Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/nge/@/mips/mips/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/nge/@/mips/mips/pmap.c |
/* * Copyright (c) 1991 Regents of the University of California. * All rights reserved. * Copyright (c) 1994 John S. Dyson * All rights reserved. * Copyright (c) 1994 David Greenman * All rights reserved. * * This code is derived from software contributed to Berkeley by * the Systems Programming Group of the University of Utah Computer * Science Department and William Jolitz of UUNET Technologies Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: @(#)pmap.c 7.7 (Berkeley) 5/12/91 * from: src/sys/i386/i386/pmap.c,v 1.250.2.8 2000/11/21 00:09:14 ps * JNPR: pmap.c,v 1.11.2.1 2007/08/16 11:51:06 girish */ /* * Manages physical address maps. * * In addition to hardware address maps, this * module is called upon to provide software-use-only * maps which may or may not be stored in the same * form as hardware maps. These pseudo-maps are * used to store intermediate results from copy * operations to and from address spaces. * * Since the information managed by this module is * also stored by the logical address mapping module, * this module may throw away valid virtual-to-physical * mappings at almost any time. However, invalidations * of virtual-to-physical mappings must be done as * requested. * * In order to cope with hardware architectures which * make virtual-to-physical map invalidates expensive, * this module may delay invalidate or reduced protection * operations until such time as they are actually * necessary. This module is given full information as * to which processors are currently using which maps, * and to when physical maps must be made correct. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/mips/mips/pmap.c 225418 2011-09-06 10:30:11Z kib $"); #include "opt_ddb.h" #include <sys/param.h> #include <sys/systm.h> #include <sys/proc.h> #include <sys/msgbuf.h> #include <sys/vmmeter.h> #include <sys/mman.h> #include <sys/smp.h> #ifdef DDB #include <ddb/ddb.h> #endif #include <vm/vm.h> #include <vm/vm_param.h> #include <vm/vm_phys.h> #include <sys/lock.h> #include <sys/mutex.h> #include <vm/vm_kern.h> #include <vm/vm_page.h> #include <vm/vm_map.h> #include <vm/vm_object.h> #include <vm/vm_extern.h> #include <vm/vm_pageout.h> #include <vm/vm_pager.h> #include <vm/uma.h> #include <sys/pcpu.h> #include <sys/sched.h> #ifdef SMP #include <sys/smp.h> #endif #include <machine/cache.h> #include <machine/md_var.h> #include <machine/tlb.h> #undef PMAP_DEBUG #ifndef PMAP_SHPGPERPROC #define PMAP_SHPGPERPROC 200 #endif #if !defined(DIAGNOSTIC) #define PMAP_INLINE __inline #else #define PMAP_INLINE #endif /* * Get PDEs and PTEs for user/kernel address space */ #define pmap_seg_index(v) (((v) >> SEGSHIFT) & (NPDEPG - 1)) #define pmap_pde_index(v) (((v) >> PDRSHIFT) & (NPDEPG - 1)) #define pmap_pte_index(v) (((v) >> PAGE_SHIFT) & (NPTEPG - 1)) #define pmap_pde_pindex(v) ((v) >> PDRSHIFT) #ifdef __mips_n64 #define NUPDE (NPDEPG * NPDEPG) #define NUSERPGTBLS (NUPDE + NPDEPG) #else #define NUPDE (NPDEPG) #define NUSERPGTBLS (NUPDE) #endif #define is_kernel_pmap(x) ((x) == kernel_pmap) struct pmap kernel_pmap_store; pd_entry_t *kernel_segmap; vm_offset_t virtual_avail; /* VA of first avail page (after kernel bss) */ vm_offset_t virtual_end; /* VA of last avail page (end of kernel AS) */ static int nkpt; unsigned pmap_max_asid; /* max ASID supported by the system */ #define PMAP_ASID_RESERVED 0 vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS; static void pmap_asid_alloc(pmap_t pmap); /* * Data for the pv entry allocation mechanism */ static uma_zone_t pvzone; static struct vm_object pvzone_obj; static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0; static PMAP_INLINE void free_pv_entry(pv_entry_t pv); static pv_entry_t get_pv_entry(pmap_t locked_pmap); static void pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va); static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va); static __inline void pmap_changebit(vm_page_t m, int bit, boolean_t setem); static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot, vm_page_t mpte); static int pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va); static void pmap_remove_page(struct pmap *pmap, vm_offset_t va); static void pmap_remove_entry(struct pmap *pmap, vm_page_t m, vm_offset_t va); static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_page_t mpte, vm_offset_t va, vm_page_t m); static void pmap_update_page(pmap_t pmap, vm_offset_t va, pt_entry_t pte); static void pmap_invalidate_all(pmap_t pmap); static void pmap_invalidate_page(pmap_t pmap, vm_offset_t va); static int _pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m); static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags); static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags); static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t); static pt_entry_t init_pte_prot(vm_offset_t va, vm_page_t m, vm_prot_t prot); #ifdef SMP static void pmap_invalidate_page_action(void *arg); static void pmap_invalidate_all_action(void *arg); static void pmap_update_page_action(void *arg); #endif #ifndef __mips_n64 /* * This structure is for high memory (memory above 512Meg in 32 bit) support. * The highmem area does not have a KSEG0 mapping, and we need a mechanism to * do temporary per-CPU mappings for pmap_zero_page, pmap_copy_page etc. * * At bootup, we reserve 2 virtual pages per CPU for mapping highmem pages. To * access a highmem physical address on a CPU, we map the physical address to * the reserved virtual address for the CPU in the kernel pagetable. This is * done with interrupts disabled(although a spinlock and sched_pin would be * sufficient). */ struct local_sysmaps { vm_offset_t base; uint32_t saved_intr; uint16_t valid1, valid2; }; static struct local_sysmaps sysmap_lmem[MAXCPU]; static __inline void pmap_alloc_lmem_map(void) { int i; for (i = 0; i < MAXCPU; i++) { sysmap_lmem[i].base = virtual_avail; virtual_avail += PAGE_SIZE * 2; sysmap_lmem[i].valid1 = sysmap_lmem[i].valid2 = 0; } } static __inline vm_offset_t pmap_lmem_map1(vm_paddr_t phys) { struct local_sysmaps *sysm; pt_entry_t *pte, npte; vm_offset_t va; uint32_t intr; int cpu; intr = intr_disable(); cpu = PCPU_GET(cpuid); sysm = &sysmap_lmem[cpu]; sysm->saved_intr = intr; va = sysm->base; npte = TLBLO_PA_TO_PFN(phys) | PTE_D | PTE_V | PTE_G | PTE_W | PTE_C_CACHE; pte = pmap_pte(kernel_pmap, va); *pte = npte; sysm->valid1 = 1; return (va); } static __inline vm_offset_t pmap_lmem_map2(vm_paddr_t phys1, vm_paddr_t phys2) { struct local_sysmaps *sysm; pt_entry_t *pte, npte; vm_offset_t va1, va2; uint32_t intr; int cpu; intr = intr_disable(); cpu = PCPU_GET(cpuid); sysm = &sysmap_lmem[cpu]; sysm->saved_intr = intr; va1 = sysm->base; va2 = sysm->base + PAGE_SIZE; npte = TLBLO_PA_TO_PFN(phys1) | PTE_D | PTE_V | PTE_G | PTE_W | PTE_C_CACHE; pte = pmap_pte(kernel_pmap, va1); *pte = npte; npte = TLBLO_PA_TO_PFN(phys2) | PTE_D | PTE_V | PTE_G | PTE_W | PTE_C_CACHE; pte = pmap_pte(kernel_pmap, va2); *pte = npte; sysm->valid1 = 1; sysm->valid2 = 1; return (va1); } static __inline void pmap_lmem_unmap(void) { struct local_sysmaps *sysm; pt_entry_t *pte; int cpu; cpu = PCPU_GET(cpuid); sysm = &sysmap_lmem[cpu]; pte = pmap_pte(kernel_pmap, sysm->base); *pte = PTE_G; tlb_invalidate_address(kernel_pmap, sysm->base); sysm->valid1 = 0; if (sysm->valid2) { pte = pmap_pte(kernel_pmap, sysm->base + PAGE_SIZE); *pte = PTE_G; tlb_invalidate_address(kernel_pmap, sysm->base + PAGE_SIZE); sysm->valid2 = 0; } intr_restore(sysm->saved_intr); } #else /* __mips_n64 */ static __inline void pmap_alloc_lmem_map(void) { } static __inline vm_offset_t pmap_lmem_map1(vm_paddr_t phys) { return (0); } static __inline vm_offset_t pmap_lmem_map2(vm_paddr_t phys1, vm_paddr_t phys2) { return (0); } static __inline vm_offset_t pmap_lmem_unmap(void) { return (0); } #endif /* !