Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/nge/@/dev/mps/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/nge/@/dev/mps/mps.c |
/*- * Copyright (c) 2009 Yahoo! Inc. * Copyright (c) 2012 LSI Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * LSI MPT-Fusion Host Adapter FreeBSD * * $FreeBSD: release/9.1.0/sys/dev/mps/mps.c 237876 2012-07-01 05:22:45Z ken $ */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/dev/mps/mps.c 237876 2012-07-01 05:22:45Z ken $"); /* Communications core for LSI MPT2 */ /* TODO Move headers to mpsvar */ #include <sys/types.h> #include <sys/param.h> #include <sys/systm.h> #include <sys/kernel.h> #include <sys/selinfo.h> #include <sys/lock.h> #include <sys/mutex.h> #include <sys/module.h> #include <sys/bus.h> #include <sys/conf.h> #include <sys/bio.h> #include <sys/malloc.h> #include <sys/uio.h> #include <sys/sysctl.h> #include <sys/queue.h> #include <sys/kthread.h> #include <sys/endian.h> #include <sys/eventhandler.h> #include <machine/bus.h> #include <machine/resource.h> #include <sys/rman.h> #include <sys/proc.h> #include <dev/pci/pcivar.h> #include <cam/scsi/scsi_all.h> #include <dev/mps/mpi/mpi2_type.h> #include <dev/mps/mpi/mpi2.h> #include <dev/mps/mpi/mpi2_ioc.h> #include <dev/mps/mpi/mpi2_sas.h> #include <dev/mps/mpi/mpi2_cnfg.h> #include <dev/mps/mpi/mpi2_init.h> #include <dev/mps/mpi/mpi2_tool.h> #include <dev/mps/mps_ioctl.h> #include <dev/mps/mpsvar.h> #include <dev/mps/mps_table.h> static int mps_diag_reset(struct mps_softc *sc, int sleep_flag); static int mps_init_queues(struct mps_softc *sc); static int mps_message_unit_reset(struct mps_softc *sc, int sleep_flag); static int mps_transition_operational(struct mps_softc *sc); static void mps_startup(void *arg); static int mps_send_iocinit(struct mps_softc *sc); static int mps_attach_log(struct mps_softc *sc); static __inline void mps_complete_command(struct mps_command *cm); static void mps_dispatch_event(struct mps_softc *sc, uintptr_t data, MPI2_EVENT_NOTIFICATION_REPLY *reply); static void mps_config_complete(struct mps_softc *sc, struct mps_command *cm); static void mps_periodic(void *); static int mps_reregister_events(struct mps_softc *sc); static void mps_enqueue_request(struct mps_softc *sc, struct mps_command *cm); static int mps_wait_db_ack(struct mps_softc *sc, int timeout, int sleep_flag); SYSCTL_NODE(_hw, OID_AUTO, mps, CTLFLAG_RD, 0, "MPS Driver Parameters"); MALLOC_DEFINE(M_MPT2, "mps", "mpt2 driver memory"); /* * Do a "Diagnostic Reset" aka a hard reset. This should get the chip out of * any state and back to its initialization state machine. */ static char mpt2_reset_magic[] = { 0x00, 0x0f, 0x04, 0x0b, 0x02, 0x07, 0x0d }; /* Added this union to smoothly convert le64toh cm->cm_desc.Words. * Compiler only support unint64_t to be passed as argument. * Otherwise it will through below error * "aggregate value used where an integer was expected" */ typedef union _reply_descriptor { u64 word; struct { u32 low; u32 high; } u; }reply_descriptor,address_descriptor; /* * sleep_flag can be either CAN_SLEEP or NO_SLEEP. * If this function is called from process context, it can sleep * and there is no harm to sleep, in case if this fuction is called * from Interrupt handler, we can not sleep and need NO_SLEEP flag set. * based on sleep flags driver will call either msleep, pause or DELAY. * msleep and pause are of same variant, but pause is used when mps_mtx * is not hold by driver. * */ static int mps_diag_reset(struct mps_softc *sc,int sleep_flag) { uint32_t reg; int i, error, tries = 0; mps_dprint(sc, MPS_TRACE, "%s\n", __func__); /* Clear any pending interrupts */ mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); /*Force NO_SLEEP for threads prohibited to sleep * e.a Thread from interrupt handler are prohibited to sleep. */ if(curthread->td_pflags & TDP_NOSLEEPING) sleep_flag = NO_SLEEP; /* Push the magic sequence */ error = ETIMEDOUT; while (tries++ < 20) { for (i = 0; i < sizeof(mpt2_reset_magic); i++) mps_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET, mpt2_reset_magic[i]); /* wait 100 msec */ if (mtx_owned(&sc->mps_mtx) && sleep_flag == CAN_SLEEP) msleep(&sc->msleep_fake_chan, &sc->mps_mtx, 0, "mpsdiag", hz/10); else if (sleep_flag == CAN_SLEEP) pause("mpsdiag", hz/10); else DELAY(100 * 1000); reg = mps_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET); if (reg & MPI2_DIAG_DIAG_WRITE_ENABLE) { error = 0; break; } } if (error) return (error); /* Send the actual reset. XXX need to refresh the reg? */ mps_regwrite(sc, MPI2_HOST_DIAGNOSTIC_OFFSET, reg | MPI2_DIAG_RESET_ADAPTER); /* Wait up to 300 seconds in 50ms intervals */ error = ETIMEDOUT; for (i = 0; i < 60000; i++) { /* wait 50 msec */ if (mtx_owned(&sc->mps_mtx) && sleep_flag == CAN_SLEEP) msleep(&sc->msleep_fake_chan, &sc->mps_mtx, 0, "mpsdiag", hz/20); else if (sleep_flag == CAN_SLEEP) pause("mpsdiag", hz/20); else DELAY(50 * 1000); reg = mps_regread(sc, MPI2_DOORBELL_OFFSET); if ((reg & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_RESET) { error = 0; break; } } if (error) return (error); mps_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET, 0x0); return (0); } static int mps_message_unit_reset(struct mps_softc *sc, int sleep_flag) { mps_dprint(sc, MPS_TRACE, "%s\n", __func__); mps_regwrite(sc, MPI2_DOORBELL_OFFSET, MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET << MPI2_DOORBELL_FUNCTION_SHIFT); if (mps_wait_db_ack(sc, 5, sleep_flag) != 0) { mps_dprint(sc, MPS_FAULT, "Doorbell handshake failed : <%s>\n", __func__); return (ETIMEDOUT); } return (0); } static int mps_transition_ready(struct mps_softc *sc) { uint32_t reg, state; int error, tries = 0; int sleep_flags; mps_dprint(sc, MPS_TRACE, "%s\n", __func__); /* If we are in attach call, do not sleep */ sleep_flags = (sc->mps_flags & MPS_FLAGS_ATTACH_DONE) ? CAN_SLEEP:NO_SLEEP; error = 0; while (tries++ < 5) { reg = mps_regread(sc, MPI2_DOORBELL_OFFSET); mps_dprint(sc, MPS_INFO, "Doorbell= 0x%x\n", reg); /* * Ensure the IOC is ready to talk. If it's not, try * resetting it. */ if (reg & MPI2_DOORBELL_USED) { mps_diag_reset(sc, sleep_flags); DELAY(50000); continue; } /* Is the adapter owned by another peer? */ if ((reg & MPI2_DOORBELL_WHO_INIT_MASK) == (MPI2_WHOINIT_PCI_PEER << MPI2_DOORBELL_WHO_INIT_SHIFT)) { device_printf(sc->mps_dev, "IOC is under the control " "of another peer host, aborting initialization.\n"); return (ENXIO); } state = reg & MPI2_IOC_STATE_MASK; if (state == MPI2_IOC_STATE_READY) { /* Ready to go! */ error = 0; break; } else if (state == MPI2_IOC_STATE_FAULT) { mps_dprint(sc, MPS_INFO, "IOC in fault state 0x%x\n", state & MPI2_DOORBELL_FAULT_CODE_MASK); mps_diag_reset(sc, sleep_flags); } else if (state == MPI2_IOC_STATE_OPERATIONAL) { /* Need to take ownership */ mps_message_unit_reset(sc, sleep_flags); } else if (state == MPI2_IOC_STATE_RESET) { /* Wait a bit, IOC might be in transition */ mps_dprint(sc, MPS_FAULT, "IOC in unexpected reset state\n"); } else { mps_dprint(sc, MPS_FAULT, "IOC in unknown state 0x%x\n", state); error = EINVAL; break; } /* Wait 50ms for things to settle down. */ DELAY(50000); } if (error) device_printf(sc->mps_dev, "Cannot transition IOC to ready\n"); return (error); } static int mps_transition_operational(struct mps_softc *sc) { uint32_t reg, state; int error; mps_dprint(sc, MPS_TRACE, "%s\n", __func__); error = 0; reg = mps_regread(sc, MPI2_DOORBELL_OFFSET); mps_dprint(sc, MPS_INFO, "Doorbell= 0x%x\n", reg); state = reg & MPI2_IOC_STATE_MASK; if (state != MPI2_IOC_STATE_READY) { if ((error = mps_transition_ready(sc)) != 0) { mps_dprint(sc, MPS_FAULT, "%s failed to transition ready\n", __func__); return (error); } } error = mps_send_iocinit(sc); return (error); } /* * XXX Some of this should probably move to mps.c * * The terms diag reset and hard reset are used interchangeably in the MPI * docs to mean resetting the controller chip. In this code diag reset * cleans everything up, and the hard reset function just sends the reset * sequence to the chip. This should probably be refactored so that every * subsystem gets a reset notification of some sort, and can clean up * appropriately. */ int mps_reinit(struct mps_softc *sc) { int error; uint32_t db; mps_printf(sc, "%s sc %p\n", __func__, sc); mtx_assert(&sc->mps_mtx, MA_OWNED); if (sc->mps_flags & MPS_FLAGS_DIAGRESET) { mps_printf(sc, "%s