Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/netgraph/pipe/@/dev/acpica/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/netgraph/pipe/@/dev/acpica/acpi_thermal.c |
/*- * Copyright (c) 2000, 2001 Michael Smith * Copyright (c) 2000 BSDi * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/dev/acpica/acpi_thermal.c 232499 2012-03-04 16:21:20Z eadler $"); #include "opt_acpi.h" #include <sys/param.h> #include <sys/kernel.h> #include <sys/bus.h> #include <sys/cpu.h> #include <sys/kthread.h> #include <sys/malloc.h> #include <sys/module.h> #include <sys/proc.h> #include <sys/reboot.h> #include <sys/sysctl.h> #include <sys/unistd.h> #include <sys/power.h> #include "cpufreq_if.h" #include <contrib/dev/acpica/include/acpi.h> #include <contrib/dev/acpica/include/accommon.h> #include <dev/acpica/acpivar.h> /* Hooks for the ACPI CA debugging infrastructure */ #define _COMPONENT ACPI_THERMAL ACPI_MODULE_NAME("THERMAL") #define TZ_ZEROC 2732 #define TZ_KELVTOC(x) (((x) - TZ_ZEROC) / 10), abs(((x) - TZ_ZEROC) % 10) #define TZ_NOTIFY_TEMPERATURE 0x80 /* Temperature changed. */ #define TZ_NOTIFY_LEVELS 0x81 /* Cooling levels changed. */ #define TZ_NOTIFY_DEVICES 0x82 /* Device lists changed. */ #define TZ_NOTIFY_CRITICAL 0xcc /* Fake notify that _CRT/_HOT reached. */ /* Check for temperature changes every 10 seconds by default */ #define TZ_POLLRATE 10 /* Make sure the reported temperature is valid for this number of polls. */ #define TZ_VALIDCHECKS 3 /* Notify the user we will be shutting down in one more poll cycle. */ #define TZ_NOTIFYCOUNT (TZ_VALIDCHECKS - 1) /* ACPI spec defines this */ #define TZ_NUMLEVELS 10 struct acpi_tz_zone { int ac[TZ_NUMLEVELS]; ACPI_BUFFER al[TZ_NUMLEVELS]; int crt; int hot; ACPI_BUFFER psl; int psv; int tc1; int tc2; int tsp; int tzp; }; struct acpi_tz_softc { device_t tz_dev; ACPI_HANDLE tz_handle; /*Thermal zone handle*/ int tz_temperature; /*Current temperature*/ int tz_active; /*Current active cooling*/ #define TZ_ACTIVE_NONE -1 #define TZ_ACTIVE_UNKNOWN -2 int tz_requested; /*Minimum active cooling*/ int tz_thflags; /*Current temp-related flags*/ #define TZ_THFLAG_NONE 0 #define TZ_THFLAG_PSV (1<<0) #define TZ_THFLAG_HOT (1<<2) #define TZ_THFLAG_CRT (1<<3) int tz_flags; #define TZ_FLAG_NO_SCP (1<<0) /*No _SCP method*/ #define TZ_FLAG_GETPROFILE (1<<1) /*Get power_profile in timeout*/ #define TZ_FLAG_GETSETTINGS (1<<2) /*Get devs/setpoints*/ struct timespec tz_cooling_started; /*Current cooling starting time*/ struct sysctl_ctx_list tz_sysctl_ctx; struct sysctl_oid *tz_sysctl_tree; eventhandler_tag tz_event; struct acpi_tz_zone tz_zone; /*Thermal zone parameters*/ int tz_validchecks; /* passive cooling */ struct proc *tz_cooling_proc; int tz_cooling_proc_running; int tz_cooling_enabled; int tz_cooling_active; int tz_cooling_updated; int tz_cooling_saved_freq; }; #define CPUFREQ_MAX_LEVELS 64 /* XXX cpufreq should export this */ static int acpi_tz_probe(device_t dev); static int acpi_tz_attach(device_t dev); static int acpi_tz_establish(struct acpi_tz_softc *sc); static void acpi_tz_monitor(void *Context); static void acpi_tz_switch_cooler_off(ACPI_OBJECT *obj, void *arg); static void acpi_tz_switch_cooler_on(ACPI_OBJECT *obj, void *arg); static void acpi_tz_getparam(struct acpi_tz_softc *sc, char *node, int *data); static void acpi_tz_sanity(struct acpi_tz_softc *sc, int *val, char *what); static int acpi_tz_active_sysctl(SYSCTL_HANDLER_ARGS); static int acpi_tz_cooling_sysctl(SYSCTL_HANDLER_ARGS); static int acpi_tz_temp_sysctl(SYSCTL_HANDLER_ARGS); static int acpi_tz_passive_sysctl(SYSCTL_HANDLER_ARGS); static void acpi_tz_notify_handler(ACPI_HANDLE h, UINT32 notify, void *context); static void acpi_tz_signal(struct acpi_tz_softc *sc, int flags); static void acpi_tz_timeout(struct acpi_tz_softc *sc, int flags); static void acpi_tz_power_profile(void *arg); static void acpi_tz_thread(void *arg); static int acpi_tz_cooling_is_available(struct acpi_tz_softc *sc); static int acpi_tz_cooling_thread_start(struct acpi_tz_softc *sc); static device_method_t acpi_tz_methods[] = { /* Device interface */ DEVMETHOD(device_probe, acpi_tz_probe), DEVMETHOD(device_attach, acpi_tz_attach), {0, 0} }; static driver_t acpi_tz_driver = { "acpi_tz", acpi_tz_methods, sizeof(struct acpi_tz_softc), }; static devclass_t acpi_tz_devclass; DRIVER_MODULE(acpi_tz, acpi, acpi_tz_driver, acpi_tz_devclass, 0, 0); MODULE_DEPEND(acpi_tz, acpi, 1, 1, 1); static struct sysctl_ctx_list acpi_tz_sysctl_ctx; static struct sysctl_oid *acpi_tz_sysctl_tree; /* Minimum cooling run time */ static int acpi_tz_min_runtime; static int acpi_tz_polling_rate = TZ_POLLRATE; static int acpi_tz_override; /* Timezone polling thread */ static struct proc *acpi_tz_proc; ACPI_LOCK_DECL(thermal, "ACPI thermal zone"); static int acpi_tz_cooling_unit = -1; static int acpi_tz_probe(device_t dev) { int result; if (acpi_get_type(dev) == ACPI_TYPE_THERMAL && !acpi_disabled("thermal")) { device_set_desc(dev, "Thermal Zone"); result = -10; } else result = ENXIO; return (result); } static int acpi_tz_attach(device_t dev) { struct acpi_tz_softc *sc; struct acpi_softc *acpi_sc; int error; char oidname[8]; ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); sc = device_get_softc(dev); sc->tz_dev = dev; sc->tz_handle = acpi_get_handle(dev); sc->tz_requested = TZ_ACTIVE_NONE; sc->tz_active = TZ_ACTIVE_UNKNOWN; sc->tz_thflags = TZ_THFLAG_NONE; sc->tz_cooling_proc = NULL; sc->tz_cooling_proc_running = FALSE; sc->tz_cooling_active = FALSE; sc->tz_cooling_updated = FALSE; sc->tz_cooling_enabled = FALSE; /* * Parse the current state of the thermal zone and build control * structures. We don't need to worry about interference with the * control thread since we haven't fully attached this device yet. */ if ((error = acpi_tz_establish(sc)) != 0) return (error); /* * Register for any Notify events sent to this zone. */ AcpiInstallNotifyHandler(sc->tz_handle, ACPI_DEVICE_NOTIFY, acpi_tz_notify_handler, sc); /* * Create our sysctl nodes. * * XXX we need a mechanism for adding nodes under ACPI. */ if (device_get_unit(dev) == 0) { acpi_sc = acpi_device_get_parent_softc(dev); sysctl_ctx_init(&acpi_tz_sysctl_ctx); acpi_tz_sysctl_tree = SYSCTL_ADD_NODE(&acpi_tz_sysctl_ctx, SYSCTL_CHILDREN(acpi_sc->acpi_sysctl_tree), OID_AUTO, "thermal", CTLFLAG_RD, 0, ""); SYSCTL_ADD_INT(&acpi_tz_sysctl_ctx, SYSCTL_CHILDREN(acpi_tz_sysctl_tree), OID_AUTO, "min_runtime", CTLFLAG_RW, &acpi_tz_min_runtime, 0, "minimum cooling run time in sec"); SYSCTL_ADD_INT(&acpi_tz_sysctl_ctx, SYSCTL_CHILDREN(acpi_tz_sysctl_tree), OID_AUTO, "polling_rate", CTLFLAG_RW, &acpi_tz_polling_rate, 0, "monitor polling interval in seconds"); SYSCTL_ADD_INT(&acpi_tz_sysctl_ctx, SYSCTL_CHILDREN(acpi_tz_sysctl_tree), OID_AUTO, "user_override", CTLFLAG_RW, &acpi_tz_override, 0, "allow override of thermal settings"); } sysctl_ctx_init(&sc->tz_sysctl_ctx); sprintf(oidname, "tz%d", device_get_unit(dev)); sc->tz_sysctl_tree = SYSCTL_ADD_NODE(&sc->tz_sysctl_ctx, SYSCTL_CHILDREN(acpi_tz_sysctl_tree), OID_AUTO, oidname, CTLFLAG_RD, 0, ""); SYSCTL_ADD_PROC(&sc->tz_sysctl_ctx, SYSCTL_CHILDREN(sc->tz_sysctl_tree), OID_AUTO, "temperature", CTLTYPE_INT | CTLFLAG_RD, &sc->tz_temperature, 0, sysctl_handle_int, "IK", "current thermal zone temperature"); SYSCTL_ADD_PROC(&sc->tz_sysctl_ctx, SYSCTL_CHILDREN(sc->tz_sysctl_tree), OID_AUTO, "active", CTLTYPE_INT | CTLFLAG_RW, sc, 0, acpi_tz_active_sysctl, "I", "cooling is active"); SYSCTL_ADD_PROC(&sc->tz_sysctl_ctx, SYSCTL_CHILDREN(sc->tz_sysctl_tree), OID_AUTO, "passive_cooling", CTLTYPE_INT | CTLFLAG_RW, sc, 0, acpi_tz_cooling_sysctl, "I", "enable passive (speed reduction) cooling"); SYSCTL_ADD_INT(&sc->tz_sysctl_ctx, SYSCTL_CHILDREN(sc->tz_sysctl_tree), OID_AUTO, "thermal_flags", CTLFLAG_RD, &sc->tz_thflags, 0, "thermal zone flags"); SYSCTL_ADD_PROC(&sc->tz_sysctl_ctx, SYSCTL_CHILDREN(sc->tz_sysctl_tree), OID_AUTO, "_PSV", CTLTYPE_INT | CTLFLAG_RW, sc, offsetof(struct acpi_tz_softc, tz_zone.psv), acpi_tz_temp_sysctl, "IK", "passive cooling temp