__mips_n64 */ /* * Page table entry lookup routines. */ static __inline pd_entry_t * pmap_segmap(pmap_t pmap, vm_offset_t va) { return (&pmap->pm_segtab[pmap_seg_index(va)]); } #ifdef __mips_n64 static __inline pd_entry_t * pmap_pdpe_to_pde(pd_entry_t *pdpe, vm_offset_t va) { pd_entry_t *pde; pde = (pd_entry_t *)*pdpe; return (&pde[pmap_pde_index(va)]); } static __inline pd_entry_t * pmap_pde(pmap_t pmap, vm_offset_t va) { pd_entry_t *pdpe; pdpe = pmap_segmap(pmap, va); if (pdpe == NULL || *pdpe == NULL) return (NULL); return (pmap_pdpe_to_pde(pdpe, va)); } #else static __inline pd_entry_t * pmap_pdpe_to_pde(pd_entry_t *pdpe, vm_offset_t va) { return (pdpe); } static __inline pd_entry_t *pmap_pde(pmap_t pmap, vm_offset_t va) { return (pmap_segmap(pmap, va)); } #endif static __inline pt_entry_t * pmap_pde_to_pte(pd_entry_t *pde, vm_offset_t va) { pt_entry_t *pte; pte = (pt_entry_t *)*pde; return (&pte[pmap_pte_index(va)]); } pt_entry_t * pmap_pte(pmap_t pmap, vm_offset_t va) { pd_entry_t *pde; pde = pmap_pde(pmap, va); if (pde == NULL || *pde == NULL) return (NULL); return (pmap_pde_to_pte(pde, va)); } vm_offset_t pmap_steal_memory(vm_size_t size) { vm_paddr_t bank_size, pa; vm_offset_t va; size = round_page(size); bank_size = phys_avail[1] - phys_avail[0]; while (size > bank_size) { int i; for (i = 0; phys_avail[i + 2]; i += 2) { phys_avail[i] = phys_avail[i + 2]; phys_avail[i + 1] = phys_avail[i + 3]; } phys_avail[i] = 0; phys_avail[i + 1] = 0; if (!phys_avail[0]) panic("pmap_steal_memory: out of memory"); bank_size = phys_avail[1] - phys_avail[0]; } pa = phys_avail[0]; phys_avail[0] += size; if (MIPS_DIRECT_MAPPABLE(pa) == 0) panic("Out of memory below 512Meg?"); va = MIPS_PHYS_TO_DIRECT(pa); bzero((caddr_t)va, size); return (va); } /* * Bootstrap the system enough to run with virtual memory. This * assumes that the phys_avail array has been initialized. */ static void pmap_create_kernel_pagetable(void) { int i, j; vm_offset_t ptaddr; pt_entry_t *pte; #ifdef __mips_n64 pd_entry_t *pde; vm_offset_t pdaddr; int npt, npde; #endif /* * Allocate segment table for the kernel */ kernel_segmap = (pd_entry_t *)pmap_steal_memory(PAGE_SIZE); /* * Allocate second level page tables for the kernel */ #ifdef __mips_n64 npde = howmany(NKPT, NPDEPG); pdaddr = pmap_steal_memory(PAGE_SIZE * npde); #endif nkpt = NKPT; ptaddr = pmap_steal_memory(PAGE_SIZE * nkpt); /* * The R[4-7]?00 stores only one copy of the Global bit in the * translation lookaside buffer for each 2 page entry. Thus invalid * entrys must have the Global bit set so when Entry LO and Entry HI * G bits are anded together they will produce a global bit to store * in the tlb. */ for (i = 0, pte = (pt_entry_t *)ptaddr; i < (nkpt * NPTEPG); i++, pte++) *pte = PTE_G; #ifdef __mips_n64 for (i = 0, npt = nkpt; npt > 0; i++) { kernel_segmap[i] = (pd_entry_t)(pdaddr + i * PAGE_SIZE); pde = (pd_entry_t *)kernel_segmap[i]; for (j = 0; j < NPDEPG && npt > 0; j++, npt--) pde[j] = (pd_entry_t)(ptaddr + (i * NPDEPG + j) * PAGE_SIZE); } #else for (i = 0, j = pmap_seg_index(VM_MIN_KERNEL_ADDRESS); i < nkpt; i++, j++) kernel_segmap[j] = (pd_entry_t)(ptaddr + (i * PAGE_SIZE)); #endif PMAP_LOCK_INIT(kernel_pmap); kernel_pmap->pm_segtab = kernel_segmap; CPU_FILL(&kernel_pmap->pm_active); TAILQ_INIT(&kernel_pmap->pm_pvlist); kernel_pmap->pm_asid[0].asid = PMAP_ASID_RESERVED; kernel_pmap->pm_asid[0].gen = 0; kernel_vm_end += nkpt * NPTEPG * PAGE_SIZE; } void pmap_bootstrap(void) { int i; int need_local_mappings = 0; /* Sort. */ again: for (i = 0; phys_avail[i + 1] != 0; i += 2) { /* * Keep the memory aligned on page boundary. */ phys_avail[i] = round_page(phys_avail[i]); phys_avail[i + 1] = trunc_page(phys_avail[i + 1]); if (i < 2) continue; if (phys_avail[i - 2] > phys_avail[i]) { vm_paddr_t ptemp[2]; ptemp[0] = phys_avail[i + 0]; ptemp[1] = phys_avail[i + 1]; phys_avail[i + 0] = phys_avail[i - 2]; phys_avail[i + 1] = phys_avail[i - 1]; phys_avail[i - 2] = ptemp[0]; phys_avail[i - 1] = ptemp[1]; goto again; } } /* * In 32 bit, we may have memory which cannot be mapped directly. * This memory will need temporary mapping before it can be * accessed. */ if (!MIPS_DIRECT_MAPPABLE(phys_avail[i - 1] - 1)) need_local_mappings = 1; /* * Copy the phys_avail[] array before we start stealing memory from it. */ for (i = 0; phys_avail[i + 1] != 0; i += 2) { physmem_desc[i] = phys_avail[i]; physmem_desc[i + 1] = phys_avail[i + 1]; } Maxmem = atop(phys_avail[i - 1]); if (bootverbose) { printf("Physical memory chunk(s):\n"); for (i = 0; phys_avail[i + 1] != 0; i += 2) { vm_paddr_t size; size = phys_avail[i + 1] - phys_avail[i]; printf("%#08jx - %#08jx, %ju bytes (%ju pages)\n", (uintmax_t) phys_avail[i], (uintmax_t) phys_avail[i + 1] - 1, (uintmax_t) size, (uintmax_t) size / PAGE_SIZE); } printf("Maxmem is 0x%0jx\n", ptoa((uintmax_t)Maxmem)); } /* * Steal the message buffer from the beginning of memory. */ msgbufp = (struct msgbuf *)pmap_steal_memory(msgbufsize); msgbufinit(msgbufp, msgbufsize); /* * Steal thread0 kstack. */ kstack0 = pmap_steal_memory(KSTACK_PAGES << PAGE_SHIFT); virtual_avail = VM_MIN_KERNEL_ADDRESS; virtual_end = VM_MAX_KERNEL_ADDRESS; #ifdef SMP /* * Steal some virtual address space to map the pcpu area. */ virtual_avail = roundup2(virtual_avail, PAGE_SIZE * 2); pcpup = (struct pcpu *)virtual_avail; virtual_avail += PAGE_SIZE * 2; /* * Initialize the wired TLB entry mapping the pcpu region for * the BSP at 'pcpup'. Up until this point we were operating * with the 'pcpup' for the BSP pointing to a virtual address * in KSEG0 so there was no need for a TLB mapping. */ mips_pcpu_tlb_init(PCPU_ADDR(0)); if (bootverbose) printf("pcpu is available at virtual address %p.\n", pcpup); #endif if (need_local_mappings) pmap_alloc_lmem_map(); pmap_create_kernel_pagetable(); pmap_max_asid = VMNUM_PIDS; mips_wr_entryhi(0); mips_wr_pagemask(0); } /* * Initialize a vm_page's machine-dependent fields. */ void pmap_page_init(vm_page_t m) { TAILQ_INIT(&m->md.pv_list); m->md.pv_list_count = 0; m->md.pv_flags = 0; } /* * Initialize the pmap module. * Called by vm_init, to initialize any structures that the pmap * system needs to map virtual memory. * pmap_init has been enhanced to support in a fairly consistant * way, discontiguous physical memory. */ void pmap_init(void) { /* * Initialize the address space (zone) for the pv entries. Set a * high water mark so that the system can recover from excessive * numbers of pv entries. */ pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE); pv_entry_max = PMAP_SHPGPERPROC * maxproc + cnt.v_page_count; pv_entry_high_water = 9 * (pv_entry_max / 10); uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max); } /*************************************************** * Low level helper routines..... ***************************************************/ static __inline void pmap_invalidate_all_local(pmap_t pmap) { u_int cpuid; cpuid = PCPU_GET(cpuid); if (pmap == kernel_pmap) { tlb_invalidate_all(); return; } if (CPU_ISSET(cpuid, &pmap->pm_active)) tlb_invalidate_all_user(pmap); else pmap->pm_asid[cpuid].gen = 0; } #ifdef SMP static void pmap_invalidate_all(pmap_t pmap) { smp_rendezvous(0, pmap_invalidate_all_action, 0, pmap); } static void pmap_invalidate_all_action(void *arg) { pmap_invalidate_all_local((pmap_t)arg); } #else static void pmap_invalidate_all(pmap_t pmap) { pmap_invalidate_all_local(pmap); } #endif static __inline void pmap_invalidate_page_local(pmap_t pmap, vm_offset_t va) { u_int cpuid; cpuid = PCPU_GET(cpuid); if (is_kernel_pmap(pmap)) { tlb_invalidate_address(pmap, va); return; } if (pmap->pm_asid[cpuid].gen != PCPU_GET(asid_generation)) return; else if (!CPU_ISSET(cpuid, &pmap->pm_active)) { pmap->pm_asid[cpuid].gen = 0; return; } tlb_invalidate_address(pmap, va); } #ifdef SMP struct pmap_invalidate_page_arg { pmap_t pmap; vm_offset_t va; }; static void pmap_invalidate_page(pmap_t pmap, vm_offset_t va) { struct pmap_invalidate_page_arg arg; arg.pmap = pmap; arg.va = va; smp_rendezvous(0, pmap_invalidate_page_action, 0, &arg); } static void pmap_invalidate_page_action(void *arg) { struct pmap_invalidate_page_arg *p = arg; pmap_invalidate_page_local(p->pmap, p->va); } #else static void pmap_invalidate_page(pmap_t pmap, vm_offset_t va) { pmap_invalidate_page_local(pmap, va); } #endif static __inline void pmap_update_page_local(pmap_t pmap, vm_offset_t va, pt_entry_t pte) { u_int cpuid; cpuid = PCPU_GET(cpuid); if (is_kernel_pmap(pmap)) { tlb_update(pmap, va, pte); return; } if (pmap->pm_asid[cpuid].gen != PCPU_GET(asid_generation)) return; else if (!CPU_ISSET(cpuid, &pmap->pm_active)) { pmap->pm_asid[cpuid].gen = 0; return; } tlb_update(pmap, va, pte); } #ifdef SMP struct pmap_update_page_arg { pmap_t pmap; vm_offset_t va; pt_entry_t pte; }; static void pmap_update_page(pmap_t pmap, vm_offset_t va, pt_entry_t pte) { struct pmap_update_page_arg arg; arg.pmap = pmap; arg.va = va; arg.pte = pte; smp_rendezvous(0, pmap_update_page_action, 0, &arg); } static void pmap_update_page_action(void *arg) { struct pmap_update_page_arg *p = arg; pmap_update_page_local(p->pmap, p->va, p->pte); } #else static void pmap_update_page(pmap_t pmap, vm_offset_t va, pt_entry_t pte) { pmap_update_page_local(pmap, va, pte); } #endif /* * Routine: pmap_extract * Function: * Extract the physical page address associated * with the given map/virtual_address pair. */ vm_paddr_t pmap_extract(pmap_t pmap, vm_offset_t va) { pt_entry_t *pte; vm_offset_t retval = 0; PMAP_LOCK(pmap); pte = pmap_pte(pmap, va); if (pte) { retval = TLBLO_PTE_TO_PA(*pte) | (va & PAGE_MASK); } PMAP_UNLOCK(pmap); return (retval); } /* * Routine: pmap_extract_and_hold * Function: * Atomically extract and hold the physical page * with the given pmap and virtual address pair * if that mapping permits the given protection. */ vm_page_t pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot) { pt_entry_t pte; vm_page_t m; vm_paddr_t pa; m = NULL; pa = 0; PMAP_LOCK(pmap); retry: pte = *pmap_pte(pmap, va); if (pte != 0 && pte_test(&pte, PTE_V) && (pte_test(&pte, PTE_D) || (prot & VM_PROT_WRITE) == 0)) { if (vm_page_pa_tryrelock(pmap, TLBLO_PTE_TO_PA(pte), &pa)) goto retry; m = PHYS_TO_VM_PAGE(TLBLO_PTE_TO_PA(pte)); vm_page_hold(m); } PA_UNLOCK_COND(pa); PMAP_UNLOCK(pmap); return (m); } /*************************************************** * Low level mapping routines..... ***************************************************/ /* * add a wired page to the kva */ void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int attr) { pt_entry_t *pte; pt_entry_t opte, npte; #ifdef PMAP_DEBUG printf("pmap_kenter: va: %p -> pa: %p\n", (void *)va, (void *)pa); #endif npte = TLBLO_PA_TO_PFN(pa) | PTE_D | PTE_V | PTE_G | PTE_W | attr; pte = pmap_pte(kernel_pmap, va); opte = *pte; *pte = npte; if (pte_test(&opte, PTE_V) && opte != npte) pmap_update_page(kernel_pmap, va, npte); } void pmap_kenter(vm_offset_t va, vm_paddr_t pa) { KASSERT(is_cacheable_mem(pa), ("pmap_kenter: memory at 0x%lx is not cacheable", (u_long)pa)); pmap_kenter_attr(va, pa, PTE_C_CACHE); } /* * remove a page from the kernel pagetables */ /* PMAP_INLINE */ void pmap_kremove(vm_offset_t va) { pt_entry_t *pte; /* * Write back all caches from the page being destroyed */ mips_dcache_wbinv_range_index(va, PAGE_SIZE); pte = pmap_pte(kernel_pmap, va); *pte = PTE_G; pmap_invalidate_page(kernel_pmap, va); } /* * Used to map a range of physical addresses into kernel * virtual address space. * * The value passed in '*virt' is a suggested virtual address for * the mapping. Architectures which can support a direct-mapped * physical to virtual region can return the appropriate address * within that region, leaving '*virt' unchanged. Other * architectures should map the pages starting at '*virt' and * update '*virt' with the first usable address after the mapped * region. * * Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit. */ vm_offset_t pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot) { vm_offset_t va, sva; if (MIPS_DIRECT_MAPPABLE(end - 1)) return (MIPS_PHYS_TO_DIRECT(start)); va = sva = *virt; while (start < end) { pmap_kenter(va, start); va += PAGE_SIZE; start += PAGE_SIZE; } *virt = va; return (sva); } /* * Add a list of wired pages to the kva * this routine is only used for temporary * kernel mappings that do not need to have * page modification or references recorded. * Note that old mappings are simply written * over. The page *must* be wired. */ void pmap_qenter(vm_offset_t va, vm_page_t *m, int count) { int i; vm_offset_t origva = va; for (i = 0; i < count; i++) { pmap_flush_pvcache(m[i]); pmap_kenter(va, VM_PAGE_TO_PHYS(m[i])); va += PAGE_SIZE; } mips_dcache_wbinv_range_index(origva, PAGE_SIZE*count); } /* * this routine jerks page mappings from the * kernel -- it is meant only for temporary mappings. */ void pmap_qremove(vm_offset_t va, int count) { /* * No need to wb/inv caches here, * pmap_kremove will do it for us */ while (count-- > 0) { pmap_kremove(va); va += PAGE_SIZE; } } /*************************************************** * Page table page management routines..... ***************************************************/ /* Revision 1.507 * * Simplify the reference counting of page table pages. Specifically, use * the page table page's wired count rather than its hold count to contain * the reference count. */ /* * This routine unholds page table pages, and if the hold count * drops to zero, then it decrements the wire count. */ static PMAP_INLINE int pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m) { --m->wire_count; if (m->wire_count == 0) return (_pmap_unwire_pte_hold(pmap, va, m)); else return (0); } static int _pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m) { pd_entry_t *pde; PMAP_LOCK_ASSERT(pmap, MA_OWNED); /* * unmap the page table page */ #ifdef __mips_n64 if (m->pindex < NUPDE) pde = pmap_pde(pmap, va); else pde = pmap_segmap(pmap, va); #else pde = pmap_pde(pmap, va); #endif *pde = 0; pmap->pm_stats.resident_count--; #ifdef __mips_n64 if (m->pindex < NUPDE) { pd_entry_t *pdp; vm_page_t pdpg; /* * Recursively decrement next level pagetable refcount */ pdp = (pd_entry_t *)*pmap_segmap(pmap, va); pdpg = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(pdp)); pmap_unwire_pte_hold(pmap, va, pdpg); } #endif if (pmap->pm_ptphint == m) pmap->pm_ptphint = NULL; /* * If the page is finally unwired, simply free it. */ vm_page_free_zero(m); atomic_subtract_int(&cnt.v_wire_count, 1); return (1); } /* * After removing a page table entry, this routine is used to * conditionally free the page, and manage the hold/wire counts. */ static int pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte) { unsigned ptepindex; pd_entry_t pteva; if (va >= VM_MAXUSER_ADDRESS) return (0); if (mpte == NULL) { ptepindex = pmap_pde_pindex(va); if (pmap->pm_ptphint && (pmap->pm_ptphint->pindex == ptepindex)) { mpte = pmap->pm_ptphint; } else { pteva = *pmap_pde(pmap, va); mpte = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(pteva)); pmap->pm_ptphint = mpte; } } return (pmap_unwire_pte_hold(pmap, va, mpte)); } void pmap_pinit0(pmap_t pmap) { int i; PMAP_LOCK_INIT(pmap); pmap->pm_segtab = kernel_segmap; CPU_ZERO(&pmap->pm_active); pmap->pm_ptphint = NULL; for (i = 0; i < MAXCPU; i++) { pmap->pm_asid[i].asid = PMAP_ASID_RESERVED; pmap->pm_asid[i].gen = 0; } PCPU_SET(curpmap, pmap); TAILQ_INIT(&pmap->pm_pvlist); bzero(&pmap->pm_stats, sizeof pmap->pm_stats); } void pmap_grow_direct_page_cache() { #ifdef __mips_n64 vm_contig_grow_cache(3, 0, MIPS_XKPHYS_LARGEST_PHYS); #else vm_contig_grow_cache(3, 0, MIPS_KSEG0_LARGEST_PHYS); #endif } vm_page_t pmap_alloc_direct_page(unsigned int index, int req) { vm_page_t m; m = vm_page_alloc_freelist(VM_FREELIST_DIRECT, req); if (m == NULL) return (NULL); if ((m->flags & PG_ZERO) == 0) pmap_zero_page(m); m->pindex = index; atomic_add_int(&cnt.v_wire_count, 1); m->wire_count = 1; return (m); } /* * Initialize a preallocated and zeroed pmap structure, * such as one in a vmspace structure. */ int pmap_pinit(pmap_t pmap) { vm_offset_t ptdva; vm_page_t ptdpg; int i; PMAP_LOCK_INIT(pmap); /* * allocate the page directory page */ while ((ptdpg = pmap_alloc_direct_page(NUSERPGTBLS, VM_ALLOC_NORMAL)) == NULL) pmap_grow_direct_page_cache(); ptdva = MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(ptdpg)); pmap->pm_segtab = (pd_entry_t *)ptdva; CPU_ZERO(&pmap->pm_active); pmap->pm_ptphint = NULL; for (i = 0; i < MAXCPU; i++) { pmap->pm_asid[i].asid = PMAP_ASID_RESERVED; pmap->pm_asid[i].gen = 0; } TAILQ_INIT(&pmap->pm_pvlist); bzero(&pmap->pm_stats, sizeof pmap->pm_stats); return (1); } /* * this routine is called if the page table page is not * mapped correctly. */ static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags) { vm_offset_t pageva; vm_page_t m; KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT || (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK, ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK")); /* * Find or fabricate a new pagetable page */ if ((m = pmap_alloc_direct_page(ptepindex, VM_ALLOC_NORMAL)) == NULL) { if (flags & M_WAITOK) { PMAP_UNLOCK(pmap); vm_page_unlock_queues(); pmap_grow_direct_page_cache(); vm_page_lock_queues(); PMAP_LOCK(pmap); } /* * Indicate the need to retry. While waiting, the page * table page may have been allocated. */ return (NULL); } /* * Map the pagetable page into the process address space, if it * isn't already there. */ pageva = MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(m)); #ifdef __mips_n64 if (ptepindex >= NUPDE) { pmap->pm_segtab[ptepindex - NUPDE] = (pd_entry_t)pageva; } else { pd_entry_t *pdep, *pde; int segindex = ptepindex >> (SEGSHIFT - PDRSHIFT); int pdeindex = ptepindex & (NPDEPG - 1); vm_page_t pg; pdep = &pmap->pm_segtab[segindex]; if (*pdep == NULL) { /* recurse for allocating page dir */ if (_pmap_allocpte(pmap, NUPDE + segindex, flags) == NULL) { /* alloc failed, release current */ --m->wire_count; atomic_subtract_int(&cnt.v_wire_count, 1); vm_page_free_zero(m); return (NULL); } } else { pg = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(*pdep)); pg->wire_count++; } /* Next level entry */ pde = (pd_entry_t *)*pdep; pde[pdeindex] = (pd_entry_t)pageva; pmap->pm_ptphint = m; } #else pmap->pm_segtab[ptepindex] = (pd_entry_t)pageva; #endif pmap->pm_stats.resident_count++; /* * Set the page table hint */ pmap->pm_ptphint = m; return (m); } static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags) { unsigned ptepindex; pd_entry_t *pde; vm_page_t m; KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT || (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK, ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK")); /* * Calculate pagetable page index */ ptepindex = pmap_pde_pindex(va); retry: /* * Get the page directory entry */ pde = pmap_pde(pmap, va); /* * If the page table page is mapped, we just increment the hold * count, and activate it. */ if (pde != NULL && *pde != NULL) { /* * In order to get the page table page, try the hint first. */ if (pmap->pm_ptphint && (pmap->pm_ptphint->pindex == ptepindex)) { m = pmap->pm_ptphint; } else { m = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(*pde)); pmap->pm_ptphint = m; } m->wire_count++; } else { /* * Here if the pte page isn't mapped, or if it has been * deallocated. */ m = _pmap_allocpte(pmap, ptepindex, flags); if (m == NULL && (flags & M_WAITOK)) goto retry; } return (m); } /*************************************************** * Pmap allocation/deallocation routines. ***************************************************/ /* * Revision 1.397 * - Merged pmap_release and pmap_release_free_page. When pmap_release is * called only the page directory page(s) can be left in the pmap pte * object, since all page table pages will have been freed by * pmap_remove_pages and pmap_remove. In addition, there can only be one * reference to the pmap and the page directory is wired, so the page(s) * can never be busy. So all there is to do is clear