reset already in progress\n", __func__); return 0; } /* make sure the completion callbacks can recognize they're getting * a NULL cm_reply due to a reset. */ sc->mps_flags |= MPS_FLAGS_DIAGRESET; mps_printf(sc, "%s mask interrupts\n", __func__); mps_mask_intr(sc); error = mps_diag_reset(sc, CAN_SLEEP); if (error != 0) { panic("%s hard reset failed with error %d\n", __func__, error); } /* Restore the PCI state, including the MSI-X registers */ mps_pci_restore(sc); /* Give the I/O subsystem special priority to get itself prepared */ mpssas_handle_reinit(sc); /* reinitialize queues after the reset */ bzero(sc->free_queue, sc->fqdepth * 4); mps_init_queues(sc); /* get the chip out of the reset state */ error = mps_transition_operational(sc); if (error != 0) panic("%s transition operational failed with error %d\n", __func__, error); /* Reinitialize the reply queue. This is delicate because this * function is typically invoked by task mgmt completion callbacks, * which are called by the interrupt thread. We need to make sure * the interrupt handler loop will exit when we return to it, and * that it will recognize the indexes we've changed. */ sc->replypostindex = 0; mps_regwrite(sc, MPI2_REPLY_FREE_HOST_INDEX_OFFSET, sc->replyfreeindex); mps_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, sc->replypostindex); db = mps_regread(sc, MPI2_DOORBELL_OFFSET); mps_printf(sc, "%s doorbell 0x%08x\n", __func__, db); mps_printf(sc, "%s unmask interrupts post %u free %u\n", __func__, sc->replypostindex, sc->replyfreeindex); mps_unmask_intr(sc); mps_printf(sc, "%s restarting post %u free %u\n", __func__, sc->replypostindex, sc->replyfreeindex); /* restart will reload the event masks clobbered by the reset, and * then enable the port. */ mps_reregister_events(sc); /* the end of discovery will release the simq, so we're done. */ mps_printf(sc, "%s finished sc %p post %u free %u\n", __func__, sc, sc->replypostindex, sc->replyfreeindex); sc->mps_flags &= ~MPS_FLAGS_DIAGRESET; return 0; } /* Wait for the chip to ACK a word that we've put into its FIFO * Wait for <timeout> seconds. In single loop wait for busy loop * for 500 microseconds. * Total is [ 0.5 * (2000 * <timeout>) ] in miliseconds. * */ static int mps_wait_db_ack(struct mps_softc *sc, int timeout, int sleep_flag) { u32 cntdn, count; u32 int_status; u32 doorbell; count = 0; cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout; do { int_status = mps_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET); if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) { mps_dprint(sc, MPS_INFO, "%s: successfull count(%d), timeout(%d)\n", __func__, count, timeout); return 0; } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { doorbell = mps_regread(sc, MPI2_DOORBELL_OFFSET); if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { mps_dprint(sc, MPS_FAULT, "fault_state(0x%04x)!\n", doorbell); return (EFAULT); } } else if (int_status == 0xFFFFFFFF) goto out; /* If it can sleep, sleep for 1 milisecond, else busy loop for * 0.5 milisecond */ if (mtx_owned(&sc->mps_mtx) && sleep_flag == CAN_SLEEP) msleep(&sc->msleep_fake_chan, &sc->mps_mtx, 0, "mpsdba", hz/1000); else if (sleep_flag == CAN_SLEEP) pause("mpsdba", hz/1000); else DELAY(500); count++; } while (--cntdn); out: mps_dprint(sc, MPS_FAULT, "%s: failed due to timeout count(%d), " "int_status(%x)!\n", __func__, count, int_status); return (ETIMEDOUT); } /* Wait for the chip to signal that the next word in its FIFO can be fetched */ static int mps_wait_db_int(struct mps_softc *sc) { int retry; for (retry = 0; retry < MPS_DB_MAX_WAIT; retry++) { if ((mps_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET) & MPI2_HIS_IOC2SYS_DB_STATUS) != 0) return (0); DELAY(2000); } return (ETIMEDOUT); } /* Step through the synchronous command state machine, i.e. "Doorbell mode" */ static int mps_request_sync(struct mps_softc *sc, void *req, MPI2_DEFAULT_REPLY *reply, int req_sz, int reply_sz, int timeout) { uint32_t *data32; uint16_t *data16; int i, count, ioc_sz, residual; int sleep_flags = CAN_SLEEP; if(curthread->td_pflags & TDP_NOSLEEPING) sleep_flags = NO_SLEEP; /* Step 1 */ mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); /* Step 2 */ if (mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) return (EBUSY); /* Step 3 * Announce that a message is coming through the doorbell. Messages * are pushed at 32bit words, so round up if needed. */ count = (req_sz + 3) / 4; mps_regwrite(sc, MPI2_DOORBELL_OFFSET, (MPI2_FUNCTION_HANDSHAKE << MPI2_DOORBELL_FUNCTION_SHIFT) | (count << MPI2_DOORBELL_ADD_DWORDS_SHIFT)); /* Step 4 */ if (mps_wait_db_int(sc) || (mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) == 0) { mps_dprint(sc, MPS_FAULT, "Doorbell failed to activate\n"); return (ENXIO); } mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); if (mps_wait_db_ack(sc, 5, sleep_flags) != 0) { mps_dprint(sc, MPS_FAULT, "Doorbell handshake failed\n"); return (ENXIO); } /* Step 5 */ /* Clock out the message data synchronously in 32-bit dwords*/ data32 = (uint32_t *)req; for (i = 0; i < count; i++) { mps_regwrite(sc, MPI2_DOORBELL_OFFSET, htole32(data32[i])); if (mps_wait_db_ack(sc, 5, sleep_flags) != 0) { mps_dprint(sc, MPS_FAULT, "Timeout while writing doorbell\n"); return (ENXIO); } } /* Step 6 */ /* Clock in the reply in 16-bit words. The total length of the * message is always in the 4th byte, so clock out the first 2 words * manually, then loop the rest. */ data16 = (uint16_t *)reply; if (mps_wait_db_int(sc) != 0) { mps_dprint(sc, MPS_FAULT, "Timeout reading doorbell 0\n"); return (ENXIO); } data16[0] = mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK; mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); if (mps_wait_db_int(sc) != 0) { mps_dprint(sc, MPS_FAULT, "Timeout reading doorbell 1\n"); return (ENXIO); } data16[1] = mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK; mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); /* Number of 32bit words in the message */ ioc_sz = reply->MsgLength; /* * Figure out how many 16bit words to clock in without overrunning. * The precision loss with dividing reply_sz can safely be * ignored because the messages can only be multiples of 32bits. */ residual = 0; count = MIN((reply_sz / 4), ioc_sz) * 2; if (count < ioc_sz * 2) { residual = ioc_sz * 2 - count; mps_dprint(sc, MPS_FAULT, "Driver error, throwing away %d " "residual message words\n", residual); } for (i = 2; i < count; i++) { if (mps_wait_db_int(sc) != 0) { mps_dprint(sc, MPS_FAULT, "Timeout reading doorbell %d\n", i); return (ENXIO); } data16[i] = mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK; mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); } /* * Pull out residual words that won't fit into the provided buffer. * This keeps the chip from hanging due to a driver programming * error. */ while (residual--) { if (mps_wait_db_int(sc) != 0) { mps_dprint(sc, MPS_FAULT, "Timeout reading doorbell\n"); return (ENXIO); } (void)mps_regread(sc, MPI2_DOORBELL_OFFSET); mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); } /* Step 7 */ if (mps_wait_db_int(sc) != 0) { mps_dprint(sc, MPS_FAULT, "Timeout waiting to exit doorbell\n"); return (ENXIO); } if (mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) mps_dprint(sc, MPS_FAULT, "Warning, doorbell still active\n"); mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); return (0); } static void mps_enqueue_request(struct mps_softc *sc, struct mps_command *cm) { reply_descriptor rd; mps_dprint(sc, MPS_TRACE, "%s SMID %u cm %p ccb %p\n", __func__, cm->cm_desc.Default.SMID, cm, cm->cm_ccb); if (sc->mps_flags & MPS_FLAGS_ATTACH_DONE && !