setpoint"); SYSCTL_ADD_PROC(&sc->tz_sysctl_ctx, SYSCTL_CHILDREN(sc->tz_sysctl_tree), OID_AUTO, "_HOT", CTLTYPE_INT | CTLFLAG_RW, sc, offsetof(struct acpi_tz_softc, tz_zone.hot), acpi_tz_temp_sysctl, "IK", "too hot temp setpoint (suspend now)"); SYSCTL_ADD_PROC(&sc->tz_sysctl_ctx, SYSCTL_CHILDREN(sc->tz_sysctl_tree), OID_AUTO, "_CRT", CTLTYPE_INT | CTLFLAG_RW, sc, offsetof(struct acpi_tz_softc, tz_zone.crt), acpi_tz_temp_sysctl, "IK", "critical temp setpoint (shutdown now)"); SYSCTL_ADD_PROC(&sc->tz_sysctl_ctx, SYSCTL_CHILDREN(sc->tz_sysctl_tree), OID_AUTO, "_ACx", CTLTYPE_INT | CTLFLAG_RD, &sc->tz_zone.ac, sizeof(sc->tz_zone.ac), sysctl_handle_opaque, "IK", ""); SYSCTL_ADD_PROC(&sc->tz_sysctl_ctx, SYSCTL_CHILDREN(sc->tz_sysctl_tree), OID_AUTO, "_TC1", CTLTYPE_INT | CTLFLAG_RW, sc, offsetof(struct acpi_tz_softc, tz_zone.tc1), acpi_tz_passive_sysctl, "I", "thermal constant 1 for passive cooling"); SYSCTL_ADD_PROC(&sc->tz_sysctl_ctx, SYSCTL_CHILDREN(sc->tz_sysctl_tree), OID_AUTO, "_TC2", CTLTYPE_INT | CTLFLAG_RW, sc, offsetof(struct acpi_tz_softc, tz_zone.tc2), acpi_tz_passive_sysctl, "I", "thermal constant 2 for passive cooling"); SYSCTL_ADD_PROC(&sc->tz_sysctl_ctx, SYSCTL_CHILDREN(sc->tz_sysctl_tree), OID_AUTO, "_TSP", CTLTYPE_INT | CTLFLAG_RW, sc, offsetof(struct acpi_tz_softc, tz_zone.tsp), acpi_tz_passive_sysctl, "I", "thermal sampling period for passive cooling"); /* * Create thread to service all of the thermal zones. Register * our power profile event handler. */ sc->tz_event = EVENTHANDLER_REGISTER(power_profile_change, acpi_tz_power_profile, sc, 0); if (acpi_tz_proc == NULL) { error = kproc_create(acpi_tz_thread, NULL, &acpi_tz_proc, RFHIGHPID, 0, "acpi_thermal"); if (error != 0) { device_printf(sc->tz_dev, "could not create thread - %d", error); goto out; } } /* * Create a thread to handle passive cooling for 1st zone which * has _PSV, _TSP, _TC1 and _TC2. Users can enable it for other * zones manually for now. * * XXX We enable only one zone to avoid multiple zones conflict * with each other since cpufreq currently sets all CPUs to the * given frequency whereas it's possible for different thermal * zones to specify independent settings for multiple CPUs. */ if (acpi_tz_cooling_unit < 0 && acpi_tz_cooling_is_available(sc)) sc->tz_cooling_enabled = TRUE; if (sc->tz_cooling_enabled) { error = acpi_tz_cooling_thread_start(sc); if (error != 0) { sc->tz_cooling_enabled = FALSE; goto out; } acpi_tz_cooling_unit = device_get_unit(dev); } /* * Flag the event handler for a manual invocation by our timeout. * We defer it like this so that the rest of the subsystem has time * to come up. Don't bother evaluating/printing the temperature at * this point; on many systems it'll be bogus until the EC is running. */ sc->tz_flags |= TZ_FLAG_GETPROFILE; out: if (error != 0) { EVENTHANDLER_DEREGISTER(power_profile_change, sc->tz_event); AcpiRemoveNotifyHandler(sc->tz_handle, ACPI_DEVICE_NOTIFY, acpi_tz_notify_handler); sysctl_ctx_free(&sc->tz_sysctl_ctx); } return_VALUE (error); } /* * Parse the current state of this thermal zone and set up to use it. * * Note that we may have previous state, which will have to be discarded. */ static int acpi_tz_establish(struct acpi_tz_softc *sc) { ACPI_OBJECT *obj; int i; char nbuf[8]; ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); /* Erase any existing state. */ for (i = 0; i < TZ_NUMLEVELS; i++) if (sc->tz_zone.al[i].Pointer != NULL) AcpiOsFree(sc->tz_zone.al[i].Pointer); if (sc->tz_zone.psl.Pointer != NULL) AcpiOsFree(sc->tz_zone.psl.Pointer); /* * XXX: We initialize only ACPI_BUFFER to avoid race condition * with passive cooling thread which refers psv, tc1, tc2 and tsp. */ bzero(sc->tz_zone.ac, sizeof(sc->tz_zone.ac)); bzero(sc->tz_zone.al, sizeof(sc->tz_zone.al)); bzero(&sc->tz_zone.psl, sizeof(sc->tz_zone.psl)); /* Evaluate thermal zone parameters. */ for (i = 0; i < TZ_NUMLEVELS; i++) { sprintf(nbuf, "_AC%d", i); acpi_tz_getparam(sc, nbuf, &sc->tz_zone.ac[i]); sprintf(nbuf, "_AL%d", i); sc->tz_zone.al[i].Length = ACPI_ALLOCATE_BUFFER; sc->tz_zone.al[i].Pointer = NULL; AcpiEvaluateObject(sc->tz_handle, nbuf, NULL, &sc->tz_zone.al[i]); obj = (ACPI_OBJECT *)sc->tz_zone.al[i].Pointer; if (obj != NULL) { /* Should be a package containing a list of power objects */ if (obj->Type != ACPI_TYPE_PACKAGE) { device_printf(sc->tz_dev, "%s has unknown type %d, rejecting\n", nbuf, obj->Type); return_VALUE (ENXIO); } } } acpi_tz_getparam(sc, "_CRT", &sc->tz_zone.crt); acpi_tz_getparam(sc, "_HOT", &sc->tz_zone.hot); sc->tz_zone.psl.Length = ACPI_ALLOCATE_BUFFER; sc->tz_zone.psl.Pointer = NULL; AcpiEvaluateObject(sc->tz_handle, "_PSL", NULL, &sc->tz_zone.psl); acpi_tz_getparam(sc, "_PSV", &sc->tz_zone.psv); acpi_tz_getparam(sc, "_TC1", &sc->tz_zone.tc1); acpi_tz_getparam(sc, "_TC2", &sc->tz_zone.tc2); acpi_tz_getparam(sc, "_TSP", &sc->tz_zone.tsp); acpi_tz_getparam(sc, "_TZP", &sc->tz_zone.tzp); /* * Sanity-check the values we've been given. * * XXX what do we do about systems that give us the same value for * more than one of these setpoints? */ acpi_tz_sanity(sc, &sc->tz_zone.crt, "_CRT"); acpi_tz_sanity(sc, &sc->tz_zone.hot, "_HOT"); acpi_tz_sanity(sc, &sc->tz_zone.psv, "_PSV"); for (i = 0; i < TZ_NUMLEVELS; i++) acpi_tz_sanity(sc, &sc->tz_zone.ac[i], "_ACx"); return_VALUE (0); } static char *aclevel_string[] = { "NONE", "_AC0", "_AC1", "_AC2", "_AC3", "_AC4", "_AC5", "_AC6", "_AC7", "_AC8", "_AC9" }; static __inline const char * acpi_tz_aclevel_string(int active) { if (active < -1 || active >= TZ_NUMLEVELS) return (aclevel_string[0]); return (aclevel_string[active + 1]); } /* * Get the current temperature. */ static int acpi_tz_get_temperature(struct acpi_tz_softc *sc) { int temp; ACPI_STATUS status; static char *tmp_name = "_TMP"; ACPI_FUNCTION_NAME ("acpi_tz_get_temperature"); /* Evaluate the thermal zone's _TMP method. */ status = acpi_GetInteger(sc->tz_handle, tmp_name, &temp); if (ACPI_FAILURE(status)) { ACPI_VPRINT(sc->tz_dev, acpi_device_get_parent_softc(sc->tz_dev), "error fetching current temperature -- %s\n", AcpiFormatException(status)); return (FALSE); } /* Check it for validity. */ acpi_tz_sanity(sc, &temp, tmp_name); if (temp == -1) return (FALSE); ACPI_DEBUG_PRINT((ACPI_DB_VALUES, "got %d.%dC\n", TZ_KELVTOC(temp))); sc->tz_temperature = temp; return (TRUE); } /* * Evaluate the condition of a thermal zone, take appropriate actions. */ static void acpi_tz_monitor(void *Context) { struct acpi_tz_softc *sc; struct timespec curtime; int temp; int i; int newactive, newflags; ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); sc = (struct acpi_tz_softc *)Context; /* Get the current temperature. */ if (!acpi_tz_get_temperature(sc)) { /* XXX disable zone? go to max cooling? */ return_VOID; } temp = sc->tz_temperature; /* * Work out what we ought to be doing right now. * * Note that the _ACx levels sort from hot to cold. */ newactive = TZ_ACTIVE_NONE; for (i = TZ_NUMLEVELS - 1; i >= 0; i--) { if (sc->tz_zone.ac[i] != -1 && temp >= sc->tz_zone.ac[i]) { newactive = i; if (sc->tz_active != newactive) { ACPI_VPRINT(sc->tz_dev, acpi_device_get_parent_softc(sc->tz_dev), "_AC%d: temperature %d.%d >= setpoint %d.%d\n", i, TZ_KELVTOC(temp), TZ_KELVTOC(sc->tz_zone.ac[i])); } } } /* * We are going to get _ACx level down (colder side), but give a guaranteed * minimum cooling run time if requested. */ if (acpi_tz_min_runtime > 0 && sc->tz_active != TZ_ACTIVE_NONE && sc->tz_active != TZ_ACTIVE_UNKNOWN && (newactive == TZ_ACTIVE_NONE || newactive > sc->tz_active)) { getnanotime(&curtime); timespecsub(&curtime, &sc->tz_cooling_started); if (curtime.tv_sec < acpi_tz_min_runtime) newactive = sc->tz_active; } /* Handle user override of active mode */ if (sc->tz_requested != TZ_ACTIVE_NONE && (newactive == TZ_ACTIVE_NONE || sc->tz_requested < newactive)) newactive = sc->tz_requested; /* update temperature-related flags */ newflags = TZ_THFLAG_NONE; if (sc->tz_zone.psv != -1 && temp >= sc->tz_zone.psv) newflags |= TZ_THFLAG_PSV; if (sc->tz_zone.hot != -1 && temp >= sc->tz_zone.hot) newflags |= TZ_THFLAG_HOT; if (sc->tz_zone.crt != -1 && temp >= sc->tz_zone.crt) newflags |= TZ_THFLAG_CRT; /* If the active cooling state has changed, we have to switch things. */ if (sc->tz_active == TZ_ACTIVE_UNKNOWN) { /* * We don't know which cooling device is on or off, * so stop them all, because we now know which * should be on (if any). */ for (i = 0; i < TZ_NUMLEVELS; i++) { if (sc->tz_zone.al[i].Pointer != NULL) { acpi_ForeachPackageObject( (ACPI_OBJECT *)sc->tz_zone.al[i].Pointer, acpi_tz_switch_cooler_off, sc); } } /* now we know that all devices are off */ sc->tz_active = TZ_ACTIVE_NONE; } if (newactive != sc->tz_active) { /* Turn off the cooling devices that are on, if any are */ if (sc->tz_active != TZ_ACTIVE_NONE) acpi_ForeachPackageObject( (ACPI_OBJECT *)sc->tz_zone.al[sc->tz_active].Pointer, acpi_tz_switch_cooler_off, sc); /* Turn on cooling devices that are required, if any are */ if (newactive != TZ_ACTIVE_NONE) { acpi_ForeachPackageObject( (ACPI_OBJECT *)sc->tz_zone.al[newactive].Pointer, acpi_tz_switch_cooler_on, sc); } ACPI_VPRINT(sc->tz_dev, acpi_device_get_parent_softc(sc->tz_dev), "switched from %s to %s: %d.%dC\n", acpi_tz_aclevel_string(sc->tz_active), acpi_tz_aclevel_string(newactive), TZ_KELVTOC(temp)); sc->tz_active = newactive; getnanotime(&sc->tz_cooling_started); } /* XXX (de)activate any passive cooling that may be required. */ /* * If the temperature is at _HOT or _CRT, increment our event count. * If it has occurred enough times, shutdown the system. This is * needed because some systems will report an invalid high temperature * for one poll cycle. It is suspected this is due to the embedded * controller timing out. A typical value is 138C for one cycle on * a system that is otherwise 65C. * * If we're almost at that threshold, notify the user through devd(8). */ if ((newflags & (TZ_THFLAG_HOT | TZ_THFLAG_CRT)) != 0) { sc->tz_validchecks++; if (sc->tz_validchecks == TZ_VALIDCHECKS) { device_printf(sc->tz_dev, "WARNING - current temperature (%d.%dC) exceeds safe limits\n", TZ_KELVTOC(sc->tz_temperature)); shutdown_nice(RB_POWEROFF); } else if (sc->tz_validchecks == TZ_NOTIFYCOUNT) acpi_UserNotify("Thermal", sc->tz_handle, TZ_NOTIFY_CRITICAL); } else { sc->tz_validchecks = 0; } sc->tz_thflags = newflags; return_VOID; } /* * Given an object, verify that it's a reference to a device of some sort, * and try to switch it off. */ static void acpi_tz_switch_cooler_off(ACPI_OBJECT *obj, void *arg) { ACPI_HANDLE cooler; ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); cooler = acpi_GetReference(NULL, obj); if (cooler == NULL) { ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "can't get handle\n")); return_VOID; } ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "called to turn %s off\n", acpi_name(cooler))); acpi_pwr_switch_consumer(cooler, ACPI_STATE_D3); return_VOID; } /* * Given an object, verify that it's a reference to a device of some sort, * and try to switch it on. * * XXX replication of off/on function code is bad. */ static void acpi_tz_switch_cooler_on(ACPI_OBJECT *obj, void *arg) { struct acpi_tz_softc *sc = (struct acpi_tz_softc *)arg; ACPI_HANDLE cooler; ACPI_STATUS status; ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); cooler = acpi_GetReference(NULL, obj); if (cooler == NULL) { ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "can't get handle\n")); return_VOID; } ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "called to turn %s on\n", acpi_name(cooler))); status = acpi_pwr_switch_consumer(cooler, ACPI_STATE_D0); if (ACPI_FAILURE(status)) { ACPI_VPRINT(sc->tz_dev, acpi_device_get_parent_softc(sc->tz_dev), "failed to activate %s - %s\n", acpi_name(cooler), AcpiFormatException(status)); } return_VOID; } /* * Read/debug-print a parameter, default it to -1. */ static void acpi_tz_getparam(struct acpi_tz_softc *sc, char *node, int *data) { ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); if (ACPI_FAILURE(acpi_GetInteger(sc->tz_handle, node, data))) { *data = -1; } else { ACPI_DEBUG_PRINT((ACPI_DB_VALUES, "%s.