the magic mappings * from the page directory and free the page(s). */ /* * Release any resources held by the given physical map. * Called when a pmap initialized by pmap_pinit is being released. * Should only be called if the map contains no valid mappings. */ void pmap_release(pmap_t pmap) { vm_offset_t ptdva; vm_page_t ptdpg; KASSERT(pmap->pm_stats.resident_count == 0, ("pmap_release: pmap resident count %ld != 0", pmap->pm_stats.resident_count)); ptdva = (vm_offset_t)pmap->pm_segtab; ptdpg = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(ptdva)); ptdpg->wire_count--; atomic_subtract_int(&cnt.v_wire_count, 1); vm_page_free_zero(ptdpg); PMAP_LOCK_DESTROY(pmap); } /* * grow the number of kernel page table entries, if needed */ void pmap_growkernel(vm_offset_t addr) { vm_page_t nkpg; pd_entry_t *pde, *pdpe; pt_entry_t *pte; int i; mtx_assert(&kernel_map->system_mtx, MA_OWNED); addr = roundup2(addr, NBSEG); if (addr - 1 >= kernel_map->max_offset) addr = kernel_map->max_offset; while (kernel_vm_end < addr) { pdpe = pmap_segmap(kernel_pmap, kernel_vm_end); #ifdef __mips_n64 if (*pdpe == 0) { /* new intermediate page table entry */ nkpg = pmap_alloc_direct_page(nkpt, VM_ALLOC_INTERRUPT); if (nkpg == NULL) panic("pmap_growkernel: no memory to grow kernel"); *pdpe = (pd_entry_t)MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(nkpg)); continue; /* try again */ } #endif pde = pmap_pdpe_to_pde(pdpe, kernel_vm_end); if (*pde != 0) { kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK; if (kernel_vm_end - 1 >= kernel_map->max_offset) { kernel_vm_end = kernel_map->max_offset; break; } continue; } /* * This index is bogus, but out of the way */ nkpg = pmap_alloc_direct_page(nkpt, VM_ALLOC_INTERRUPT); if (!nkpg) panic("pmap_growkernel: no memory to grow kernel"); nkpt++; *pde = (pd_entry_t)MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(nkpg)); /* * The R[4-7]?00 stores only one copy of the Global bit in * the translation lookaside buffer for each 2 page entry. * Thus invalid entrys must have the Global bit set so when * Entry LO and Entry HI G bits are anded together they will * produce a global bit to store in the tlb. */ pte = (pt_entry_t *)*pde; for (i = 0; i < NPTEPG; i++) pte[i] = PTE_G; kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK; if (kernel_vm_end - 1 >= kernel_map->max_offset) { kernel_vm_end = kernel_map->max_offset; break; } } } /*************************************************** * page management routines. ***************************************************/ /* * free the pv_entry back to the free list */ static PMAP_INLINE void free_pv_entry(pv_entry_t pv) { pv_entry_count--; uma_zfree(pvzone, pv); } /* * get a new pv_entry, allocating a block from the system * when needed. * the memory allocation is performed bypassing the malloc code * because of the possibility of allocations at interrupt time. */ static pv_entry_t get_pv_entry(pmap_t locked_pmap) { static const struct timeval printinterval = { 60, 0 }; static struct timeval lastprint; struct vpgqueues *vpq; pt_entry_t *pte, oldpte; pmap_t pmap; pv_entry_t allocated_pv, next_pv, pv; vm_offset_t va; vm_page_t m; PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED); mtx_assert(&vm_page_queue_mtx, MA_OWNED); allocated_pv = uma_zalloc(pvzone, M_NOWAIT); if (allocated_pv != NULL) { pv_entry_count++; if (pv_entry_count > pv_entry_high_water) pagedaemon_wakeup(); else return (allocated_pv); } /* * Reclaim pv entries: At first, destroy mappings to inactive * pages. After that, if a pv entry is still needed, destroy * mappings to active pages. */ if (ratecheck(&lastprint, &printinterval)) printf("Approaching the limit on PV entries, " "increase the vm.pmap.shpgperproc tunable.\n"); vpq = &vm_page_queues[PQ_INACTIVE]; retry: TAILQ_FOREACH(m, &vpq->pl, pageq) { if ((m->flags & PG_MARKER) != 0 || m->hold_count || m->busy) continue; TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_list, next_pv) { va = pv->pv_va; pmap = pv->pv_pmap; /* Avoid deadlock and lock recursion. */ if (pmap > locked_pmap) PMAP_LOCK(pmap); else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap)) continue; pmap->pm_stats.resident_count--; pte = pmap_pte(pmap, va); KASSERT(pte != NULL, ("pte")); oldpte = *pte; if (is_kernel_pmap(pmap)) *pte = PTE_G; else *pte = 0; KASSERT(!pte_test(&oldpte, PTE_W), ("wired pte for unwired page")); if (m->md.pv_flags & PV_TABLE_REF) vm_page_aflag_set(m, PGA_REFERENCED); if (pte_test(&oldpte, PTE_D)) vm_page_dirty(m); pmap_invalidate_page(pmap, va); TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist); m->md.pv_list_count--; TAILQ_REMOVE(&m->md.pv_list, pv, pv_list); pmap_unuse_pt(pmap, va, pv->pv_ptem); if (pmap != locked_pmap) PMAP_UNLOCK(pmap); if (allocated_pv == NULL) allocated_pv = pv; else free_pv_entry(pv); } if (TAILQ_EMPTY(&m->md.pv_list)) { vm_page_aflag_clear(m, PGA_WRITEABLE); m->md.pv_flags &= ~(PV_TABLE_REF | PV_TABLE_MOD); } } if (allocated_pv == NULL) { if (vpq == &vm_page_queues[PQ_INACTIVE]) { vpq = &vm_page_queues[PQ_ACTIVE]; goto retry; } panic("get_pv_entry: increase the vm.pmap.shpgperproc tunable"); } return (allocated_pv); } /* * Revision 1.370 * * Move pmap_collect() out of the machine-dependent code, rename it * to reflect its new location, and add page queue and flag locking. * * Notes: (1) alpha, i386, and ia64 had identical implementations * of pmap_collect() in terms of machine-independent interfaces; * (2) sparc64 doesn't require it; (3) powerpc had it as a TODO. * * MIPS implementation was identical to alpha [Junos 8.2] */ /* * If it is the first entry on the list, it is actually * in the header and we must copy the following entry up * to the header. Otherwise we must search the list for * the entry. In either case we free the now unused entry. */ static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va) { pv_entry_t pv; PMAP_LOCK_ASSERT(pmap, MA_OWNED); mtx_assert(&vm_page_queue_mtx, MA_OWNED); if (pvh->pv_list_count < pmap->pm_stats.resident_count) { TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) { if (pmap == pv->pv_pmap && va == pv->pv_va) break; } } else { TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) { if (va == pv->pv_va) break; } } if (pv != NULL) { TAILQ_REMOVE(&pvh->pv_list, pv, pv_list); pvh->pv_list_count--; TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist); } return (pv); } static void pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va) { pv_entry_t pv; pv = pmap_pvh_remove(pvh, pmap, va); KASSERT(pv != NULL, ("pmap_pvh_free: pv not found, pa %lx va %lx", (u_long)VM_PAGE_TO_PHYS(member2struct(vm_page, md, pvh)), (u_long)va)); free_pv_entry(pv); } static void pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va) { mtx_assert(&vm_page_queue_mtx, MA_OWNED); pmap_pvh_free(&m->md, pmap, va); if (TAILQ_EMPTY(&m->md.pv_list)) vm_page_aflag_clear(m, PGA_WRITEABLE); } /* * Conditionally create a pv entry. */ static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_page_t mpte, vm_offset_t va, vm_page_t m) { pv_entry_t pv; PMAP_LOCK_ASSERT(pmap, MA_OWNED); mtx_assert(&vm_page_queue_mtx, MA_OWNED); if (pv_entry_count < pv_entry_high_water && (pv = uma_zalloc(pvzone, M_NOWAIT)) != NULL) { pv_entry_count++; pv->pv_va = va; pv->pv_pmap = pmap; pv->pv_ptem = mpte; TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist); TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list); m->md.pv_list_count++; return (TRUE); } else return (FALSE); } /* * pmap_remove_pte: do the things to unmap a page in a process */ static int pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va) { pt_entry_t oldpte; vm_page_t m; vm_paddr_t pa; mtx_assert(&vm_page_queue_mtx, MA_OWNED); PMAP_LOCK_ASSERT(pmap, MA_OWNED); oldpte = *ptq; if (is_kernel_pmap(pmap)) *ptq = PTE_G; else *ptq = 0; if (pte_test(&oldpte, PTE_W)) pmap->pm_stats.wired_count -= 1; pmap->pm_stats.resident_count -= 1; pa = TLBLO_PTE_TO_PA(oldpte); if (page_is_managed(pa)) { m = PHYS_TO_VM_PAGE(pa); if (pte_test(&oldpte, PTE_D)) { KASSERT(!pte_test(&oldpte, PTE_RO), ("%s: modified page not writable: va: %p, pte: %#jx", __func__, (void *)va, (uintmax_t)oldpte)); vm_page_dirty(m); } if (m->md.pv_flags & PV_TABLE_REF) vm_page_aflag_set(m, PGA_REFERENCED); m->md.pv_flags &= ~(PV_TABLE_REF | PV_TABLE_MOD); pmap_remove_entry(pmap, m, va); } return (pmap_unuse_pt(pmap, va, NULL)); } /* * Remove a single page from a process address space */ static void pmap_remove_page(struct pmap *pmap, vm_offset_t va) { pt_entry_t *ptq; mtx_assert(&vm_page_queue_mtx, MA_OWNED); PMAP_LOCK_ASSERT(pmap, MA_OWNED); ptq = pmap_pte(pmap, va); /* * if there is no pte for this address, just skip it!!! */ if (!ptq || !pte_test(ptq, PTE_V)) { return; } /* * Write back all caches from the page being destroyed */ mips_dcache_wbinv_range_index(va, PAGE_SIZE); /* * get a local va for mappings for this pmap. */ (void)pmap_remove_pte(pmap, ptq, va); pmap_invalidate_page(pmap, va); return; } /* * Remove the given range of addresses from the specified map. * * It is assumed that the start and end are properly * rounded to the page size. */ void pmap_remove(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva) { vm_offset_t va_next; pd_entry_t *pde, *pdpe; pt_entry_t *pte; if (pmap == NULL) return; if (pmap->pm_stats.resident_count == 