Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/patm/@/dev/ath/ath_hal/ar9002/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/patm/@/dev/ath/ath_hal/ar9002/ar9285_reset.c |
/* * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting * Copyright (c) 2002-2008 Atheros Communications, Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * * $FreeBSD: release/9.1.0/sys/dev/ath/ath_hal/ar9002/ar9285_reset.c 221834 2011-05-13 10:36:38Z adrian $ */ /* * This is almost the same as ar5416_reset.c but uses the v4k EEPROM and * supports only 2Ghz operation. */ #include "opt_ah.h" #include "ah.h" #include "ah_internal.h" #include "ah_devid.h" #include "ah_eeprom_v14.h" #include "ah_eeprom_v4k.h" #include "ar9002/ar9285.h" #include "ar5416/ar5416.h" #include "ar5416/ar5416reg.h" #include "ar5416/ar5416phy.h" #include "ar9002/ar9002phy.h" #include "ar9002/ar9285phy.h" #include "ar9002/ar9285an.h" /* Eeprom versioning macros. Returns true if the version is equal or newer than the ver specified */ #define EEP_MINOR(_ah) \ (AH_PRIVATE(_ah)->ah_eeversion & AR5416_EEP_VER_MINOR_MASK) #define IS_EEP_MINOR_V2(_ah) (EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_2) #define IS_EEP_MINOR_V3(_ah) (EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_3) /* Additional Time delay to wait after activiting the Base band */ #define BASE_ACTIVATE_DELAY 100 /* 100 usec */ #define PLL_SETTLE_DELAY 300 /* 300 usec */ #define RTC_PLL_SETTLE_DELAY 1000 /* 1 ms */ static HAL_BOOL ar9285SetPowerPerRateTable(struct ath_hal *ah, struct ar5416eeprom_4k *pEepData, const struct ieee80211_channel *chan, int16_t *ratesArray, uint16_t cfgCtl, uint16_t AntennaReduction, uint16_t twiceMaxRegulatoryPower, uint16_t powerLimit); static HAL_BOOL ar9285SetPowerCalTable(struct ath_hal *ah, struct ar5416eeprom_4k *pEepData, const struct ieee80211_channel *chan, int16_t *pTxPowerIndexOffset); static void ar9285GetGainBoundariesAndPdadcs(struct ath_hal *ah, const struct ieee80211_channel *chan, CAL_DATA_PER_FREQ_4K *pRawDataSet, uint8_t * bChans, uint16_t availPiers, uint16_t tPdGainOverlap, int16_t *pMinCalPower, uint16_t * pPdGainBoundaries, uint8_t * pPDADCValues, uint16_t numXpdGains); HAL_BOOL ar9285SetTransmitPower(struct ath_hal *ah, const struct ieee80211_channel *chan, uint16_t *rfXpdGain) { #define POW_SM(_r, _s) (((_r) & 0x3f) << (_s)) #define N(a) (sizeof (a) / sizeof (a[0])) MODAL_EEP4K_HEADER *pModal; struct ath_hal_5212 *ahp = AH5212(ah); int16_t ratesArray[Ar5416RateSize]; int16_t txPowerIndexOffset = 0; uint8_t ht40PowerIncForPdadc = 2; int i; uint16_t cfgCtl; uint16_t powerLimit; uint16_t twiceAntennaReduction; uint16_t twiceMaxRegulatoryPower; int16_t maxPower; HAL_EEPROM_v4k *ee = AH_PRIVATE(ah)->ah_eeprom; struct ar5416eeprom_4k *pEepData = &ee->ee_base; HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1); /* Setup info for the actual eeprom */ OS_MEMZERO(ratesArray, sizeof(ratesArray)); cfgCtl = ath_hal_getctl(ah, chan); powerLimit = chan->ic_maxregpower * 2; twiceAntennaReduction = chan->ic_maxantgain; twiceMaxRegulatoryPower = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit); pModal = &pEepData->modalHeader; HALDEBUG(ah, HAL_DEBUG_RESET, "%s Channel=%u CfgCtl=%u\n", __func__,chan->ic_freq, cfgCtl ); if (IS_EEP_MINOR_V2(ah)) { ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc; } if (!ar9285SetPowerPerRateTable(ah, pEepData, chan, &ratesArray[0],cfgCtl, twiceAntennaReduction, twiceMaxRegulatoryPower, powerLimit)) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set tx power per rate table\n", __func__); return AH_FALSE; } if (!ar9285SetPowerCalTable(ah, pEepData, chan, &txPowerIndexOffset)) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set power