Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/patm/@/dev/drm2/i915/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/patm/@/dev/drm2/i915/i915_irq.c |
/* i915_irq.c -- IRQ support for the I915 -*- linux-c -*- */ /*- * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/dev/drm2/i915/i915_irq.c 235783 2012-05-22 11:07:44Z kib $"); #include <dev/drm2/drmP.h> #include <dev/drm2/drm.h> #include <dev/drm2/i915/i915_drm.h> #include <dev/drm2/i915/i915_drv.h> #include <dev/drm2/i915/intel_drv.h> #include <sys/sched.h> #include <sys/sf_buf.h> static void i915_capture_error_state(struct drm_device *dev); static u32 ring_last_seqno(struct intel_ring_buffer *ring); /** * Interrupts that are always left unmasked. * * Since pipe events are edge-triggered from the PIPESTAT register to IIR, * we leave them always unmasked in IMR and then control enabling them through * PIPESTAT alone. */ #define I915_INTERRUPT_ENABLE_FIX \ (I915_ASLE_INTERRUPT | \ I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | \ I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | \ I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT | \ I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT | \ I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT) /** Interrupts that we mask and unmask at runtime. */ #define I915_INTERRUPT_ENABLE_VAR (I915_USER_INTERRUPT | I915_BSD_USER_INTERRUPT) #define I915_PIPE_VBLANK_STATUS (PIPE_START_VBLANK_INTERRUPT_STATUS |\ PIPE_VBLANK_INTERRUPT_STATUS) #define I915_PIPE_VBLANK_ENABLE (PIPE_START_VBLANK_INTERRUPT_ENABLE |\ PIPE_VBLANK_INTERRUPT_ENABLE) #define DRM_I915_VBLANK_PIPE_ALL (DRM_I915_VBLANK_PIPE_A | \ DRM_I915_VBLANK_PIPE_B) /* For display hotplug interrupt */ static void ironlake_enable_display_irq(drm_i915_private_t *dev_priv, u32 mask) { if ((dev_priv->irq_mask & mask) != 0) { dev_priv->irq_mask &= ~mask; I915_WRITE(DEIMR, dev_priv->irq_mask); POSTING_READ(DEIMR); } } static inline void ironlake_disable_display_irq(drm_i915_private_t *dev_priv, u32 mask) { if ((dev_priv->irq_mask & mask) != mask) { dev_priv->irq_mask |= mask; I915_WRITE(DEIMR, dev_priv->irq_mask); POSTING_READ(DEIMR); } } void i915_enable_pipestat(drm_i915_private_t *dev_priv, int pipe, u32 mask) { if ((dev_priv->pipestat[pipe] & mask) != mask) { u32 reg = PIPESTAT(pipe); dev_priv->pipestat[pipe] |= mask; /* Enable the interrupt, clear any pending status */ I915_WRITE(reg, dev_priv->pipestat[pipe] | (mask >> 16)); POSTING_READ(reg); } } void i915_disable_pipestat(drm_i915_private_t *dev_priv, int pipe, u32 mask) { if ((dev_priv->pipestat[pipe] & mask) != 0) { u32 reg = PIPESTAT(pipe); dev_priv->pipestat[pipe] &= ~mask; I915_WRITE(reg, dev_priv->pipestat[pipe]); POSTING_READ(reg); } } /** * intel_enable_asle - enable ASLE interrupt for OpRegion */ void intel_enable_asle(struct drm_device *dev) { drm_i915_private_t *dev_priv = dev->dev_private; mtx_lock(&dev_priv->irq_lock); if (HAS_PCH_SPLIT(dev)) ironlake_enable_display_irq(dev_priv, DE_GSE); else { i915_enable_pipestat(dev_priv, 1, PIPE_LEGACY_BLC_EVENT_ENABLE); if (INTEL_INFO(dev)->gen >= 4) i915_enable_pipestat(dev_priv, 0, PIPE_LEGACY_BLC_EVENT_ENABLE); } mtx_unlock(&dev_priv->irq_lock); } /** * i915_pipe_enabled - check if a pipe is enabled * @dev: DRM device * @pipe: pipe to check * * Reading certain registers when the pipe is disabled can hang the chip. * Use this routine to make sure the PLL is running and the pipe is active * before reading such registers if unsure. */ static int i915_pipe_enabled(struct drm_device *dev, int pipe) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE; } /* Called from drm generic code, passed a 'crtc', which * we use as a pipe index */ static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; unsigned long high_frame; unsigned long low_frame; u32 high1, high2, low; if (!i915_pipe_enabled(dev, pipe)) { DRM_DEBUG("trying to get vblank count for disabled " "pipe %c\n", pipe_name(pipe)); return 0; } high_frame = PIPEFRAME(pipe); low_frame = PIPEFRAMEPIXEL(pipe); /* * High & low register fields aren't synchronized, so make sure * we get a low value that's stable across two reads of the high * register. */ do { high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK; low = I915_READ(low_frame) & PIPE_FRAME_LOW_MASK; high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK; } while (high1 != high2); high1 >>= PIPE_FRAME_HIGH_SHIFT; low >>= PIPE_FRAME_LOW_SHIFT; return (high1 << 8) | low; } static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; int reg = PIPE_FRMCOUNT_GM45(pipe); if (!i915_pipe_enabled(dev, pipe)) { DRM_DEBUG("i915: trying to get vblank count for disabled " "pipe %c\n", pipe_name(pipe)); return 0; } return I915_READ(reg); } static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe, int *vpos, int *hpos) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; u32 vbl = 0, position = 0; int vbl_start, vbl_end, htotal, vtotal; bool in_vbl = true; int ret = 0; if (!i915_pipe_enabled(dev, pipe)) { DRM_DEBUG("i915: trying to get scanoutpos for disabled " "pipe %c\n", pipe_name(pipe)); return 0; } /* Get vtotal. */ vtotal = 1 + ((I915_READ(VTOTAL(pipe)) >> 16) & 0x1fff); if (INTEL_INFO(dev)->gen >= 4) { /* No obvious pixelcount register. Only query vertical * scanout position from Display scan line register. */ position = I915_READ(PIPEDSL(pipe)); /* Decode into vertical scanout position. Don't have * horizontal scanout position. */ *vpos = position & 0x1fff; *hpos = 0; } else { /* Have access to pixelcount since start of frame. * We can split this into vertical and horizontal * scanout position. */ position = (I915_READ(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT; htotal = 1 + ((I915_READ(HTOTAL(pipe)) >> 16) & 0x1fff); *vpos = position / htotal; *hpos = position - (*vpos * htotal); } /* Query vblank area. */ vbl = I915_READ(VBLANK(pipe)); /* Test position against vblank region. */ vbl_start = vbl & 0x1fff; vbl_end = (vbl >> 16) & 0x1fff; if ((*vpos < vbl_start) || (*vpos > vbl_end)) in_vbl = false; /* Inside "upper part" of vblank area? Apply corrective offset: */ if (in_vbl && (*vpos >= vbl_start)) *vpos = *vpos - vtotal; /* Readouts valid? */ if (vbl > 0) ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE; /* In vblank? */ if (in_vbl) ret |= DRM_SCANOUTPOS_INVBL; return ret; } static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe, int *max_error, struct timeval *vblank_time, unsigned flags) { struct drm_i915_private *dev_priv = dev->dev_private; struct drm_crtc *crtc; if (pipe < 0 || pipe >= dev_priv->num_pipe) { DRM_ERROR("Invalid crtc %d\n", pipe); return -EINVAL; } /* Get drm_crtc to timestamp: */ crtc = intel_get_crtc_for_pipe(dev, pipe); if (crtc == NULL) { DRM_ERROR("Invalid crtc %d\n", pipe); return -EINVAL; } if (!crtc->enabled) { #if 0 DRM_DEBUG("crtc %d is disabled\n", pipe); #endif return -EBUSY; } /* Helper routine in DRM core does all the work: */ return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error, vblank_time, flags, crtc); } /* * Handle hotplug events outside the interrupt handler proper. */ static void i915_hotplug_work_func(void *context, int pending) { drm_i915_private_t *dev_priv = context; struct drm_device *dev = dev_priv->dev; struct drm_mode_config *mode_config; struct intel_encoder *encoder; DRM_DEBUG("running encoder hotplug functions\n"); dev_priv = context; dev = dev_priv->dev; mode_config = &dev->mode_config; sx_xlock(&mode_config->mutex); DRM_DEBUG_KMS("running encoder hotplug functions\n"); list_for_each_entry(encoder, &mode_config->encoder_list, base.head) if (encoder->hot_plug) encoder->hot_plug(encoder); sx_xunlock(&mode_config->mutex); /* Just fire off a uevent and let userspace tell us what to do */ #if 0 drm_helper_hpd_irq_event(dev); #endif } static void i915_handle_rps_change(struct drm_device *dev) { drm_i915_private_t *dev_priv = dev->dev_private; u32 busy_up, busy_down, max_avg, min_avg; u8 new_delay = dev_priv->cur_delay; I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG); busy_up = I915_READ(RCPREVBSYTUPAVG); busy_down = I915_READ(RCPREVBSYTDNAVG); max_avg = I915_READ(RCBMAXAVG); min_avg = I915_READ(RCBMINAVG); /* Handle RCS change request from hw */ if (busy_up > max_avg) { if (dev_priv->cur_delay != dev_priv->max_delay) new_delay = dev_priv->cur_delay - 1; if (new_delay < dev_priv->max_delay) new_delay = dev_priv->max_delay; } else if (busy_down < min_avg) { if (dev_priv->cur_delay != dev_priv->min_delay) new_delay = dev_priv->cur_delay + 1; if (new_delay > dev_priv->min_delay) new_delay = dev_priv->min_delay; } if (ironlake_set_drps(dev, new_delay)) dev_priv->cur_delay = new_delay; return; } static void notify_ring(struct drm_device *dev, struct intel_ring_buffer *ring) { struct drm_i915_private *dev_priv = dev->dev_private; u32 seqno; if (ring->obj == NULL) return; seqno = ring->get_seqno(ring); CTR2(KTR_DRM, "request_complete %s %d", ring->name, seqno); mtx_lock(&ring->irq_lock); ring->irq_seqno = seqno; wakeup(ring); mtx_unlock(&ring->irq_lock); if (i915_enable_hangcheck) { dev_priv->hangcheck_count = 0; callout_schedule(&dev_priv->hangcheck_timer, DRM_I915_HANGCHECK_PERIOD); } } static void gen6_pm_rps_work_func(void *arg, int pending) { struct drm_device *dev; drm_i915_private_t *dev_priv; u8 new_delay; u32 pm_iir, pm_imr; dev_priv = (drm_i915_private_t *)arg; dev = dev_priv->dev; new_delay = dev_priv->cur_delay; mtx_lock(&dev_priv->rps_lock); pm_iir = dev_priv->pm_iir; dev_priv->pm_iir = 0; pm_imr = I915_READ(GEN6_PMIMR); I915_WRITE(GEN6_PMIMR, 0); mtx_unlock(&dev_priv->rps_lock); if (!pm_iir) return; DRM_LOCK(dev); if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) { if (dev_priv->cur_delay != dev_priv->max_delay) new_delay = dev_priv->cur_delay + 1; if (new_delay > dev_priv->max_delay) new_delay = dev_priv->max_delay; } else if (pm_iir & (GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT)) { gen6_gt_force_wake_get(dev_priv); if (dev_priv->cur_delay != dev_priv->min_delay) new_delay = dev_priv->cur_delay - 1; if (new_delay < dev_priv->min_delay) { new_delay = dev_priv->min_delay; I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, I915_READ(GEN6_RP_INTERRUPT_LIMITS) | ((new_delay << 16) & 0x3f0000)); } else { /* Make sure we continue to get down interrupts * until we hit the minimum frequency */ I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, I915_READ(GEN6_RP_INTERRUPT_LIMITS) & ~0x3f0000); } gen6_gt_force_wake_put(dev_priv); } gen6_set_rps(dev, new_delay); dev_priv->cur_delay = new_delay; /* * rps_lock not held here because clearing is non-destructive. There is * an *extremely* unlikely race with gen6_rps_enable() that is prevented * by holding struct_mutex for the duration of the write. */ DRM_UNLOCK(dev); } static void pch_irq_handler(struct drm_device *dev) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; u32 pch_iir; int pipe; pch_iir = I915_READ(SDEIIR); if (pch_iir & SDE_AUDIO_POWER_MASK) DRM_DEBUG("i915: PCH audio power change on port %d\n", (pch_iir & SDE_AUDIO_POWER_MASK) >> SDE_AUDIO_POWER_SHIFT); if (pch_iir & SDE_GMBUS) DRM_DEBUG("i915: PCH GMBUS interrupt\n"); if (pch_iir & SDE_AUDIO_HDCP_MASK) DRM_DEBUG("i915: PCH HDCP audio interrupt\n"); if (pch_iir & SDE_AUDIO_TRANS_MASK) DRM_DEBUG("i915: PCH transcoder audio interrupt\n"); if (pch_iir & SDE_POISON) DRM_ERROR("i915: PCH poison interrupt\n"); if (pch_iir & SDE_FDI_MASK) for_each_pipe(pipe) DRM_DEBUG(" pipe %c FDI IIR: 0x%08x\n", pipe_name(pipe), I915_READ(FDI_RX_IIR(pipe))); if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE)) DRM_DEBUG("i915: PCH transcoder CRC done interrupt\n"); if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR)) DRM_DEBUG("i915: PCH transcoder CRC error interrupt\n"); if (pch_iir & SDE_TRANSB_FIFO_UNDER) DRM_DEBUG("i915: PCH transcoder B underrun interrupt\n"); if (pch_iir & SDE_TRANSA_FIFO_UNDER) DRM_DEBUG("PCH transcoder A underrun interrupt\n"); } static void ivybridge_irq_handler(void *arg) { struct drm_device *dev = (struct drm_device *) arg; drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; u32 de_iir, gt_iir, de_ier, pch_iir, pm_iir; #if 0 struct drm_i915_master_private *master_priv; #endif atomic_inc(&dev_priv->irq_received); /* disable master interrupt before clearing iir */ de_ier = I915_READ(DEIER); I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL); POSTING_READ(DEIER); de_iir = I915_READ(DEIIR); gt_iir = I915_READ(GTIIR); pch_iir = I915_READ(SDEIIR); pm_iir = I915_READ(GEN6_PMIIR); CTR4(KTR_DRM, "ivybridge_irq de %x gt %x pch %x pm %x", de_iir, gt_iir, pch_iir, pm_iir); if (de_iir == 0 && gt_iir == 0 && pch_iir == 0 && pm_iir == 0) goto done; #if 0 if (dev->primary->master) { master_priv = dev->primary->master->driver_priv; if (master_priv->sarea_priv) master_priv->sarea_priv->last_dispatch = READ_BREADCRUMB(dev_priv); } #else if (dev_priv->sarea_priv) dev_priv->sarea_priv->last_dispatch = READ_BREADCRUMB(dev_priv); #endif if (gt_iir & (GT_USER_INTERRUPT | GT_PIPE_NOTIFY)) notify_ring(dev, &dev_priv->rings[RCS]); if (gt_iir & GT_GEN6_BSD_USER_INTERRUPT) notify_ring(dev, &dev_priv->rings[VCS]); if (gt_iir & GT_BLT_USER_INTERRUPT) notify_ring(dev, &dev_priv->rings[BCS]); if (de_iir & DE_GSE_IVB) { #if 1 KIB_NOTYET(); #else intel_opregion_gse_intr(dev); #endif } if (de_iir & DE_PLANEA_FLIP_DONE_IVB) { intel_prepare_page_flip(dev, 0); intel_finish_page_flip_plane(dev, 0); } if (de_iir & DE_PLANEB_FLIP_DONE_IVB) { intel_prepare_page_flip(dev, 1); intel_finish_page_flip_plane(dev, 1); } if (de_iir & DE_PIPEA_VBLANK_IVB) drm_handle_vblank(dev, 0); if (de_iir & DE_PIPEB_VBLANK_IVB) drm_handle_vblank(dev, 1); /* check event from PCH */ if (de_iir & DE_PCH_EVENT_IVB) { if (pch_iir & SDE_HOTPLUG_MASK_CPT) taskqueue_enqueue(dev_priv->tq, &dev_priv->hotplug_task); pch_irq_handler(dev); } if (pm_iir & GEN6_PM_DEFERRED_EVENTS) { mtx_lock(&dev_priv->rps_lock); if ((dev_priv->pm_iir & pm_iir) != 0) printf("Missed a PM interrupt\n"); dev_priv->pm_iir |= pm_iir; I915_WRITE(GEN6_PMIMR, dev_priv->pm_iir); POSTING_READ(GEN6_PMIMR); mtx_unlock(&dev_priv->rps_lock); taskqueue_enqueue(dev_priv->tq, &dev_priv->rps_task); } /* should clear PCH hotplug event before clear