(sc->mps_flags & MPS_FLAGS_SHUTDOWN)) mtx_assert(&sc->mps_mtx, MA_OWNED); if (++sc->io_cmds_active > sc->io_cmds_highwater) sc->io_cmds_highwater++; rd.u.low = cm->cm_desc.Words.Low; rd.u.high = cm->cm_desc.Words.High; rd.word = htole64(rd.word); /* TODO-We may need to make below regwrite atomic */ mps_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_LOW_OFFSET, rd.u.low); mps_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_HIGH_OFFSET, rd.u.high); } /* * Just the FACTS, ma'am. */ static int mps_get_iocfacts(struct mps_softc *sc, MPI2_IOC_FACTS_REPLY *facts) { MPI2_DEFAULT_REPLY *reply; MPI2_IOC_FACTS_REQUEST request; int error, req_sz, reply_sz; mps_dprint(sc, MPS_TRACE, "%s\n", __func__); req_sz = sizeof(MPI2_IOC_FACTS_REQUEST); reply_sz = sizeof(MPI2_IOC_FACTS_REPLY); reply = (MPI2_DEFAULT_REPLY *)facts; bzero(&request, req_sz); request.Function = MPI2_FUNCTION_IOC_FACTS; error = mps_request_sync(sc, &request, reply, req_sz, reply_sz, 5); return (error); } static int mps_get_portfacts(struct mps_softc *sc, MPI2_PORT_FACTS_REPLY *facts, int port) { MPI2_PORT_FACTS_REQUEST *request; MPI2_PORT_FACTS_REPLY *reply; struct mps_command *cm; int error; mps_dprint(sc, MPS_TRACE, "%s\n", __func__); if ((cm = mps_alloc_command(sc)) == NULL) return (EBUSY); request = (MPI2_PORT_FACTS_REQUEST *)cm->cm_req; request->Function = MPI2_FUNCTION_PORT_FACTS; request->PortNumber = port; cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; cm->cm_data = NULL; error = mps_request_polled(sc, cm); reply = (MPI2_PORT_FACTS_REPLY *)cm->cm_reply; if (reply == NULL) { mps_printf(sc, "%s NULL reply\n", __func__); goto done; } if ((reply->IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS) { mps_printf(sc, "%s error %d iocstatus 0x%x iocloginfo 0x%x type 0x%x\n", __func__, error, reply->IOCStatus, reply->IOCLogInfo, reply->PortType); error = ENXIO; } bcopy(reply, facts, sizeof(MPI2_PORT_FACTS_REPLY)); done: mps_free_command(sc, cm); return (error); } static int mps_send_iocinit(struct mps_softc *sc) { MPI2_IOC_INIT_REQUEST init; MPI2_DEFAULT_REPLY reply; int req_sz, reply_sz, error; mps_dprint(sc, MPS_TRACE, "%s\n", __func__); req_sz = sizeof(MPI2_IOC_INIT_REQUEST); reply_sz = sizeof(MPI2_IOC_INIT_REPLY); bzero(&init, req_sz); bzero(&reply, reply_sz); /* * Fill in the init block. Note that most addresses are * deliberately in the lower 32bits of memory. This is a micro- * optimzation for PCI/PCIX, though it's not clear if it helps PCIe. */ init.Function = MPI2_FUNCTION_IOC_INIT; init.WhoInit = MPI2_WHOINIT_HOST_DRIVER; init.MsgVersion = htole16(MPI2_VERSION); init.HeaderVersion = htole16(MPI2_HEADER_VERSION); init.SystemRequestFrameSize = htole16(sc->facts->IOCRequestFrameSize); init.ReplyDescriptorPostQueueDepth = htole16(sc->pqdepth); init.ReplyFreeQueueDepth = htole16(sc->fqdepth); init.SenseBufferAddressHigh = 0; init.SystemReplyAddressHigh = 0; init.SystemRequestFrameBaseAddress.High = 0; init.SystemRequestFrameBaseAddress.Low = htole32((uint32_t)sc->req_busaddr); init.ReplyDescriptorPostQueueAddress.High = 0; init.ReplyDescriptorPostQueueAddress.Low = htole32((uint32_t)sc->post_busaddr); init.ReplyFreeQueueAddress.High = 0; init.ReplyFreeQueueAddress.Low = htole32((uint32_t)sc->free_busaddr); init.TimeStamp.High = 0; init.TimeStamp.Low = htole32((uint32_t)time_uptime); error = mps_request_sync(sc, &init, &reply, req_sz, reply_sz, 5); if ((reply.IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS) error = ENXIO; mps_dprint(sc, MPS_INFO, "IOCInit status= 0x%x\n", reply.IOCStatus); return (error); } void mps_memaddr_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) { bus_addr_t *addr; addr = arg; *addr = segs[0].ds_addr; } static int mps_alloc_queues(struct mps_softc *sc) { bus_addr_t queues_busaddr; uint8_t *queues; int qsize, fqsize, pqsize; /* * The reply free queue contains 4 byte entries in multiples of 16 and * aligned on a 16 byte boundary. There must always be an unused entry. * This queue supplies fresh reply frames for the firmware to use. * * The reply descriptor post queue contains 8 byte entries in * multiples of 16 and aligned on a 16 byte boundary. This queue * contains filled-in reply frames sent from the firmware to the host. * * These two queues are allocated together for simplicity. */ sc->fqdepth = roundup2((sc->num_replies + 1), 16); sc->pqdepth = roundup2((sc->num_replies + 1), 16); fqsize= sc->fqdepth * 4; pqsize = sc->pqdepth * 8; qsize = fqsize + pqsize; if (bus_dma_tag_create( sc->mps_parent_dmat, /* parent */ 16, 0, /* algnmnt, boundary */ BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ qsize, /* maxsize */ 1, /* nsegments */ qsize, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->queues_dmat)) { device_printf(sc->mps_dev, "Cannot allocate queues DMA tag\n"); return (ENOMEM); } if (bus_dmamem_alloc(sc->queues_dmat, (void **)&queues, BUS_DMA_NOWAIT, &sc->queues_map)) { device_printf(sc->mps_dev, "Cannot allocate queues memory\n"); return (ENOMEM); } bzero(queues, qsize); bus_dmamap_load(sc->queues_dmat, sc->queues_map, queues, qsize, mps_memaddr_cb, &queues_busaddr, 0); sc->free_queue = (uint32_t *)queues; sc->free_busaddr = queues_busaddr; sc->post_queue = (MPI2_REPLY_DESCRIPTORS_UNION *)(queues + fqsize); sc->post_busaddr = queues_busaddr + fqsize; return (0); } static int mps_alloc_replies(struct mps_softc *sc) { int rsize, num_replies; /* * sc->num_replies should be one less than sc->fqdepth. We need to * allocate space for sc->fqdepth replies, but only sc->num_replies * replies can be used at once. */ num_replies = max(sc->fqdepth, sc->num_replies); rsize = sc->facts->ReplyFrameSize * num_replies * 4; if (bus_dma_tag_create( sc->mps_parent_dmat, /* parent */ 4, 0, /* algnmnt, boundary */ BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ rsize, /* maxsize */ 1, /* nsegments */ rsize, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->reply_dmat)) { device_printf(sc->mps_dev, "Cannot allocate replies DMA tag\n"); return (ENOMEM); } if (bus_dmamem_alloc(sc->reply_dmat, (void **)&sc->reply_frames, BUS_DMA_NOWAIT, &sc->reply_map)) { device_printf(sc->mps_dev, "Cannot allocate replies memory\n"); return (ENOMEM); } bzero(sc->reply_frames, rsize); bus_dmamap_load(sc->reply_dmat, sc->reply_map, sc->reply_frames, rsize, mps_memaddr_cb, &sc->reply_busaddr, 0); return (0); } static int mps_alloc_requests(struct mps_softc *sc) { struct mps_command *cm; struct mps_chain *chain; int i, rsize, nsegs; rsize = sc->facts->IOCRequestFrameSize * sc->num_reqs * 4; if (bus_dma_tag_create( sc->mps_parent_dmat, /* parent */ 16, 0, /* algnmnt, boundary */ BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ rsize, /* maxsize */ 1, /* nsegments */ rsize, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->req_dmat)) { device_printf(sc->mps_dev, "Cannot allocate request DMA tag\n"); return (ENOMEM); } if (bus_dmamem_alloc(sc->req_dmat, (void **)&sc->req_frames, BUS_DMA_NOWAIT, &sc->req_map)) { device_printf(sc->mps_dev, "Cannot allocate request memory\n"); return (ENOMEM); } bzero(sc->req_frames, rsize); bus_dmamap_load(sc->req_dmat, sc->req_map, sc->req_frames, rsize, mps_memaddr_cb, &sc->req_busaddr, 0); rsize = sc->facts->IOCRequestFrameSize * sc->max_chains * 4; if (bus_dma_tag_create( sc->mps_parent_dmat, /* parent */ 16, 0, /* algnmnt, boundary */ BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ rsize, /* maxsize */ 1, /* nsegments */ rsize, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->chain_dmat)) { device_printf(sc->mps_dev, "Cannot allocate chain DMA tag\n"); return (ENOMEM); } if (bus_dmamem_alloc(sc->chain_dmat, (void **)&sc->chain_frames, BUS_DMA_NOWAIT, &sc->chain_map)) { device_printf(sc->mps_dev, "Cannot allocate chain memory\n"); return (ENOMEM); } bzero(sc->chain_frames, rsize); bus_dmamap_load(sc->chain_dmat, sc->chain_map, sc->chain_frames, rsize, mps_memaddr_cb, &sc->chain_busaddr, 0); rsize = MPS_SENSE_LEN * sc->num_reqs; if (bus_dma_tag_create( sc->mps_parent_dmat, /* parent */ 1, 0, /* algnmnt, boundary */ BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ rsize, /* maxsize */ 1, /* nsegments */ rsize, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->sense_dmat)) { device_printf(sc->mps_dev, "Cannot allocate sense DMA tag\n"); return (ENOMEM); } if (bus_dmamem_alloc(sc->sense_dmat, (void **)&sc->sense_frames, BUS_DMA_NOWAIT, &sc->sense_map)) { device_printf(sc->mps_dev, "Cannot allocate sense memory\n"); return (ENOMEM); } bzero(sc->sense_frames, rsize); bus_dmamap_load(sc->sense_dmat, sc->sense_map, sc->sense_frames, rsize, mps_memaddr_cb, &sc->sense_busaddr, 0); sc->chains = malloc(sizeof(struct mps_chain) * sc->max_chains, M_MPT2, M_WAITOK | M_ZERO); if(!sc->chains) { device_printf(sc->mps_dev, "Cannot allocate chains memory %s %d\n", __func__, __LINE__); return (ENOMEM); } for (i = 0; i < sc->max_chains; i++) { chain = &sc->chains[i]; chain->chain = (MPI2_SGE_IO_UNION *)(sc->chain_frames + i * sc->facts->IOCRequestFrameSize * 4); chain->chain_busaddr = sc->chain_busaddr + i * sc->facts->IOCRequestFrameSize * 