Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/ppi/@/amd64/amd64/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/ppi/@/amd64/amd64/trap.c |
/*- * Copyright (C) 1994, David Greenman * Copyright (c) 1990, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * the University of Utah, and William Jolitz. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: @(#)trap.c 7.4 (Berkeley) 5/13/91 */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/amd64/amd64/trap.c 237559 2012-06-25 09:41:47Z kib $"); /* * AMD64 Trap and System call handling */ #include "opt_clock.h" #include "opt_cpu.h" #include "opt_hwpmc_hooks.h" #include "opt_isa.h" #include "opt_kdb.h" #include "opt_kdtrace.h" #include <sys/param.h> #include <sys/bus.h> #include <sys/systm.h> #include <sys/proc.h> #include <sys/pioctl.h> #include <sys/ptrace.h> #include <sys/kdb.h> #include <sys/kernel.h> #include <sys/ktr.h> #include <sys/lock.h> #include <sys/mutex.h> #include <sys/resourcevar.h> #include <sys/signalvar.h> #include <sys/syscall.h> #include <sys/sysctl.h> #include <sys/sysent.h> #include <sys/uio.h> #include <sys/vmmeter.h> #ifdef HWPMC_HOOKS #include <sys/pmckern.h> PMC_SOFT_DEFINE( , , page_fault, all); PMC_SOFT_DEFINE( , , page_fault, read); PMC_SOFT_DEFINE( , , page_fault, write); #endif #include <vm/vm.h> #include <vm/vm_param.h> #include <vm/pmap.h> #include <vm/vm_kern.h> #include <vm/vm_map.h> #include <vm/vm_page.h> #include <vm/vm_extern.h> #include <machine/cpu.h> #include <machine/intr_machdep.h> #include <x86/mca.h> #include <machine/md_var.h> #include <machine/pcb.h> #ifdef SMP #include <machine/smp.h> #endif #include <machine/tss.h> #ifdef KDTRACE_HOOKS #include <sys/dtrace_bsd.h> /* * This is a hook which is initialised by the dtrace module * to handle traps which might occur during DTrace probe * execution. */ dtrace_trap_func_t dtrace_trap_func; dtrace_doubletrap_func_t dtrace_doubletrap_func; /* * This is a hook which is initialised by the systrace module * when it is loaded. This keeps the DTrace syscall provider * implementation opaque. */ systrace_probe_func_t systrace_probe_func; /* * These hooks are necessary for the pid, usdt and fasttrap providers. */ dtrace_fasttrap_probe_ptr_t dtrace_fasttrap_probe_ptr; dtrace_pid_probe_ptr_t dtrace_pid_probe_ptr; dtrace_return_probe_ptr_t dtrace_return_probe_ptr; #endif extern void trap(struct trapframe *frame); extern void syscall(struct trapframe *frame); void dblfault_handler(struct trapframe *frame); static int trap_pfault(struct trapframe *, int); static void trap_fatal(struct trapframe *, vm_offset_t); #define MAX_TRAP_MSG 33 static char *trap_msg[] = { "", /* 0 unused */ "privileged instruction fault", /* 1 T_PRIVINFLT */ "", /* 2 unused */ "breakpoint instruction fault", /* 3 T_BPTFLT */ "", /* 4 unused */ "", /* 5 unused */ "arithmetic trap", /* 6 T_ARITHTRAP */ "", /* 7 unused */ "", /* 8 unused */ "general protection fault", /* 9 T_PROTFLT */ "trace trap", /* 10 T_TRCTRAP */ "", /* 11 unused */ "page fault", /* 12 T_PAGEFLT */ "", /* 13 unused */ "alignment fault", /* 14 T_ALIGNFLT */ "", /* 15 unused */ "", /* 16 unused */ "", /* 17 unused */ "integer divide fault", /* 18 T_DIVIDE */ "non-maskable interrupt trap", /* 19 T_NMI */ "overflow trap", /* 20 T_OFLOW */ "FPU bounds check