0) return; vm_page_lock_queues(); PMAP_LOCK(pmap); /* * special handling of removing one page. a very common operation * and easy to short circuit some code. */ if ((sva + PAGE_SIZE) == eva) { pmap_remove_page(pmap, sva); goto out; } for (; sva < eva; sva = va_next) { pdpe = pmap_segmap(pmap, sva); #ifdef __mips_n64 if (*pdpe == 0) { va_next = (sva + NBSEG) & ~SEGMASK; if (va_next < sva) va_next = eva; continue; } #endif va_next = (sva + NBPDR) & ~PDRMASK; if (va_next < sva) va_next = eva; pde = pmap_pdpe_to_pde(pdpe, sva); if (*pde == 0) continue; if (va_next > eva) va_next = eva; for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++, sva += PAGE_SIZE) { pmap_remove_page(pmap, sva); } } out: vm_page_unlock_queues(); PMAP_UNLOCK(pmap); } /* * Routine: pmap_remove_all * Function: * Removes this physical page from * all physical maps in which it resides. * Reflects back modify bits to the pager. * * Notes: * Original versions of this routine were very * inefficient because they iteratively called * pmap_remove (slow...) */ void pmap_remove_all(vm_page_t m) { pv_entry_t pv; pt_entry_t *pte, tpte; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("pmap_remove_all: page %p is not managed", m)); vm_page_lock_queues(); if (m->md.pv_flags & PV_TABLE_REF) vm_page_aflag_set(m, PGA_REFERENCED); while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) { PMAP_LOCK(pv->pv_pmap); /* * If it's last mapping writeback all caches from * the page being destroyed */ if (m->md.pv_list_count == 1) mips_dcache_wbinv_range_index(pv->pv_va, PAGE_SIZE); pv->pv_pmap->pm_stats.resident_count--; pte = pmap_pte(pv->pv_pmap, pv->pv_va); tpte = *pte; if (is_kernel_pmap(pv->pv_pmap)) *pte = PTE_G; else *pte = 0; if (pte_test(&tpte, PTE_W)) pv->pv_pmap->pm_stats.wired_count--; /* * Update the vm_page_t clean and reference bits. */ if (pte_test(&tpte, PTE_D)) { KASSERT(!pte_test(&tpte, PTE_RO), ("%s: modified page not writable: va: %p, pte: %#jx", __func__, (void *)pv->pv_va, (uintmax_t)tpte)); vm_page_dirty(m); } pmap_invalidate_page(pv->pv_pmap, pv->pv_va); TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist); TAILQ_REMOVE(&m->md.pv_list, pv, pv_list); m->md.pv_list_count--; pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem); PMAP_UNLOCK(pv->pv_pmap); free_pv_entry(pv); } vm_page_aflag_clear(m, PGA_WRITEABLE); m->md.pv_flags &= ~(PV_TABLE_REF | PV_TABLE_MOD); vm_page_unlock_queues(); } /* * Set the physical protection on the * specified range of this map as requested. */ void pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot) { pt_entry_t *pte; pd_entry_t *pde, *pdpe; vm_offset_t va_next; if (pmap == NULL) return; if ((prot & VM_PROT_READ) == VM_PROT_NONE) { pmap_remove(pmap, sva, eva); return; } if (prot & VM_PROT_WRITE) return; vm_page_lock_queues(); PMAP_LOCK(pmap); for (; sva < eva; sva = va_next) { pt_entry_t pbits; vm_page_t m; vm_paddr_t pa; pdpe = pmap_segmap(pmap, sva); #ifdef __mips_n64 if (*pdpe == 0) { va_next = (sva + NBSEG) & ~SEGMASK; if (va_next < sva) va_next = eva; continue; } #endif va_next = (sva + NBPDR) & ~PDRMASK; if (va_next < sva) va_next = eva; pde = pmap_pdpe_to_pde(pdpe, sva); if (pde == NULL || *pde == NULL) continue; if (va_next > eva) va_next = eva; for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++, sva += PAGE_SIZE) { /* Skip invalid PTEs */ if (!pte_test(pte, PTE_V)) continue; pbits = *pte; pa = TLBLO_PTE_TO_PA(pbits); if (page_is_managed(pa) && pte_test(&pbits, PTE_D)) { m = PHYS_TO_VM_PAGE(pa); vm_page_dirty(m); m->md.pv_flags &= ~PV_TABLE_MOD; } pte_clear(&pbits, PTE_D); pte_set(&pbits, PTE_RO); if (pbits != *pte) { *pte = pbits; pmap_update_page(pmap, sva, pbits); } } } vm_page_unlock_queues(); PMAP_UNLOCK(pmap); } /* * Insert the given physical page (p) at * the specified virtual address (v) in the * target physical map with the protection requested. * * If specified, the page will be wired down, meaning * that the related pte can not be reclaimed. * * NB: This is the only routine which MAY NOT lazy-evaluate * or lose information. That is, this routine must actually * insert this page into the given map NOW. */ void pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m, vm_prot_t prot, boolean_t wired) { vm_paddr_t pa, opa; pt_entry_t *pte; pt_entry_t origpte, newpte; pv_entry_t pv; vm_page_t mpte, om; pt_entry_t rw = 0; if (pmap == NULL) return; va &= ~PAGE_MASK; KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig")); KASSERT((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) != 0, ("pmap_enter: page %p is not busy", m)); mpte = NULL; vm_page_lock_queues(); PMAP_LOCK(pmap); /* * In the case that a page table page is not resident, we are * creating it here. */ if (va < VM_MAXUSER_ADDRESS) { mpte = pmap_allocpte(pmap, va, M_WAITOK); } pte = pmap_pte(pmap, va); /* * Page Directory table entry not valid, we need a new PT page */ if (pte == NULL) { panic("pmap_enter: invalid page directory, pdir=%p, va=%p", (void *)pmap->pm_segtab, (void *)va); } pa = VM_PAGE_TO_PHYS(m); om = NULL; origpte = *pte; opa = TLBLO_PTE_TO_PA(origpte); /* * Mapping has not changed, must be protection or wiring change. */ if (pte_test(&origpte, PTE_V) && opa == pa) { /* * Wiring change, just update stats. We don't worry about * wiring PT pages as they remain resident as long as there * are valid mappings in them. Hence, if a user page is * wired, the PT page will be also. */ if (wired && !pte_test(&origpte, PTE_W)) pmap->pm_stats.wired_count++; else if (!wired && pte_test(&origpte, PTE_W)) pmap->pm_stats.wired_count--; KASSERT(!pte_test(&origpte, PTE_D | PTE_RO), ("%s: modified page not writable: va: %p, pte: %#jx", __func__, (void *)va, (uintmax_t)origpte)); /* * Remove extra pte reference */ if (mpte) mpte->wire_count--; if (page_is_managed(opa)) { om = m; } goto validate; } pv = NULL; /* * Mapping has changed, invalidate old range and fall through to * handle validating new mapping. */ if (opa) { if (pte_test(&origpte, PTE_W)) pmap->pm_stats.wired_count--; if (page_is_managed(opa)) { om = PHYS_TO_VM_PAGE(opa); pv = pmap_pvh_remove(&om->md, pmap, va); } if (mpte != NULL) { mpte->wire_count--; KASSERT(mpte->wire_count > 0, ("pmap_enter: missing reference to page table page," " va: %p", (void *)va)); } } else pmap->pm_stats.resident_count++; /* * Enter on the PV list if part of our managed memory. Note that we * raise IPL while manipulating pv_table since pmap_enter can be * called at interrupt time. */ if ((m->oflags & VPO_UNMANAGED) == 0) { KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva, ("pmap_enter: managed mapping within the clean submap")); if (pv == NULL) pv = get_pv_entry(pmap); pv->pv_va = va; pv->pv_pmap = pmap; pv->pv_ptem = mpte; TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist); TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list); m->md.pv_list_count++; } else if (pv != NULL) free_pv_entry(pv); /* * Increment counters */ if (wired) pmap->pm_stats.wired_count++; validate: if ((access & VM_PROT_WRITE) != 0) m->md.pv_flags |= PV_TABLE_MOD | PV_TABLE_REF; rw = init_pte_prot(va, m, prot); #ifdef PMAP_DEBUG printf("pmap_enter: va: %p -> pa: %p\n", (void *)va, (void *)pa); #endif /* * Now validate mapping with desired protection/wiring. */ newpte = TLBLO_PA_TO_PFN(pa) | rw | PTE_V; if (is_cacheable_mem(pa)) newpte |= PTE_C_CACHE; else newpte |= PTE_C_UNCACHED; if (wired) newpte |= PTE_W; if (is_kernel_pmap(pmap)) newpte |= PTE_G; /* * if the mapping or permission bits are different, we need to * update the pte. */ if (origpte != newpte) { if (pte_test(&origpte, PTE_V)) { *pte = newpte; if (page_is_managed(opa) && (opa != pa)) { if (om->md.pv_flags & PV_TABLE_REF) vm_page_aflag_set(om, PGA_REFERENCED); om->md.pv_flags &= ~(PV_TABLE_REF | PV_TABLE_MOD); } if (pte_test(&origpte, PTE_D)) { KASSERT(!pte_test(&origpte, PTE_RO), ("pmap_enter: modified page not writable:" " va: %p, pte: %#jx", (void *)va, (uintmax_t)origpte)); if (page_is_managed(opa)) vm_page_dirty(om); } if (page_is_managed(opa) && TAILQ_EMPTY(&om->md.pv_list)) vm_page_aflag_clear(om, PGA_WRITEABLE); } else { *pte = newpte; } } pmap_update_page(pmap, va, newpte); /* * Sync I & D caches for executable pages. Do this only if the * target pmap belongs to the current process. Otherwise, an * unresolvable TLB miss may occur. */ if (!is_kernel_pmap(pmap) && (pmap == &curproc->p_vmspace->vm_pmap) && (prot & VM_PROT_EXECUTE)) { mips_icache_sync_range(va, PAGE_SIZE); mips_dcache_wbinv_range(va, PAGE_SIZE); } vm_page_unlock_queues(); PMAP_UNLOCK(pmap); } /* * this code makes some *MAJOR* assumptions: * 1. Current pmap & pmap exists. * 2. Not wired. * 3. Read access. * 4. No page table pages. * but is *MUCH* faster than pmap_enter... */ void pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot) { vm_page_lock_queues(); PMAP_LOCK(pmap); (void)pmap_enter_quick_locked(pmap, va, m, prot, NULL); vm_page_unlock_queues(); PMAP_UNLOCK(pmap); } static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot, vm_page_t mpte) { pt_entry_t *pte; vm_paddr_t pa; KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva || (m->oflags & VPO_UNMANAGED) != 0, ("pmap_enter_quick_locked: managed mapping within the clean submap")); mtx_assert(&vm_page_queue_mtx, MA_OWNED); PMAP_LOCK_ASSERT(pmap, MA_OWNED); /* * In the case that a page table page is not resident, we