ b->opt.s1; /* * Configuration A: * xCBRi := Si * TIRi := ~Si * * Configuration B: * xCBRi := Si * TIRi := 0 * * Configuration C: (S0 & S2 == 0) * xCBR0 := S0 * xCBR1 := 0 * TIR0 := ~S0 & ~S2 * TIR1 := ~S2 * * Configuration D: (Si & Sj == 0) * xCBR0 := S0 * xCBR1 := S1 * TIR0 := ~S0 & ~S1 & ~S2 * TIR1 := ~S2 */ xcbr = c->num ? b->opt.s1 : b->opt.s0; if (b->opt.cfg == CFG_A) tir = ~xcbr; else if (b->opt.cfg == CFG_D) tir = 0; else if (c->num == 0) tir = ~(b->opt.s0 | b->opt.s1 | b->opt.s2); else tir = ~b->opt.s2; /* Mark idle channels. */ cte_out (p, DS_TIR, (unsigned char) (tir & 0xfe)); cte_out (p, DS_TIR+1, (unsigned char) (tir >> 8)); cte_out (p, DS_TIR+2, (unsigned char) (tir >> 16)); cte_out (p, DS_TIR+3, (unsigned char) (tir >> 24)); /* Set up rx/tx timeslots. */ cte_out (p, DS_RCBR, (unsigned char) (xcbr & 0xfe)); cte_out (p, DS_RCBR+1, (unsigned char) (xcbr >> 8)); cte_out (p, DS_RCBR+2, (unsigned char) (xcbr >> 16)); cte_out (p, DS_RCBR+3, (unsigned char) (xcbr >> 24)); cte_out (p, DS_TCBR, (unsigned char) (xcbr & 0xfe)); cte_out (p, DS_TCBR+1, (unsigned char) (xcbr >> 8)); cte_out (p, DS_TCBR+2, (unsigned char) (xcbr >> 16)); cte_out (p, DS_TCBR+3, (unsigned char) (xcbr >> 24)); /* Reset the line interface. */ cte_out (p, DS_CCR3, CCR3_TSCLKM | CCR3_LIRESET); cte_out (p, DS_CCR3, CCR3_TSCLKM); /* Reset the elastic store. */ cte_out (p, DS_CCR3, CCR3_TSCLKM | CCR3_ESRESET); cte_out (p, DS_CCR3, CCR3_TSCLKM); /* Clear status registers. */ cte_ins (p, DS_SR1, 0xff); cte_ins (p, DS_SR2, 0xff); cte_ins (p, DS_RIR, 0xff); } /* * Set up the serial controller of the Tau/E1 board. */ static void ct_setup_scc (port_t port) { #define SET(r,v) { cte_out2 (port, r, v); cte_out2 (port, AM_A | r, v); } /* hardware reset */ cte_out2 (port, AM_MICR, MICR_RESET_HW); SET (AM_PMR, 0x0c); /* 2 stop bits */ SET (AM_IMR, 0); /* no W/REQ signal */ cte_out2 (port, AM_IVR, 0); /* interrupt vector */ SET (AM_RCR, 0xc0); /* rx 8 bits/char */ SET (AM_TCR, 0x60); /* tx 8 bits/char */ SET (AM_SAF, 0); /* sync address field */ SET (AM_SFR, 0x7e); /* sync flag register */ cte_out2 (port, AM_MICR, 0); /* master interrupt control */ SET (AM_MCR, 0); /* NRZ mode */ SET (AM_CMR, 0x08); /* rxclk=RTxC, txclk=TRxC */ SET (AM_TCL, 0); /* time constant low */ SET (AM_TCH, 0); /* time constant high */ SET (AM_BCR, 0); /* disable baud rate generator */ SET (AM_RCR, 0xc1); /* enable rx */ SET (AM_TCR, 0x68); /* enable tx */ SET (AM_SICR, 0); /* no status interrupt */ SET (AM_CR, CR_RST_EXTINT); /* reset external status */ SET (AM_CR, CR_RST_EXTINT); /* reset ext/status twice */ #undef SET } /* * Set up the Tau/E1 board. */ void ct_setup_e1 (ct_board_t *b) { /* * Control register 0: * 1) board configuration * 2) clock modes */ b->e1cfg &= E1CFG_LED; switch (b->opt.cfg){ case CFG_C: b->e1cfg |= E1CFG_K; break; case CFG_B: b->e1cfg |= E1CFG_HI; break; case CFG_D: b->e1cfg |= E1CFG_D; break; default: b->e1cfg |= E1CFG_II; break; } if (b->opt.clk0 == GCLK_RCV) b->e1cfg |= E1CFG_CLK0_RCV; if (b->opt.clk0 == GCLK_RCLKO) b->e1cfg |= E1CFG_CLK0_RCLK1; else b->e1cfg |= E1CFG_CLK0_INT; if (b->opt.clk1 == GCLK_RCV) b->e1cfg |= E1CFG_CLK1_RCV; if (b->opt.clk1 == GCLK_RCLKO) b->e1cfg |= E1CFG_CLK1_RCLK0; else b->e1cfg |= E1CFG_CLK1_INT; outb (E1CFG (b->port), b->e1cfg); /* * Set up serial controller. */ ct_setup_scc (b->port); /* * Set up E1 controllers. */ ct_setup_ctlr (b->chan + 0); /* channel 0 */ ct_setup_ctlr (b->chan + 1); /* channel 1 */ /* Start the board (GRUN). */ b->e1cfg |= E1CFG_GRUN; outb (E1CFG (b->port), b->e1cfg); } /* * Set up the G.703 controller of the Tau/G.703 board. */ static void ct_setup_lxt (ct_chan_t *c) { ctg_outx (c, LX_CCR1, LX_RESET); /* reset the chip */ /* Delay */ ctg_inx (c, LX_CCR1); c->lx = LX_LOS; /* disable loss of sync interrupt */ if (c->num && c->board->opt.cfg == CFG_B) c->lx |= LX_TAOS; /* idle channel--transmit all ones */ if (c->gopt.hdb3) c->lx |= LX_HDB3; /* enable HDB3 encoding */ ctg_outx (c, LX_CCR1, c->lx); /* setup the new mode */ ctg_outx (c, LX_CCR2, LX_CCR2_LH); /* setup Long Haul mode */ ctg_outx (c, LX_CCR3, LX_CCR3_E1_LH); /* setup Long Haul mode */ } /* * Set up the Tau/G.703 board. */ void ct_setup_g703 (ct_board_t *b) { b->gmd0 = GMD_2048; if (b->chan[0].gopt.pce) { if (b->chan[0].gopt.pce2) b->gmd0 |= GMD_PCE_PCM2; else b->gmd0 |= GMD_PCE_PCM2D; } if (b->opt.clk0) b->gmd0 |= GMD_RSYNC; b->gmd1 = 0; if (b->chan[1].gopt.pce) { if (b->chan[1].gopt.pce2) b->gmd1 |= GMD_PCE_PCM2; else b->gmd1 |= GMD_PCE_PCM2D; } if (b->opt.clk1) b->gmd1 |= GMD_RSYNC; switch (b->chan[0].gopt.rate) { case 2048: b->gmd0 |= GMD_2048; break; case 1024: b->gmd0 |= GMD_1024; break; case 512: b->gmd0 |= GMD_512; break; case 256: b->gmd0 |= GMD_256; break; case 128: b->gmd0 |= GMD_128; break; case 64: b->gmd0 |= GMD_64; break; } switch (b->chan[1].gopt.rate) { case 2048: b->gmd1 |= GMD_2048; break; case 1024: b->gmd1 |= GMD_1024; break; case 512: b->gmd1 |= GMD_512; break; case 256: b->gmd1 |= GMD_256; break; case 128: b->gmd1 |= GMD_128; break; case 64: b->gmd1 |= GMD_64; break; } outb (GMD0(b->port), b->gmd0); outb (GMD1(b->port), b->gmd1 | GMD1_NCS0 | GMD1_NCS1); b->gmd2 &= GMD2_LED; if (b->opt.cfg == CFG_B) b->gmd2 |= GMD2_SERIAL; outb (GMD2(b->port), b->gmd2); /* Set up G.703 controllers. */ if ((b->chan + 0)->lx & LX_LLOOP) { ct_setup_lxt (b->chan + 0); /* channel 0 */ ct_enable_loop (b->chan + 0); } else { ct_setup_lxt (b->chan + 0); /* channel 0 */ } if ((b->chan + 1)->lx & LX_LLOOP) { ct_setup_lxt (b->chan + 1); /* channel 1 */ ct_enable_loop (b->chan + 1); } else { ct_setup_lxt (b->chan + 1); /* channel 1 */ } /* Clear errors. */ outb (GERR(b->port), 0xff); outb (GLDR(b->port), 0xff); } /* * Set up the board. */ int ct_setup_board (ct_board_t *b, const unsigned char *firmware, long bits, const cr_dat_tst_t *tst) { ct_chan_t *c; /* Disable DMA channel. */ outb (DMA_MASK, (b->dma & 3) | DMA_MASK_CLEAR); /* Reset the controller. */ outb (BCR0(b->port), 0); /* Load the firmware. */ if (firmware && (b->type == B_TAU || b->type == B_TAU_E1 || b->type == B_TAU_G703) && ! ct_download (b->port, firmware, bits, tst)) return (0); if (firmware && (b->type == B_TAU2 || b->type == B_TAU2_E1 || b->type == B_TAU2_E1D || b->type == B_TAU2_G703) && ! ct_download2 (b->port, firmware)) return (0); /* Enable DMA and IRQ. */ outb (BCR0(b->port), BCR0_HDRUN); outb (BCR0(b->port), b->bcr0); /* Clear DTR[0..1]. */ outb (BCR1(b->port), b->bcr1); /* Set bus timing. */ b->bcr2 = b->opt.bcr2; outb (BCR2(b->port), b->bcr2); /* * Initialize the controller. */ /* Zero wait state mode. */ outb (WCRL(b->port), 0); outb (WCRM(b->port), 0); outb (WCRH(b->port), 0); /* Clear interrupt modified vector register. */ outb (IMVR(b->port), 0); outb (ITCR(b->port), ITCR_CYCLE_SINGLE | ITCR_VECT_MOD); /* Disable all interrupts. */ outb (IER0(b->port), 0); outb (IER1(b->port), 0); outb (IER2(b->port), 0); /* Set DMA parameters, enable master DMA mode. */ outb (PCR(b->port), BYTE b->opt.pcr); outb (DMER(b->port), DME_ENABLE); /* Set up DMA channel to master mode. */ outb (DMA_MODE, (b->dma & 3) | DMA_MODE_MASTER); /* Enable DMA channel. */ outb (DMA_MASK, b->dma & 3); /* Disable byte-sync mode for Tau/G.703. */ if (b->type == B_TAU_G703) outb (GMD2(b->port), 0); /* Initialize all channels. */ for (c=b->chan; c<b->chan+NCHAN; ++c) ct_setup_chan (c); switch (b->type) { case B_TAU_G703: case B_TAU_G703C: case B_TAU2_G703: ct_setup_g703 (b); break; case B_TAU_E1: case B_TAU_E1C: case B_TAU_E1D: case B_TAU2_E1: case B_TAU2_E1D: ct_setup_e1 (b); break; } return (1); } /* * Update the channel mode options. */ void ct_update_chan (ct_chan_t *c) { int txbr, rxbr, tmc, txcout; unsigned char rxs, txs, dmr = 0; ct_md0_async_t amd0; ct_md0_hdlc_t hmd0; ct_md1_async_t amd1; switch (c->mode) { /* initialize the channel mode */ case M_ASYNC: default: rxs = CLK_INT; txs = CLK_INT; amd0.mode = MD0_MODE_ASYNC; amd0.stopb = MD0_STOPB_1; amd0.cts_rts_dcd = 0; amd1.clk = MD1_CLK_16; amd1.txclen = amd1.rxclen = MD1_CLEN_8; amd1.parmode = MD1_PAR_NO; outb (c->MD0, BYTE amd0); outb (c->MD1, BYTE amd1); outb (c->CTL, c->rts ? 0 : CTL_RTS_INV); break; case M_E1: case M_G703: case M_HDLC: rxs = c->hopt.rxs; txs = c->hopt.txs; if (c->mode == M_E1 && c->board->opt.cfg == CFG_D) { hmd0 = c->hopt.md0; hmd0.crc = 0; outb (c->MD0, BYTE hmd0); outb (c->MD1, BYTE c->hopt.md1); outb (c->CTL, c->hopt.ctl & ~CTL_IDLE_PTRN); outb (c->SA0, c->hopt.sa0); outb (c->SA1, c->hopt.sa1); outb (c->IDL, 0x7e); /* HDLC flag 01111110 */ } else { outb (c->MD0, BYTE c->hopt.md0); outb (c->MD1, BYTE c->hopt.md1); outb (c->SA0, c->hopt.sa0); outb (c->SA1, c->hopt.sa1); outb (c->IDL, 0x7e); /* HDLC flag 01111110 */ if (c->rts) outb (c->CTL, c->hopt.ctl & ~CTL_RTS_INV); else outb (c->CTL, c->hopt.ctl | CTL_RTS_INV); } /* Chained-block DMA mode with frame counter. */ dmr |= DMR_CHAIN_CNTE | DMR_CHAIN_NF | DMR_TMOD; break; } outb (c->RX.DMR, dmr); outb (c->TX.DMR, dmr); /* set mode-independent options */ c->opt.md2.dpll_clk = MD2_DPLL_CLK_8; outb (c->MD2, BYTE c->opt.md2); /* set up receiver and transmitter clocks */ if (c->baud > 1024000) { /* turn off DPLL if the baud rate is too high */ if (rxs == CLK_RXS_LINE_NS) rxs = CLK_LINE; else if (rxs == CLK_RXS_DPLL_INT) rxs = CLK_INT; } if (rxs == CLK_RXS_LINE_NS || rxs == CLK_RXS_DPLL_INT) { /* Using 1:8 sampling rate. */ ct_compute_clock (c->board->osc, c->baud * 8, &rxbr, &tmc); txbr = rxbr + 3; } else if (c->mode == M_ASYNC) { /* Using 1:16 sampling rate. */ ct_compute_clock (c->board->osc, c->baud * 