4; mps_free_chain(sc, chain); sc->chain_free_lowwater++; } /* XXX Need to pick a more precise value */ nsegs = (MAXPHYS / PAGE_SIZE) + 1; if (bus_dma_tag_create( sc->mps_parent_dmat, /* parent */ 1, 0, /* algnmnt, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ BUS_SPACE_MAXSIZE_32BIT,/* maxsize */ nsegs, /* nsegments */ BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */ BUS_DMA_ALLOCNOW, /* flags */ busdma_lock_mutex, /* lockfunc */ &sc->mps_mtx, /* lockarg */ &sc->buffer_dmat)) { device_printf(sc->mps_dev, "Cannot allocate buffer DMA tag\n"); return (ENOMEM); } /* * SMID 0 cannot be used as a free command per the firmware spec. * Just drop that command instead of risking accounting bugs. */ sc->commands = malloc(sizeof(struct mps_command) * sc->num_reqs, M_MPT2, M_WAITOK | M_ZERO); if(!sc->commands) { device_printf(sc->mps_dev, "Cannot allocate memory %s %d\n", __func__, __LINE__); return (ENOMEM); } for (i = 1; i < sc->num_reqs; i++) { cm = &sc->commands[i]; cm->cm_req = sc->req_frames + i * sc->facts->IOCRequestFrameSize * 4; cm->cm_req_busaddr = sc->req_busaddr + i * sc->facts->IOCRequestFrameSize * 4; cm->cm_sense = &sc->sense_frames[i]; cm->cm_sense_busaddr = sc->sense_busaddr + i * MPS_SENSE_LEN; cm->cm_desc.Default.SMID = i; cm->cm_sc = sc; TAILQ_INIT(&cm->cm_chain_list); callout_init_mtx(&cm->cm_callout, &sc->mps_mtx, 0); /* XXX Is a failure here a critical problem? */ if (bus_dmamap_create(sc->buffer_dmat, 0, &cm->cm_dmamap) == 0) if (i <= sc->facts->HighPriorityCredit) mps_free_high_priority_command(sc, cm); else mps_free_command(sc, cm); else { panic("failed to allocate command %d\n", i); sc->num_reqs = i; break; } } return (0); } static int mps_init_queues(struct mps_softc *sc) { int i; memset((uint8_t *)sc->post_queue, 0xff, sc->pqdepth * 8); /* * According to the spec, we need to use one less reply than we * have space for on the queue. So sc->num_replies (the number we * use) should be less than sc->fqdepth (allocated size). */ if (sc->num_replies >= sc->fqdepth) return (EINVAL); /* * Initialize all of the free queue entries. */ for (i = 0; i < sc->fqdepth; i++) sc->free_queue[i] = sc->reply_busaddr + (i * sc->facts->ReplyFrameSize * 4); sc->replyfreeindex = sc->num_replies; return (0); } /* Get the driver parameter tunables. Lowest priority are the driver defaults. * Next are the global settings, if they exist. Highest are the per-unit * settings, if they exist. */ static void mps_get_tunables(struct mps_softc *sc) { char tmpstr[80]; /* XXX default to some debugging for now */ sc->mps_debug = MPS_FAULT; sc->disable_msix = 0; sc->disable_msi = 0; sc->max_chains = MPS_CHAIN_FRAMES; /* * Grab the global variables. */ TUNABLE_INT_FETCH("hw.mps.debug_level", &sc->mps_debug); TUNABLE_INT_FETCH("hw.mps.disable_msix", &sc->disable_msix); TUNABLE_INT_FETCH("hw.mps.disable_msi", &sc->disable_msi); TUNABLE_INT_FETCH("hw.mps.max_chains", &sc->max_chains); /* Grab the unit-instance variables */ snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.debug_level", device_get_unit(sc->mps_dev)); TUNABLE_INT_FETCH(tmpstr, &sc->mps_debug); snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.disable_msix", device_get_unit(sc->mps_dev)); TUNABLE_INT_FETCH(tmpstr, &sc->disable_msix); snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.disable_msi", device_get_unit(sc->mps_dev)); TUNABLE_INT_FETCH(tmpstr, &sc->disable_msi); snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_chains", device_get_unit(sc->mps_dev)); TUNABLE_INT_FETCH(tmpstr, &sc->max_chains); } static void mps_setup_sysctl(struct mps_softc *sc) { struct sysctl_ctx_list *sysctl_ctx = NULL; struct sysctl_oid *sysctl_tree = NULL; char tmpstr[80], tmpstr2[80]; /* * Setup the sysctl variable so the user can change the debug level * on the fly. */ snprintf(tmpstr, sizeof(tmpstr), "MPS controller %d", device_get_unit(sc->mps_dev)); snprintf(tmpstr2, sizeof(tmpstr2), "%d", device_get_unit(sc->mps_dev)); sysctl_ctx = device_get_sysctl_ctx(sc->mps_dev); if (sysctl_ctx != NULL) sysctl_tree = device_get_sysctl_tree(sc->mps_dev); if (sysctl_tree == NULL) { sysctl_ctx_init(&sc->sysctl_ctx); sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx, SYSCTL_STATIC_CHILDREN(_hw_mps), OID_AUTO, tmpstr2, CTLFLAG_RD, 0, tmpstr); if (sc->sysctl_tree == NULL) return; sysctl_ctx = &sc->sysctl_ctx; sysctl_tree = sc->sysctl_tree; } SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, "debug_level", CTLFLAG_RW, &sc->mps_debug, 0, "mps debug level"); SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, "disable_msix", CTLFLAG_RD, &sc->disable_msix, 0, "Disable the use of MSI-X interrupts"); SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, "disable_msi", CTLFLAG_RD, &sc->disable_msi, 0, "Disable the use of MSI interrupts"); SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, "firmware_version", CTLFLAG_RW, &sc->fw_version, strlen(sc->fw_version), "firmware version"); SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, "driver_version", CTLFLAG_RW, MPS_DRIVER_VERSION, strlen(MPS_DRIVER_VERSION), "driver version"); SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, "io_cmds_active", CTLFLAG_RD, &sc->io_cmds_active, 0, "number of currently active commands"); SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, "io_cmds_highwater", CTLFLAG_RD, &sc->io_cmds_highwater, 0, "maximum active commands seen"); SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, "chain_free", CTLFLAG_RD, &sc->chain_free, 0, "number of free chain elements"); SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, "chain_free_lowwater", CTLFLAG_RD, &sc->chain_free_lowwater, 0,"lowest number of free chain elements"); SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, "max_chains", CTLFLAG_RD, &sc->max_chains, 0,"maximum chain frames that will be allocated"); #if __FreeBSD_version >= 900030 SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, "chain_alloc_fail", CTLFLAG_RD, &sc->chain_alloc_fail, "chain allocation failures"); #endif //FreeBSD_version >= 900030 } int mps_attach(struct mps_softc *sc) { int i, error; mps_get_tunables(sc); mps_dprint(sc, MPS_TRACE, "%s\n", __func__); mtx_init(&sc->mps_mtx, "MPT2SAS lock", NULL, MTX_DEF); callout_init_mtx(&sc->periodic, &sc->mps_mtx, 0); TAILQ_INIT(&sc->event_list); if ((error = mps_transition_ready(sc)) != 0) { mps_printf(sc, "%s failed to transition ready\n", __func__); return (error); } sc->facts = malloc(sizeof(MPI2_IOC_FACTS_REPLY), M_MPT2, M_ZERO|M_NOWAIT); if(!sc->facts) { device_printf(sc->mps_dev, "Cannot allocate memory %s %d\n", __func__, __LINE__); return (ENOMEM); } if ((error = mps_get_iocfacts(sc, sc->facts)) != 0) return (error); mps_print_iocfacts(sc, sc->facts); snprintf(sc->fw_version, sizeof(sc->fw_version), "%02d.%02d.%02d.%02d", sc->facts->FWVersion.Struct.Major, sc->facts->FWVersion.Struct.Minor, sc->facts->FWVersion.Struct.Unit, sc->facts->FWVersion.Struct.Dev); mps_printf(sc, "Firmware: %s, Driver: %s\n", sc->fw_version, MPS_DRIVER_VERSION); mps_printf(sc, "IOCCapabilities: %b\n", sc->facts->IOCCapabilities, "\20" "\3ScsiTaskFull" "\4DiagTrace" "\5SnapBuf" "\6ExtBuf" "\7EEDP" "\10BiDirTarg" "\11Multicast" "\14TransRetry" "\15IR" "\16EventReplay" "\17RaidAccel" "\20MSIXIndex" "\21HostDisc"); /* * If the chip doesn't support event replay then a hard reset will be * required to trigger a full discovery. Do the reset here then * retransition to Ready. A hard reset might have already been done, * but it doesn't hurt to do it again. */ if ((sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY) == 0) { mps_diag_reset(sc, NO_SLEEP); if ((error = mps_transition_ready(sc)) != 0) return (error); } /* * Set flag if IR Firmware is loaded. */ if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) sc->ir_firmware = 1; /* * Check if controller supports FW diag buffers and set flag to enable * each type. */ if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_TRACE].enabled = TRUE; if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_SNAPSHOT].enabled = TRUE; if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_EXTENDED].enabled = TRUE; /* * Set flag if EEDP is supported and if TLR is supported. */ if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) sc->eedp_enabled = TRUE; if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) sc->control_TLR = TRUE; /* * Size the queues. Since the reply queues