%s = %d\n", acpi_name(sc->tz_handle), node, *data)); } return_VOID; } /* * Sanity-check a temperature value. Assume that setpoints * should be between 0C and 200C. */ static void acpi_tz_sanity(struct acpi_tz_softc *sc, int *val, char *what) { if (*val != -1 && (*val < TZ_ZEROC || *val > TZ_ZEROC + 2000)) { device_printf(sc->tz_dev, "%s value is absurd, ignored (%d.%dC)\n", what, TZ_KELVTOC(*val)); *val = -1; } } /* * Respond to a sysctl on the active state node. */ static int acpi_tz_active_sysctl(SYSCTL_HANDLER_ARGS) { struct acpi_tz_softc *sc; int active; int error; sc = (struct acpi_tz_softc *)oidp->oid_arg1; active = sc->tz_active; error = sysctl_handle_int(oidp, &active, 0, req); /* Error or no new value */ if (error != 0 || req->newptr == NULL) return (error); if (active < -1 || active >= TZ_NUMLEVELS) return (EINVAL); /* Set new preferred level and re-switch */ sc->tz_requested = active; acpi_tz_signal(sc, 0); return (0); } static int acpi_tz_cooling_sysctl(SYSCTL_HANDLER_ARGS) { struct acpi_tz_softc *sc; int enabled, error; sc = (struct acpi_tz_softc *)oidp->oid_arg1; enabled = sc->tz_cooling_enabled; error = sysctl_handle_int(oidp, &enabled, 0, req); /* Error or no new value */ if (error != 0 || req->newptr == NULL) return (error); if (enabled != TRUE && enabled != FALSE) return (EINVAL); if (enabled) { if (acpi_tz_cooling_is_available(sc)) error = acpi_tz_cooling_thread_start(sc); else error = ENODEV; if (error) enabled = FALSE; } sc->tz_cooling_enabled = enabled; return (error); } static int acpi_tz_temp_sysctl(SYSCTL_HANDLER_ARGS) { struct acpi_tz_softc *sc; int temp, *temp_ptr; int error; sc = oidp->oid_arg1; temp_ptr = (int *)((uintptr_t)sc + oidp->oid_arg2); temp = *temp_ptr; error = sysctl_handle_int(oidp, &temp, 0, req); /* Error or no new value */ if (error != 0 || req->newptr == NULL) return (error); /* Only allow changing settings if override is set. */ if (!acpi_tz_override) return (EPERM); /* Check user-supplied value for sanity. */ acpi_tz_sanity(sc, &temp, "user-supplied temp"); if (temp == -1) return (EINVAL); *temp_ptr = temp; return (0); } static int acpi_tz_passive_sysctl(SYSCTL_HANDLER_ARGS) { struct acpi_tz_softc *sc; int val, *val_ptr; int error; sc = oidp->oid_arg1; val_ptr = (int *)((uintptr_t)sc + oidp->oid_arg2); val = *val_ptr; error = sysctl_handle_int(oidp, &val, 0, req); /* Error or no new value */ if (error != 0 || req->newptr == NULL) return (error); /* Only allow changing settings if override is set. */ if (!acpi_tz_override) return (EPERM); *val_ptr = val; return (0); } static void acpi_tz_notify_handler(ACPI_HANDLE h, UINT32 notify, void *context) { struct acpi_tz_softc *sc = (struct acpi_tz_softc *)context; ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); switch (notify) { case TZ_NOTIFY_TEMPERATURE: /* Temperature change occurred */ acpi_tz_signal(sc, 0); break; case TZ_NOTIFY_DEVICES: case TZ_NOTIFY_LEVELS: /* Zone devices/setpoints changed */ acpi_tz_signal(sc, TZ_FLAG_GETSETTINGS); break; default: ACPI_VPRINT(sc->tz_dev, acpi_device_get_parent_softc(sc->tz_dev), "unknown Notify event 0x%x\n", notify); break; } acpi_UserNotify("Thermal", h, notify); return_VOID; } static void acpi_tz_signal(struct acpi_tz_softc *sc, int flags) { ACPI_LOCK(thermal); sc->tz_flags |= flags; ACPI_UNLOCK(thermal); wakeup(&acpi_tz_proc); } /* * Notifies can be generated asynchronously but have also been seen to be * triggered by other thermal methods. One system generates a notify of * 0x81 when the fan is turned on or off. Another generates it when _SCP * is called. To handle these situations, we check the zone via * acpi_tz_monitor() before evaluating changes to setpoints or the cooling * policy. */ static void acpi_tz_timeout(struct acpi_tz_softc *sc, int flags) { /* Check the current temperature and take action based on it */ acpi_tz_monitor(sc); /* If requested, get the power profile settings. */ if (flags & TZ_FLAG_GETPROFILE) acpi_tz_power_profile(sc); /* * If requested, check for new devices/setpoints. After