fault", /* 21 T_BOUND */ "FPU device not available", /* 22 T_DNA */ "double fault", /* 23 T_DOUBLEFLT */ "FPU operand fetch fault", /* 24 T_FPOPFLT */ "invalid TSS fault", /* 25 T_TSSFLT */ "segment not present fault", /* 26 T_SEGNPFLT */ "stack fault", /* 27 T_STKFLT */ "machine check trap", /* 28 T_MCHK */ "SIMD floating-point exception", /* 29 T_XMMFLT */ "reserved (unknown) fault", /* 30 T_RESERVED */ "", /* 31 unused (reserved) */ "DTrace pid return trap", /* 32 T_DTRACE_RET */ "DTrace fasttrap probe trap", /* 33 T_DTRACE_PROBE */ }; #ifdef KDB static int kdb_on_nmi = 1; SYSCTL_INT(_machdep, OID_AUTO, kdb_on_nmi, CTLFLAG_RW, &kdb_on_nmi, 0, "Go to KDB on NMI"); TUNABLE_INT("machdep.kdb_on_nmi", &kdb_on_nmi); #endif static int panic_on_nmi = 1; SYSCTL_INT(_machdep, OID_AUTO, panic_on_nmi, CTLFLAG_RW, &panic_on_nmi, 0, "Panic on NMI"); TUNABLE_INT("machdep.panic_on_nmi", &panic_on_nmi); static int prot_fault_translation = 0; SYSCTL_INT(_machdep, OID_AUTO, prot_fault_translation, CTLFLAG_RW, &prot_fault_translation, 0, "Select signal to deliver on protection fault"); /* * Exception, fault, and trap interface to the FreeBSD kernel. * This common code is called from assembly language IDT gate entry * routines that prepare a suitable stack frame, and restore this * frame after the exception has been processed. */ void trap(struct trapframe *frame) { struct thread *td = curthread; struct proc *p = td->td_proc; int i = 0, ucode = 0, code; u_int type; register_t addr = 0; ksiginfo_t ksi; PCPU_INC(cnt.v_trap); type = frame->tf_trapno; #ifdef SMP /* Handler for NMI IPIs used for stopping CPUs. */ if (type == T_NMI) { if (ipi_nmi_handler() == 0) goto out; } #endif /* SMP */ #ifdef KDB if (kdb_active) { kdb_reenter(); goto out; } #endif if (type == T_RESERVED) { trap_fatal(frame, 0); goto out; } #ifdef HWPMC_HOOKS /* * CPU PMCs interrupt using an NMI. If the PMC module is * active, pass the 'rip' value to the PMC module's interrupt * handler. A return value of '1' from the handler means that * the NMI was handled by it and we can return immediately. */ if (type == T_NMI && pmc_intr && (*pmc_intr)(PCPU_GET(cpuid), frame)) goto out; #endif if (type == T_MCHK) { mca_intr(); goto out; } #ifdef KDTRACE_HOOKS /* * A trap can occur while DTrace executes a probe. Before * executing the probe, DTrace blocks re-scheduling and sets * a flag in it's per-cpu flags to indicate that it doesn't * want to fault. On returning from the probe, the no-fault * flag is cleared and finally re-scheduling is enabled. * * If the DTrace kernel module has registered a trap handler, * call it and if it returns non-zero, assume that it has * handled the trap and modified the trap frame so that this * function can return normally. */ if (type == T_DTRACE_PROBE || type == T_DTRACE_RET || type == T_BPTFLT) { struct reg regs; fill_frame_regs(frame, ®s); if (type == T_DTRACE_PROBE && dtrace_fasttrap_probe_ptr != NULL && dtrace_fasttrap_probe_ptr(®s) == 0) goto out; else if (type == T_BPTFLT && dtrace_pid_probe_ptr != NULL && dtrace_pid_probe_ptr(®s) == 0) goto out; else if (type == T_DTRACE_RET && dtrace_return_probe_ptr != NULL && dtrace_return_probe_ptr(®s) == 0) goto out; } if (dtrace_trap_func != NULL && (*dtrace_trap_func)(frame, type)) goto out; #endif if ((frame->tf_rflags & PSL_I) == 0) { /* * Buggy application or kernel code has disabled * interrupts and then trapped. Enabling interrupts * now is wrong, but it is better than running with * interrupts disabled until they are accidentally * enabled later. */ if (ISPL(frame->tf_cs) == SEL_UPL) uprintf( "pid %ld (%s): trap %d with interrupts disabled\n", (long)curproc->p_pid, curthread->td_name, type); else if (type != T_NMI && type != T_BPTFLT && type != T_TRCTRAP) { /* * XXX not quite right, since this may be for a * multiple fault in user mode. */ printf("kernel trap %d with interrupts disabled\n", type); /* * We shouldn't enable interrupts while holding a * spin lock. */ if (td->td_md.md_spinlock_count == 0) enable_intr(); } } code = frame->tf_err; if (ISPL(frame->tf_cs) == SEL_UPL) { /* user trap */ td->td_pticks = 0; td->td_frame = frame; addr = frame->tf_rip; if (td->td_ucred != p->p_ucred) cred_update_thread(td); switch (type) { case T_PRIVINFLT: /* privileged instruction fault */ i = SIGILL; ucode = ILL_PRVOPC; break; case T_BPTFLT: /* bpt instruction fault */ case T_TRCTRAP: /* trace trap */ enable_intr(); frame->tf_rflags &= ~PSL_T; i = SIGTRAP; ucode = (type == T_TRCTRAP ? TRAP_TRACE : TRAP_BRKPT); break; case T_ARITHTRAP: /* arithmetic trap */ ucode = fputrap(); if (ucode == -1) goto userout; i = SIGFPE; break; case T_PROTFLT: /* general protection fault */ i = SIGBUS; ucode = BUS_OBJERR; break; case T_STKFLT: /* stack fault */ case T_SEGNPFLT: /* segment not present fault */ i = SIGBUS; ucode = BUS_ADRERR; break; case T_TSSFLT: /* invalid TSS fault */ i = SIGBUS; ucode = BUS_OBJERR; break; case T_DOUBLEFLT: /* double fault */ default: i = SIGBUS; ucode = BUS_OBJERR; break; case T_PAGEFLT: /* page fault */ addr = frame->tf_addr; i = trap_pfault(frame, TRUE); if (i == -1) goto userout; if (i == 0) goto user; if (i == SIGSEGV) ucode = SEGV_MAPERR; else { if (prot_fault_translation == 0) { /* * Autodetect. * This check also covers the images * without the ABI-tag ELF note. */ if (SV_CURPROC_ABI() == SV_ABI_FREEBSD && p->p_osrel >= P_OSREL_SIGSEGV) { i = SIGSEGV; ucode = SEGV_ACCERR; } else { i = SIGBUS; ucode = BUS_PAGE_FAULT; } } else if (prot_fault_translation == 1) { /* * Always compat mode. */ i = SIGBUS; ucode = BUS_PAGE_FAULT; } else { /* * Always SIGSEGV mode. */ i = SIGSEGV; ucode = SEGV_ACCERR; } } break; case T_DIVIDE: /* integer divide fault */ ucode = FPE_INTDIV; i = SIGFPE; break; #ifdef DEV_ISA case T_NMI: /* machine/parity/power fail/"kitchen sink" faults */ if (isa_nmi(code) == 0) { #ifdef KDB /* * NMI can be hooked up to a pushbutton * for debugging. */ if (kdb_on_nmi) { printf ("NMI ... going to debugger\n"); kdb_trap(type, 0, frame); } #endif /* KDB */ goto userout; } else if (panic_on_nmi) panic("NMI indicates hardware failure"); break; #endif /* DEV_ISA */ case T_OFLOW: /* integer overflow fault */ ucode = FPE_INTOVF; i = SIGFPE; break; case T_BOUND: /* bounds check fault */ ucode = FPE_FLTSUB; i = SIGFPE; break; case T_DNA: /* transparent fault (due to context switch "late") */ KASSERT(PCB_USER_FPU(td->td_pcb), ("kernel FPU ctx has leaked")); fpudna(); goto userout; case T_FPOPFLT: /* FPU operand fetch fault */ ucode = ILL_COPROC; i = SIGILL; break; case T_XMMFLT: /* SIMD floating-point exception */ ucode = 0; /* XXX */ i = SIGFPE; break; } } else { /* kernel trap */ KASSERT(cold || td->td_ucred != NULL, ("kernel trap doesn't have ucred")); switch (type) { case T_PAGEFLT: /* page fault */ (void) trap_pfault(frame, FALSE); goto out; case T_DNA: KASSERT(!PCB_USER_FPU(td->td_pcb), ("Unregistered use of FPU in kernel")); fpudna(); goto out; case T_ARITHTRAP: /* arithmetic trap */ case T_XMMFLT: /* SIMD floating-point exception */ case T_FPOPFLT: /* FPU operand fetch fault */ /* * XXXKIB for now disable any FPU traps in kernel * handler registration seems to be overkill */ trap_fatal(frame, 0); goto out; case T_STKFLT: /* stack fault */ break; case T_PROTFLT: /* general protection fault */ case T_SEGNPFLT: /* segment not present fault */ if (td->td_intr_nesting_level != 0) break; /* * Invalid segment selectors and out of bounds * %rip's and %rsp's can be set up in user mode. * This causes a fault in kernel mode when the * kernel tries to return to user mode. We want * to get this fault so that we can fix the * problem here and not have to check all the * selectors and pointers when the user changes * them. */ if (frame->tf_rip == (long)doreti_iret) { frame->tf_rip = (long)doreti_iret_fault; goto out; } if (frame->tf_rip == (long)ld_ds) { frame->tf_rip = (long)ds_load_fault; goto out; } if (frame->tf_rip == (long)ld_es) { frame->tf_rip = (long)es_load_fault; goto out; } if (frame->tf_rip == (long)ld_fs) { frame->tf_rip = (long)fs_load_fault; goto out; } if (frame->tf_rip == (long)ld_gs) { frame->tf_rip = (long)gs_load_fault; goto out; } if (frame->tf_rip == (long)ld_gsbase) { frame->tf_rip = (long)gsbase_load_fault; goto out; } if (frame->tf_rip == (long)ld_fsbase) { frame->tf_rip = (long)fsbase_load_fault; goto out; } if (PCPU_GET(curpcb)->pcb_onfault != NULL) { frame->tf_rip = (long)PCPU_GET(curpcb)->pcb_onfault; goto out; } break; case T_TSSFLT: /* * PSL_NT can be set in user mode and isn't cleared * automatically when the kernel is entered. This * causes a TSS fault when the kernel attempts to * `iret' because the TSS link is uninitialized. We * want to get this fault so that we can fix the * problem here and not every time the kernel is * entered. */ if (frame->tf_rflags & PSL_NT) { frame->tf_rflags &= ~PSL_NT; goto out; } break; case T_TRCTRAP: /* trace trap */ /* * Ignore debug register trace traps due to * accesses in the user's address space, which * can happen under several conditions such as * if a user sets a watchpoint on a buffer and * then passes that buffer to a system call. * We still want to get TRCTRAPS for addresses * in kernel space because that is useful when * debugging the kernel. */ if (user_dbreg_trap()) { /* * Reset breakpoint bits because the * processor doesn't */ /* XXX check upper bits here */ load_dr6(rdr6() & 0xfffffff0); goto out; } /* * FALLTHROUGH (TRCTRAP kernel mode, kernel address) */ case T_BPTFLT: /* * If KDB is enabled, let it handle the debugger trap. * Otherwise, debugger traps "can't happen". */ #ifdef KDB if (kdb_trap(type, 0, frame)) goto out; #endif break; #ifdef DEV_ISA case T_NMI: /* machine/parity/power fail/"kitchen sink" faults */ if (isa_nmi(code) == 0) { #ifdef KDB /* * NMI can be hooked up to a pushbutton * for debugging. */ if (kdb_on_nmi) { printf ("NMI ... going to debugger\n"); kdb_trap(type, 0, frame); } #endif /* KDB */ goto out; } else if (panic_on_nmi == 0) goto out; /* FALLTHROUGH */ #endif /* DEV_ISA */ } trap_fatal(frame, 0); goto out; } /* Translate fault for emulators (e.g. Linux) */ if (*p->p_sysent->sv_transtrap) i = (*p->p_sysent->sv_transtrap)(i, type); ksiginfo_init_trap(&ksi); ksi.ksi_signo = i; ksi.ksi_code = ucode; ksi.ksi_trapno = type; ksi.ksi_addr = (void *)addr; trapsignal(td, &ksi); user: userret(td, frame); mtx_assert(&Giant, MA_NOTOWNED); KASSERT(PCB_USER_FPU(td->td_pcb), ("Return from trap with kernel FPU ctx leaked")); userout: out: return; } static int trap_pfault(frame, usermode) struct trapframe *frame; int usermode; { vm_offset_t va; struct vmspace *vm = NULL; vm_map_t map; int rv = 0; vm_prot_t ftype; struct thread *td = curthread; struct proc *p = td->td_proc; vm_offset_t eva = frame->tf_addr; if (__predict_false((td->td_pflags & TDP_NOFAULTING) != 0)) { /* * Due to both processor errata and lazy TLB invalidation when * access restrictions are removed from virtual pages, memory * accesses that are allowed by the physical mapping layer may * nonetheless cause one spurious page fault per virtual page. * When the thread is executing a "no faulting" section that * is bracketed by vm_fault_{disable,enable}_pagefaults(), * every page fault is treated as a spurious page fault, * unless it accesses the same virtual address as the most * recent page fault within the same "no faulting" section. */ if (td->td_md.md_spurflt_addr != eva || (td->td_pflags & TDP_RESETSPUR) != 0) { /* * Do nothing to the TLB. A stale TLB entry is * flushed automatically by a page fault. */ td->td_md.md_spurflt_addr = eva; td->td_pflags &= ~TDP_RESETSPUR; return (0); } } else { /* * If we get a page fault while in a critical section, then * it is most likely a fatal kernel page fault. The kernel * is already going to panic trying to get a sleep lock to * do the VM lookup, so just consider it a fatal trap so the * kernel can print out a useful trap message and even get * to the debugger. * * If we get a page fault while holding a non-sleepable * lock, then it is most likely a fatal kernel page fault. * If WITNESS is enabled, then it's going to whine about * bogus LORs with various VM locks, so just skip to the * fatal trap handling directly. */ if (td->td_critnest != 0 || WITNESS_CHECK(WARN_SLEEPOK | WARN_GIANTOK, NULL, "Kernel page fault") != 0) { trap_fatal(frame, eva); return (-1); } } va = trunc_page(eva); if (va >= VM_MIN_KERNEL_ADDRESS) { /* * Don't allow user-mode faults in kernel address space. */ if (usermode) goto nogo; map = kernel_map; } else { /* * This is a fault on non-kernel virtual memory. * vm is initialized above to NULL. If curproc is NULL * or curproc->p_vmspace is NULL the fault is fatal. */ if (p != NULL) vm = p->p_vmspace; if (vm == NULL) goto nogo; map = &vm->vm_map; /* * When accessing a usermode address, kernel must be * ready to accept the page fault, and provide a * handling routine. Since accessing the address * without the handler is a bug, do not try to handle * it normally, and panic immediately. */ if (!usermode && (td->td_intr_nesting_level != 0 || PCPU_GET(curpcb)->pcb_onfault == NULL)) { trap_fatal(frame, eva); return (-1); } } /* * PGEX_I is defined only if the execute disable bit capability is * supported