always need one free entry, * we'll just deduct one reply message here. */ sc->num_reqs = MIN(MPS_REQ_FRAMES, sc->facts->RequestCredit); sc->num_replies = MIN(MPS_REPLY_FRAMES + MPS_EVT_REPLY_FRAMES, sc->facts->MaxReplyDescriptorPostQueueDepth) - 1; TAILQ_INIT(&sc->req_list); TAILQ_INIT(&sc->high_priority_req_list); TAILQ_INIT(&sc->chain_list); TAILQ_INIT(&sc->tm_list); if (((error = mps_alloc_queues(sc)) != 0) || ((error = mps_alloc_replies(sc)) != 0) || ((error = mps_alloc_requests(sc)) != 0)) { mps_printf(sc, "%s failed to alloc\n", __func__); mps_free(sc); return (error); } if (((error = mps_init_queues(sc)) != 0) || ((error = mps_transition_operational(sc)) != 0)) { mps_printf(sc, "%s failed to transition operational\n", __func__); mps_free(sc); return (error); } /* * Finish the queue initialization. * These are set here instead of in mps_init_queues() because the * IOC resets these values during the state transition in * mps_transition_operational(). The free index is set to 1 * because the corresponding index in the IOC is set to 0, and the * IOC treats the queues as full if both are set to the same value. * Hence the reason that the queue can't hold all of the possible * replies. */ sc->replypostindex = 0; mps_regwrite(sc, MPI2_REPLY_FREE_HOST_INDEX_OFFSET, sc->replyfreeindex); mps_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, 0); sc->pfacts = malloc(sizeof(MPI2_PORT_FACTS_REPLY) * sc->facts->NumberOfPorts, M_MPT2, M_ZERO|M_WAITOK); if(!sc->pfacts) { device_printf(sc->mps_dev, "Cannot allocate memory %s %d\n", __func__, __LINE__); return (ENOMEM); } for (i = 0; i < sc->facts->NumberOfPorts; i++) { if ((error = mps_get_portfacts(sc, &sc->pfacts[i], i)) != 0) { mps_printf(sc, "%s failed to get portfacts for port %d\n", __func__, i); mps_free(sc); return (error); } mps_print_portfacts(sc, &sc->pfacts[i]); } /* Attach the subsystems so they can prepare their event masks. */ /* XXX Should be dynamic so that IM/IR and user modules can attach */ if (((error = mps_attach_log(sc)) != 0) || ((error = mps_attach_sas(sc)) != 0) || ((error = mps_attach_user(sc)) != 0)) { mps_printf(sc, "%s failed to attach all subsystems: error %d\n", __func__, error); mps_free(sc); return (error); } if ((error = mps_pci_setup_interrupts(sc)) != 0) { mps_printf(sc, "%s failed to setup interrupts\n", __func__); mps_free(sc); return (error); } /* * The static page function currently read is ioc page8. Others can be * added in future. */ mps_base_static_config_pages(sc); /* Start the periodic watchdog check on the IOC Doorbell */ mps_periodic(sc); /* * The portenable will kick off discovery events that will drive the * rest of the initialization process. The CAM/SAS module will * hold up the boot sequence until discovery is complete. */ sc->mps_ich.ich_func = mps_startup; sc->mps_ich.ich_arg = sc; if (config_intrhook_establish(&sc->mps_ich) != 0) { mps_dprint(sc, MPS_FAULT, "Cannot establish MPS config hook\n"); error = EINVAL; } /* * Allow IR to shutdown gracefully when shutdown occurs. */ sc->shutdown_eh = EVENTHANDLER_REGISTER(shutdown_final, mpssas_ir_shutdown, sc, SHUTDOWN_PRI_DEFAULT); if (sc->shutdown_eh == NULL) mps_dprint(sc, MPS_FAULT, "shutdown event registration " "failed\n"); mps_setup_sysctl(sc); sc->mps_flags |= MPS_FLAGS_ATTACH_DONE; return (error); } /* Run through any late-start handlers. */ static void mps_startup(void *arg) { struct mps_softc *sc; sc = (struct mps_softc *)arg; mps_lock(sc); mps_unmask_intr(sc); /* initialize device mapping tables */ mps_mapping_initialize(sc); mpssas_startup(sc); mps_unlock(sc); } /* Periodic watchdog. Is called with the driver lock already held. */ static void mps_periodic(void *arg) { struct mps_softc *sc; uint32_t db; sc = (struct mps_softc *)arg; if (sc->mps_flags & MPS_FLAGS_SHUTDOWN) return; db = mps_regread(sc, MPI2_DOORBELL_OFFSET); if ((db & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { device_printf(sc->mps_dev, "IOC Fault 0x%08x, Resetting\n", db); mps_reinit(sc); } callout_reset(&sc->periodic, MPS_PERIODIC_DELAY * hz, mps_periodic, sc); } static void mps_log_evt_handler(struct mps_softc *sc, uintptr_t data, MPI2_EVENT_NOTIFICATION_REPLY *event) { MPI2_EVENT_DATA_LOG_ENTRY_ADDED *entry; mps_print_event(sc, event); switch (event->Event) { case MPI2_EVENT_LOG_DATA: device_printf(sc->mps_dev, "MPI2_EVENT_LOG_DATA:\n"); hexdump(event->EventData, event->EventDataLength, NULL, 0); break; case MPI2_EVENT_LOG_ENTRY_ADDED: entry = (MPI2_EVENT_DATA_LOG_ENTRY_ADDED *)event->EventData; mps_dprint(sc, MPS_INFO, "MPI2_EVENT_LOG_ENTRY_ADDED event " "0x%x Sequence %d:\n", entry->LogEntryQualifier, entry->LogSequence); break; default: break; } return; } static int mps_attach_log(struct mps_softc *sc) { u32 events[MPI2_EVENT_NOTIFY_EVENTMASK_WORDS]; bzero(events, 16); setbit(events, MPI2_EVENT_LOG_DATA); setbit(events, MPI2_EVENT_LOG_ENTRY_ADDED); mps_register_events(sc, events, mps_log_evt_handler, NULL, &sc->mps_log_eh); return (0); } static int mps_detach_log(struct mps_softc *sc) { if (sc->mps_log_eh != NULL) mps_deregister_events(sc, sc->mps_log_eh); return (0); } /* * Free all of the driver resources and detach submodules. Should be called * without the lock held. */ int mps_free(struct mps_softc *sc) { struct mps_command *cm; int i, error; /* Turn off the watchdog */ mps_lock(sc); sc->mps_flags |= MPS_FLAGS_SHUTDOWN; mps_unlock(sc); /* Lock must not be held for this */ callout_drain(&sc->periodic); if (((error = mps_detach_log(sc)) != 0) || ((error = mps_detach_sas(sc)) != 0)) return (error); mps_detach_user(sc); /* Put the IOC back in the READY state. */ mps_lock(sc); if ((error = mps_transition_ready(sc)) != 0) { mps_unlock(sc); return (error); } mps_unlock(sc); if (sc->facts != NULL) free(sc->facts, M_MPT2); if (sc->pfacts != NULL) free(sc->pfacts, M_MPT2); if (sc->post_busaddr != 0) bus_dmamap_unload(sc->queues_dmat, sc->queues_map); if (sc->post_queue != NULL) bus_dmamem_free(sc->queues_dmat, sc->post_queue, sc->queues_map); if (sc->queues_dmat != NULL) bus_dma_tag_destroy(sc->queues_dmat); if (sc->chain_busaddr != 0) bus_dmamap_unload(sc->chain_dmat, sc->chain_map); if (sc->chain_frames != NULL) bus_dmamem_free(sc->chain_dmat, sc->chain_frames,sc->chain_map); if (sc->chain_dmat != NULL) bus_dma_tag_destroy(sc->chain_dmat); if (sc->sense_busaddr != 0) bus_dmamap_unload(sc->sense_dmat, sc->sense_map); if (sc->sense_frames != NULL) bus_dmamem_free(sc->sense_dmat, sc->sense_frames,sc->sense_map); if (sc->sense_dmat != NULL) bus_dma_tag_destroy(sc->sense_dmat); if (sc->reply_busaddr != 0) bus_dmamap_unload(sc->reply_dmat, sc->reply_map); if (sc->reply_frames != NULL) bus_dmamem_free(sc->reply_dmat, sc->reply_frames,sc->reply_map); if (sc->reply_dmat != NULL) bus_dma_tag_destroy(sc->reply_dmat); if (sc->req_busaddr != 0) bus_dmamap_unload(sc->req_dmat, sc->req_map); if (sc->req_frames != NULL) bus_dmamem_free(sc->req_dmat, sc->req_frames, sc->req_map); if (sc->req_dmat != NULL) bus_dma_tag_destroy(sc->req_dmat); if (sc->chains != NULL) free(sc->chains, M_MPT2); if (sc->commands != NULL) { for (i = 1; i < sc->num_reqs; i++) { cm = &sc->commands[i]; bus_dmamap_destroy(sc->buffer_dmat, cm->cm_dmamap); } free(sc->commands, M_MPT2); } if (sc->buffer_dmat != NULL) bus_dma_tag_destroy(sc->buffer_dmat); if (sc->sysctl_tree != NULL) sysctl_ctx_free(&sc->sysctl_ctx); mps_mapping_free_memory(sc); /* Deregister the shutdown function */ if (sc->shutdown_eh != NULL) EVENTHANDLER_DEREGISTER(shutdown_final, sc->shutdown_eh); mtx_destroy(&sc->mps_mtx); return (0); } static __inline void mps_complete_command(struct mps_command *cm) { if (cm->cm_flags & MPS_CM_FLAGS_POLLED) cm->cm_flags |= MPS_CM_FLAGS_COMPLETE; if (cm->cm_complete != NULL) { mps_dprint(cm->cm_sc, MPS_TRACE, "%s cm %p calling cm_complete %p data %p reply %p\n", __func__, cm, cm->cm_complete, cm->cm_complete_data, cm->cm_reply); cm->cm_complete(cm->cm_sc, cm); } if (cm->cm_flags & MPS_CM_FLAGS_WAKEUP) { mps_dprint(cm->cm_sc, MPS_TRACE, "%s: waking up %p\n", __func__, cm); wakeup(cm); } if (cm->cm_sc->io_cmds_active != 0) { cm->cm_sc->io_cmds_active--; } else { mps_dprint(cm->cm_sc, MPS_INFO, "Warning: io_cmds_active is " "out of sync - resynching to 0\n"); } } static void mps_sas_log_info(struct mps_softc *sc , u32 log_info) { union loginfo_type { u32 loginfo; struct { u32 subcode:16; u32 code:8; u32 originator:4; u32 