CPU irq */ I915_WRITE(SDEIIR, pch_iir); I915_WRITE(GTIIR, gt_iir); I915_WRITE(DEIIR, de_iir); I915_WRITE(GEN6_PMIIR, pm_iir); done: I915_WRITE(DEIER, de_ier); POSTING_READ(DEIER); } static void ironlake_irq_handler(void *arg) { struct drm_device *dev = arg; drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; u32 de_iir, gt_iir, de_ier, pch_iir, pm_iir; u32 hotplug_mask; #if 0 struct drm_i915_master_private *master_priv; #endif u32 bsd_usr_interrupt = GT_BSD_USER_INTERRUPT; atomic_inc(&dev_priv->irq_received); if (IS_GEN6(dev)) bsd_usr_interrupt = GT_GEN6_BSD_USER_INTERRUPT; /* disable master interrupt before clearing iir */ de_ier = I915_READ(DEIER); I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL); POSTING_READ(DEIER); de_iir = I915_READ(DEIIR); gt_iir = I915_READ(GTIIR); pch_iir = I915_READ(SDEIIR); pm_iir = I915_READ(GEN6_PMIIR); CTR4(KTR_DRM, "ironlake_irq de %x gt %x pch %x pm %x", de_iir, gt_iir, pch_iir, pm_iir); if (de_iir == 0 && gt_iir == 0 && pch_iir == 0 && (!IS_GEN6(dev) || pm_iir == 0)) goto done; if (HAS_PCH_CPT(dev)) hotplug_mask = SDE_HOTPLUG_MASK_CPT; else hotplug_mask = SDE_HOTPLUG_MASK; #if 0 if (dev->primary->master) { master_priv = dev->primary->master->driver_priv; if (master_priv->sarea_priv) master_priv->sarea_priv->last_dispatch = READ_BREADCRUMB(dev_priv); } #else if (dev_priv->sarea_priv) dev_priv->sarea_priv->last_dispatch = READ_BREADCRUMB(dev_priv); #endif if (gt_iir & (GT_USER_INTERRUPT | GT_PIPE_NOTIFY)) notify_ring(dev, &dev_priv->rings[RCS]); if (gt_iir & bsd_usr_interrupt) notify_ring(dev, &dev_priv->rings[VCS]); if (gt_iir & GT_BLT_USER_INTERRUPT) notify_ring(dev, &dev_priv->rings[BCS]); if (de_iir & DE_GSE) { #if 1 KIB_NOTYET(); #else intel_opregion_gse_intr(dev); #endif } if (de_iir & DE_PLANEA_FLIP_DONE) { intel_prepare_page_flip(dev, 0); intel_finish_page_flip_plane(dev, 0); } if (de_iir & DE_PLANEB_FLIP_DONE) { intel_prepare_page_flip(dev, 1); intel_finish_page_flip_plane(dev, 1); } if (de_iir & DE_PIPEA_VBLANK) drm_handle_vblank(dev, 0); if (de_iir & DE_PIPEB_VBLANK) drm_handle_vblank(dev, 1); /* check event from PCH */ if (de_iir & DE_PCH_EVENT) { if (pch_iir & hotplug_mask) taskqueue_enqueue(dev_priv->tq, &dev_priv->hotplug_task); pch_irq_handler(dev); } if (de_iir & DE_PCU_EVENT) { I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS)); i915_handle_rps_change(dev); } if (pm_iir & GEN6_PM_DEFERRED_EVENTS) { mtx_lock(&dev_priv->rps_lock); if ((dev_priv->pm_iir & pm_iir) != 0) printf("Missed a PM interrupt\n"); dev_priv->pm_iir |= pm_iir; I915_WRITE(GEN6_PMIMR, dev_priv->pm_iir); POSTING_READ(GEN6_PMIMR); mtx_unlock(&dev_priv->rps_lock); taskqueue_enqueue(dev_priv->tq, &dev_priv->rps_task); } /* should clear PCH hotplug event before clear CPU irq */ I915_WRITE(SDEIIR, pch_iir); I915_WRITE(GTIIR, gt_iir); I915_WRITE(DEIIR, de_iir); I915_WRITE(GEN6_PMIIR, pm_iir); done: I915_WRITE(DEIER, de_ier); POSTING_READ(DEIER); } /** * i915_error_work_func - do process context error handling work * @work: work struct * * Fire an error uevent so userspace can see that a hang or error * was detected. */ static void i915_error_work_func(void *context, int pending) { drm_i915_private_t *dev_priv = context; struct drm_device *dev = dev_priv->dev; /* kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE, error_event); */ if (atomic_load_acq_int(&dev_priv->mm.wedged)) { DRM_DEBUG("i915: resetting chip\n"); /* kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE, reset_event); */ if (!i915_reset(dev, GRDOM_RENDER)) { atomic_store_rel_int(&dev_priv->mm.wedged, 0); /* kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE, reset_done_event); */ } mtx_lock(&dev_priv->error_completion_lock); dev_priv->error_completion++; wakeup(&dev_priv->error_completion); mtx_unlock(&dev_priv->error_completion_lock); } } static void i915_report_and_clear_eir(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; u32 eir = I915_READ(EIR); int pipe; if (!eir) return; printf("i915: render error detected, EIR: 0x%08x\n", eir); if (IS_G4X(dev)) { if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) { u32 ipeir = I915_READ(IPEIR_I965); printf(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965)); printf(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965)); printf(" INSTDONE: 0x%08x\n", I915_READ(INSTDONE_I965)); printf(" INSTPS: 0x%08x\n", I915_READ(INSTPS)); printf(" INSTDONE1: 0x%08x\n", I915_READ(INSTDONE1)); printf(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965)); I915_WRITE(IPEIR_I965, ipeir); POSTING_READ(IPEIR_I965); } if (eir & GM45_ERROR_PAGE_TABLE) { u32 pgtbl_err = I915_READ(PGTBL_ER); printf("page table error\n"); printf(" PGTBL_ER: 0x%08x\n", pgtbl_err); I915_WRITE(PGTBL_ER, pgtbl_err); POSTING_READ(PGTBL_ER); } } if (!IS_GEN2(dev)) { if (eir & I915_ERROR_PAGE_TABLE) { u32 pgtbl_err = I915_READ(PGTBL_ER); printf("page table error\n"); printf(" PGTBL_ER: 0x%08x\n", pgtbl_err); I915_WRITE(PGTBL_ER, pgtbl_err); POSTING_READ(PGTBL_ER); } } if (eir & I915_ERROR_MEMORY_REFRESH) { printf("memory refresh error:\n"); for_each_pipe(pipe) printf("pipe %c stat: 0x%08x\n", pipe_name(pipe), I915_READ(PIPESTAT(pipe))); /* pipestat has already been acked */ } if (eir & I915_ERROR_INSTRUCTION) { printf("instruction error\n"); printf(" INSTPM: 0x%08x\n", I915_READ(INSTPM)); if (INTEL_INFO(dev)->gen < 4) { u32 ipeir = I915_READ(IPEIR); printf(" IPEIR: 0x%08x\n", I915_READ(IPEIR)); printf(" IPEHR: 0x%08x\n", I915_READ(IPEHR)); printf(" INSTDONE: 0x%08x\n", I915_READ(INSTDONE)); printf(" ACTHD: 0x%08x\n", I915_READ(ACTHD)); I915_WRITE(IPEIR, ipeir); POSTING_READ(IPEIR); } else { u32 ipeir = I915_READ(IPEIR_I965); printf(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965)); printf(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965)); printf(" INSTDONE: 0x%08x\n", I915_READ(INSTDONE_I965)); printf(" INSTPS: 0x%08x\n", I915_READ(INSTPS)); printf(" INSTDONE1: 0x%08x\n", I915_READ(INSTDONE1)); printf(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965)); I915_WRITE(IPEIR_I965, ipeir); POSTING_READ(IPEIR_I965); } } I915_WRITE(EIR, eir); POSTING_READ(EIR); eir = I915_READ(EIR); if (eir) { /* * some errors might have become stuck, * mask them. */ DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir); I915_WRITE(EMR, I915_READ(EMR) | eir); I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT); } } /** * i915_handle_error - handle an error interrupt * @dev: drm device * * Do some basic checking of regsiter state at error interrupt time and * dump it to the syslog. Also call i915_capture_error_state() to make * sure we get a record and make it available in debugfs. Fire a uevent * so userspace knows something bad happened (should trigger collection * of a ring dump etc.). */ void i915_handle_error(struct drm_device *dev, bool wedged) { struct drm_i915_private *dev_priv = dev->dev_private; i915_capture_error_state(dev); i915_report_and_clear_eir(dev); if (wedged) { mtx_lock(&dev_priv->error_completion_lock); dev_priv->error_completion = 0; dev_priv->mm.wedged = 1; /* unlock acts as rel barrier for store