table\n", __func__); return AH_FALSE; } maxPower = AH_MAX(ratesArray[rate6mb], ratesArray[rateHt20_0]); maxPower = AH_MAX(maxPower, ratesArray[rate1l]); if (IEEE80211_IS_CHAN_HT40(chan)) { maxPower = AH_MAX(maxPower, ratesArray[rateHt40_0]); } ahp->ah_tx6PowerInHalfDbm = maxPower; AH_PRIVATE(ah)->ah_maxPowerLevel = maxPower; ahp->ah_txPowerIndexOffset = txPowerIndexOffset; /* * txPowerIndexOffset is set by the SetPowerTable() call - * adjust the rate table (0 offset if rates EEPROM not loaded) */ for (i = 0; i < N(ratesArray); i++) { ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]); /* -5 dBm offset for Merlin and later; this includes Kite */ ratesArray[i] -= AR5416_PWR_TABLE_OFFSET_DB * 2; if (ratesArray[i] > AR5416_MAX_RATE_POWER) ratesArray[i] = AR5416_MAX_RATE_POWER; if (ratesArray[i] < 0) ratesArray[i] = 0; } #ifdef AH_EEPROM_DUMP ar5416PrintPowerPerRate(ah, ratesArray); #endif /* * Adjust the HT40 power to meet the correct target TX power * for 40MHz mode, based on TX power curves that are established * for 20MHz mode. * * XXX handle overflow/too high power level? */ if (IEEE80211_IS_CHAN_HT40(chan)) { ratesArray[rateHt40_0] += ht40PowerIncForPdadc; ratesArray[rateHt40_1] += ht40PowerIncForPdadc; ratesArray[rateHt40_2] += ht40PowerIncForPdadc; ratesArray[rateHt40_3] += ht40PowerIncForPdadc; ratesArray[rateHt40_4] += ht40PowerIncForPdadc; ratesArray[rateHt40_5] += ht40PowerIncForPdadc; ratesArray[rateHt40_6] += ht40PowerIncForPdadc; ratesArray[rateHt40_7] += ht40PowerIncForPdadc; } /* Write the TX power rate registers */ ar5416WriteTxPowerRateRegisters(ah, chan, ratesArray); return AH_TRUE; #undef POW_SM #undef N } static void ar9285SetBoardGain(struct ath_hal *ah, const MODAL_EEP4K_HEADER *pModal, const struct ar5416eeprom_4k *eep, uint8_t txRxAttenLocal) { OS_REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0, pModal->antCtrlChain[0]); OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4_CHAIN(0), (OS_REG_READ(ah, AR_PHY_TIMING_CTRL4_CHAIN(0)) & ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF | AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) | SM(pModal->iqCalICh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) | SM(pModal->iqCalQCh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF)); if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >= AR5416_EEP_MINOR_VER_3) { txRxAttenLocal = pModal->txRxAttenCh[0]; OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ, AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]); OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ, AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]); OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ, AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN, pModal->xatten2Margin[0]); OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ, AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]); /* Set the block 1 value to block 0 value */ OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000, AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]); OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000, AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]); OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000, AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN, pModal->xatten2Margin[0]); OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000, AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]); } OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN, AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal); OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN, AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]); OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000, AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal); OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000, AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]); } /* * Read