8, &rxbr, &tmc); --rxbr; txbr = rxbr; } else { ct_compute_clock (c->board->osc, c->baud, &rxbr, &tmc); txbr = rxbr; } txs |= txbr; rxs |= rxbr; outb (c->TMC, tmc); outb (c->RXS, rxs); /* Disable TXCOUT before changing TXS * to avoid two transmitters on the same line. * Enable it after TXS is set, if needed. */ txcout = c->num ? BCR1_TXCOUT1 : BCR1_TXCOUT0; c->board->bcr1 &= ~txcout; outb (BCR1(c->board->port), c->board->bcr1); outb (c->TXS, txs); if ((txs & CLK_MASK) != CLK_LINE) { c->board->bcr1 |= txcout; outb (BCR1(c->board->port), c->board->bcr1); } if (c->board->type == B_TAU_E1D || c->board->type == B_TAU2_E1D) ct_set_phony (c, c->gopt.phony); } /* * Initialize the channel. */ void ct_setup_chan (ct_chan_t *c) { /* reset the channel */ outb (c->RX.DSR, DSR_DMA_DISABLE); outb (c->TX.DSR, DSR_DMA_DISABLE); outb (c->CMD, CMD_TX_RESET); outb (c->CMD, CMD_TX_ABORT); outb (c->CMD, CMD_CHAN_RESET); /* disable interrupts */ outb (c->IE0, 0); outb (c->IE1, 0); outb (c->IE2, 0); outb (c->FIE, 0); /* clear DTR, RTS */ ct_set_dtr (c, 0); ct_set_rts (c, 0); c->lx = LX_LOS; ct_update_chan (c); } unsigned long ct_get_ts (ct_chan_t *c) { return c->num ? c->board->opt.s1 : c->board->opt.s0; } /* * Data transfer speed */ unsigned long ct_get_baud (ct_chan_t *c) { unsigned long speed; unsigned long ts; if (c->mode == M_G703) { speed = 1000 * c->gopt.rate; } else if (c->mode == M_E1) { ts = ct_get_ts (c); for (speed=0; ts; ts >>= 1) /* Each timeslot is 64 Kbps */ if (ts & 1) speed += 64000; } else speed = (c->hopt.txs == CLK_INT) ? c->baud : 0; return speed; } /* * Turn local loopback on */ static void ct_enable_loop (ct_chan_t *c) { if (c->mode == M_E1) { unsigned short p = c->num ? E1CS1 (c->board->port) : E1CS0 (c->board->port); /* Local loopback. */ cte_out (p, DS_CCR2, cte_in (p, DS_CCR2) | CCR2_LLOOP); /* Enable jitter attenuator at the transmit side. */ cte_out (p, DS_LICR, cte_in (p, DS_LICR) | LICR_JA_TX); return; } else if (c->mode == M_G703) { c->lx = LX_LOS | LX_HDB3; ctg_outx (c, LX_CCR1, c->lx |= LX_LLOOP); return; } else if (c->mode == M_HDLC && ct_get_baud(c)) { unsigned char rxs = inb (c->RXS) & ~CLK_MASK; unsigned char txs = inb (c->TXS) & ~CLK_MASK; int txcout = c->num ? BCR1_TXCOUT1 : BCR1_TXCOUT0; c->opt.md2.loop = MD2_LLOOP; /* Disable TXCOUT before changing TXS */ /* to avoid two transmitters on the same line. */ /* Enable it after TXS is set. */ outb (BCR1(c->board->port), c->board->bcr1 & ~txcout); outb (c->RXS, rxs | CLK_INT); outb (c->TXS, txs | CLK_INT); c->board->bcr1 |= txcout; outb (BCR1(c->board->port), c->board->bcr1); outb (c->MD2, *(unsigned char*)&c->opt.md2); return; } } /* * Turn local loopback off */ static void ct_disable_loop (ct_chan_t *c) { if (c->mode == M_E1) { unsigned short p = c->num ? E1CS1 (c->board->port) : E1CS0 (c->board->port); /* Local loopback. */ cte_out (p, DS_CCR2, cte_in (p, DS_CCR2) & ~CCR2_LLOOP); /* Disable jitter attenuator at the transmit side. */ cte_out (p, DS_LICR, cte_in (p, DS_LICR) & ~LICR_JA_TX); return; } else if (c->mode == M_G703) { c->lx = LX_LOS | LX_HDB3; ctg_outx (c, LX_CCR1, c->lx); return; } else if (c->mode == M_HDLC && ct_get_baud(c)) { unsigned