to wedged */ mtx_unlock(&dev_priv->error_completion_lock); /* * Wakeup waiting processes so they don't hang */ mtx_lock(&dev_priv->rings[RCS].irq_lock); wakeup(&dev_priv->rings[RCS]); mtx_unlock(&dev_priv->rings[RCS].irq_lock); if (HAS_BSD(dev)) { mtx_lock(&dev_priv->rings[VCS].irq_lock); wakeup(&dev_priv->rings[VCS]); mtx_unlock(&dev_priv->rings[VCS].irq_lock); } if (HAS_BLT(dev)) { mtx_lock(&dev_priv->rings[BCS].irq_lock); wakeup(&dev_priv->rings[BCS]); mtx_unlock(&dev_priv->rings[BCS].irq_lock); } } taskqueue_enqueue(dev_priv->tq, &dev_priv->error_task); } static void i915_pageflip_stall_check(struct drm_device *dev, int pipe) { drm_i915_private_t *dev_priv = dev->dev_private; struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe]; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct drm_i915_gem_object *obj; struct intel_unpin_work *work; bool stall_detected; /* Ignore early vblank irqs */ if (intel_crtc == NULL) return; mtx_lock(&dev->event_lock); work = intel_crtc->unpin_work; if (work == NULL || work->pending || !work->enable_stall_check) { /* Either the pending flip IRQ arrived, or we're too early. Don't check */ mtx_unlock(&dev->event_lock); return; } /* Potential stall - if we see that the flip has happened, assume a missed interrupt */ obj = work->pending_flip_obj; if (INTEL_INFO(dev)->gen >= 4) { int dspsurf = DSPSURF(intel_crtc->plane); stall_detected = I915_READ(dspsurf) == obj->gtt_offset; } else { int dspaddr = DSPADDR(intel_crtc->plane); stall_detected = I915_READ(dspaddr) == (obj->gtt_offset + crtc->y * crtc->fb->pitches[0] + crtc->x * crtc->fb->bits_per_pixel/8); } mtx_unlock(&dev->event_lock); if (stall_detected) { DRM_DEBUG("Pageflip stall detected\n"); intel_prepare_page_flip(dev, intel_crtc->plane); } } static void i915_driver_irq_handler(void *arg) { struct drm_device *dev = (struct drm_device *)arg; drm_i915_private_t *dev_priv = (drm_i915_private_t *)dev->dev_private; #if 0 struct drm_i915_master_private *master_priv; #endif u32 iir, new_iir; u32 pipe_stats[I915_MAX_PIPES]; u32 vblank_status; int vblank = 0; int irq_received; int pipe; bool blc_event = false; atomic_inc(&dev_priv->irq_received); iir = I915_READ(IIR); CTR1(KTR_DRM, "driver_irq_handler %x", iir); if (INTEL_INFO(dev)->gen >= 4) vblank_status = PIPE_START_VBLANK_INTERRUPT_STATUS; else vblank_status = PIPE_VBLANK_INTERRUPT_STATUS; for (;;) { irq_received = iir != 0; /* Can't rely on pipestat interrupt bit in iir as it might * have been cleared after the pipestat interrupt was received. * It doesn't set the bit in iir again, but it still produces * interrupts (for non-MSI). */ mtx_lock(&dev_priv->irq_lock); if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT) i915_handle_error(dev, false); for_each_pipe(pipe) { int reg = PIPESTAT(pipe); pipe_stats[pipe] = I915_READ(reg); /* * Clear the PIPE*STAT regs before the IIR */ if (pipe_stats[pipe] & 0x8000ffff) { if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS) DRM_DEBUG("pipe %c underrun\n", pipe_name(pipe)); I915_WRITE(reg, pipe_stats[pipe]); irq_received = 1; } } mtx_unlock(&dev_priv->irq_lock); if (!irq_received) break; /* Consume port. Then clear IIR or we'll miss events */ if ((I915_HAS_HOTPLUG(dev)) && (iir & I915_DISPLAY_PORT_INTERRUPT)) { u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT); DRM_DEBUG("i915: hotplug event received, stat 0x%08x\n", hotplug_status); if (hotplug_status & dev_priv->hotplug_supported_mask) taskqueue_enqueue(dev_priv->tq, &dev_priv->hotplug_task); I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status); I915_READ(PORT_HOTPLUG_STAT); } I915_WRITE(IIR, iir); new_iir = I915_READ(IIR); /* Flush posted writes */ #if 0 if (dev->primary->master) { master_priv = dev->primary->master->driver_priv; if (master_priv->sarea_priv) master_priv->sarea_priv->last_dispatch = READ_BREADCRUMB(dev_priv); } #else if (dev_priv->sarea_priv) dev_priv->sarea_priv->last_dispatch = READ_BREADCRUMB(dev_priv); #endif if (iir & I915_USER_INTERRUPT) notify_ring(dev, &dev_priv->rings[RCS]); if (iir & I915_BSD_USER_INTERRUPT) notify_ring(dev, &dev_priv->rings[VCS]); if (iir & I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT) { intel_prepare_page_flip(dev, 0); if (dev_priv->flip_pending_is_done) intel_finish_page_flip_plane(dev, 0); } if (iir & I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT) { intel_prepare_page_flip(dev, 1); if (dev_priv->flip_pending_is_done) intel_finish_page_flip_plane(dev, 1); } for_each_pipe(pipe) { if (pipe_stats[pipe] & vblank_status && drm_handle_vblank(dev, pipe)) { vblank++; if (!dev_priv->flip_pending_is_done) { i915_pageflip_stall_check(dev, pipe); intel_finish_page_flip(dev, pipe); } } if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS) blc_event = true; } if (blc_event || (iir & I915_ASLE_INTERRUPT)) { #if 1 KIB_NOTYET(); #else intel_opregion_asle_intr(dev); #endif } /* With MSI, interrupts are only generated when iir * transitions from zero to nonzero. If another bit got * set while we were handling the existing iir bits, then * we would never get another interrupt. * * This is fine on non-MSI as well, as if we hit this path * we avoid exiting the interrupt handler only to generate * another one. * * Note that for MSI this could cause a stray interrupt report * if an interrupt landed in the time between writing IIR and * the posting read. This should be rare enough to never * trigger the 99% of 100,000 interrupts test for disabling * stray interrupts. */ iir = new_iir; } } static int i915_emit_irq(struct drm_device * dev) { drm_i915_private_t *dev_priv = dev->dev_private; #if 0 struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv; #endif i915_kernel_lost_context(dev); DRM_DEBUG("i915: emit_irq\n"); dev_priv->counter++; if (dev_priv->counter > 0x7FFFFFFFUL) dev_priv->counter = 1; #if 0 if (master_priv->sarea_priv) master_priv->sarea_priv->last_enqueue = dev_priv->counter; #else if (dev_priv->sarea_priv) dev_priv->sarea_priv->last_enqueue = dev_priv->counter; #endif if (BEGIN_LP_RING(4) == 0) { OUT_RING(MI_STORE_DWORD_INDEX); OUT_RING(I915_BREADCRUMB_INDEX << MI_STORE_DWORD_INDEX_SHIFT); OUT_RING(dev_priv->counter); OUT_RING(MI_USER_INTERRUPT); ADVANCE_LP_RING(); } return dev_priv->counter; } static int i915_wait_irq(struct drm_device * dev, int irq_nr) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; #if 0 struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv; #endif int ret; struct intel_ring_buffer *ring = LP_RING(dev_priv); DRM_DEBUG("irq_nr=%d breadcrumb=%d\n", irq_nr, READ_BREADCRUMB(dev_priv)); #if 0 if (READ_BREADCRUMB(dev_priv) >= irq_nr) { if (master_priv->sarea_priv) master_priv->sarea_priv->last_dispatch = READ_BREADCRUMB(dev_priv); return 0; } if (master_priv->sarea_priv) master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT; #else if (READ_BREADCRUMB(dev_priv) >= irq_nr) { if (dev_priv->sarea_priv) { dev_priv->sarea_priv->last_dispatch = READ_BREADCRUMB(dev_priv); } return 0; } if (dev_priv->sarea_priv) dev_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT; #endif ret = 0; mtx_lock(&ring->irq_lock); if (ring->irq_get(ring)) { DRM_UNLOCK(dev); while (ret == 0 && READ_BREADCRUMB(dev_priv) < irq_nr) { ret = -msleep(ring, &ring->irq_lock, PCATCH, "915wtq", 3 * hz); } ring->irq_put(ring); mtx_unlock(&ring->irq_lock); DRM_LOCK(dev); } else { mtx_unlock(&ring->irq_lock); if (_intel_wait_for(dev, READ_BREADCRUMB(dev_priv) >= irq_nr, 3000, 1, "915wir")) ret = -EBUSY; } if (ret == -EBUSY) { DRM_ERROR("EBUSY -- rec: %d emitted: %d\n", READ_BREADCRUMB(dev_priv), (int)dev_priv->counter); } return ret; } /* Needs the lock as it touches the ring. */ int i915_irq_emit(struct drm_device *dev, void *data, struct drm_file *file_priv) { drm_i915_private_t *dev_priv = dev->dev_private; drm_i915_irq_emit_t *emit = data; int result; if (!dev_priv || !LP_RING(dev_priv)->virtual_start) { DRM_ERROR("called with no initialization\n"); return -EINVAL; } RING_LOCK_TEST_WITH_RETURN(dev, file_priv); DRM_LOCK(dev); result = i915_emit_irq(dev); DRM_UNLOCK(dev); if (DRM_COPY_TO_USER(emit->irq_seq, &result, sizeof(int))) { DRM_ERROR("copy_to_user\n"); return -EFAULT; } return 0; } /* Doesn't need the hardware lock. */ int i915_irq_wait(struct drm_device *dev, void *data, struct drm_file *file_priv) { drm_i915_private_t *dev_priv = dev->dev_private; drm_i915_irq_wait_t *irqwait = data; if (!dev_priv) { DRM_ERROR("called with no initialization\n"); return -EINVAL; } return i915_wait_irq(dev, irqwait->irq_seq); } /* Called from drm generic code, passed 'crtc' which * we use as a pipe index */ static int i915_enable_vblank(struct drm_device *dev, int pipe) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; if (!i915_pipe_enabled(dev, pipe)) return -EINVAL; mtx_lock(&dev_priv->irq_lock); if (INTEL_INFO(dev)->gen >= 4) i915_enable_pipestat(dev_priv, pipe, PIPE_START_VBLANK_INTERRUPT_ENABLE); else i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_ENABLE); /* maintain vblank delivery even in deep C-states */ if (dev_priv->info->gen == 3) I915_WRITE(INSTPM, INSTPM_AGPBUSY_DIS << 16); mtx_unlock(&dev_priv->irq_lock); CTR1(KTR_DRM, "i915_enable_vblank %d", pipe); return 0; } static int ironlake_enable_vblank(struct drm_device *dev, int pipe) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; if (!i915_pipe_enabled(dev, pipe)) return -EINVAL; mtx_lock(&dev_priv->irq_lock); ironlake_enable_display_irq(dev_priv, (pipe == 0) ? DE_PIPEA_VBLANK : DE_PIPEB_VBLANK); mtx_unlock(&dev_priv->irq_lock); CTR1(KTR_DRM, "ironlake_enable_vblank %d", pipe); return 0; } static int ivybridge_enable_vblank(struct drm_device *dev, int pipe) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; if (!i915_pipe_enabled(dev, pipe)) return -EINVAL; mtx_lock(&dev_priv->irq_lock); ironlake_enable_display_irq(dev_priv, (pipe == 0) ? DE_PIPEA_VBLANK_IVB : DE_PIPEB_VBLANK_IVB); mtx_unlock(&dev_priv->irq_lock); CTR1(KTR_DRM, "ivybridge_enable_vblank %d", pipe); return 0; } /* Called from drm generic code, passed 'crtc' which * we use as a pipe index */ static void i915_disable_vblank(struct drm_device *dev, int pipe) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; mtx_lock(&dev_priv->irq_lock); if (dev_priv->info->gen == 3) I915_WRITE(INSTPM, INSTPM_AGPBUSY_DIS << 16 | INSTPM_AGPBUSY_DIS); i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_ENABLE | PIPE_START_VBLANK_INTERRUPT_ENABLE); mtx_unlock(&dev_priv->irq_lock); CTR1(KTR_DRM, "i915_disable_vblank %d", pipe); } static void ironlake_disable_vblank(struct drm_device *dev, int pipe) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; mtx_lock(&dev_priv->irq_lock); ironlake_disable_display_irq(dev_priv, (pipe == 0) ? DE_PIPEA_VBLANK : DE_PIPEB_VBLANK); mtx_unlock(&dev_priv->irq_lock); CTR1(KTR_DRM, "ironlake_disable_vblank %d", pipe); } static void ivybridge_disable_vblank(struct drm_device *dev, int pipe) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; mtx_lock(&dev_priv->irq_lock); ironlake_disable_display_irq(dev_priv, (pipe == 0) ? DE_PIPEA_VBLANK_IVB : DE_PIPEB_VBLANK_IVB); mtx_unlock(&dev_priv->irq_lock); CTR1(KTR_DRM, "ivybridge_disable_vblank %d", pipe); } /* Set the vblank monitor pipe */ int i915_vblank_pipe_set(struct drm_device *dev, void *data, struct drm_file *file_priv) { drm_i915_private_t *dev_priv = dev->dev_private; if (!dev_priv) { DRM_ERROR("called with no initialization\n"); return -EINVAL; } return 0; } int i915_vblank_pipe_get(struct drm_device *dev, void *data, struct drm_file *file_priv) { drm_i915_private_t *dev_priv = dev->dev_private; drm_i915_vblank_pipe_t *pipe = data; if (!dev_priv) { DRM_ERROR("called with no initialization\n"); return -EINVAL; } pipe->pipe = DRM_I915_VBLANK_PIPE_A | DRM_I915_VBLANK_PIPE_B; return 0; } /** * Schedule buffer swap at given vertical blank. */ int i915_vblank_swap(struct drm_device *dev, void *data, struct drm_file *file_priv) { /* The delayed swap mechanism was fundamentally racy, and has been * removed. The model was that the client requested a delayed flip/swap * from the kernel, then waited for vblank before continuing to perform * rendering. The problem was that the kernel might wake the client * up before it dispatched the vblank swap (since the lock has to be * held while touching the ringbuffer), in which case the client would * clear and start the next frame before the swap occurred, and * flicker would occur in addition to likely missing the vblank. * * In the absence of this ioctl, userland falls back to a correct path * of waiting for a vblank, then dispatching the swap on its own. * Context switching to userland and back is plenty fast enough for * meeting the requirements of vblank swapping. */ return -EINVAL; } static u32 ring_last_seqno(struct intel_ring_buffer *ring) { if (list_empty(&ring->request_list)) return (0); else return (list_entry(ring->request_list.prev, struct drm_i915_gem_request, list)->seqno); } static bool i915_hangcheck_ring_idle(struct intel_ring_buffer *ring, bool *err) { if (list_empty(&ring->request_list) || i915_seqno_passed(ring->get_seqno(ring), ring_last_seqno(ring))) { /* Issue a wake-up to catch stuck h/w. */ if (ring->waiting_seqno) { DRM_ERROR( "Hangcheck timer elapsed... %s idle [waiting on %d, at %d], missed IRQ?