EEPROM header info and program the device for correct operation * given the channel value. */ HAL_BOOL ar9285SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan) { const HAL_EEPROM_v4k *ee = AH_PRIVATE(ah)->ah_eeprom; const struct ar5416eeprom_4k *eep = &ee->ee_base; const MODAL_EEP4K_HEADER *pModal; uint8_t txRxAttenLocal; uint8_t ob[5], db1[5], db2[5]; pModal = &eep->modalHeader; txRxAttenLocal = 23; OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon); /* Single chain for 4K EEPROM*/ ar9285SetBoardGain(ah, pModal, eep, txRxAttenLocal); /* Initialize Ant Diversity settings if supported */ (void) ar9285SetAntennaSwitch(ah, AH5212(ah)->ah_antControl); /* Configure TX power calibration */ if (pModal->version >= 2) { ob[0] = pModal->ob_0; ob[1] = pModal->ob_1; ob[2] = pModal->ob_2; ob[3] = pModal->ob_3; ob[4] = pModal->ob_4; db1[0] = pModal->db1_0; db1[1] = pModal->db1_1; db1[2] = pModal->db1_2; db1[3] = pModal->db1_3; db1[4] = pModal->db1_4; db2[0] = pModal->db2_0; db2[1] = pModal->db2_1; db2[2] = pModal->db2_2; db2[3] = pModal->db2_3; db2[4] = pModal->db2_4; } else if (pModal->version == 1) { ob[0] = pModal->ob_0; ob[1] = ob[2] = ob[3] = ob[4] = pModal->ob_1; db1[0] = pModal->db1_0; db1[1] = db1[2] = db1[3] = db1[4] = pModal->db1_1; db2[0] = pModal->db2_0; db2[1] = db2[2] = db2[3] = db2[4] = pModal->db2_1; } else { int i; for (i = 0; i < 5; i++) { ob[i] = pModal->ob_0; db1[i] = pModal->db1_0; db2[i] = pModal->db1_0; } } OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_0, ob[0]); OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_1, ob[1]); OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_2, ob[2]); OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_3, ob[3]); OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_4, ob[4]); OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_DB1_0, db1[0]); OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_DB1_1, db1[1]); OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_DB1_2, db1[2]); OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB1_3, db1[3]); OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB1_4, db1[4]); OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_0, db2[0]); OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_1, db2[1]); OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_2, db2[2]); OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_3, db2[3]); OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_4, db2[4]); OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, pModal->switchSettling); OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize); OS_REG_WRITE(ah, AR_PHY_RF_CTL4, SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON) | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON)); OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn); OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62, pModal->thresh62); OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62, pModal->thresh62); if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >= AR5416_EEP_MINOR_VER_2) { OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_DATA_START, pModal->txFrameToDataStart); OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_PA_ON, pModal->txFrameToPaOn); } if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >= AR5416_EEP_MINOR_VER_3) { if (IEEE80211_IS_CHAN_HT40(chan)) OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40); } /* * Program the CCK TX gain factor appropriately if needed. * The AR9285/AR9271 has a non-constant PA tx gain behaviour * for CCK versus