char rxs = inb (c->RXS) & ~CLK_MASK; unsigned char txs = inb (c->TXS) & ~CLK_MASK; int txcout = c->num ? BCR1_TXCOUT1 : BCR1_TXCOUT0; c->opt.md2.loop = MD2_FDX; outb (BCR1(c->board->port), c->board->bcr1 & ~txcout); outb (c->RXS, rxs | CLK_LINE); if (ct_get_baud (c)) outb (c->TXS, txs | CLK_INT); else outb (c->TXS, txs | CLK_LINE); c->board->bcr1 |= txcout; outb (BCR1(c->board->port), c->board->bcr1); outb (c->MD2, *(unsigned char*)&c->opt.md2); return; } } /* * Turn local loopback on/off */ void ct_set_loop (ct_chan_t *c, int on) { if (on) ct_enable_loop (c); else ct_disable_loop (c); } int ct_get_loop (ct_chan_t *c) { if (c->mode == M_E1) { unsigned short p = c->num ? E1CS1 (c->board->port) : E1CS0 (c->board->port); return cte_in (p, DS_CCR2) & CCR2_LLOOP; } if (c->mode == M_G703) return c->lx & LX_LLOOP; /* M_HDLC */ return (c->opt.md2.loop & MD2_LLOOP) != 0; } void ct_set_phony (ct_chan_t *c, int on) { /* Valid only for TauPCI-E1. */ if (c->board->type != B_TAU_E1D && c->board->type != B_TAU2_E1D) return; c->gopt.phony = (on != 0); if (c->gopt.phony) { c->board->e1syn |= c->num ? E1SYN_ENS1 : E1SYN_ENS0; /* No receive/transmit crc. */ c->hopt.md0.crc = 0; } else { c->board->e1syn &= ~(c->num ? E1SYN_ENS1 : E1SYN_ENS0); /* Enable crc. */ c->hopt.md0.crc = 1; } outb (c->MD0, BYTE c->hopt.md0); outb (E1SYN(c->board->port), c->board->e1syn); } void ct_start_receiver (ct_chan_t *c, int dma, unsigned long buf, unsigned len, unsigned long desc, unsigned long lim) { int ier0 = inb (IER0(c->board->port)); int ier1 = inb (IER1(c->board->port)); int ier2 = inb (IER2(c->board->port)); int ie0 = inb (c->IE0); int ie2 = inb (c->IE2); if (dma) { ier1 |= c->num ? (IER1_RX_DMERE_1 | IER1_RX_DME_1) : (IER1_RX_DMERE_0 | IER1_RX_DME_0); if (c->mode == M_ASYNC) { ier0 |= c->num ? IER0_RX_INTE_1 : IER0_RX_INTE_0; ie0 |= IE0_RX_INTE; ie2 |= IE2_OVRNE | IE2_ASYNC_FRMEE | IE2_ASYNC_PEE; } } else { ier0 |= c->num ? (IER0_RX_INTE_1 | IER0_RX_RDYE_1) : (IER0_RX_INTE_0 | IER0_RX_RDYE_0); ie0 |= IE0_RX_INTE | IE0_RX_RDYE; } /* Start timer. */ if (! dma) { outb (c->RX.TEPR, TEPR_64); /* prescale to 16 kHz */ outw (c->RX.TCONR, 160); /* period is 10 msec */ outw (c->RX.TCNT, 0); outb (c->RX.TCSR, TCSR_ENABLE | TCSR_INTR); ier2 |= c->num ? IER2_RX_TME_1 : IER2_RX_TME_0; } /* Enable interrupts. */ outb (IER0(c->board->port), ier0); outb (IER1(c->board->port), ier1); outb (IER2(c->board->port), ier2); outb (c->IE0, ie0); outb (c->IE2, ie2); /* RXRDY:=1 when the receive buffer has more than RRC chars */ outb (c->RRC, dma ? c->opt.dma_rrc : c->opt.pio_rrc); /* Start receiver. */ if (dma) { outb (c->RX.DCR, DCR_ABORT); if (c->mode == M_ASYNC) { /* Single-buffer DMA mode. */ outb (c->RX.DARB, (unsigned char) (buf >> 16)); outw (c->RX.DAR, (unsigned short) buf); outw (c->RX.BCR, len); outb (c->RX.DIR, DIR_EOTE); } else { /* Chained-buffer DMA mode. */ outb (c->RX.SARB, (unsigned char) (desc >> 16)); outw (c->RX.EDA, (unsigned short) lim); outw (c->RX.CDA, (unsigned short) desc); outw (c->RX.BFL, len); outb (c->RX.DIR, DIR_CHAIN_EOME | DIR_CHAIN_BOFE | DIR_CHAIN_COFE); } outb (c->RX.DSR, DSR_DMA_ENABLE); } outb (c->CMD, CMD_RX_ENABLE); } void ct_start_transmitter (ct_chan_t *c, int dma, unsigned long buf, unsigned len, unsigned long desc, unsigned long lim) { int ier0 = inb (IER0(c->board->port)); int ier1 = inb (IER1(c->board->port)); int ie0 = inb (c->IE0); int ie1 = inb (c->IE1); /* Enable underrun interrupt in HDLC and raw modes. */ if (c->mode != M_ASYNC) { ier0 |= c->num ? IER0_TX_INTE_1 : IER0_TX_INTE_0; ie0 |= IE0_TX_INTE; ie1 |= IE1_HDLC_UDRNE; } if (dma) ier1 |= c->num ? (IER1_TX_DMERE_1 | IER1_TX_DME_1) : (IER1_TX_DMERE_0 | IER1_TX_DME_0); else { ier0 |= c->num ? IER0_TX_RDYE_1 : IER0_TX_RDYE_0; ie0 |= IE0_TX_RDYE; } /* Enable interrupts. */ outb (IER0(c->board->port), ier0); outb (IER1(c->board->port), ier1); outb (c->IE0, ie0); outb (c->IE1, ie1); /* TXRDY:=1 when the transmit buffer has TRC0 or less chars, * TXRDY:=0 when the transmit buffer has more than TRC1 chars */ outb (c->TRC0, dma ? c->opt.dma_trc0 : c->opt.pio_trc0); outb (c->TRC1, dma ? c->opt.dma_trc1 : c->opt.pio_trc1); /* Start transmitter. */ if (dma) { outb (c->TX.DCR, DCR_ABORT); if (c->mode == M_ASYNC) { /* Single-buffer DMA mode. */ outb (c->TX.SARB, (unsigned char) (buf >> 16)); outw (c->TX.SAR, (unsigned short) buf); outw (c->TX.BCR, len); outb (c->TX.DIR, DIR_EOTE); } else { /* Chained-buffer DMA mode. */ outb (c->TX.SARB, (unsigned char) (desc >> 16)); outw (c->TX.EDA, (unsigned short) lim); outw (c->TX.CDA, (unsigned short) desc); outb (c->TX.DIR, /* DIR_CHAIN_EOME | */ DIR_CHAIN_BOFE | DIR_CHAIN_COFE); } /* Set DSR_DMA_ENABLE to begin! */ } outb (c->CMD, CMD_TX_ENABLE); /* Clear errors. */ if (c->board->type == B_TAU_G703) { outb (GERR(c->board->port), 0xff); outb (GLDR(c->board->port), 0xff); } } /* * Control DTR signal for the channel. * Turn it on/off. */ void ct_set_dtr (ct_chan_t *c, int on) { if (on) { c->dtr = 1; c->board->bcr1 |= c->num ? BCR1_DTR1 : BCR1_DTR0; } else { c->dtr = 0; c->board->bcr1 &= ~(c->num ? BCR1_DTR1 : BCR1_DTR0); } outb (BCR1(c->board->port), c->board->bcr1); } /* * Control RTS signal for the channel. * Turn it on/off. */ void ct_set_rts (ct_chan_t *c, int on) { c->rts = (on != 0); if (c->rts) outb (c->CTL, inb (c->CTL) & ~CTL_RTS_INV); else outb (c->CTL, inb (c->CTL) | CTL_RTS_INV); } /* * Control BREAK state in asynchronous mode. * Turn it on/off. */ void ct_set_brk (ct_chan_t *c, int on) { if (c->mode != M_ASYNC) return; if (on) outb (c->CTL, inb (c->CTL) | CTL_BRK); else outb (c->CTL, inb (c->CTL) & ~CTL_BRK); } /* * Get the state of DSR signal of the channel. */ int ct_get_dsr (ct_chan_t *c) { return (inb (BSR1(c->board->port)) & (c->num ? BSR1_DSR1 : BSR1_DSR0)) != 0; } /* * Get the G.703 line signal level. */ int ct_get_lq (ct_chan_t *c) { unsigned char q1, q2, q3; static int lq_to_santibells [] = { 0, 95, 195, 285 }; int i; if (! (c->type & T_G703)) return 0; q1 = inb (GLQ (c->board->port)); /* Repeat reading the register to produce a 10-usec delay. */ for (i=0; i<20; ++i) q2 = inb (GLQ (c->board->port)); for (i=0; i<20; ++i) q3 = inb (GLQ (c->board->port)); if (c->num) { q1 >>= GLQ_SHIFT; q2 >>= GLQ_SHIFT; q3 >>= GLQ_SHIFT; } q1 &= GLQ_MASK; q2 &= GLQ_MASK; q3 &= GLQ_MASK; if (q1 <= q2 && q2 <= q3) return lq_to_santibells [q2]; if (q2 <= q3 && q3 <= q1) return lq_to_santibells [q3]; if (q3 <= q1 && q1 <= q2) return lq_to_santibells [q1]; if (q1 <= q3 && q3 <= q2) return lq_to_santibells [q3]; if (q3 <= q2 && q2 <= q1) return lq_to_santibells [q2]; /* if (q2 <= q1 && q1 <= q3) */ return lq_to_santibells [q1]; } /* * Get the state of CARRIER signal of the channel. */ int ct_get_cd (ct_chan_t *c) { return (inb (c->ST3) & ST3_DCD_INV) == 0; } /* * Get the state of CTS signal of the channel. */ int ct_get_cts (ct_chan_t *c) { return (inb (c->ST3) & ST3_CTS_INV) == 0; } /* * Turn LED on/off. */ void ct_led (ct_board_t *b, int on) { switch (b->type) { case B_TAU_G703: case B_TAU_G703C: case B_TAU2_G703: if (on) b->gmd2 |= GMD2_LED; else b->gmd2 &= ~GMD2_LED; outb (GMD2(b->port), b->gmd2); break; default: if (on) b->e1cfg |= E1CFG_LED; else b->e1cfg &= ~E1CFG_LED; outb (E1CFG(b->port), b->e1cfg); break; } } void ct_disable_dma (ct_board_t *b) { /* Disable DMA channel. */ outb (DMA_MASK, (b->dma & 3) | DMA_MASK_CLEAR); } void ct_compute_clock (long hz, long baud, int *txbr, int *tmc) { if (baud < 100) baud = 100; *txbr = 0; if (4*baud > 3*hz) *tmc = 1; else { while (((hz / baud) >> ++*txbr) > 256) continue; *tmc = (((2 * hz / baud) >> *txbr) + 1) / 2; } } /* * Access to DS2153 chips on the Tau/E1 board. * Examples: * val = cte_in (E1CSi (base), DS_RCR1) * cte_out (E1CSi (base), DS_CCR1, val) * val = cte_ins (E1CSi (base), DS_SSR) */ unsigned char cte_in (port_t base, unsigned char reg) { outb (base, reg); return inb (E1DAT (base & 0x3e0)); } void cte_out (port_t base, unsigned char reg, unsigned char val) { outb (base, reg); outb (E1DAT (base & 0x3e0), val); } /* * Get the DS2153 status register, using write-read-write scheme. */ unsigned char cte_ins (port_t base, unsigned char reg, unsigned char mask) { unsigned char val; port_t rw = E1DAT (base & 0x3e0); outb (base, reg); outb (rw, mask); /* lock bits */ outb (base, reg); val = inb (rw) & mask; /* get values */ outb (base, reg); outb (rw, val); /* unlock bits */ return val; } /* * Access to 8530 chip on the Tau/E1 board. * Examples: * val = cte_in2 (base, AM_RSR | AM_A) * cte_out2 (base, AM_IMR, val) */ unsigned char cte_in2 (port_t base, unsigned char reg) { outb (E1CS2(base), E1CS2_SCC | reg >> 4); outb (E1DAT(base), reg & 15); return inb (E1DAT(base)); } void cte_out2 (port_t base, unsigned char reg, unsigned char val) { outb (E1CS2(base), E1CS2_SCC | reg >> 4); outb (E1DAT(base), reg & 15); outb (E1DAT(base), val); } /* * Read the data from the 8530 receive fifo. */ unsigned char cte_in2d (ct_chan_t *c) { outb (E1CS2(c->board->port), E1CS2_SCC | E1CS2_DC | (c->num ? 0 : E1CS2_AB)); return inb (E1DAT(c->board->port)); } /* * Send the 8530 command. */ void cte_out2c (ct_chan_t *c, unsigned char val) { outb (E1CS2(c->board->port), E1CS2_SCC | (c->num ? 0 : E1CS2_AB)); outb (E1DAT(c->board->port), val); } /* * Write the data to the 8530 transmit fifo. */ void cte_out2d (ct_chan_t *c, unsigned char val) { outb (E1CS2(c->board->port), E1CS2_SCC | E1CS2_DC | (c->num ? 