\n", ring->name, ring->waiting_seqno, ring->get_seqno(ring)); wakeup(ring); *err = true; } return true; } return false; } static bool kick_ring(struct intel_ring_buffer *ring) { struct drm_device *dev = ring->dev; struct drm_i915_private *dev_priv = dev->dev_private; u32 tmp = I915_READ_CTL(ring); if (tmp & RING_WAIT) { DRM_ERROR("Kicking stuck wait on %s\n", ring->name); I915_WRITE_CTL(ring, tmp); return true; } return false; } /** * This is called when the chip hasn't reported back with completed * batchbuffers in a long time. The first time this is called we simply record * ACTHD. If ACTHD hasn't changed by the time the hangcheck timer elapses * again, we assume the chip is wedged and try to fix it. */ void i915_hangcheck_elapsed(void *context) { struct drm_device *dev = (struct drm_device *)context; drm_i915_private_t *dev_priv = dev->dev_private; uint32_t acthd, instdone, instdone1, acthd_bsd, acthd_blt; bool err = false; if (!i915_enable_hangcheck) return; /* If all work is done then ACTHD clearly hasn't advanced. */ if (i915_hangcheck_ring_idle(&dev_priv->rings[RCS], &err) && i915_hangcheck_ring_idle(&dev_priv->rings[VCS], &err) && i915_hangcheck_ring_idle(&dev_priv->rings[BCS], &err)) { dev_priv->hangcheck_count = 0; if (err) goto repeat; return; } if (INTEL_INFO(dev)->gen < 4) { instdone = I915_READ(INSTDONE); instdone1 = 0; } else { instdone = I915_READ(INSTDONE_I965); instdone1 = I915_READ(INSTDONE1); } acthd = intel_ring_get_active_head(&dev_priv->rings[RCS]); acthd_bsd = HAS_BSD(dev) ? intel_ring_get_active_head(&dev_priv->rings[VCS]) : 0; acthd_blt = HAS_BLT(dev) ? intel_ring_get_active_head(&dev_priv->rings[BCS]) : 0; if (dev_priv->last_acthd == acthd && dev_priv->last_acthd_bsd == acthd_bsd && dev_priv->last_acthd_blt == acthd_blt && dev_priv->last_instdone == instdone && dev_priv->last_instdone1 == instdone1) { if (dev_priv->hangcheck_count++ > 1) { DRM_ERROR("Hangcheck timer elapsed... GPU hung\n"); i915_handle_error(dev, true); if (!IS_GEN2(dev)) { /* Is the chip hanging on a WAIT_FOR_EVENT? * If so we can simply poke the RB_WAIT bit * and break the hang. This should work on * all but the second generation chipsets. */ if (kick_ring(&dev_priv->rings[RCS])) goto repeat; if (HAS_BSD(dev) && kick_ring(&dev_priv->rings[VCS])) goto repeat; if (HAS_BLT(dev) && kick_ring(&dev_priv->rings[BCS])) goto repeat; } return; } } else { dev_priv->hangcheck_count = 0; dev_priv->last_acthd = acthd; dev_priv->last_acthd_bsd = acthd_bsd; dev_priv->last_acthd_blt = acthd_blt; dev_priv->last_instdone = instdone; dev_priv->last_instdone1 = instdone1; } repeat: /* Reset timer case chip hangs without another request being added */ callout_schedule(&dev_priv->hangcheck_timer, DRM_I915_HANGCHECK_PERIOD); } /* drm_dma.h hooks */ static void ironlake_irq_preinstall(struct drm_device *dev) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; atomic_set(&dev_priv->irq_received, 0); TASK_INIT(&dev_priv->hotplug_task, 0, i915_hotplug_work_func, dev->dev_private); TASK_INIT(&dev_priv->error_task, 0, i915_error_work_func, dev->dev_private); TASK_INIT(&dev_priv->rps_task, 0, gen6_pm_rps_work_func, dev->dev_private); I915_WRITE(HWSTAM, 0xeffe); /* XXX hotplug from PCH */ I915_WRITE(DEIMR, 0xffffffff); I915_WRITE(DEIER, 0x0); POSTING_READ(DEIER); /* and GT */ I915_WRITE(GTIMR, 0xffffffff); I915_WRITE(GTIER, 0x0); POSTING_READ(GTIER); /* south display irq */ I915_WRITE(SDEIMR, 0xffffffff); I915_WRITE(SDEIER, 0x0); POSTING_READ(SDEIER); } /* * Enable digital hotplug on the PCH, and configure the DP short pulse * duration to 2ms (which is the minimum in the Display Port spec) * * This register is the same on all known PCH chips. */ static void ironlake_enable_pch_hotplug(struct drm_device *dev) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; u32 hotplug; hotplug = I915_READ(PCH_PORT_HOTPLUG); hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK); hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms; hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms; hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms; I915_WRITE(PCH_PORT_HOTPLUG, hotplug); } static int ironlake_irq_postinstall(struct drm_device *dev) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; /* enable kind of interrupts always enabled */ u32 display_mask = DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT | DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE; u32 render_irqs; u32 hotplug_mask; dev_priv->vblank_pipe = DRM_I915_VBLANK_PIPE_A | DRM_I915_VBLANK_PIPE_B; dev_priv->irq_mask = ~display_mask; /* should always can generate irq */ I915_WRITE(DEIIR, I915_READ(DEIIR)); I915_WRITE(DEIMR, dev_priv->irq_mask); I915_WRITE(DEIER, display_mask | DE_PIPEA_VBLANK | DE_PIPEB_VBLANK); POSTING_READ(DEIER); dev_priv->gt_irq_mask = ~0; I915_WRITE(GTIIR, I915_READ(GTIIR)); I915_WRITE(GTIMR, dev_priv->gt_irq_mask); if (IS_GEN6(dev)) render_irqs = GT_USER_INTERRUPT | GT_GEN6_BSD_USER_INTERRUPT | GT_BLT_USER_INTERRUPT; else render_irqs = GT_USER_INTERRUPT | GT_PIPE_NOTIFY | GT_BSD_USER_INTERRUPT; I915_WRITE(GTIER, render_irqs); POSTING_READ(GTIER); if (HAS_PCH_CPT(dev)) { hotplug_mask = (SDE_CRT_HOTPLUG_CPT | SDE_PORTB_HOTPLUG_CPT | SDE_PORTC_HOTPLUG_CPT | SDE_PORTD_HOTPLUG_CPT); } else { hotplug_mask = (SDE_CRT_HOTPLUG | SDE_PORTB_HOTPLUG | SDE_PORTC_HOTPLUG | SDE_PORTD_HOTPLUG | SDE_AUX_MASK); } dev_priv->pch_irq_mask = ~hotplug_mask; I915_WRITE(SDEIIR, I915_READ(SDEIIR)); I915_WRITE(SDEIMR, dev_priv->pch_irq_mask); I915_WRITE(SDEIER, hotplug_mask); POSTING_READ(SDEIER); ironlake_enable_pch_hotplug(dev); if (IS_IRONLAKE_M(dev)) { /* Clear & enable PCU event interrupts */ I915_WRITE(DEIIR, DE_PCU_EVENT); I915_WRITE(DEIER, I915_READ(DEIER) | DE_PCU_EVENT); ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT); } return 0; } static int ivybridge_irq_postinstall(struct drm_device *dev) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; /* enable kind of interrupts always enabled */ u32 display_mask = DE_MASTER_IRQ_CONTROL | DE_GSE_IVB | DE_PCH_EVENT_IVB | DE_PLANEA_FLIP_DONE_IVB | DE_PLANEB_FLIP_DONE_IVB; u32 render_irqs; u32 hotplug_mask; dev_priv->vblank_pipe = DRM_I915_VBLANK_PIPE_A | DRM_I915_VBLANK_PIPE_B; dev_priv->irq_mask = ~display_mask; /* should always can generate irq */ I915_WRITE(DEIIR, I915_READ(DEIIR)); I915_WRITE(DEIMR, dev_priv->irq_mask); I915_WRITE(DEIER, display_mask | DE_PIPEA_VBLANK_IVB | DE_PIPEB_VBLANK_IVB); POSTING_READ(DEIER); dev_priv->gt_irq_mask = ~0; I915_WRITE(GTIIR, I915_READ(GTIIR)); I915_WRITE(GTIMR, dev_priv->gt_irq_mask); render_irqs = GT_USER_INTERRUPT | GT_GEN6_BSD_USER_INTERRUPT | GT_BLT_USER_INTERRUPT; I915_WRITE(GTIER, render_irqs); POSTING_READ(GTIER); hotplug_mask = (SDE_CRT_HOTPLUG_CPT | SDE_PORTB_HOTPLUG_CPT | SDE_PORTC_HOTPLUG_CPT | SDE_PORTD_HOTPLUG_CPT); dev_priv->pch_irq_mask = ~hotplug_mask; I915_WRITE(SDEIIR, I915_READ(SDEIIR)); I915_WRITE(SDEIMR, dev_priv->pch_irq_mask); I915_WRITE(SDEIER, hotplug_mask); POSTING_READ(SDEIER); ironlake_enable_pch_hotplug(dev); return 0; } static void i915_driver_irq_preinstall(struct drm_device * dev) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; int pipe; atomic_set(&dev_priv->irq_received, 0); TASK_INIT(&dev_priv->hotplug_task, 0, i915_hotplug_work_func, dev->dev_private); TASK_INIT(&dev_priv->error_task, 0, i915_error_work_func, dev->dev_private); TASK_INIT(&dev_priv->rps_task, 0, gen6_pm_rps_work_func, dev->dev_private); if (I915_HAS_HOTPLUG(dev)) { I915_WRITE(PORT_HOTPLUG_EN, 0); I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT)); } I915_WRITE(HWSTAM, 0xeffe); for_each_pipe(pipe) I915_WRITE(PIPESTAT(pipe), 0); I915_WRITE(IMR, 0xffffffff); I915_WRITE(IER, 0x0); POSTING_READ(IER); } /* * Must be called after intel_modeset_init or hotplug interrupts won't be * enabled correctly. */ static int i915_driver_irq_postinstall(struct drm_device *dev) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; u32 enable_mask = I915_INTERRUPT_ENABLE_FIX | I915_INTERRUPT_ENABLE_VAR; u32 error_mask; dev_priv->vblank_pipe = DRM_I915_VBLANK_PIPE_A | DRM_I915_VBLANK_PIPE_B; /* Unmask the interrupts that we always want on. */ dev_priv->irq_mask = ~I915_INTERRUPT_ENABLE_FIX; dev_priv->pipestat[0] = 0; dev_priv->pipestat[1] = 0; if (I915_HAS_HOTPLUG(dev)) { /* Enable in IER... */ enable_mask |= I915_DISPLAY_PORT_INTERRUPT; /* and unmask in IMR */ dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT; } /* * Enable some error detection, note the instruction error mask * bit is reserved, so we leave it masked. */ if (IS_G4X(dev)) { error_mask = ~(GM45_ERROR_PAGE_TABLE | GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV | I915_ERROR_MEMORY_REFRESH); } else { error_mask = ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH); } I915_WRITE(EMR, error_mask); I915_WRITE(IMR, dev_priv->irq_mask); I915_WRITE(IER, enable_mask); POSTING_READ(IER); if (I915_HAS_HOTPLUG(dev)) { u32 hotplug_en = I915_READ(PORT_HOTPLUG_EN); /* Note HDMI and DP share bits */ if (dev_priv->hotplug_supported_mask & HDMIB_HOTPLUG_INT_STATUS) hotplug_en |= HDMIB_HOTPLUG_INT_EN; if (dev_priv->hotplug_supported_mask & HDMIC_HOTPLUG_INT_STATUS) hotplug_en |= HDMIC_HOTPLUG_INT_EN; if (dev_priv->hotplug_supported_mask & HDMID_HOTPLUG_INT_STATUS) hotplug_en |= HDMID_HOTPLUG_INT_EN; if (dev_priv->hotplug_supported_mask & SDVOC_HOTPLUG_INT_STATUS) hotplug_en |= SDVOC_HOTPLUG_INT_EN; if (dev_priv->hotplug_supported_mask & SDVOB_HOTPLUG_INT_STATUS) hotplug_en |= SDVOB_HOTPLUG_INT_EN; if (dev_priv->hotplug_supported_mask & CRT_HOTPLUG_INT_STATUS) { hotplug_en |= CRT_HOTPLUG_INT_EN; /* Programming the CRT detection parameters tends to generate a spurious hotplug event about three seconds later. So just do it once. */ if (IS_G4X(dev)) hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64; hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50; } /* Ignore TV since it's buggy */ I915_WRITE(PORT_HOTPLUG_EN, hotplug_en); } #if 1 KIB_NOTYET(); #else intel_opregion_enable_asle(dev); #endif return 0; } static void ironlake_irq_uninstall(struct drm_device *dev) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; if (dev_priv == NULL) return; dev_priv->vblank_pipe = 0; I915_WRITE(HWSTAM, 0xffffffff); I915_WRITE(DEIMR, 0xffffffff); I915_WRITE(DEIER, 0x0); I915_WRITE(DEIIR, I915_READ(DEIIR)); I915_WRITE(GTIMR, 0xffffffff); I915_WRITE(GTIER, 0x0); I915_WRITE(GTIIR, I915_READ(GTIIR)); I915_WRITE(SDEIMR, 0xffffffff); I915_WRITE(SDEIER, 0x0); I915_WRITE(SDEIIR, I915_READ(SDEIIR)); taskqueue_drain(dev_priv->tq, &dev_priv->hotplug_task); taskqueue_drain(dev_priv->tq, &dev_priv->error_task); taskqueue_drain(dev_priv->tq, &dev_priv->rps_task); } static void i915_driver_irq_uninstall(struct drm_device * dev) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; int pipe; if (!dev_priv) return; dev_priv->vblank_pipe = 0; if (I915_HAS_HOTPLUG(dev)) { I915_WRITE(PORT_HOTPLUG_EN, 0); I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT)); } I915_WRITE(HWSTAM, 0xffffffff); for_each_pipe(pipe) I915_WRITE(PIPESTAT(pipe), 0); I915_WRITE(IMR, 0xffffffff); I915_WRITE(IER, 0x0); for_each_pipe(pipe) I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)) & 0x8000ffff); I915_WRITE(IIR, I915_READ(IIR)); taskqueue_drain(dev_priv->tq, &dev_priv->hotplug_task); taskqueue_drain(dev_priv->tq, &dev_priv->error_task); taskqueue_drain(dev_priv->tq, &dev_priv->rps_task); } void intel_irq_init(struct drm_device *dev) { dev->driver->get_vblank_counter = i915_get_vblank_counter; dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */ if (IS_G4X(dev) || IS_GEN5(dev) || IS_GEN6(dev) || IS_IVYBRIDGE(dev)) { dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */ dev->driver->get_vblank_counter = gm45_get_vblank_counter; } if (drm_core_check_feature(dev, DRIVER_MODESET)) dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp; else dev->driver->get_vblank_timestamp = NULL; dev->driver->get_scanout_position = i915_get_crtc_scanoutpos; if (IS_IVYBRIDGE(dev)) { /* Share pre & uninstall handlers with ILK/SNB */ dev->driver->irq_handler = ivybridge_irq_handler; dev->driver->irq_preinstall = ironlake_irq_preinstall; dev->driver->irq_postinstall = ivybridge_irq_postinstall; dev->driver->irq_uninstall = ironlake_irq_uninstall; dev->driver->enable_vblank = ivybridge_enable_vblank; dev->driver->disable_vblank = ivybridge_disable_vblank; } else if (HAS_PCH_SPLIT(dev)) { dev->driver->irq_handler = ironlake_irq_handler; dev->driver->irq_preinstall = ironlake_irq_preinstall; dev->driver->irq_postinstall = ironlake_irq_postinstall; dev->driver->irq_uninstall = ironlake_irq_uninstall; dev->driver->enable_vblank = ironlake_enable_vblank; dev->driver->disable_vblank = ironlake_disable_vblank; } else { dev->driver->irq_preinstall = i915_driver_irq_preinstall; dev->driver->irq_postinstall = i915_driver_irq_postinstall; dev->driver->irq_uninstall = i915_driver_irq_uninstall; dev->driver->irq_handler = i915_driver_irq_handler; dev->driver->enable_vblank = i915_enable_vblank; dev->driver->disable_vblank = i915_disable_vblank; } } static struct drm_i915_error_object * i915_error_object_create(struct drm_i915_private *dev_priv, struct drm_i915_gem_object *src) { struct drm_i915_error_object *dst; struct sf_buf *sf; void *d, *s; int page, page_count; u32 reloc_offset; if (src == NULL || src->pages == NULL) return NULL; page_count = src->base.size / PAGE_SIZE; dst = malloc(sizeof(*dst) + page_count * sizeof(u32 *), DRM_I915_GEM, M_NOWAIT); if (dst == NULL) return (NULL); reloc_offset = src->gtt_offset; for (page = 0; page < page_count; page++) { d = malloc(PAGE_SIZE, DRM_I915_GEM, M_NOWAIT); if (d == NULL) goto unwind; if (reloc_offset < dev_priv->mm.gtt_mappable_end) { /* Simply ignore tiling or any overlapping fence. * It's part of the error state, and this hopefully * captures what the GPU read. */ s = pmap_mapdev_attr(src->base.dev->agp->base + reloc_offset, PAGE_SIZE, PAT_WRITE_COMBINING); memcpy(d, s, PAGE_SIZE); pmap_unmapdev((vm_offset_t)s, PAGE_SIZE); } else { drm_clflush_pages(&src->pages[page], 1); sched_pin(); sf = sf_buf_alloc(src->pages[page], SFB_CPUPRIVATE | SFB_NOWAIT); if (sf != NULL) { s = (void *)(uintptr_t)sf_buf_kva(sf); memcpy(d, s, PAGE_SIZE); sf_buf_free(sf); } else { bzero(d, PAGE_SIZE); strcpy(d, "XXXKIB"); } sched_unpin(); drm_clflush_pages(&src->pages[page], 1); } dst->pages[page] = d; reloc_offset += PAGE_SIZE; } dst->page_count = page_count; dst->gtt_offset = src->gtt_offset; return (dst); unwind: while (page--) free(dst->pages[page], DRM_I915_GEM); free(dst, DRM_I915_GEM); return (NULL); } static void i915_error_object_free(struct drm_i915_error_object *obj) { int page; if (obj == NULL) return; for (page = 0; page < obj->page_count; page++) free(obj->pages[page], DRM_I915_GEM); free(obj, DRM_I915_GEM); } static void i915_error_state_free(struct drm_device *dev, struct drm_i915_error_state *error) { int i; for (i = 0; i < DRM_ARRAY_SIZE(error->ring); i++) { i915_error_object_free(error->ring[i].batchbuffer); i915_error_object_free(error->ring[i].ringbuffer); free(error->ring[i].requests, DRM_I915_GEM); } free(error->active_bo, DRM_I915_GEM); free(error->overlay, DRM_I915_GEM); free(error, DRM_I915_GEM); } static