finding them, * check if we need to switch fans based on the new values. */ if (flags & TZ_FLAG_GETSETTINGS) { acpi_tz_establish(sc); acpi_tz_monitor(sc); } /* XXX passive cooling actions? */ } /* * System power profile may have changed; fetch and notify the * thermal zone accordingly. * * Since this can be called from an arbitrary eventhandler, it needs * to get the ACPI lock itself. */ static void acpi_tz_power_profile(void *arg) { ACPI_STATUS status; struct acpi_tz_softc *sc = (struct acpi_tz_softc *)arg; int state; state = power_profile_get_state(); if (state != POWER_PROFILE_PERFORMANCE && state != POWER_PROFILE_ECONOMY) return; /* check that we haven't decided there's no _SCP method */ if ((sc->tz_flags & TZ_FLAG_NO_SCP) == 0) { /* Call _SCP to set the new profile */ status = acpi_SetInteger(sc->tz_handle, "_SCP", (state == POWER_PROFILE_PERFORMANCE) ? 0 : 1); if (ACPI_FAILURE(status)) { if (status != AE_NOT_FOUND) ACPI_VPRINT(sc->tz_dev, acpi_device_get_parent_softc(sc->tz_dev), "can't evaluate %s._SCP - %s\n", acpi_name(sc->tz_handle), AcpiFormatException(status)); sc->tz_flags |= TZ_FLAG_NO_SCP; } else { /* We have to re-evaluate the entire zone now */ acpi_tz_signal(sc, TZ_FLAG_GETSETTINGS); } } } /* * Thermal zone monitor thread. */ static void acpi_tz_thread(void *arg) { device_t *devs; int devcount, i; int flags; struct acpi_tz_softc **sc; ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); devs = NULL; devcount = 0; sc = NULL; for (;;) { /* If the number of devices has changed, re-evaluate. */ if (devclass_get_count(acpi_tz_devclass) != devcount) { if (devs != NULL) { free(devs, M_TEMP); free(sc, M_TEMP); } devclass_get_devices(acpi_tz_devclass, &devs, &devcount); sc = malloc(sizeof(struct acpi_tz_softc *) * devcount, M_TEMP, M_WAITOK | M_ZERO); for (i = 0; i < devcount; i++) sc[i] = device_get_softc(devs[i]); } /* Check for temperature events and act on them. */ for (i = 0; i < devcount; i++) { ACPI_LOCK(thermal); flags = sc[i]->tz_flags; sc[i]->tz_flags &= TZ_FLAG_NO_SCP; ACPI_UNLOCK(thermal); acpi_tz_timeout(sc[i], flags); } /* If more work to do, don't go to sleep yet. */ ACPI_LOCK(thermal); for (i = 0; i < devcount; i++) { if (sc[i]->tz_flags & ~TZ_FLAG_NO_SCP) break; } /* * If we have no more work, sleep for a while, setting PDROP so that * the mutex will not be reacquired. Otherwise, drop the mutex and * loop to handle more events. */ if (i == devcount) msleep(&acpi_tz_proc, &thermal_mutex, PZERO | PDROP, "tzpoll", hz * acpi_tz_polling_rate); else ACPI_UNLOCK(thermal); } } static int acpi_tz_cpufreq_restore(struct acpi_tz_softc *sc) { device_t dev; int error; if (!sc->tz_cooling_updated) return (0); if ((dev = devclass_get_device(devclass_find("cpufreq"), 0)) == NULL) return (ENXIO); ACPI_VPRINT(sc->tz_dev, acpi_device_get_parent_softc(sc->tz_dev), "temperature %d.%dC: resuming previous clock speed (%d MHz)\n", TZ_KELVTOC(sc->tz_temperature), sc->tz_cooling_saved_freq); error = CPUFREQ_SET(dev, NULL, CPUFREQ_PRIO_KERN); if (error == 0) sc->tz_cooling_updated = FALSE; return (error); } static int acpi_tz_cpufreq_update(struct acpi_tz_softc *sc, int req) { device_t dev; struct cf_level *levels; int num_levels, error, freq, desired_freq, perf, i; levels = malloc(CPUFREQ_MAX_LEVELS * sizeof(*levels), M_TEMP, M_NOWAIT); if (levels == NULL) return (ENOMEM); /* * Find the main device, cpufreq0. We don't yet support independent * CPU frequency control on SMP. */ if ((dev = devclass_get_device(devclass_find("cpufreq"), 0)) == NULL) { error = ENXIO; goto out; } /* Get the current frequency. */ error = CPUFREQ_GET(dev, &levels[0]); if (error) goto out; freq = levels[0].total_set.freq; /* Get the current available frequency levels. */ num_levels = CPUFREQ_MAX_LEVELS; error = CPUFREQ_LEVELS(dev, levels, &num_levels); if (error) { if (error == E2BIG) printf("cpufreq: need to increase CPUFREQ_MAX_LEVELS\n"); goto out; } /* Calculate the desired frequency as a percent of the max frequency. */ perf = 100 * freq / levels[0].total_set.freq - req; if (perf < 0) perf = 0; else if (perf > 100) perf = 100; desired_freq = levels[0].total_set.freq * perf / 100; if (desired_freq < freq) { /* Find the closest available frequency, rounding down. */ for (i = 0; i < num_levels; i++) if (levels[i].total_set.freq <= desired_freq) break; /* If we didn't find a relevant setting, use the lowest. */ if (i == num_levels) i--; } else { /* If we didn't decrease frequency yet, don't increase it. */ if (!sc->tz_cooling_updated) { sc->tz_cooling_active = FALSE; goto out; } /* Use saved cpu frequency as maximum value. */ if (desired_freq > sc->tz_cooling_saved_freq) desired_freq = sc->tz_cooling_saved_freq; /* Find the closest available frequency, rounding up. */ for (i = num_levels - 1; i >= 0; i--) if (levels[i].total_set.freq >= desired_freq) break; /* If we didn't find a relevant setting, use the highest. */ if (i == -1) i++; /* If we're going to the highest frequency, restore the old setting. */ if (i == 0 || desired_freq == sc->tz_cooling_saved_freq) { error = acpi_tz_cpufreq_restore(sc); if (error == 0) sc->tz_cooling_active = FALSE; goto out; } } /* If we are going to a new frequency, activate it. */ if (levels[i].total_set.freq != freq) { ACPI_VPRINT(sc->tz_dev, acpi_device_get_parent_softc(sc->tz_dev), "temperature %d.%dC: %screasing clock speed " "from %d MHz to %d MHz\n", TZ_KELVTOC(sc->tz_temperature), (freq > levels[i].total_set.freq) ? "de" : "in", freq, levels[i].total_set.freq); error = CPUFREQ_SET(dev, &levels[i], CPUFREQ_PRIO_KERN); if (error == 0 && !sc->tz_cooling_updated) { sc->tz_cooling_saved_freq = freq; sc->tz_cooling_updated = TRUE; } } out: if (levels) free(levels, M_TEMP); return (error); } /* * Passive cooling thread; monitors current temperature according to the * cooling interval and calculates whether to scale back CPU frequency. */ static void acpi_tz_cooling_thread(void *arg) { struct acpi_tz_softc *sc; int error, perf, curr_temp, prev_temp; ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); sc = (struct acpi_tz_softc *)arg; prev_temp = sc->tz_temperature; while (sc->tz_cooling_enabled) { if (sc->tz_cooling_active) (void)acpi_tz_get_temperature(sc); curr_temp = sc->tz_temperature; if (curr_temp >= sc->tz_zone.psv) sc->tz_cooling_active = TRUE; if (sc->tz_cooling_active) { perf = sc->tz_zone.tc1 * (curr_temp - prev_temp) + sc->tz_zone.tc2 * (curr_temp - sc->tz_zone.psv); perf /= 10; if (perf != 0) { error = acpi_tz_cpufreq_update(sc, perf); /* * If error and not simply a higher priority setting was * active, disable cooling. */ if (error != 0 && error != EPERM) { device_printf(sc->tz_dev, "failed to set new freq, disabling passive cooling\n"); sc->tz_cooling_enabled = FALSE; } } } prev_temp = curr_temp; tsleep(&sc->tz_cooling_proc, PZERO, "cooling", hz * sc->tz_zone.tsp / 10); } if (sc->tz_cooling_active) { acpi_tz_cpufreq_restore(sc); sc->tz_cooling_active = FALSE; } sc->tz_cooling_proc = NULL; ACPI_LOCK(thermal); sc->tz_cooling_proc_running = FALSE; ACPI_UNLOCK(thermal); kproc_exit(0); } /* * TODO: We ignore _PSL (list of cooling devices) since cpufreq enumerates * all CPUs for us. However, it's possible in the future _PSL will * reference non-CPU devices so we may want to support it then. */ static int acpi_tz_cooling_is_available(struct acpi_tz_softc *sc) { return (sc->tz_zone.tc1 != -1 && sc->tz_zone.tc2 != -1 && sc->tz_zone.tsp != -1 && sc->tz_zone.tsp != 0 && sc->tz_zone.psv != -1); } static int acpi_tz_cooling_thread_start(struct acpi_tz_softc *sc) { int error; ACPI_LOCK(thermal); if (sc->tz_cooling_proc_running) { ACPI_UNLOCK(thermal); return (0); } sc->tz_cooling_proc_running = TRUE; ACPI_UNLOCK(thermal); error = 0; if (sc->tz_cooling_proc == NULL) { error = kproc_create(acpi_tz_cooling_thread, sc, &sc->tz_cooling_proc, RFHIGHPID, 0, "acpi_cooling%d", device_get_unit(sc->tz_dev)); if (error != 0) { device_printf(sc->tz_dev, "could not create thread - %d", error); ACPI_LOCK(thermal); sc->tz_cooling_proc_running = FALSE; ACPI_UNLOCK(thermal); } } return (error); }