bus_type:4; } dw; }; union loginfo_type sas_loginfo; char *originator_str = NULL; sas_loginfo.loginfo = log_info; if (sas_loginfo.dw.bus_type != 3 /*SAS*/) return; /* each nexus loss loginfo */ if (log_info == 0x31170000) return; /* eat the loginfos associated with task aborts */ if ((log_info == 30050000 || log_info == 0x31140000 || log_info == 0x31130000)) return; switch (sas_loginfo.dw.originator) { case 0: originator_str = "IOP"; break; case 1: originator_str = "PL"; break; case 2: originator_str = "IR"; break; } mps_dprint(sc, MPS_INFO, "log_info(0x%08x): originator(%s), " "code(0x%02x), sub_code(0x%04x)\n", log_info, originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode); } static void mps_display_reply_info(struct mps_softc *sc, uint8_t *reply) { MPI2DefaultReply_t *mpi_reply; u16 sc_status; mpi_reply = (MPI2DefaultReply_t*)reply; sc_status = le16toh(mpi_reply->IOCStatus); if (sc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) mps_sas_log_info(sc, le32toh(mpi_reply->IOCLogInfo)); } void mps_intr(void *data) { struct mps_softc *sc; uint32_t status; sc = (struct mps_softc *)data; mps_dprint(sc, MPS_TRACE, "%s\n", __func__); /* * Check interrupt status register to flush the bus. This is * needed for both INTx interrupts and driver-driven polling */ status = mps_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET); if ((status & MPI2_HIS_REPLY_DESCRIPTOR_INTERRUPT) == 0) return; mps_lock(sc); mps_intr_locked(data); mps_unlock(sc); return; } /* * In theory, MSI/MSIX interrupts shouldn't need to read any registers on the * chip. Hopefully this theory is correct. */ void mps_intr_msi(void *data) { struct mps_softc *sc; sc = (struct mps_softc *)data; mps_dprint(sc, MPS_TRACE, "%s\n", __func__); mps_lock(sc); mps_intr_locked(data); mps_unlock(sc); return; } /* * The locking is overly broad and simplistic, but easy to deal with for now. */ void mps_intr_locked(void *data) { MPI2_REPLY_DESCRIPTORS_UNION *desc; struct mps_softc *sc; struct mps_command *cm = NULL; uint8_t flags; u_int pq; MPI2_DIAG_RELEASE_REPLY *rel_rep; mps_fw_diagnostic_buffer_t *pBuffer; sc = (struct mps_softc *)data; pq = sc->replypostindex; mps_dprint(sc, MPS_TRACE, "%s sc %p starting with replypostindex %u\n", __func__, sc, sc->replypostindex); for ( ;; ) { cm = NULL; desc = &sc->post_queue[sc->replypostindex]; flags = desc->Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; if ((flags == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) || (le32toh(desc->Words.High) == 0xffffffff)) break; /* increment the replypostindex now, so that event handlers * and cm completion handlers which decide to do a diag * reset can zero it without it getting incremented again * afterwards, and we break out of this loop on the next * iteration since the reply post queue has been cleared to * 0xFF and all descriptors look unused (which they are). */ if (++sc->replypostindex >= sc->pqdepth) sc->replypostindex = 0; switch (flags) { case MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS: cm = &sc->commands[le16toh(desc->SCSIIOSuccess.SMID)]; cm->cm_reply = NULL; break; case MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY: { uint32_t baddr; uint8_t *reply; /* * Re-compose the reply address from the address * sent back from the chip. The ReplyFrameAddress * is the lower 32 bits of the physical address of * particular reply frame. Convert that address to * host format, and then use that to provide the * offset against the virtual address base * (sc->reply_frames). */ baddr = le32toh(desc->AddressReply.ReplyFrameAddress); reply = sc->reply_frames + (baddr - ((uint32_t)sc->reply_busaddr)); /* * Make sure the reply we got back is in a valid * range. If not, go ahead and panic here, since * we'll probably panic as soon as we deference the * reply pointer anyway. */ if ((reply < sc->reply_frames) || (reply > (sc->reply_frames + (sc->fqdepth * sc->facts->ReplyFrameSize * 4)))) { printf("%s: WARNING: reply %p out of range!\n", __func__, reply); printf("%s: reply_frames %p, fqdepth %d, " "frame size %d\n", __func__, sc->reply_frames, sc->fqdepth, sc->facts->ReplyFrameSize * 4); printf("%s: baddr %#x,\n", __func__, baddr); /* LSI-TODO. See Linux Code. Need Gracefull exit*/ panic("Reply address out of range"); } if (le16toh(desc->AddressReply.SMID) == 0) { if (((MPI2_DEFAULT_REPLY *)reply)->Function == MPI2_FUNCTION_DIAG_BUFFER_POST) { /* * If SMID is 0 for Diag Buffer Post, * this implies that the reply is due to * a release function with a status that * the buffer has been released. Set * the buffer flags accordingly. */ rel_rep = (MPI2_DIAG_RELEASE_REPLY *)reply; if (le16toh(rel_rep->IOCStatus) == MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED) { pBuffer = &sc->fw_diag_buffer_list[ rel_rep->BufferType]; pBuffer->valid_data = TRUE; pBuffer->owned_by_firmware = FALSE; pBuffer->immediate = FALSE; } } else mps_dispatch_event(sc, baddr, (MPI2_EVENT_NOTIFICATION_REPLY *) reply); } else { cm = &sc->commands[le16toh(desc->AddressReply.SMID)]; cm->cm_reply = reply; cm->cm_reply_data = le32toh(desc->AddressReply.ReplyFrameAddress); } break; } case MPI2_RPY_DESCRIPT_FLAGS_TARGETASSIST_SUCCESS: case MPI2_RPY_DESCRIPT_FLAGS_TARGET_COMMAND_BUFFER: case MPI2_RPY_DESCRIPT_FLAGS_RAID_ACCELERATOR_SUCCESS: default: /* Unhandled */ device_printf(sc->mps_dev, "Unhandled reply 0x%x\n", desc->Default.ReplyFlags); cm = NULL; break; } if (cm != NULL) { // Print Error reply frame if (cm->cm_reply) mps_display_reply_info(sc,cm->cm_reply); mps_complete_command(cm); } desc->Words.Low = 0xffffffff; desc->Words.High = 0xffffffff; } if (pq != sc->replypostindex) { mps_dprint(sc, MPS_TRACE, "%s sc %p writing postindex %d\n", __func__, sc, sc->replypostindex); mps_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, sc->replypostindex); } return; } static void mps_dispatch_event(struct mps_softc *sc, uintptr_t data, MPI2_EVENT_NOTIFICATION_REPLY *reply) { struct mps_event_handle *eh; int event, handled = 0; event = le16toh(reply->Event); TAILQ_FOREACH(eh, &sc->event_list, eh_list) { if (isset(eh->mask, event)) { eh->callback(sc, data, reply); handled++; } } if (handled == 0) device_printf(sc->mps_dev, "Unhandled event 0x%x\n", le16toh(event)); /* * This is the only place that the event/reply should be freed. * Anything wanting to hold onto the event data should have * already copied it into their own storage. */ mps_free_reply(sc, data); } static void mps_reregister_events_complete(struct mps_softc *sc, struct mps_command *cm) { mps_dprint(sc, MPS_TRACE, "%s\n", __func__); if (cm->cm_reply) mps_print_event(sc, (MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply); mps_free_command(sc, cm); /* next, send a port enable */ mpssas_startup(sc); } /* * For both register_events and update_events, the caller supplies a bitmap * of events that it _wants_. These functions then turn that into a bitmask * suitable for the controller. */ int mps_register_events(struct mps_softc *sc, u32 *mask, mps_evt_callback_t *cb, void *data, struct mps_event_handle **handle) { struct mps_event_handle *eh; int error = 0; eh = malloc(sizeof(struct mps_event_handle), M_MPT2, M_WAITOK|M_ZERO); if(!eh) { device_printf(sc->mps_dev, "Cannot allocate memory %s %d\n", __func__, __LINE__); return (ENOMEM); } eh->callback = cb; eh->data = data; TAILQ_INSERT_TAIL(&sc->event_list, eh, eh_list); if (mask != NULL) error = mps_update_events(sc, eh, mask); *handle = eh; return (error); } int mps_update_events(struct mps_softc *sc, struct mps_event_handle *handle, u32 *mask) { MPI2_EVENT_NOTIFICATION_REQUEST *evtreq; MPI2_EVENT_NOTIFICATION_REPLY *reply; struct mps_command *cm; int error, i; mps_dprint(sc, MPS_TRACE, "%s\n", __func__); if ((mask != NULL) && (handle != NULL)) bcopy(mask, &handle->mask[0], sizeof(u32) * MPI2_EVENT_NOTIFY_EVENTMASK_WORDS); for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) sc->event_mask[i] = -1; for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) sc->event_mask[i] &= ~handle->mask[i]; if ((cm = mps_alloc_command(sc)) == NULL) return (EBUSY); evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req; evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION; evtreq->MsgFlags = 0; evtreq->SASBroadcastPrimitiveMasks = 0; #ifdef MPS_DEBUG_ALL_EVENTS { u_char fullmask[16]; memset(fullmask, 0x00, 