u32 capture_bo_list(struct drm_i915_error_buffer *err, int count, struct list_head *head) { struct drm_i915_gem_object *obj; int i = 0; list_for_each_entry(obj, head, mm_list) { err->size = obj->base.size; err->name = obj->base.name; err->seqno = obj->last_rendering_seqno; err->gtt_offset = obj->gtt_offset; err->read_domains = obj->base.read_domains; err->write_domain = obj->base.write_domain; err->fence_reg = obj->fence_reg; err->pinned = 0; if (obj->pin_count > 0) err->pinned = 1; if (obj->user_pin_count > 0) err->pinned = -1; err->tiling = obj->tiling_mode; err->dirty = obj->dirty; err->purgeable = obj->madv != I915_MADV_WILLNEED; err->ring = obj->ring ? obj->ring->id : -1; err->cache_level = obj->cache_level; if (++i == count) break; err++; } return (i); } static void i915_gem_record_fences(struct drm_device *dev, struct drm_i915_error_state *error) { struct drm_i915_private *dev_priv = dev->dev_private; int i; /* Fences */ switch (INTEL_INFO(dev)->gen) { case 7: case 6: for (i = 0; i < 16; i++) error->fence[i] = I915_READ64(FENCE_REG_SANDYBRIDGE_0 + (i * 8)); break; case 5: case 4: for (i = 0; i < 16; i++) error->fence[i] = I915_READ64(FENCE_REG_965_0 + (i * 8)); break; case 3: if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) for (i = 0; i < 8; i++) error->fence[i+8] = I915_READ(FENCE_REG_945_8 + (i * 4)); case 2: for (i = 0; i < 8; i++) error->fence[i] = I915_READ(FENCE_REG_830_0 + (i * 4)); break; } } static struct drm_i915_error_object * i915_error_first_batchbuffer(struct drm_i915_private *dev_priv, struct intel_ring_buffer *ring) { struct drm_i915_gem_object *obj; u32 seqno; if (!ring->get_seqno) return (NULL); seqno = ring->get_seqno(ring); list_for_each_entry(obj, &dev_priv->mm.active_list, mm_list) { if (obj->ring != ring) continue; if (i915_seqno_passed(seqno, obj->last_rendering_seqno)) continue; if ((obj->base.read_domains & I915_GEM_DOMAIN_COMMAND) == 0) continue; /* We need to copy these to an anonymous buffer as the simplest * method to avoid being overwritten by userspace. */ return (i915_error_object_create(dev_priv, obj)); } return NULL; } static void i915_record_ring_state(struct drm_device *dev, struct drm_i915_error_state *error, struct intel_ring_buffer *ring) { struct drm_i915_private *dev_priv = dev->dev_private; if (INTEL_INFO(dev)->gen >= 6) { error->faddr[ring->id] = I915_READ(RING_DMA_FADD(ring->mmio_base)); error->fault_reg[ring->id] = I915_READ(RING_FAULT_REG(ring)); error->semaphore_mboxes[ring->id][0] = I915_READ(RING_SYNC_0(ring->mmio_base)); error->semaphore_mboxes[ring->id][1] = I915_READ(RING_SYNC_1(ring->mmio_base)); } if (INTEL_INFO(dev)->gen >= 4) { error->ipeir[ring->id] = I915_READ(RING_IPEIR(ring->mmio_base)); error->ipehr[ring->id] = I915_READ(RING_IPEHR(ring->mmio_base)); error->instdone[ring->id] = I915_READ(RING_INSTDONE(ring->mmio_base)); error->instps[ring->id] = I915_READ(RING_INSTPS(ring->mmio_base)); if (ring->id == RCS) { error->instdone1 = I915_READ(INSTDONE1); error->bbaddr = I915_READ64(BB_ADDR); } } else { error->ipeir[ring->id] = I915_READ(IPEIR); error->ipehr[ring->id] = I915_READ(IPEHR); error->instdone[ring->id] = I915_READ(INSTDONE); } error->instpm[ring->id] = I915_READ(RING_INSTPM(ring->mmio_base)); error->seqno[ring->id] = ring->get_seqno(ring); error->acthd[ring->id] = intel_ring_get_active_head(ring); error->head[ring->id] = I915_READ_HEAD(ring); error->tail[ring->id] = I915_READ_TAIL(ring); error->cpu_ring_head[ring->id] = ring->head; error->cpu_ring_tail[ring->id] = ring->tail; } static void i915_gem_record_rings(struct drm_device *dev, struct drm_i915_error_state *error) { struct drm_i915_private *dev_priv = dev->dev_private; struct drm_i915_gem_request *request; int i, count; for (i = 0; i < I915_NUM_RINGS; i++) { struct intel_ring_buffer *ring = &dev_priv->rings[i]; if (ring->obj == NULL) continue; i915_record_ring_state(dev, error, ring); error->ring[i].batchbuffer = i915_error_first_batchbuffer(dev_priv, ring); error->ring[i].ringbuffer = i915_error_object_create(dev_priv, ring->obj); count = 0; list_for_each_entry(request, &ring->request_list, list) count++; error->ring[i].num_requests = count; error->ring[i].requests = malloc(count * sizeof(struct drm_i915_error_request), DRM_I915_GEM, M_WAITOK); if (error->ring[i].requests == NULL) { error->ring[i].num_requests = 0; continue; } count = 0; list_for_each_entry(request, &ring->request_list, list) { struct drm_i915_error_request *erq; erq = &error->ring[i].requests[count++]; erq->seqno = request->seqno; erq->jiffies = request->emitted_jiffies; erq->tail = request->tail; } } } static void i915_capture_error_state(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct drm_i915_gem_object *obj; struct drm_i915_error_state *error; int i, pipe; mtx_lock(&dev_priv->error_lock); error = dev_priv->first_error; mtx_unlock(&dev_priv->error_lock); if (error != NULL) return; /* Account for pipe specific data like PIPE*STAT */ error = malloc(sizeof(*error), DRM_I915_GEM, M_NOWAIT | M_ZERO); if (error == NULL) { DRM_DEBUG("out of memory, not capturing error state\n"); return; } DRM_INFO("capturing error event; look for more information in " "sysctl hw.dri.%d.info.i915_error_state\n", dev->sysctl_node_idx); error->eir = I915_READ(EIR); error->pgtbl_er = I915_READ(PGTBL_ER); for_each_pipe(pipe) error->pipestat[pipe] = I915_READ(PIPESTAT(pipe)); if (INTEL_INFO(dev)->gen >= 6) { error->error = I915_READ(ERROR_GEN6); error->done_reg = I915_READ(DONE_REG); } i915_gem_record_fences(dev, error); i915_gem_record_rings(dev, error); /* Record buffers on the active and pinned lists. */ error->active_bo = NULL; error->pinned_bo = NULL; i = 0; list_for_each_entry(obj, &dev_priv->mm.active_list, mm_list) i++; error->active_bo_count = i; list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list) i++; error->pinned_bo_count = i - error->active_bo_count; error->active_bo = NULL; error->pinned_bo = NULL; if (i) { error->active_bo = malloc(sizeof(*error->active_bo) * i, DRM_I915_GEM, M_NOWAIT); if (error->active_bo) error->pinned_bo = error->active_bo + error->active_bo_count; } if (error->active_bo) error->active_bo_count = capture_bo_list(error->active_bo, error->active_bo_count, &dev_priv->mm.active_list); if (error->pinned_bo) error->pinned_bo_count = capture_bo_list(error->pinned_bo, error->pinned_bo_count, &dev_priv->mm.pinned_list); microtime(&error->time); error->overlay = intel_overlay_capture_error_state(dev); error->display = intel_display_capture_error_state(dev); mtx_lock(&dev_priv->error_lock); if (dev_priv->first_error == NULL) { dev_priv->first_error = error; error = NULL; } mtx_unlock(&dev_priv->error_lock); if (error != NULL) i915_error_state_free(dev, error); } void i915_destroy_error_state(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct drm_i915_error_state *error; mtx_lock(&dev_priv->error_lock); error = dev_priv->first_error; dev_priv->first_error = NULL; mtx_unlock(&dev_priv->error_lock); if (error != NULL) i915_error_state_free(dev, error); }