Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/nge/@/mips/rmi/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/nge/@/mips/rmi/rmi_mips_exts.h |
/*- * Copyright (c) 2003-2009 RMI Corporation * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of RMI Corporation, nor the names of its contributors, * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * RMI_BSD * $FreeBSD: release/9.1.0/sys/mips/rmi/rmi_mips_exts.h 213441 2010-10-05 05:49:38Z jchandra $ */ #ifndef __MIPS_EXTS_H__ #define __MIPS_EXTS_H__ #define CPU_BLOCKID_IFU 0 #define CPU_BLOCKID_ICU 1 #define CPU_BLOCKID_IEU 2 #define CPU_BLOCKID_LSU 3 #define CPU_BLOCKID_MMU 4 #define CPU_BLOCKID_PRF 5 #define LSU_CERRLOG_REGID 9 #if defined(__mips_n64) || defined(__mips_n32) static __inline uint64_t read_xlr_ctrl_register(int block, int reg) { uint64_t res; __asm__ __volatile__( ".set push\n\t" ".set noreorder\n\t" "move $9, %1\n\t" ".word 0x71280018\n\t" /* mfcr $8, $9 */ "move %0, $8\n\t" ".set pop\n" : "=r" (res) : "r"((block << 8) | reg) : "$8", "$9" ); return (res); } static __inline void write_xlr_ctrl_register(int block, int reg, uint64_t value) { __asm__ __volatile__( ".set push\n\t" ".set noreorder\n\t" "move $8, %0\n" "move $9, %1\n" ".word 0x71280019\n" /* mtcr $8, $9 */ ".set pop\n" : : "r" (value), "r" ((block << 8) | reg) : "$8", "$9" ); } #else /* !(defined(__mips_n64) || defined(__mips_n32)) */ static __inline uint64_t read_xlr_ctrl_register(int block, int reg) { uint32_t high, low; __asm__ __volatile__( ".set push\n\t" ".set noreorder\n\t" ".set mips64\n\t" "move $9, %2\n" ".word 0x71280018\n" /* "mfcr $8, $9\n" */ "dsra32 %0, $8, 0\n\t" "sll %1, $8, 0\n\t" ".set pop" : "=r" (high), "=r"(low) : "r" ((block << 8) | reg) : "$8", "$9"); return ( (((uint64_t)high) << 32) | low); } static __inline void write_xlr_ctrl_register(int block, int reg, uint64_t value) { uint32_t low, high; high = value >> 32; low = value & 0xffffffff; __asm__ __volatile__( ".set push\n\t" ".set noreorder\n\t" ".set mips64\n\t" "dsll32 $9, %0, 0\n\t" "dsll32 $8, %1, 0\n\t" "dsrl32 $8, $8, 0\n\t" "or $8, $9, $8\n\t" "move $9, %2\n\t" ".word 0x71280019\n\t" /* mtcr $8, $9 */ ".set pop\n" : /* No outputs */ : "r" (high), "r" (low), "r"((block << 8) | reg) : "$8", "$9"); } #endif /* defined(__mips_n64) || defined(__mips_n32) */ /* * 32 bit read write for c0 */ #define read_c0_register32(reg, sel) \ ({ \ uint32_t __rv; \ __asm__ __volatile__( \ ".set push\n\t" \ ".set mips32\n\t" \ "mfc0 %0, $%1, %2\n\t" \ ".set pop\n" \ : "=r" (__rv) : "i" (reg), "i" (sel) ); \ __rv; \ }) #define write_c0_register32(reg, sel, value) \ __asm__ __volatile__( \ ".set push\n\t" \ ".set mips32\n\t" \ "mtc0 %0, $%1, %2\n\t" \ ".set pop\n" \ : : "r" (value), "i" (reg), "i" (sel) ); #define read_c2_register32(reg, sel) \ ({ \ uint32_t __rv; \ __asm__ __volatile__( \ ".set push\n\t" \ ".set mips32\n\t" \ "mfc2 %0, $%1, %2\n\t" \ ".set pop\n" \ : "=r" (__rv) : "i" (reg), "i" (sel) ); \ __rv; \ }) #define write_c2_register32(reg, sel, value) \ __asm__ __volatile__( \ ".set push\n\t" \ ".set mips32\n\t" \ "mtc2 %0, $%1, %2\n\t" \ ".set pop\n" \ : : "r" (value), "i" (reg), "i" (sel) ); #if defined(__mips_n64) || defined(__mips_n32) /* * On 64 bit compilation, the operations are simple */ #define read_c0_register64(reg, sel) \ ({ \ uint64_t __rv; \ __asm__ __volatile__( \ ".set push\n\t" \ ".set mips64\n\t" \ "dmfc0 %0, $%1, %2\n\t" \ ".set pop\n" \ : "=r" (__rv) : "i" (reg), "i" (sel) ); \ __rv; \ }) #define write_c0_register64(reg, sel, value) \ __asm__ __volatile__( \ ".set push\n\t" \ ".set