OFDM rates; other chips deal with this * differently. * * The mask/shift/multiply hackery is done so place the same * value (bb_desired_scale) into multiple 5-bit fields. * For example, AR_PHY_TX_PWRCTRL9 has bb_desired_scale written * to three fields: (0..4), (5..9) and (10..14). */ if (AR_SREV_9271(ah) || AR_SREV_KITE(ah)) { uint8_t bb_desired_scale = (pModal->bb_scale_smrt_antenna & EEP_4K_BB_DESIRED_SCALE_MASK); if ((eep->baseEepHeader.txGainType == 0) && (bb_desired_scale != 0)) { ath_hal_printf(ah, "[ath]: adjusting cck tx gain factor\n"); uint32_t pwrctrl, mask, clr; mask = (1<<0) | (1<<5) | (1<<10) | (1<<15) | (1<<20) | (1<<25); pwrctrl = mask * bb_desired_scale; clr = mask * 0x1f; OS_REG_RMW(ah, AR_PHY_TX_PWRCTRL8, pwrctrl, clr); OS_REG_RMW(ah, AR_PHY_TX_PWRCTRL10, pwrctrl, clr); OS_REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL12, pwrctrl, clr); mask = (1<<0) | (1<<5) | (1<<15); pwrctrl = mask * bb_desired_scale; clr = mask * 0x1f; OS_REG_RMW(ah, AR_PHY_TX_PWRCTRL9, pwrctrl, clr); mask = (1<<0) | (1<<5); pwrctrl = mask * bb_desired_scale; clr = mask * 0x1f; OS_REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL11, pwrctrl, clr); OS_REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL13, pwrctrl, clr); } } return AH_TRUE; } /* * Helper functions common for AP/CB/XB */ static HAL_BOOL ar9285SetPowerPerRateTable(struct ath_hal *ah, struct ar5416eeprom_4k *pEepData, const struct ieee80211_channel *chan, int16_t *ratesArray, uint16_t cfgCtl, uint16_t AntennaReduction, uint16_t twiceMaxRegulatoryPower, uint16_t powerLimit) { #define N(a) (sizeof(a)/sizeof(a[0])) /* Local defines to distinguish between extension and control CTL's */ #define EXT_ADDITIVE (0x8000) #define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE) #define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE) uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER; int i; int16_t twiceLargestAntenna; CAL_CTL_DATA_4K *rep; CAL_TARGET_POWER_LEG targetPowerOfdm, targetPowerCck = {0, {0, 0, 0, 0}}; CAL_TARGET_POWER_LEG targetPowerOfdmExt = {0, {0, 0, 0, 0}}, targetPowerCckExt = {0, {0, 0, 0, 0}}; CAL_TARGET_POWER_HT targetPowerHt20, targetPowerHt40 = {0, {0, 0, 0, 0}}; int16_t scaledPower, minCtlPower; #define SUB_NUM_CTL_MODES_AT_2G_40 3 /* excluding HT40, EXT-OFDM, EXT-CCK */ static const uint16_t ctlModesFor11g[] = { CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40 }; const uint16_t *pCtlMode; uint16_t numCtlModes, ctlMode, freq; CHAN_CENTERS centers; ar5416GetChannelCenters(ah, chan, ¢ers); /* Compute TxPower reduction due to Antenna Gain */ twiceLargestAntenna = pEepData->modalHeader.antennaGainCh[0]; twiceLargestAntenna = (int16_t)AH_MIN((AntennaReduction) - twiceLargestAntenna, 0); /* XXX setup for 5212 use (really used?) */ ath_hal_eepromSet(ah, AR_EEP_ANTGAINMAX_2, twiceLargestAntenna); /* * scaledPower is the minimum of the user input power level and * the regulatory allowed power level */ scaledPower = AH_MIN(powerLimit, twiceMaxRegulatoryPower + twiceLargestAntenna); /* Get target powers from EEPROM - our baseline for TX Power */ /* Setup for CTL modes */ numCtlModes = N(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; /* CTL_11B, CTL_11G, CTL_2GHT20 */ pCtlMode = ctlModesFor11g; ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPowerCck, AR5416_4K_NUM_2G_CCK_TARGET_POWERS, &targetPowerCck, 4, AH_FALSE); ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower2G, AR5416_4K_NUM_2G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE); ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower2GHT20, AR5416_4K_NUM_2G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE); if (IEEE80211_IS_CHAN_HT40(chan)) { numCtlModes = N(ctlModesFor11g); /* All 