and enabled. */ if (frame->tf_err & PGEX_W) ftype = VM_PROT_WRITE; else if ((frame->tf_err & PGEX_I) && pg_nx != 0) ftype = VM_PROT_EXECUTE; else ftype = VM_PROT_READ; if (map != kernel_map) { /* * Keep swapout from messing with us during this * critical time. */ PROC_LOCK(p); ++p->p_lock; PROC_UNLOCK(p); /* Fault in the user page: */ rv = vm_fault(map, va, ftype, VM_FAULT_NORMAL); PROC_LOCK(p); --p->p_lock; PROC_UNLOCK(p); } else { /* * Don't have to worry about process locking or stacks in the * kernel. */ rv = vm_fault(map, va, ftype, VM_FAULT_NORMAL); } if (rv == KERN_SUCCESS) { #ifdef HWPMC_HOOKS if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) { PMC_SOFT_CALL_TF( , , page_fault, all, frame); if (ftype == VM_PROT_READ) PMC_SOFT_CALL_TF( , , page_fault, read, frame); else PMC_SOFT_CALL_TF( , , page_fault, write, frame); } #endif return (0); } nogo: if (!usermode) { if (td->td_intr_nesting_level == 0 && PCPU_GET(curpcb)->pcb_onfault != NULL) { frame->tf_rip = (long)PCPU_GET(curpcb)->pcb_onfault; return (0); } trap_fatal(frame, eva); return (-1); } return((rv == KERN_PROTECTION_FAILURE) ? SIGBUS : SIGSEGV); } static void trap_fatal(frame, eva) struct trapframe *frame; vm_offset_t eva; { int code, ss; u_int type; long esp; struct soft_segment_descriptor softseg; char *msg; code = frame->tf_err; type = frame->tf_trapno; sdtossd(&gdt[NGDT * PCPU_GET(cpuid) + IDXSEL(frame->tf_cs & 0xffff)], &softseg); if (type <= MAX_TRAP_MSG) msg = trap_msg[type]; else msg = "UNKNOWN"; printf("\n\nFatal trap %d: %s while in %s mode\n", type, msg, ISPL(frame->tf_cs) == SEL_UPL ? "user" : "kernel"); #ifdef SMP /* two separate prints in case of a trap on an unmapped page */ printf("cpuid = %d; ", PCPU_GET(cpuid)); printf("apic id = %02x\n", PCPU_GET(apic_id)); #endif if (type == T_PAGEFLT) { printf("fault virtual address = 0x%lx\n", eva); printf("fault code = %s %s %s, %s\n", code & PGEX_U ? "user" : "supervisor", code & PGEX_W ? "write" : "read", code & PGEX_I ? "instruction" : "data", code & PGEX_P ? "protection violation" : "page not present"); } printf("instruction pointer = 0x%lx:0x%lx\n", frame->tf_cs & 0xffff, frame->tf_rip); if (ISPL(frame->tf_cs) == SEL_UPL) { ss = frame->tf_ss & 0xffff; esp = frame->tf_rsp; } else { ss = GSEL(GDATA_SEL, SEL_KPL); esp = (long)&frame->tf_rsp; } printf("stack pointer = 0x%x:0x%lx\n", ss, esp); printf("frame pointer = 0x%x:0x%lx\n", ss, frame->tf_rbp); printf("code segment = base 0x%lx, limit 0x%lx, type 0x%x\n", softseg.ssd_base, softseg.ssd_limit, softseg.ssd_type); printf(" = DPL %d, pres %d, long %d, def32 %d, gran %d\n", softseg.ssd_dpl, softseg.ssd_p, softseg.ssd_long, softseg.ssd_def32, softseg.ssd_gran); printf("processor eflags = "); if (frame->tf_rflags & PSL_T) printf("trace trap, "); if (frame->tf_rflags & PSL_I) printf("interrupt enabled, "); if (frame->tf_rflags & PSL_NT) printf("nested task, "); if (frame->tf_rflags & PSL_RF) printf("resume, "); printf("IOPL = %ld\n", (frame->tf_rflags & PSL_IOPL) >> 12); printf("current process = "); if (curproc) { printf("%lu (%s)\n", (u_long)curproc->p_pid, curthread->td_name ? curthread->td_name : ""); } else { printf("Idle\n"); } #ifdef KDB if (debugger_on_panic || kdb_active) if (kdb_trap(type, 0, frame)) return; #endif printf("trap number = %d\n", type); if (type <= MAX_TRAP_MSG) panic("%s", trap_msg[type]); else panic("unknown/reserved trap"); } /* * Double fault handler. Called when a fault occurs while writing * a frame for a trap/exception onto the stack. This usually occurs * when the stack overflows (such is the case with infinite recursion, * for example). */ void dblfault_handler(struct trapframe *frame) { #ifdef KDTRACE_HOOKS if (dtrace_doubletrap_func != NULL) (*dtrace_doubletrap_func)(); #endif printf("\nFatal double fault\n"); printf("rip = 0x%lx\n", frame->tf_rip); printf("rsp = 0x%lx\n", frame->tf_rsp); printf("rbp = 0x%lx\n", frame->tf_rbp); #ifdef SMP /* two separate prints in case of a trap on an unmapped page */ printf("cpuid = %d; ", PCPU_GET(cpuid)); printf("apic id = %02x\n", PCPU_GET(apic_id)); #endif panic("double fault"); } int cpu_fetch_syscall_args(struct thread *td, struct syscall_args *sa) { struct proc *p; struct trapframe *frame; register_t *argp; caddr_t params; int reg, regcnt, error; p = td->td_proc; frame = td->td_frame; reg = 0; regcnt = 6; params = (caddr_t)frame->tf_rsp + sizeof(register_t); sa->code = frame->tf_rax; if (sa->code == SYS_syscall || sa->code == SYS___syscall) { sa->code = frame->tf_rdi; reg++; regcnt--; } if (p->p_sysent->sv_mask) sa->code &= p->p_sysent->sv_mask; if (sa->code >= p->p_sysent->sv_size) sa->callp = &p->p_sysent->sv_table[0]; else sa->callp = &p->p_sysent->sv_table[sa->code]; sa->narg = sa->callp->sy_narg; KASSERT(sa->narg <= sizeof(sa->args) / sizeof(sa->args[0]), ("Too many syscall arguments!")); error = 0; argp = &frame->tf_rdi; argp += reg; bcopy(argp, sa->args, sizeof(sa->args[0]) * regcnt); if (sa->narg > regcnt) { KASSERT(params != NULL, ("copyin args with no params!")); error = copyin(params, &sa->args[regcnt], (sa->narg - regcnt) * sizeof(sa->args[0])); } if (error == 0) { td->td_retval[0] = 0; td->td_retval[1] = frame->tf_rdx; } return (error); } #include "../../kern/subr_syscall.c" /* * System call handler for native binaries. The trap frame is already * set up by the assembler trampoline and a pointer to it is saved in * td_frame. */ void amd64_syscall(struct thread *td, int traced) { struct syscall_args sa; int error; ksiginfo_t ksi; #ifdef DIAGNOSTIC if (ISPL(td->td_frame->tf_cs) != SEL_UPL) { panic("syscall"); /* NOT REACHED */ } #endif error = syscallenter(td, &sa); /* * Traced syscall. */ if (__predict_false(traced)) { td->td_frame->tf_rflags &= ~PSL_T; ksiginfo_init_trap(&ksi); ksi.ksi_signo = SIGTRAP; ksi.ksi_code = TRAP_TRACE; ksi.ksi_addr = (void *)td->td_frame->tf_rip; trapsignal(td, &ksi); } KASSERT(PCB_USER_FPU(td->td_pcb), ("System call %s returing with kernel FPU ctx leaked", syscallname(td->td_proc, sa.code))); KASSERT(td->td_pcb->pcb_save == get_pcb_user_save_td(td), ("System call %s returning with mangled pcb_save", syscallname(td->td_proc, sa.code))); syscallret(td, error, &sa); /* * If the user-supplied value of %rip is not a canonical * address, then some CPUs will trigger a ring 0 #GP during * the sysret instruction. However, the fault handler would * execute in ring 0 with the user's %gs and %rsp which would * not be safe. Instead, use the full return path which * catches the problem safely. */ if (td->td_frame->tf_rip >= VM_MAXUSER_ADDRESS) set_pcb_flags(td->td_pcb, PCB_FULL_IRET); }