mips64\n\t" \ "dmtc0 %0, $%1, %2\n\t" \ ".set pop\n" \ : : "r" (value), "i" (reg), "i" (sel) ); #define read_c2_register64(reg, sel) \ ({ \ uint64_t __rv; \ __asm__ __volatile__( \ ".set push\n\t" \ ".set mips64\n\t" \ "dmfc2 %0, $%1, %2\n\t" \ ".set pop\n" \ : "=r" (__rv) : "i" (reg), "i" (sel) ); \ __rv; \ }) #define write_c2_register64(reg, sel, value) \ __asm__ __volatile__( \ ".set push\n\t" \ ".set mips64\n\t" \ "dmtc2 %0, $%1, %2\n\t" \ ".set pop\n" \ : : "r" (value), "i" (reg), "i" (sel) ); #else /* ! (defined(__mips_n64) || defined(__mips_n32)) */ /* * 32 bit compilation, 64 bit values has to split */ #define read_c0_register64(reg, sel) \ ({ \ uint32_t __high, __low; \ __asm__ __volatile__( \ ".set push\n\t" \ ".set noreorder\n\t" \ ".set mips64\n\t" \ "dmfc0 $8, $%2, %3\n\t" \ "dsra32 %0, $8, 0\n\t" \ "sll %1, $8, 0\n\t" \ ".set pop\n" \ : "=r"(__high), "=r"(__low): "i"(reg), "i"(sel) \ : "$8"); \ ((uint64_t)__high << 32) | __low; \ }) #define write_c0_register64(reg, sel, value) \ do { \ uint32_t __high = value >> 32; \ uint32_t __low = value & 0xffffffff; \ __asm__ __volatile__( \ ".set push\n\t" \ ".set noreorder\n\t" \ ".set mips64\n\t" \ "dsll32 $8, %1, 0\n\t" \ "dsll32 $9, %0, 0\n\t" \ "dsrl32 $8, $8, 0\n\t" \ "or $8, $8, $9\n\t" \ "dmtc0 $8, $%2, %3\n\t" \ ".set pop" \ :: "r"(__high), "r"(__low), "i"(reg), "i"(sel) \ :"$8", "$9"); \ } while(0) #define read_c2_register64(reg, sel) \ ({ \ uint32_t __high, __low; \ __asm__ __volatile__( \ ".set push\n\t" \ ".set noreorder\n\t" \ ".set mips64\n\t" \ "dmfc2 $8, $%2, %3\n\t" \ "dsra32 %0, $8, 0\n\t" \ "sll %1, $8, 0\n\t" \ ".set pop\n" \ : "=r"(__high), "=r"(__low): "i"(reg), "i"(sel) \ : "$8"); \ ((uint64_t)__high << 32) | __low; \ }) #define write_c2_register64(reg, sel, value) \ do { \ uint32_t __high = value >> 32; \ uint32_t __low = value & 0xffffffff; \ __asm__ __volatile__( \ ".set push\n\t" \ ".set noreorder\n\t" \ ".set mips64\n\t" \ "dsll32 $8, %1, 0\n\t" \ "dsll32 $9, %0, 0\n\t" \ "dsrl32 $8, $8, 0\n\t" \ "or $8, $8, $9\n\t" \ "dmtc2 $8, $%2, %3\n\t" \ ".set pop" \ :: "r"(__high), "r"(__low), "i"(reg), "i"(sel) \ :"$8", "$9"); \ } while(0) #endif /* defined(__mips_n64) || defined(__mips_n32) */ static __inline int xlr_cpu_id(void) { return (read_c0_register32(15, 1) & 0x1f); } static __inline int xlr_core_id(void) { return (xlr_cpu_id() / 4); } static __inline int xlr_thr_id(void) { return (read_c0_register32(15, 1) & 0x3); } /* Additional registers on the XLR */ #define MIPS_COP_0_OSSCRATCH 22 #define XLR_CACHELINE_SIZE 32 /* functions to write to and read from the extended * cp0 registers. * EIRR : Extended Interrupt Request Register * cp0 register 9 sel 6 * bits 0...7 are same as cause register 8...15 * EIMR : Extended Interrupt Mask Register * cp0 register 9 sel 7 * bits 0...7 are same as status register 8...15 */ static __inline uint64_t read_c0_eirr64(void) { return (read_c0_register64(9, 6)); } static __inline void write_c0_eirr64(uint64_t val) { write_c0_register64(9, 6, val); } static __inline uint64_t read_c0_eimr64(void) { return (read_c0_register64(9, 7)); } static __inline void write_c0_eimr64(uint64_t val) { write_c0_register64(9, 7, val); } static __inline int xlr_test_and_set(int *lock) { int oldval = 0; __asm__ __volatile__( ".set push\n" ".set noreorder\n" "move $9, %2\n" "li $8, 1\n" // "swapw $8, $9\n" ".word 0x71280014\n" "move %1, $8\n" ".set pop\n" : "+m"(*lock), "=r"(oldval) : "r"((unsigned long)lock) : "$8", "$9" ); return (oldval == 0 ? 