16); bcopy(fullmask, &evtreq->EventMasks[0], sizeof(u32) * MPI2_EVENT_NOTIFY_EVENTMASK_WORDS); } #else for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) evtreq->EventMasks[i] = htole32(sc->event_mask[i]); #endif cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; cm->cm_data = NULL; error = mps_request_polled(sc, cm); reply = (MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply; if ((reply == NULL) || (reply->IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS) error = ENXIO; mps_print_event(sc, reply); mps_dprint(sc, MPS_TRACE, "%s finished error %d\n", __func__, error); mps_free_command(sc, cm); return (error); } static int mps_reregister_events(struct mps_softc *sc) { MPI2_EVENT_NOTIFICATION_REQUEST *evtreq; struct mps_command *cm; struct mps_event_handle *eh; int error, i; mps_dprint(sc, MPS_TRACE, "%s\n", __func__); /* first, reregister events */ for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) sc->event_mask[i] = -1; TAILQ_FOREACH(eh, &sc->event_list, eh_list) { for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) sc->event_mask[i] &= ~eh->mask[i]; } if ((cm = mps_alloc_command(sc)) == NULL) return (EBUSY); evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req; evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION; evtreq->MsgFlags = 0; evtreq->SASBroadcastPrimitiveMasks = 0; #ifdef MPS_DEBUG_ALL_EVENTS { u_char fullmask[16]; memset(fullmask, 0x00, 16); bcopy(fullmask, &evtreq->EventMasks[0], sizeof(u32) * MPI2_EVENT_NOTIFY_EVENTMASK_WORDS); } #else for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) evtreq->EventMasks[i] = htole32(sc->event_mask[i]); #endif cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; cm->cm_data = NULL; cm->cm_complete = mps_reregister_events_complete; error = mps_map_command(sc, cm); mps_dprint(sc, MPS_TRACE, "%s finished with error %d\n", __func__, error); return (error); } void mps_deregister_events(struct mps_softc *sc, struct mps_event_handle *handle) { TAILQ_REMOVE(&sc->event_list, handle, eh_list); free(handle, M_MPT2); } /* * Add a chain element as the next SGE for the specified command. * Reset cm_sge and cm_sgesize to indicate all the available space. */ static int mps_add_chain(struct mps_command *cm) { MPI2_SGE_CHAIN32 *sgc; struct mps_chain *chain; int space; if (cm->cm_sglsize < MPS_SGC_SIZE) panic("MPS: Need SGE Error Code\n"); chain = mps_alloc_chain(cm->cm_sc); if (chain == NULL) return (ENOBUFS); space = (int)cm->cm_sc->facts->IOCRequestFrameSize * 4; /* * Note: a double-linked list is used to make it easier to * walk for debugging. */ TAILQ_INSERT_TAIL(&cm->cm_chain_list, chain, chain_link); sgc = (MPI2_SGE_CHAIN32 *)&cm->cm_sge->MpiChain; sgc->Length = htole16(space); sgc->NextChainOffset = 0; /* TODO Looks like bug in Setting sgc->Flags. * sgc->Flags = ( MPI2_SGE_FLAGS_CHAIN_ELEMENT | MPI2_SGE_FLAGS_64_BIT_ADDRESSING | * MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT * This is fine.. because we are not using simple element. In case of * MPI2_SGE_CHAIN32, we have seperate Length and Flags feild. */ sgc->Flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT; sgc->Address = htole32(chain->chain_busaddr); cm->cm_sge = (MPI2_SGE_IO_UNION *)&chain->chain->MpiSimple; cm->cm_sglsize = space; return (0); } /* * Add one scatter-gather element (chain, simple, transaction context) * to the scatter-gather list for a command. Maintain cm_sglsize and * cm_sge as the remaining size and pointer to the next SGE to fill * in, respectively. */ int mps_push_sge(struct mps_command *cm, void *sgep, size_t len, int segsleft) { MPI2_SGE_TRANSACTION_UNION *tc = sgep; MPI2_SGE_SIMPLE64 *sge = sgep; int error, type; uint32_t saved_buf_len, saved_address_low, saved_address_high; u32 sge_flags; type = (tc->Flags & MPI2_SGE_FLAGS_ELEMENT_MASK); #ifdef INVARIANTS switch (type) { case MPI2_SGE_FLAGS_TRANSACTION_ELEMENT: { if (len != tc->DetailsLength + 4) panic("TC %p length %u or %zu?", tc, tc->DetailsLength + 4, len); } break; case MPI2_SGE_FLAGS_CHAIN_ELEMENT: /* Driver only uses 32-bit chain elements */ if (len != MPS_SGC_SIZE) panic("CHAIN %p length %u or %zu?", sgep, MPS_SGC_SIZE, len); break; case MPI2_SGE_FLAGS_SIMPLE_ELEMENT: /* Driver only uses 64-bit SGE simple elements */ sge = sgep; if (len != MPS_SGE64_SIZE) panic("SGE simple %p length %u or %zu?", sge, MPS_SGE64_SIZE, len); if (((sge->FlagsLength >> MPI2_SGE_FLAGS_SHIFT) & MPI2_SGE_FLAGS_ADDRESS_SIZE) == 0) panic("SGE simple %p flags %02x not marked 64-bit?", sge, sge->FlagsLength >> MPI2_SGE_FLAGS_SHIFT); break; default: panic("Unexpected SGE %p, flags %02x", tc, tc->Flags); } #endif /* * case 1: 1 more segment, enough room for it * case 2: 2 more segments, enough room for both * case 3: >=2 more segments, only enough room for 1 and a chain * case 4: >=1 more segment, enough room for only a chain * case 5: >=1 more segment, no room for anything (error) */ /* * There should be room for at least a chain element, or this * code is buggy. Case (5). */ if (cm->cm_sglsize < MPS_SGC_SIZE) panic("MPS: Need SGE Error Code\n"); if (segsleft >= 2 && cm->cm_sglsize < len + MPS_SGC_SIZE + MPS_SGE64_SIZE) { /* * There are 2 or more segments left to add, and only * enough room for 1 and a chain. Case (3). * * Mark as last element in this chain if necessary. */ if (type == MPI2_SGE_FLAGS_SIMPLE_ELEMENT) { sge->FlagsLength |= (MPI2_SGE_FLAGS_LAST_ELEMENT << MPI2_SGE_FLAGS_SHIFT); } /* * Add the item then a chain. Do the chain now, * rather than on the next iteration, to simplify * understanding the code. */ cm->cm_sglsize -= len; /* Endian Safe code */ sge_flags = sge->FlagsLength; sge->FlagsLength = htole32(sge_flags); sge->Address.High = htole32(sge->Address.High); sge->Address.Low = htole32(sge->Address.Low); bcopy(sgep, cm->cm_sge, len); cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len); return (mps_add_chain(cm)); } if (segsleft >= 1 && cm->cm_sglsize < len + MPS_SGC_SIZE) { /* * 1 or more segment, enough room for only a chain. * Hope the previous element wasn't a Simple entry * that needed to be marked with * MPI2_SGE_FLAGS_LAST_ELEMENT. Case (4). */ if ((error = mps_add_chain(cm)) != 0) return (error); } #ifdef INVARIANTS /* Case 1: 1 more segment, enough room for it. */ if (segsleft == 1 && cm->cm_sglsize < len) panic("1 seg left and no room? %u versus %zu", cm->cm_sglsize, len); /* Case 2: 2 more segments, enough room for both */ if (segsleft == 2 && cm->cm_sglsize < len + MPS_SGE64_SIZE) panic("2 segs left and no room? %u versus %zu", cm->cm_sglsize, len); #endif if (segsleft == 1 && type == MPI2_SGE_FLAGS_SIMPLE_ELEMENT) { /* * If this is a bi-directional request, need to account for that * here. Save the pre-filled sge values. These will be used * either for the 2nd SGL or for a single direction SGL. If * cm_out_len is non-zero, this is a bi-directional request, so * fill in the OUT SGL first, then the IN SGL, otherwise just * fill in the IN SGL. Note that at this time, when filling in * 2 SGL's for a bi-directional request, they both use the same * DMA buffer (same cm command). */ saved_buf_len = sge->FlagsLength & 0x00FFFFFF; saved_address_low = sge->Address.Low; saved_address_high = sge->Address.High; if (cm->cm_out_len) { sge->FlagsLength = cm->cm_out_len | ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC | MPI2_SGE_FLAGS_64_BIT_ADDRESSING) << MPI2_SGE_FLAGS_SHIFT); cm->cm_sglsize -= len; /* Endian Safe code */ sge_flags = sge->FlagsLength; sge->FlagsLength = htole32(sge_flags); sge->Address.High = htole32(sge->Address.High); sge->Address.Low = htole32(sge->Address.Low); bcopy(sgep, cm->cm_sge, len); cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len); } sge->FlagsLength = saved_buf_len | ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_64_BIT_ADDRESSING) << MPI2_SGE_FLAGS_SHIFT); if (cm->cm_flags & MPS_CM_FLAGS_DATAIN) { sge->FlagsLength |= ((uint32_t)(MPI2_SGE_FLAGS_IOC_TO_HOST) << MPI2_SGE_FLAGS_SHIFT); } else { sge->FlagsLength |= ((uint32_t)(MPI2_SGE_FLAGS_HOST_TO_IOC) << MPI2_SGE_FLAGS_SHIFT); } sge->Address.Low = saved_address_low; sge->Address.High = saved_address_high; } cm->cm_sglsize -= len; /* Endian Safe code */ sge_flags = sge->FlagsLength; sge->FlagsLength = htole32(sge_flags); sge->Address.High = htole32(sge->Address.High); sge->Address.Low = htole32(sge->Address.Low); bcopy(sgep, cm->cm_sge, len); cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len); return (0); } /* * Add one dma segment to the scatter-gather list for a command. */ int mps_add_dmaseg(struct mps_command *cm, vm_paddr_t pa, size_t len, u_int flags, int segsleft) { MPI2_SGE_SIMPLE64 sge; /* * This driver always uses 64-bit address elements for simplicity. */ flags |= MPI2_SGE_FLAGS_SIMPLE_ELEMENT | MPI2_SGE_FLAGS_64_BIT_ADDRESSING; /* Set Endian safe macro in mps_push_sge */ sge.FlagsLength = len | (flags << MPI2_SGE_FLAGS_SHIFT); mps_from_u64(pa, &sge.Address); return (mps_push_sge(cm, &sge, sizeof sge, segsleft)); } static void mps_data_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) { struct mps_softc *sc; struct mps_command *cm; u_int i, dir, sflags; cm = (struct mps_command *)arg; sc = cm->cm_sc; /* * In this case, just print out a warning and let the chip tell the * user they did the wrong thing. */ if ((cm->cm_max_segs != 0) && (nsegs > cm->cm_max_segs)) { mps_printf(sc, "%s: warning: busdma returned %d segments, " "more than the %d allowed\n", __func__, nsegs, cm->cm_max_segs); } /* * Set up DMA direction flags. Bi-directional requests are also handled * here. In that case, both direction flags will be set. */ sflags = 0; if (cm->cm_flags & MPS_CM_FLAGS_SMP_PASS) { /* * We have to add a special case for SMP passthrough, there * is no easy way to generically handle it. The first * S/G element is used for the command (therefore the * direction bit needs to be set). The second one is used * for the reply. We'll leave it to the caller to make * sure we only have two buffers. */ /* * Even though the busdma man page says it doesn't make * sense to have both direction flags, it does in this case. * We have one s/g element being accessed in each direction. */ dir = BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD; /* * Set the direction flag on the first buffer in the SMP * passthrough request. We'll clear it for the second one. */ sflags |= MPI2_SGE_FLAGS_DIRECTION | MPI2_SGE_FLAGS_END_OF_BUFFER; } else if (cm->cm_flags & MPS_CM_FLAGS_DATAOUT) { sflags |= MPI2_SGE_FLAGS_HOST_TO_IOC; dir = BUS_DMASYNC_PREWRITE; } else dir = BUS_DMASYNC_PREREAD; for (i = 0; i < nsegs; i++) { if ((cm->cm_flags & MPS_CM_FLAGS_SMP_PASS) && (i != 0)) { sflags &= ~MPI2_SGE_FLAGS_DIRECTION; } error = mps_add_dmaseg(cm, segs[i].ds_addr, segs[i].ds_len, sflags, nsegs - i); if (error != 0) { /* Resource shortage, roll back! */ mps_dprint(sc, MPS_INFO, "out of chain frames\n"); cm->cm_flags |= MPS_CM_FLAGS_CHAIN_FAILED; mps_complete_command(cm); return; } } bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir); mps_enqueue_request(sc, cm); return; } static void mps_data_cb2(void *arg, bus_dma_segment_t *segs, int nsegs, bus_size_t mapsize, int error) { mps_data_cb(arg, segs, nsegs, error); } /* * This is the routine to enqueue commands ansynchronously. * Note that the only error path here is from bus_dmamap_load(), which can * return EINPROGRESS if it is waiting for resources. Other than this, it's * assumed that if you have a command in-hand, then you have enough credits * to use it. */ int mps_map_command(struct mps_softc *sc, struct mps_command *cm) { MPI2_SGE_SIMPLE32 *sge; int error = 0; if (cm->cm_flags & MPS_CM_FLAGS_USE_UIO) { error = bus_dmamap_load_uio(sc->buffer_dmat, cm->cm_dmamap, &cm->cm_uio, mps_data_cb2, cm, 0); } else if ((cm->cm_data != NULL) && (cm->cm_length != 0)) { error = bus_dmamap_load(sc->buffer_dmat, cm->cm_dmamap, cm->cm_data, cm->cm_length, mps_data_cb, cm, 0); } else { /* Add a zero-length element as needed */ if (cm->cm_sge != NULL) { sge = (MPI2_SGE_SIMPLE32 *)cm->cm_sge; sge->FlagsLength = htole32((MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_SIMPLE_ELEMENT) << MPI2_SGE_FLAGS_SHIFT); sge->Address = 0; } mps_enqueue_request(sc, cm); } return (error); } /* * This is the routine to enqueue commands synchronously. An error of * EINPROGRESS from mps_map_command() is ignored since the command will * be executed and enqueued automatically. Other errors come from msleep(). */ int mps_wait_command(struct mps_softc *sc, struct mps_command *cm, int timeout) { int error, rc; mtx_assert(&sc->mps_mtx, MA_OWNED); if(sc->mps_flags & MPS_FLAGS_DIAGRESET) return EBUSY; cm->cm_complete = NULL; cm->cm_flags |= MPS_CM_FLAGS_WAKEUP; error = mps_map_command(sc, cm); if ((error != 0) && (error != EINPROGRESS)) return (error); error = msleep(cm, &sc->mps_mtx, 0, "mpswait", timeout*hz); if (error == EWOULDBLOCK) { mps_dprint(sc, MPS_FAULT, "Calling Reinit from %s\n", __func__); rc = mps_reinit(sc); mps_dprint(sc, MPS_FAULT, "Reinit %s\n", (rc == 0) ? "success" : "failed"); error = ETIMEDOUT; } return (error); } /* * This is the routine to enqueue a command synchonously and poll for * completion. Its use should be rare. */ int mps_request_polled(struct mps_softc *sc, struct mps_command *cm) { int error, timeout = 0, rc; error = 0; cm->cm_flags |= MPS_CM_FLAGS_POLLED; cm->cm_complete = NULL; mps_map_command(sc, cm); while ((cm->cm_flags & MPS_CM_FLAGS_COMPLETE) == 0) { mps_intr_locked(sc); DELAY(50 * 1000); if (timeout++ > 1000) { mps_dprint(sc, MPS_FAULT, "polling failed\n"); error = ETIMEDOUT; break; } } if (error) { mps_dprint(sc, MPS_FAULT, "Calling Reinit from %s\n", __func__); rc = mps_reinit(sc); mps_dprint(sc, MPS_FAULT, "Reinit %s\n", (rc == 0) ? "success" : "failed"); } return (error); } /* * The MPT driver had a verbose interface for config pages. In this driver, * reduce it to much simplier terms, similar to the Linux driver. */ int mps_read_config_page(struct mps_softc *sc, struct mps_config_params *params) { MPI2_CONFIG_REQUEST *req; struct mps_command *cm; int error; if (sc->mps_flags & MPS_FLAGS_BUSY) { return (EBUSY); } cm = mps_alloc_command(sc); if (cm == NULL) { return (EBUSY); } req = (MPI2_CONFIG_REQUEST *)cm->cm_req; req->Function = MPI2_FUNCTION_CONFIG; req->Action = params->action; req->SGLFlags = 0; req->ChainOffset = 0; req->PageAddress = params->page_address; if (params->hdr.Ext.ExtPageType != 0) { MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr; hdr = ¶ms->hdr.Ext; req->ExtPageType = hdr->ExtPageType; req->ExtPageLength = hdr->ExtPageLength; req->Header.PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; req->Header.PageLength = 0; /* Must be set to zero */ req->Header.PageNumber = hdr->PageNumber; req->Header.PageVersion = hdr->PageVersion; } else { MPI2_CONFIG_PAGE_HEADER *hdr; hdr = ¶ms->hdr.Struct; req->Header.PageType = hdr->PageType; req->Header.PageNumber = hdr->PageNumber; req->Header.PageLength = hdr->PageLength; req->Header.PageVersion = hdr->PageVersion; } cm->cm_data = params->buffer; cm->cm_length = params->length; cm->cm_sge = &req->PageBufferSGE; cm->cm_sglsize = sizeof(MPI2_SGE_IO_UNION); cm->cm_flags = MPS_CM_FLAGS_SGE_SIMPLE | MPS_CM_FLAGS_DATAIN; cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; cm->cm_complete_data = params; if (params->callback != NULL) { cm->cm_complete = mps_config_complete; return (mps_map_command(sc, cm)); } else { error = mps_wait_command(sc, cm, 0); if (error) { mps_dprint(sc, MPS_FAULT, "Error %d reading config page\n", error); mps_free_command(sc, cm); return (error); } mps_config_complete(sc, cm); } return (0); } int mps_write_config_page(struct mps_softc *sc, struct mps_config_params *params) { return (EINVAL); } static void mps_config_complete(struct mps_softc *sc, struct mps_command *cm) { MPI2_CONFIG_REPLY *reply; struct mps_config_params *params; params = cm->cm_complete_data; if (cm->cm_data != NULL) { bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap); } /* * XXX KDM need to do more error recovery? This results in the * device in question not getting probed. */ if ((cm->cm_flags & MPS_CM_FLAGS_ERROR_MASK) != 0) { params->status = MPI2_IOCSTATUS_BUSY; goto done; } reply = (MPI2_CONFIG_REPLY *)cm->cm_reply; if (reply == NULL) { params->status = MPI2_IOCSTATUS_BUSY; goto done; } params->status = reply->IOCStatus; if (params->hdr.Ext.ExtPageType != 0) { params->hdr.Ext.ExtPageType = reply->ExtPageType; params->hdr.Ext.ExtPageLength = reply->ExtPageLength; } else { params->hdr.Struct.PageType = reply->Header.PageType; params->hdr.Struct.PageNumber = reply->Header.PageNumber; params->hdr.Struct.PageLength = reply->Header.PageLength; params->hdr.Struct.PageVersion = reply->Header.PageVersion; } done: mps_free_command(sc, cm); if (params->callback != NULL) params->callback(sc, params); return; }