0 : E1CS2_AB)); outb (E1DAT(c->board->port), val); } /* * Access to LXT318 chip on the Tau/G.703 board. * Examples: * val = ctg_inx (c) * ctg_outx (c, val) */ static void ctg_output (port_t port, unsigned char val, unsigned char v0) { int i; for (i=0; i<8; ++i) { unsigned char v = v0; if ((val >> i) & 1) v |= GMD0_SDI; outb (port, v); outb (port, v); outb (port, v); outb (port, v); outb (port, v | GMD0_SCLK); outb (port, v | GMD0_SCLK); outb (port, v | GMD0_SCLK); outb (port, v | GMD0_SCLK); } outb (port, v0); } void ctg_outx (ct_chan_t *c, unsigned char reg, unsigned char val) { port_t port = GMD0(c->board->port); outb (GMD1(c->board->port), c->board->gmd1 | GMD1_NCS0 | GMD1_NCS1); outb (GMD1(c->board->port), c->board->gmd1 | (c->num ? GMD1_NCS0 : GMD1_NCS1)); ctg_output (port, (reg << 1) | LX_WRITE, c->board->gmd0); ctg_output (port, val, c->board->gmd0); outb (GMD1(c->board->port), c->board->gmd1 | GMD1_NCS0 | GMD1_NCS1); } unsigned char ctg_inx (ct_chan_t *c, unsigned char reg) { port_t port = GMD0(c->board->port); port_t data = GLDR(c->board->port); unsigned char val = 0, mask = c->num ? GLDR_C1 : GLDR_C0; int i; outb (GMD1(c->board->port), c->board->gmd1 | GMD1_NCS0 | GMD1_NCS1); outb (GMD1(c->board->port), c->board->gmd1 | (c->num ? GMD1_NCS0 : GMD1_NCS1)); ctg_output (port, (reg << 1) | LX_READ, c->board->gmd0); for (i=0; i<8; ++i) { outb (port, c->board->gmd0 | GMD0_SCLK); if (inb (data) & mask) val |= 1 << i; outb (port, c->board->gmd0); } outb (GMD1(c->board->port), c->board->gmd1 | GMD1_NCS0 | GMD1_NCS1); return val; } /* * Adapter options */ ct_board_opt_t ct_board_opt_dflt = { 0, /* board control register 2 */ { /* DMA priority control register */ PCR_PRIO_ROTATE, 0, /* all channels share the bus hold */ 0, /* hold the bus until all transfers done */ }, CFG_A, /* E1/G.703 config: two independent channels */ GCLK_INT, /* E1/G.703 chan 0 internal tx clock source */ GCLK_INT, /* E1/G.703 chan 1 internal tx clock source */ ~0UL << 1, /* E1 channel 0 timeslots 1..31 */ ~0UL << 1, /* E1 channel 1 timeslots 1..31 */ 0, /* no E1 subchannel timeslots */ }; /* * Mode-independent channel options */ ct_chan_opt_t ct_chan_opt_dflt = { { /* mode register 2 */ MD2_FDX, /* full duplex communication */ 0, /* empty ADPLL clock rate */ MD2_ENCOD_NRZ, /* NRZ encoding */ }, /* DMA mode FIFO marks */ 15, 24, 30, /* rx ready, tx empty, tx full */ /* port i/o mode FIFO marks */ 15, 16, 30, /* rx ready, tx empty, tx full */ }; /* * Default HDLC options */ ct_opt_hdlc_t ct_opt_hdlc_dflt = { { /* mode register 0 */ 1, /* CRC preset to all ones (V.41) */ 1, /* CRC-CCITT */ 1, /* enable CRC */ 0, /* disable automatic CTS/DCD */ MD0_MODE_HDLC, /* HDLC mode */ }, { /* mode register 1 */ MD1_ADDR_NOCHK, /* do not check address field */ }, CTL_IDLE_PTRN | CTL_UDRN_ABORT | CTL_RTS_INV, /* control register */ 0, 0, /* empty sync/address registers 0,1 */ CLK_LINE, /* receive clock source: RXC line input */ CLK_LINE, /* transmit clock source: TXC line input */ }; /* * Default E1/G.703 options */ ct_opt_g703_t ct_opt_g703_dflt = { 1, /* HDB3 enable */ 0, /* precoder disable */ GTEST_DIS, /* test disabled, normal operation */ 0, /* CRC4 disable */ 0, /* CCS signaling */ 0, /* low gain */ 0, /* no raw mode */ 0, /* no PCM2 precoder compatibility */ 2048, /* data rate 2048 kbit/sec */ };