are * creating it here. */ if (va < VM_MAXUSER_ADDRESS) { pd_entry_t *pde; unsigned ptepindex; /* * Calculate pagetable page index */ ptepindex = pmap_pde_pindex(va); if (mpte && (mpte->pindex == ptepindex)) { mpte->wire_count++; } else { /* * Get the page directory entry */ pde = pmap_pde(pmap, va); /* * If the page table page is mapped, we just * increment the hold count, and activate it. */ if (pde && *pde != 0) { if (pmap->pm_ptphint && (pmap->pm_ptphint->pindex == ptepindex)) { mpte = pmap->pm_ptphint; } else { mpte = PHYS_TO_VM_PAGE( MIPS_DIRECT_TO_PHYS(*pde)); pmap->pm_ptphint = mpte; } mpte->wire_count++; } else { mpte = _pmap_allocpte(pmap, ptepindex, M_NOWAIT); if (mpte == NULL) return (mpte); } } } else { mpte = NULL; } pte = pmap_pte(pmap, va); if (pte_test(pte, PTE_V)) { if (mpte != NULL) { mpte->wire_count--; mpte = NULL; } return (mpte); } /* * Enter on the PV list if part of our managed memory. */ if ((m->oflags & VPO_UNMANAGED) == 0 && !pmap_try_insert_pv_entry(pmap, mpte, va, m)) { if (mpte != NULL) { pmap_unwire_pte_hold(pmap, va, mpte); mpte = NULL; } return (mpte); } /* * Increment counters */ pmap->pm_stats.resident_count++; pa = VM_PAGE_TO_PHYS(m); /* * Now validate mapping with RO protection */ *pte = TLBLO_PA_TO_PFN(pa) | PTE_V; if (is_cacheable_mem(pa)) *pte |= PTE_C_CACHE; else *pte |= PTE_C_UNCACHED; if (is_kernel_pmap(pmap)) *pte |= PTE_G; else { *pte |= PTE_RO; /* * Sync I & D caches. Do this only if the target pmap * belongs to the current process. Otherwise, an * unresolvable TLB miss may occur. */ if (pmap == &curproc->p_vmspace->vm_pmap) { va &= ~PAGE_MASK; mips_icache_sync_range(va, PAGE_SIZE); mips_dcache_wbinv_range(va, PAGE_SIZE); } } return (mpte); } /* * Make a temporary mapping for a physical address. This is only intended * to be used for panic dumps. * * Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit. */ void * pmap_kenter_temporary(vm_paddr_t pa, int i) { vm_offset_t va; if (i != 0) printf("%s: ERROR!!! More than one page of virtual address mapping not supported\n", __func__); if (MIPS_DIRECT_MAPPABLE(pa)) { va = MIPS_PHYS_TO_DIRECT(pa); } else { #ifndef __mips_n64 /* XXX : to be converted to new style */ int cpu; register_t intr; struct local_sysmaps *sysm; pt_entry_t *pte, npte; /* If this is used other than for dumps, we may need to leave * interrupts disasbled on return. If crash dumps don't work when * we get to this point, we might want to consider this (leaving things * disabled as a starting point ;-) */ intr = intr_disable(); cpu = PCPU_GET(cpuid); sysm = &sysmap_lmem[cpu]; /* Since this is for the debugger, no locks or any other fun */ npte = TLBLO_PA_TO_PFN(pa) | PTE_D | PTE_V | PTE_G | PTE_W | PTE_C_CACHE; pte = pmap_pte(kernel_pmap, sysm->base); *pte = npte; sysm->valid1 = 1; pmap_update_page(kernel_pmap, sysm->base, npte); va = sysm->base; intr_restore(intr); #endif } return ((void *)va); } void pmap_kenter_temporary_free(vm_paddr_t pa) { #ifndef __mips_n64 /* XXX : to be converted to new style */ int cpu; register_t intr; struct local_sysmaps *sysm; #endif if (MIPS_DIRECT_MAPPABLE(pa)) { /* nothing to do for this case */ return; } #ifndef __mips_n64 /* XXX : to be converted to new style */ cpu = PCPU_GET(cpuid); sysm = &sysmap_lmem[cpu]; if (sysm->valid1) { pt_entry_t *pte; intr = intr_disable(); pte = pmap_pte(kernel_pmap, sysm->base); *pte = PTE_G; pmap_invalidate_page(kernel_pmap, sysm->base); intr_restore(intr); sysm->valid1 = 0; } #endif } /* * Moved the code to Machine Independent * vm_map_pmap_enter() */ /* * Maps a sequence of resident pages belonging to the same object. * The sequence begins with the given page m_start. This page is * mapped at the given virtual address start. Each subsequent page is * mapped at a virtual address that is offset from start by the same * amount as the page is offset from m_start within the object. The * last page in the sequence is the page with the largest offset from * m_start that can be mapped at a virtual address less than the given * virtual address end. Not every virtual page between start and end * is mapped; only those for which a resident page exists with the * corresponding offset from m_start are mapped. */ void pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end, vm_page_t m_start, vm_prot_t prot) { vm_page_t m, mpte; vm_pindex_t diff, psize; VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED); psize = atop(end - start); mpte = NULL; m = m_start; vm_page_lock_queues(); PMAP_LOCK(pmap); while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) { mpte = pmap_enter_quick_locked(pmap, start + ptoa(diff), m, prot, mpte); m = TAILQ_NEXT(m, listq); } vm_page_unlock_queues(); PMAP_UNLOCK(pmap); } /* * pmap_object_init_pt preloads the ptes for a given object * into the specified pmap. This eliminates the blast of soft * faults on process startup and immediately after an mmap. */ void pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object, vm_pindex_t pindex, vm_size_t size) { VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG, ("pmap_object_init_pt: non-device object")); } /* * Routine: pmap_change_wiring * Function: Change the wiring attribute for a map/virtual-address * pair. * In/out conditions: * The mapping must already exist in the pmap. */ void pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired) { pt_entry_t *pte; if (pmap == NULL) return; PMAP_LOCK(pmap); pte = pmap_pte(pmap, va); if (wired && !pte_test(pte, PTE_W)) pmap->pm_stats.wired_count++; else if (!wired && pte_test(pte, PTE_W)) pmap->pm_stats.wired_count--; /* * Wiring is not a hardware characteristic so there is no need to * invalidate TLB. */ if (wired) pte_set(pte, PTE_W); else pte_clear(pte, PTE_W); PMAP_UNLOCK(pmap); } /* * Copy the range specified by src_addr/len * from the source map to the range dst_addr/len * in the destination map. * * This routine is only advisory and need not do anything. */ void pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len, vm_offset_t src_addr) { } /* * pmap_zero_page zeros the specified hardware page by mapping * the page into KVM and using bzero to clear its contents. * * Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit. */ void pmap_zero_page(vm_page_t m) { vm_offset_t va; vm_paddr_t phys = VM_PAGE_TO_PHYS(m); if (MIPS_DIRECT_MAPPABLE(phys)) { va = MIPS_PHYS_TO_DIRECT(phys); bzero((caddr_t)va, PAGE_SIZE); mips_dcache_wbinv_range(va, PAGE_SIZE); } else { va = pmap_lmem_map1(phys); bzero((caddr_t)va, PAGE_SIZE); mips_dcache_wbinv_range(va, PAGE_SIZE); pmap_lmem_unmap(); } } /* * pmap_zero_page_area zeros the specified hardware page by mapping * the page into KVM and using bzero to clear its contents. * * off and size may not cover an area beyond a single hardware page. */ void pmap_zero_page_area(vm_page_t m, int off, int size) { vm_offset_t va; vm_paddr_t phys = VM_PAGE_TO_PHYS(m); if (MIPS_DIRECT_MAPPABLE(phys)) { va = MIPS_PHYS_TO_DIRECT(phys); bzero((char *)(caddr_t)va + off, size); mips_dcache_wbinv_range(va + off, size); } else { va = pmap_lmem_map1(phys); bzero((char *)va + off, size); mips_dcache_wbinv_range(va + off, size); pmap_lmem_unmap(); } } void pmap_zero_page_idle(vm_page_t m) { vm_offset_t va; vm_paddr_t phys = VM_PAGE_TO_PHYS(m); if (MIPS_DIRECT_MAPPABLE(phys)) { va = MIPS_PHYS_TO_DIRECT(phys); bzero((caddr_t)va, PAGE_SIZE); mips_dcache_wbinv_range(va, PAGE_SIZE); } else { va = pmap_lmem_map1(phys); bzero((caddr_t)va, PAGE_SIZE); mips_dcache_wbinv_range(va, PAGE_SIZE); pmap_lmem_unmap(); } } /* * pmap_copy_page copies the specified (machine independent) * page by mapping the page into virtual memory and using * bcopy to copy the page, one machine dependent page at a * time. * * Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit. */ void pmap_copy_page(vm_page_t src, vm_page_t dst) { vm_offset_t va_src, va_dst; vm_paddr_t phys_src = VM_PAGE_TO_PHYS(src); vm_paddr_t phys_dst = VM_PAGE_TO_PHYS(dst); if (MIPS_DIRECT_MAPPABLE(phys_src) && MIPS_DIRECT_MAPPABLE(phys_dst)) { /* easy case, all can be accessed via KSEG0 */ /* * Flush all caches for VA that are mapped to this page * to make sure that data in SDRAM is up to date */ pmap_flush_pvcache(src); mips_dcache_wbinv_range_index( MIPS_PHYS_TO_DIRECT(phys_dst), PAGE_SIZE); va_src = MIPS_PHYS_TO_DIRECT(phys_src); va_dst = MIPS_PHYS_TO_DIRECT(phys_dst); bcopy((caddr_t)va_src, (caddr_t)va_dst, PAGE_SIZE); mips_dcache_wbinv_range(va_dst, PAGE_SIZE); } else { va_src = pmap_lmem_map2(phys_src, phys_dst); va_dst = va_src + PAGE_SIZE; bcopy((void *)va_src, (void *)va_dst, PAGE_SIZE); mips_dcache_wbinv_range(va_dst, PAGE_SIZE); pmap_lmem_unmap(); } } /* * Returns true if the pmap's pv is one of the first * 16 pvs linked to from this page. This count may * be changed upwards or downwards in the future; it * is only necessary that true be returned for a small * subset of pmaps for proper page aging. */ boolean_t pmap_page_exists_quick(pmap_t pmap, vm_page_t m) { pv_entry_t pv; int loops = 0; boolean_t rv; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("pmap_page_exists_quick: page %p is not managed", m)); rv = FALSE; vm_page_lock_queues(); TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) { if (pv->pv_pmap == pmap) { rv = TRUE; break; } loops++; if (loops >= 16) break; } vm_page_unlock_queues(); return (rv); } /* * Remove all pages from specified address space * this aids process exit speeds. Also, this code * is special cased for current process only, but * can have the more generic (and slightly slower) * mode enabled. This is much faster than pmap_remove * in the case of running down an entire address space. */ void pmap_remove_pages(pmap_t pmap) { pt_entry_t *pte, tpte; pv_entry_t pv, npv; vm_page_t m; if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) { printf("warning: pmap_remove_pages called with non-current pmap\n"); return; } vm_page_lock_queues(); PMAP_LOCK(pmap); for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv != NULL; pv = npv) { pte = pmap_pte(pv->pv_pmap, pv->pv_va); if (!pte_test(pte, PTE_V)) panic("pmap_remove_pages: page on pm_pvlist has no pte"); tpte = *pte; /* * We cannot remove wired pages from a process' mapping at this time */ if (pte_test(&tpte, PTE_W)) { npv = TAILQ_NEXT(pv, pv_plist); continue; } *pte = is_kernel_pmap(pmap) ? PTE_G : 0; m = PHYS_TO_VM_PAGE(TLBLO_PTE_TO_PA(tpte)); KASSERT(m != NULL, ("pmap_remove_pages: bad tpte %#jx", (uintmax_t)tpte)); pv->pv_pmap->pm_stats.resident_count--; /* * Update the vm_page_t clean and reference bits. */ if (pte_test(&tpte, PTE_D)) { vm_page_dirty(m); } npv = TAILQ_NEXT(pv, pv_plist); TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist); m->md.pv_list_count--; TAILQ_REMOVE(&m->md.pv_list, pv, pv_list); if (TAILQ_FIRST(&m->md.pv_list) == NULL) { vm_page_aflag_clear(m, PGA_WRITEABLE); } pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem); free_pv_entry(pv); } pmap_invalidate_all(pmap); PMAP_UNLOCK(pmap); vm_page_unlock_queues(); } /* * pmap_testbit tests bits in pte's * note that the testbit/changebit routines are inline, * and a lot of things compile-time evaluate. */ static boolean_t pmap_testbit(vm_page_t m, int bit) { pv_entry_t pv; pt_entry_t *pte; boolean_t rv = FALSE; if (m->oflags & VPO_UNMANAGED) return (rv); if (TAILQ_FIRST(&m->md.pv_list) == NULL) return (rv); mtx_assert(&vm_page_queue_mtx, MA_OWNED); TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) { PMAP_LOCK(pv->pv_pmap); pte = pmap_pte(pv->pv_pmap, pv->pv_va); rv = pte_test(pte, bit); PMAP_UNLOCK(pv->pv_pmap); if (rv) break; } return (rv); } /* * this routine is used to clear dirty bits in ptes */ static __inline void pmap_changebit(vm_page_t m, int bit, boolean_t setem) { pv_entry_t pv; pt_entry_t *pte; if (m->oflags & VPO_UNMANAGED) return; mtx_assert(&vm_page_queue_mtx, MA_OWNED); /* * Loop over all current mappings setting/clearing as appropos If * setting RO do we need to clear the VAC? */ TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) { PMAP_LOCK(pv->pv_pmap); pte = pmap_pte(pv->pv_pmap, pv->pv_va); if (setem) { *pte |= bit; pmap_update_page(pv->pv_pmap, pv->pv_va, *pte); } else { pt_entry_t pbits = *pte; if (pbits & bit) { if (bit == PTE_D) { if (pbits & PTE_D) vm_page_dirty(m); *pte = (pbits & ~PTE_D) | PTE_RO; } else { *pte = pbits & ~bit; } pmap_update_page(pv->pv_pmap, pv->pv_va, *pte); } } PMAP_UNLOCK(pv->pv_pmap); } if (!setem && bit == PTE_D) vm_page_aflag_clear(m, PGA_WRITEABLE); } /* * pmap_page_wired_mappings: * * Return the number of managed mappings to the given physical page * that are wired. */ int pmap_page_wired_mappings(vm_page_t m) { pv_entry_t pv; pmap_t pmap; pt_entry_t *pte; int count; count = 0; if ((m->oflags & VPO_UNMANAGED) != 0) return (count); vm_page_lock_queues(); TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) { pmap = pv->pv_pmap; PMAP_LOCK(pmap); pte = pmap_pte(pmap, pv->pv_va); if (pte_test(pte, PTE_W)) count++; PMAP_UNLOCK(pmap); } vm_page_unlock_queues(); return (count); } /* * Clear the write and modified bits in each of the given page's mappings. */ void pmap_remove_write(vm_page_t m) { pv_entry_t pv, npv; vm_offset_t va; pt_entry_t *pte; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("pmap_remove_write: page %p is not managed", m)); /* * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be set by * another thread while the object is locked. Thus, if PGA_WRITEABLE * is clear, no page table entries need updating. */ VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); if ((m->oflags & VPO_BUSY) == 0 && (m->aflags & PGA_WRITEABLE) == 0) return; /* * Loop over all current mappings setting/clearing as appropos. */ vm_page_lock_queues(); for (pv = TAILQ_FIRST(&m->md.pv_list); pv; pv = npv) { npv = TAILQ_NEXT(pv, pv_plist); pte = pmap_pte(pv->pv_pmap, pv->pv_va); if (pte == NULL || !pte_test(pte, PTE_V)) panic("page on pm_pvlist has no pte"); va = pv->pv_va; pmap_protect(pv->pv_pmap, va, va + PAGE_SIZE, VM_PROT_READ | VM_PROT_EXECUTE); } vm_page_aflag_clear(m, PGA_WRITEABLE); vm_page_unlock_queues(); } /* * pmap_ts_referenced: * * Return the count of reference bits for a page, clearing all of them. */ int pmap_ts_referenced(vm_page_t m) { KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("pmap_ts_referenced: page %p is not managed", m)); if (m->md.pv_flags & PV_TABLE_REF) { vm_page_lock_queues(); m->md.pv_flags &= ~PV_TABLE_REF; vm_page_unlock_queues(); return (1); } return (0); } /* * pmap_is_modified: * * Return whether or not the specified physical page was modified * in any physical maps. */ boolean_t pmap_is_modified(vm_page_t m) { boolean_t rv; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("pmap_is_modified: page %p is not managed", m)); /* * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be * concurrently set while the object is locked. Thus, if PGA_WRITEABLE * is clear, no PTEs can have PTE_D set. */ VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); if ((m->oflags & VPO_BUSY) == 0 && (m->aflags & PGA_WRITEABLE) == 0) return (FALSE); vm_page_lock_queues(); if (m->md.pv_flags & PV_TABLE_MOD) rv = TRUE; else rv = pmap_testbit(m, PTE_D); vm_page_unlock_queues(); return (rv); } /* N/C */ /* * pmap_is_prefaultable: * * Return whether or not the specified virtual address is elgible * for prefault. */ boolean_t pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr) { pd_entry_t *pde; pt_entry_t *pte; boolean_t rv; rv = FALSE; PMAP_LOCK(pmap); pde = pmap_pde(pmap, addr); if (pde != NULL && *pde != 0) { pte = pmap_pde_to_pte(pde, addr); rv = (*pte == 0); } PMAP_UNLOCK(pmap); return (rv); } /* * Clear the modify bits on the specified physical page. */ void pmap_clear_modify(vm_page_t m) { KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("pmap_clear_modify: page %p is not managed", m)); VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); KASSERT((m->oflags & VPO_BUSY) == 0, ("pmap_clear_modify: page %p is busy", m)); /* * If the page is not PGA_WRITEABLE, then no PTEs can have PTE_D set. * If the object containing the page is locked and the page is not * VPO_BUSY, then PGA_WRITEABLE cannot be concurrently set. */ if ((m->aflags & PGA_WRITEABLE) == 0) return; vm_page_lock_queues(); if (m->md.pv_flags & PV_TABLE_MOD) { pmap_changebit(m, PTE_D, FALSE); m->md.pv_flags &= ~PV_TABLE_MOD; } vm_page_unlock_queues(); } /* * pmap_is_referenced: * * Return whether or not the specified physical page was referenced * in any physical maps. */ boolean_t pmap_is_referenced(vm_page_t m) { KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("pmap_is_referenced: page %p is not managed", m)); return ((m->md.pv_flags & PV_TABLE_REF) != 0); } /* * pmap_clear_reference: * * Clear the reference bit on the specified physical page. */ void pmap_clear_reference(vm_page_t m) { KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("pmap_clear_reference: page %p is not managed", m)); vm_page_lock_queues(); if (m->md.pv_flags & PV_TABLE_REF) { m->md.pv_flags &= ~PV_TABLE_REF; } vm_page_unlock_queues(); } /* * Miscellaneous support routines follow */ /* * Map a set of physical memory pages into the kernel virtual * address space. Return a pointer to where it is mapped. This * routine is intended to be used for mapping device memory, * NOT real memory. */ /* * Map a set of physical memory pages into the kernel virtual * address space. Return a pointer to where it is mapped. This * routine is intended to be used for mapping device memory, * NOT real memory. * * Use XKPHYS uncached for 64 bit, and KSEG1 where possible for 32 bit. */ void * pmap_mapdev(vm_paddr_t pa, vm_size_t size) { vm_offset_t va, tmpva, offset; /* * KSEG1 maps only first 512M of phys address space. For * pa > 0x20000000 we should make proper mapping * using pmap_kenter. */ if (MIPS_DIRECT_MAPPABLE(pa + size - 1)) return ((void *)MIPS_PHYS_TO_DIRECT_UNCACHED(pa)); else { offset = pa & PAGE_MASK; size = roundup(size + offset, PAGE_SIZE); va = kmem_alloc_nofault(kernel_map, size); if (!va) panic("pmap_mapdev: Couldn't alloc kernel virtual memory"); pa = trunc_page(pa); for (tmpva = va; size > 0;) { pmap_kenter_attr(tmpva, pa, PTE_C_UNCACHED); size -= PAGE_SIZE; tmpva += PAGE_SIZE; pa += PAGE_SIZE; } } return ((void *)(va + offset)); } void pmap_unmapdev(vm_offset_t va, vm_size_t size) { #ifndef __mips_n64 vm_offset_t base, offset, tmpva; /* If the address is within KSEG1 then there is nothing to do */ if (va >= MIPS_KSEG1_START && va <= MIPS_KSEG1_END) return; base = trunc_page(va); offset = va & PAGE_MASK; size = roundup(size + offset, PAGE_SIZE); for (tmpva = base; tmpva < base + size; tmpva += PAGE_SIZE) pmap_kremove(tmpva); kmem_free(kernel_map, base, size); #endif } /* * perform the pmap work for mincore */ int pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa) { pt_entry_t *ptep, pte; vm_paddr_t pa; vm_page_t m; int val; boolean_t managed; PMAP_LOCK(pmap); retry: ptep = pmap_pte(pmap, addr); pte = (ptep != NULL) ? *ptep : 0; if (!pte_test(&pte, PTE_V)) { val = 0; goto out; } val = MINCORE_INCORE; if (pte_test(&pte, PTE_D)) val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER; pa = TLBLO_PTE_TO_PA(pte); managed = page_is_managed(pa); if (managed) { /* * This may falsely report the given address as * MINCORE_REFERENCED. Unfortunately, due to the lack of * per-PTE reference information, it is impossible to * determine if the address is MINCORE_REFERENCED. */ m = PHYS_TO_VM_PAGE(pa); if ((m->aflags & PGA_REFERENCED) != 0) val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER; } if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) != (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) && managed) { /* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */ if (vm_page_pa_tryrelock(pmap, pa, locked_pa)) goto retry; } else out: PA_UNLOCK_COND(*locked_pa); PMAP_UNLOCK(pmap); return (val); } void pmap_activate(struct thread *td) { pmap_t pmap, oldpmap; struct proc *p = td->td_proc; u_int cpuid; critical_enter(); pmap = vmspace_pmap(p->p_vmspace); oldpmap = PCPU_GET(curpmap); cpuid = PCPU_GET(cpuid); if (oldpmap) CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active); CPU_SET_ATOMIC(cpuid, &pmap->pm_active); pmap_asid_alloc(pmap); if (td == curthread) { PCPU_SET(segbase, pmap->pm_segtab); mips_wr_entryhi(pmap->pm_asid[cpuid].asid); } PCPU_SET(curpmap, pmap); critical_exit(); } void pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz) { } /* * Increase the starting virtual address of the given mapping if a * different alignment might result in more superpage mappings. */ void pmap_align_superpage(vm_object_t object, vm_ooffset_t offset, vm_offset_t *addr, vm_size_t size) { vm_offset_t superpage_offset; if (size < NBSEG) return; if (object != NULL && (object->flags & OBJ_COLORED) != 0) offset += ptoa(object->pg_color); superpage_offset = offset & SEGMASK; if (size - ((NBSEG - superpage_offset) & SEGMASK) < NBSEG || (*addr & SEGMASK) == superpage_offset) return; if ((*addr & SEGMASK) < superpage_offset) *addr = (*addr & ~SEGMASK) + superpage_offset; else *addr = ((*addr + SEGMASK) & ~SEGMASK) + superpage_offset; } /* * Increase the starting virtual address of the given mapping so * that it is aligned to not be the second page in a TLB entry. * This routine assumes that the length is appropriately-sized so * that the allocation does not share a TLB entry at all if required. */ void pmap_align_tlb(vm_offset_t *addr) { if ((*addr & PAGE_SIZE) == 0) return; *addr += PAGE_SIZE; return; } #ifdef DDB DB_SHOW_COMMAND(ptable, ddb_pid_dump) { pmap_t pmap; struct thread *td = NULL; struct proc *p; int i, j, k; vm_paddr_t pa; vm_offset_t va; if (have_addr) { td = db_lookup_thread(addr, TRUE); if (td == NULL) { db_printf("Invalid pid or tid"); return; } p = td->td_proc; if (p->p_vmspace == NULL) { db_printf("No vmspace for process"); return; } pmap = vmspace_pmap(p->p_vmspace); } else pmap = kernel_pmap; db_printf("pmap:%p segtab:%p asid:%x generation:%x\n", pmap, pmap->pm_segtab, pmap->pm_asid[0].asid, pmap->pm_asid[0].gen); for (i = 0; i < NPDEPG; i++) { pd_entry_t *pdpe; pt_entry_t *pde; pt_entry_t pte; pdpe = (pd_entry_t *)pmap->pm_segtab[i]; if (pdpe == NULL) continue; db_printf("[%4d] %p\n", i, pdpe); #ifdef __mips_n64 for (j = 0; j < NPDEPG; j++) { pde = (pt_entry_t *)pdpe[j]; if (pde == NULL) continue; db_printf("\t[%4d] %p\n", j, pde); #else { j = 0; pde = (pt_entry_t *)pdpe; #endif for (k = 0; k < NPTEPG; k++) { pte = pde[k]; if (pte == 0 || !pte_test(&pte, PTE_V)) continue; pa = TLBLO_PTE_TO_PA(pte); va = ((u_long)i << SEGSHIFT) | (j << PDRSHIFT) | (k << PAGE_SHIFT); db_printf("\t\t[%04d] va: %p pte: %8jx pa:%jx\n", k, (void *)va, (uintmax_t)pte, (uintmax_t)pa); } } } } #endif #if defined(DEBUG) static void pads(pmap_t pm); void pmap_pvdump(vm_offset_t pa); /* print address space of pmap*/ static void pads(pmap_t pm) { unsigned va, i, j; pt_entry_t *ptep; if (pm == kernel_pmap) return; for (i = 0; i < NPTEPG; i++) if (pm->pm_segtab[i]) for (j = 0; j < NPTEPG; j++) { va = (i << SEGSHIFT) + (j << PAGE_SHIFT); if (pm == kernel_pmap && va < KERNBASE) continue; if (pm != kernel_pmap && va >= VM_MAXUSER_ADDRESS) continue; ptep = pmap_pte(pm, va); if (pte_test(ptep, PTE_V)) printf("%x:%x ", va, *(int *)ptep); } } void pmap_pvdump(vm_offset_t pa) { register pv_entry_t pv; vm_page_t m; printf("pa %x", pa); m = PHYS_TO_VM_PAGE(pa); for (pv = TAILQ_FIRST(&m->md.pv_list); pv; pv = TAILQ_NEXT(pv, pv_list)) { printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va); pads(pv->pv_pmap); } printf(" "); } /* N/C */ #endif /* * Allocate TLB address space tag (called ASID or TLBPID) and return it. * It takes almost as much or more time to search the TLB for a * specific ASID and flush those entries as it does to flush the entire TLB. * Therefore, when we allocate a new ASID, we just take the next number. When * we run out of numbers, we flush the TLB, increment the generation count * and start over. ASID zero is reserved for kernel use. */ static void pmap_asid_alloc(pmap) pmap_t pmap; { if (pmap->pm_asid[PCPU_GET(cpuid)].asid != PMAP_ASID_RESERVED && pmap->pm_asid[PCPU_GET(cpuid)].gen == PCPU_GET(asid_generation)); else { if (PCPU_GET(next_asid) == pmap_max_asid) { tlb_invalidate_all_user(NULL); PCPU_SET(asid_generation, (PCPU_GET(asid_generation) + 1) & ASIDGEN_MASK); if (PCPU_GET(asid_generation) == 0) { PCPU_SET(asid_generation, 1); } PCPU_SET(next_asid, 1); /* 0 means invalid */ } pmap->pm_asid[PCPU_GET(cpuid)].asid = PCPU_GET(next_asid); pmap->pm_asid[PCPU_GET(cpuid)].gen = PCPU_GET(asid_generation); PCPU_SET(next_asid, PCPU_GET(next_asid) + 1); } } int page_is_managed(vm_paddr_t pa) { vm_offset_t pgnum = atop(pa); if (pgnum >= first_page) { vm_page_t m; m = PHYS_TO_VM_PAGE(pa); if (m == NULL) return (0); if ((m->oflags & VPO_UNMANAGED) == 0) return (1); } return (0); } static pt_entry_t init_pte_prot(vm_offset_t va, vm_page_t m, vm_prot_t prot) { pt_entry_t rw; if (!(prot & VM_PROT_WRITE)) rw = PTE_V | PTE_RO | PTE_C_CACHE; else if ((m->oflags & VPO_UNMANAGED) == 0) { if ((m->md.pv_flags & PV_TABLE_MOD) != 0) rw = PTE_V | PTE_D | PTE_C_CACHE; else rw = PTE_V | PTE_C_CACHE; vm_page_aflag_set(m, PGA_WRITEABLE); } else /* Needn't emulate a modified bit for unmanaged pages. */ rw = PTE_V | PTE_D | PTE_C_CACHE; return (rw); } /* * pmap_emulate_modified : do dirty bit emulation * * On SMP, update just the local TLB, other CPUs will update their * TLBs from PTE lazily, if they get the exception. * Returns 0 in case of sucess, 1 if the page is read only and we * need to fault. */ int pmap_emulate_modified(pmap_t pmap, vm_offset_t va) { vm_page_t m; pt_entry_t *pte; vm_paddr_t pa; PMAP_LOCK(pmap); pte = pmap_pte(pmap, va); if (pte == NULL) panic("pmap_emulate_modified: can't find PTE"); #ifdef SMP /* It is possible that some other CPU changed m-bit */ if (!pte_test(pte, PTE_V) || pte_test(pte, PTE_D)) { pmap_update_page_local(pmap, va, *pte); PMAP_UNLOCK(pmap); return (0); } #else if (!pte_test(pte, PTE_V) || pte_test(pte, PTE_D)) panic("pmap_emulate_modified: invalid pte"); #endif if (pte_test(pte, PTE_RO)) { /* write to read only page in the kernel */ PMAP_UNLOCK(pmap); return (1); } pte_set(pte, PTE_D); pmap_update_page_local(pmap, va, *pte); pa = TLBLO_PTE_TO_PA(*pte); if (!page_is_managed(pa)) panic("pmap_emulate_modified: unmanaged page"); m = PHYS_TO_VM_PAGE(pa); m->md.pv_flags |= (PV_TABLE_REF | PV_TABLE_MOD); PMAP_UNLOCK(pmap); return (0); } /* * Routine: pmap_kextract * Function: * Extract the physical page address associated * virtual address. */ /* PMAP_INLINE */ vm_offset_t pmap_kextract(vm_offset_t va) { int mapped; /* * First, the direct-mapped regions. */ #if defined(__mips_n64) if (va >= MIPS_XKPHYS_START && va < MIPS_XKPHYS_END) return (MIPS_XKPHYS_TO_PHYS(va)); #endif if (va >= MIPS_KSEG0_START && va < MIPS_KSEG0_END) return (MIPS_KSEG0_TO_PHYS(va)); if (va >= MIPS_KSEG1_START && va < MIPS_KSEG1_END) return (MIPS_KSEG1_TO_PHYS(va)); /* * User virtual addresses. */ if (va < VM_MAXUSER_ADDRESS) { pt_entry_t *ptep; if (curproc && curproc->p_vmspace) { ptep = pmap_pte(&curproc->p_vmspace->vm_pmap, va); if (ptep) { return (TLBLO_PTE_TO_PA(*ptep) | (va & PAGE_MASK)); } return (0); } } /* * Should be kernel virtual here, otherwise fail */ mapped = (va >= MIPS_KSEG2_START || va < MIPS_KSEG2_END); #if defined(__mips_n64) mapped = mapped || (va >= MIPS_XKSEG_START || va < MIPS_XKSEG_END); #endif /* * Kernel virtual. */ if (mapped) { pt_entry_t *ptep; /* Is the kernel pmap initialized? */ if (!CPU_EMPTY(&kernel_pmap->pm_active)) { /* It's inside the virtual address range */ ptep = pmap_pte(kernel_pmap, va); if (ptep) { return (TLBLO_PTE_TO_PA(*ptep) | (va & PAGE_MASK)); } } return (0); } panic("%s for unknown address space %p.", __func__, (void *)va); } void pmap_flush_pvcache(vm_page_t m) { pv_entry_t pv; if (m != NULL) { for (pv = TAILQ_FIRST(&m->md.pv_list); pv; pv = TAILQ_NEXT(pv, pv_list)) { mips_dcache_wbinv_range_index(pv->pv_va, PAGE_SIZE); } } }