1 /* success */ : 0 /* failure */); } static __inline uint32_t xlr_mfcr(uint32_t reg) { uint32_t val; __asm__ __volatile__( "move $8, %1\n" ".word 0x71090018\n" "move %0, $9\n" : "=r"(val) : "r"(reg):"$8", "$9"); return val; } static __inline void xlr_mtcr(uint32_t reg, uint32_t val) { __asm__ __volatile__( "move $8, %1\n" "move $9, %0\n" ".word 0x71090019\n" :: "r"(val), "r"(reg) : "$8", "$9"); } /* * Atomic increment a unsigned int */ static __inline unsigned int xlr_ldaddwu(unsigned int value, unsigned int *addr) { __asm__ __volatile__( ".set push\n" ".set noreorder\n" "move $8, %2\n" "move $9, %3\n" ".word 0x71280011\n" /* ldaddwu $8, $9 */ "move %0, $8\n" ".set pop\n" : "=&r"(value), "+m"(*addr) : "0"(value), "r" ((unsigned long)addr) : "$8", "$9"); return (value); } #if defined(__mips_n64) static __inline uint32_t xlr_paddr_lw(uint64_t paddr) { paddr |= 0x9800000000000000ULL; return (*(uint32_t *)(uintptr_t)paddr); } static __inline uint64_t xlr_paddr_ld(uint64_t paddr) { paddr |= 0x9800000000000000ULL; return (*(uint64_t *)(uintptr_t)paddr); } #elif defined(__mips_n32) static __inline uint32_t xlr_paddr_lw(uint64_t paddr) { uint32_t val; paddr |= 0x9800000000000000ULL; __asm__ __volatile__( ".set push \n\t" ".set mips64 \n\t" "lw %0, 0(%1) \n\t" ".set pop \n" : "=r"(val) : "r"(paddr)); return (val); } static __inline uint64_t xlr_paddr_ld(uint64_t paddr) { uint64_t val; paddr |= 0x9800000000000000ULL; __asm__ __volatile__( ".set push \n\t" ".set mips64 \n\t" "ld %0, 0(%1) \n\t" ".set pop \n" : "=r"(val) : "r"(paddr)); return (val); } #else /* o32 compilation */ static __inline uint32_t xlr_paddr_lw(uint64_t paddr) { uint32_t addrh, addrl; uint32_t val; addrh = 0x98000000 | (paddr >> 32); addrl = paddr & 0xffffffff; __asm__ __volatile__( ".set push \n\t" ".set mips64 \n\t" "dsll32 $8, %1, 0 \n\t" "dsll32 $9, %2, 0 \n\t" /* get rid of the */ "dsrl32 $9, $9, 0 \n\t" /* sign extend */ "or $9, $8, $8 \n\t" "lw %0, 0($9) \n\t" ".set pop \n" : "=r"(val) : "r"(addrh), "r"(addrl) : "$8", "$9"); return (val); } static __inline uint64_t xlr_paddr_ld(uint64_t paddr) { uint32_t addrh, addrl; uint32_t valh, vall; addrh = 0x98000000 | (paddr >> 32); addrl = paddr & 0xffffffff; __asm__ __volatile__( ".set push \n\t" ".set mips64 \n\t" "dsll32 %0, %2, 0 \n\t" "dsll32 %1, %3, 0 \n\t" /* get rid of the */ "dsrl32 %1, %1, 0 \n\t" /* sign extend */ "or %0, %0, %1 \n\t" "lw %1, 4(%0) \n\t" "lw %0, 0(%0) \n\t" ".set pop \n" : "=&r"(valh), "=&r"(vall) : "r"(addrh), "r"(addrl)); return (((uint64_t)valh << 32) | vall); } #endif /* * XXX: Not really needed in n32 or n64, retain for now */ #if defined(__mips_n64) || defined(__mips_n32) static __inline uint32_t xlr_enable_kx(void) { return (0); } static __inline void xlr_restore_kx(uint32_t sr) { } #else /* !defined(__mips_n64) && !defined(__mips_n32) */ /* * o32 compilation, we will disable interrupts and enable * the KX bit so that we can use XKPHYS to access any 40bit * physical address */ static __inline uint32_t xlr_enable_kx(void) { uint32_t sr = mips_rd_status(); mips_wr_status((sr & ~MIPS_SR_INT_IE) | MIPS_SR_KX); return (sr); } static __inline void xlr_restore_kx(uint32_t sr) { mips_wr_status(sr); } #endif /* defined(__mips_n64) || defined(__mips_n32) */ /* * XLR/XLS processors have maximum 8 cores, and maximum 4 threads * per core */ #define XLR_MAX_CORES 8 #define XLR_NTHREADS 4 /* * FreeBSD can be started with few threads and cores turned off, * so have a hardware thread id to FreeBSD cpuid mapping. */ extern int xlr_ncores; extern int xlr_threads_per_core; extern uint32_t xlr_hw_thread_mask; extern int xlr_cpuid_to_hwtid[]; extern int xlr_hwtid_to_cpuid[]; #endif