2G CTL's */ ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower2GHT40, AR5416_4K_NUM_2G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE); /* Get target powers for extension channels */ ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPowerCck, AR5416_4K_NUM_2G_CCK_TARGET_POWERS, &targetPowerCckExt, 4, AH_TRUE); ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower2G, AR5416_4K_NUM_2G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE); } /* * For MIMO, need to apply regulatory caps individually across dynamically * running modes: CCK, OFDM, HT20, HT40 * * The outer loop walks through each possible applicable runtime mode. * The inner loop walks through each ctlIndex entry in EEPROM. * The ctl value is encoded as [7:4] == test group, [3:0] == test mode. * */ for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) { HAL_BOOL isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) || (pCtlMode[ctlMode] == CTL_2GHT40); if (isHt40CtlMode) { freq = centers.ctl_center; } else if (pCtlMode[ctlMode] & EXT_ADDITIVE) { freq = centers.ext_center; } else { freq = centers.ctl_center; } /* walk through each CTL index stored in EEPROM */ for (i = 0; (i < AR5416_4K_NUM_CTLS) && pEepData->ctlIndex[i]; i++) { uint16_t twiceMinEdgePower; /* compare test group from regulatory channel list with test mode from pCtlMode list */ if ((((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == pEepData->ctlIndex[i]) || (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) { rep = &(pEepData->ctlData[i]); twiceMinEdgePower = ar5416GetMaxEdgePower(freq, rep->ctlEdges[ owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask) - 1], AH_TRUE); if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) { /* Find the minimum of all CTL edge powers that apply to this channel */ twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower); } else { /* specific */ twiceMaxEdgePower = twiceMinEdgePower; break; } } } minCtlPower = (uint8_t)AH_MIN(twiceMaxEdgePower, scaledPower); /* Apply ctl mode to correct target power set */ switch(pCtlMode[ctlMode]) { case CTL_11B: for (i = 0; i < N(targetPowerCck.tPow2x); i++) { targetPowerCck.tPow2x[i] = (uint8_t)AH_MIN(targetPowerCck.tPow2x[i], minCtlPower); } break; case CTL_11A: case CTL_11G: for (i = 0; i < N(targetPowerOfdm.tPow2x); i++) { targetPowerOfdm.tPow2x[i] = (uint8_t)AH_MIN(targetPowerOfdm.tPow2x[i], minCtlPower); } break; case CTL_5GHT20: case CTL_2GHT20: for (i = 0; i < N(targetPowerHt20.tPow2x); i++) { targetPowerHt20.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt20.tPow2x[i], minCtlPower); } break; case CTL_11B_EXT: targetPowerCckExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerCckExt.tPow2x[0], minCtlPower); break; case CTL_11G_EXT: targetPowerOfdmExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerOfdmExt.tPow2x[0], minCtlPower); break; case CTL_5GHT40: case CTL_2GHT40: for (i = 0; i < N(targetPowerHt40.tPow2x); i++) { targetPowerHt40.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt40.tPow2x[i], minCtlPower); } break; default: return AH_FALSE; break; } } /* end ctl mode checking */ /* Set rates Array from collected data */ ar5416SetRatesArrayFromTargetPower(ah, chan, ratesArray, &targetPowerCck, &targetPowerCckExt, &targetPowerOfdm, &targetPowerOfdmExt, &targetPowerHt20, &targetPowerHt40); return AH_TRUE; #undef EXT_ADDITIVE #undef CTL_11G_EXT #undef CTL_11B_EXT #undef SUB_NUM_CTL_MODES_AT_2G_40 #undef N } static HAL_BOOL ar9285SetPowerCalTable(struct ath_hal *ah, struct ar5416eeprom_4k *pEepData, const struct ieee80211_channel *chan, int16_t *pTxPowerIndexOffset) { CAL_DATA_PER_FREQ_4K *pRawDataset; uint8_t *pCalBChans = AH_NULL; uint16_t pdGainOverlap_t2; static uint8_t pdadcValues[AR5416_NUM_PDADC_VALUES]; uint16_t gainBoundaries[AR5416_PD_GAINS_IN_MASK]; uint16_t numPiers, i; int16_t tMinCalPower; uint16_t numXpdGain, xpdMask; uint16_t xpdGainValues[4]; /* v4k eeprom has 2; the other two stay 0 */ uint32_t regChainOffset; OS_MEMZERO(xpdGainValues, sizeof(xpdGainValues)); xpdMask = pEepData->modalHeader.xpdGain; if (IS_EEP_MINOR_V2(ah)) { pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap; } else { pdGainOverlap_t2 = (uint16_t)(MS(OS_REG_READ(ah, AR_PHY_TPCRG5), AR_PHY_TPCRG5_PD_GAIN_OVERLAP)); } pCalBChans = pEepData->calFreqPier2G; numPiers = AR5416_4K_NUM_2G_CAL_PIERS; numXpdGain = 0; /* Calculate the value of xpdgains from the xpdGain Mask */ for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) { if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) { if (numXpdGain >= AR5416_4K_NUM_PD_GAINS) { HALASSERT(0); break; } xpdGainValues[numXpdGain] = (uint16_t)(AR5416_PD_GAINS_IN_MASK - i); numXpdGain++; } } /* Write the detector gain biases and their number */ ar5416WriteDetectorGainBiases(ah, numXpdGain, xpdGainValues); for (i = 0; i < AR5416_MAX_CHAINS; i++) { regChainOffset = ar5416GetRegChainOffset(ah, i); if (pEepData->baseEepHeader.txMask & (1 << i)) { pRawDataset = pEepData->calPierData2G[i]; ar9285GetGainBoundariesAndPdadcs(ah, chan, pRawDataset, pCalBChans, numPiers, pdGainOverlap_t2, &tMinCalPower, gainBoundaries, pdadcValues, numXpdGain); if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) { /* * Note the pdadc table may not start at 0 dBm power, could be * negative or greater than 0. Need to offset the power * values by the amount of minPower for griffin */ ar5416SetGainBoundariesClosedLoop(ah, i, pdGainOverlap_t2, gainBoundaries); } /* Write the power values into the baseband power table */ ar5416WritePdadcValues(ah, i, pdadcValues); } } *pTxPowerIndexOffset = 0; return AH_TRUE; } static void ar9285GetGainBoundariesAndPdadcs(struct ath_hal *ah, const struct ieee80211_channel *chan, CAL_DATA_PER_FREQ_4K *pRawDataSet, uint8_t * bChans, uint16_t availPiers, uint16_t tPdGainOverlap, int16_t *pMinCalPower, uint16_t * pPdGainBoundaries, uint8_t * pPDADCValues, uint16_t numXpdGains) { int i, j, k; int16_t ss; /* potentially -ve index for taking care of pdGainOverlap */ uint16_t idxL, idxR, numPiers; /* Pier indexes */ /* filled out Vpd table for all pdGains (chanL) */ static uint8_t vpdTableL[AR5416_4K_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB]; /* filled out Vpd table for all pdGains (chanR) */ static uint8_t vpdTableR[AR5416_4K_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB]; /* filled out Vpd table for all pdGains (interpolated) */ static uint8_t vpdTableI[AR5416_4K_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB]; uint8_t *pVpdL, *pVpdR, *pPwrL, *pPwrR; uint8_t minPwrT4[AR5416_4K_NUM_PD_GAINS]; uint8_t maxPwrT4[AR5416_4K_NUM_PD_GAINS]; int16_t vpdStep; int16_t tmpVal; uint16_t sizeCurrVpdTable, maxIndex, tgtIndex; HAL_BOOL match; int16_t minDelta = 0; CHAN_CENTERS centers; ar5416GetChannelCenters(ah, chan, ¢ers); /* Trim numPiers for the number of populated channel Piers */ for (numPiers = 0; numPiers < availPiers; numPiers++) { if (bChans[numPiers] == AR5416_BCHAN_UNUSED) { break; } } /* Find pier indexes around the current channel */ match = ath_ee_getLowerUpperIndex((uint8_t)FREQ2FBIN(centers.synth_center, IEEE80211_IS_CHAN_2GHZ(chan)), bChans, numPiers, &idxL, &idxR); if (match) { /* Directly fill both vpd tables from the matching index */ for (i = 0; i < numXpdGains; i++) { minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0]; maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4]; ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pRawDataSet[idxL].pwrPdg[i], pRawDataSet[idxL].vpdPdg[i], AR5416_PD_GAIN_ICEPTS, vpdTableI[i]); } } else { for (i = 0; i < numXpdGains; i++) { pVpdL = pRawDataSet[idxL].vpdPdg[i]; pPwrL = pRawDataSet[idxL].pwrPdg[i]; pVpdR = pRawDataSet[idxR].vpdPdg[i]; pPwrR = pRawDataSet[idxR].pwrPdg[i]; /* Start Vpd interpolation from the max of the minimum powers */ minPwrT4[i] = AH_MAX(pPwrL[0], pPwrR[0]); /* End Vpd interpolation from the min of the max powers */ maxPwrT4[i] = AH_MIN(pPwrL[AR5416_PD_GAIN_ICEPTS - 1], pPwrR[AR5416_PD_GAIN_ICEPTS - 1]); HALASSERT(maxPwrT4[i] > minPwrT4[i]); /* Fill pier Vpds */ ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrL, pVpdL, AR5416_PD_GAIN_ICEPTS, vpdTableL[i]); ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrR, pVpdR, AR5416_PD_GAIN_ICEPTS, vpdTableR[i]); /* Interpolate the final vpd */ for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) { vpdTableI[i][j] = (uint8_t)(ath_ee_interpolate((uint16_t)FREQ2FBIN(centers.synth_center, IEEE80211_IS_CHAN_2GHZ(chan)), bChans[idxL], bChans[idxR], vpdTableL[i][j], vpdTableR[i][j])); } } } *pMinCalPower = (int16_t)(minPwrT4[0] / 2); k = 0; /* index for the final table */ for (i = 0; i < numXpdGains; i++) { if (i == (numXpdGains - 1)) { pPdGainBoundaries[i] = (uint16_t)(maxPwrT4[i] / 2); } else { pPdGainBoundaries[i] = (uint16_t)((maxPwrT4[i] + minPwrT4[i+1]) / 4); } pPdGainBoundaries[i] = (uint16_t)AH_MIN(AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]); /* NB: only applies to owl 1.0 */ if ((i == 0) && !AR_SREV_5416_V20_OR_LATER(ah) ) { /* * fix the gain delta, but get a delta that can be applied to min to * keep the upper power values accurate, don't think max needs to * be adjusted because should not be at that area of the table? */ minDelta = pPdGainBoundaries[0] - 23; pPdGainBoundaries[0] = 23; } else { minDelta = 0; } /* Find starting index for this pdGain */ if (i == 0) { if (AR_SREV_MERLIN_20_OR_LATER(ah)) ss = (int16_t)(0 - (minPwrT4[i] / 2)); else ss = 0; /* for the first pdGain, start from index 0 */ } else { /* need overlap entries extrapolated below. */ ss = (int16_t)((pPdGainBoundaries[i-1] - (minPwrT4[i] / 2)) - tPdGainOverlap + 1 + minDelta); } vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]); vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep); /* *-ve ss indicates need to extrapolate data below for this pdGain */ while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) { tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep); pPDADCValues[k++] = (uint8_t)((tmpVal < 0) ? 0 : tmpVal); ss++; } sizeCurrVpdTable = (uint8_t)((maxPwrT4[i] - minPwrT4[i]) / 2 +1); tgtIndex = (uint8_t)(pPdGainBoundaries[i] + tPdGainOverlap - (minPwrT4[i] / 2)); maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable; while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) { pPDADCValues[k++] = vpdTableI[i][ss++]; } vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] - vpdTableI[i][sizeCurrVpdTable - 2]); vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep); /* * for last gain, pdGainBoundary == Pmax_t2, so will * have to extrapolate */ if (tgtIndex >= maxIndex) { /* need to extrapolate above */ while ((ss <= tgtIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) { tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] + (ss - maxIndex +1) * vpdStep)); pPDADCValues[k++] = (uint8_t)((tmpVal > 255) ? 255 : tmpVal); ss++; } } /* extrapolated above */ } /* for all pdGainUsed */ /* Fill out pdGainBoundaries - only up to 2 allowed here, but hardware allows up to 4 */ while (i < AR5416_PD_GAINS_IN_MASK) { pPdGainBoundaries[i] = AR5416_4K_EEP_PD_GAIN_BOUNDARY_DEFAULT; i++; } while (k < AR5416_NUM_PDADC_VALUES) { pPDADCValues[k] = pPDADCValues[k-1]; k++; } return; }