Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/ppi/@/dev/ath/ath_hal/ar9002/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/ppi/@/dev/ath/ath_hal/ar9002/ar9280_attach.c |
/* * Copyright (c) 2008-2009 Sam Leffler, Errno Consulting * Copyright (c) 2008 Atheros Communications, Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * * $FreeBSD: release/9.1.0/sys/dev/ath/ath_hal/ar9002/ar9280_attach.c 224644 2011-08-03 23:57:38Z adrian $ */ #include "opt_ah.h" #include "ah.h" #include "ah_internal.h" #include "ah_devid.h" #include "ah_eeprom_v14.h" /* XXX for tx/rx gain */ #include "ar9002/ar9280.h" #include "ar5416/ar5416reg.h" #include "ar5416/ar5416phy.h" #include "ar9002/ar9280v1.ini" #include "ar9002/ar9280v2.ini" #include "ar9002/ar9280_olc.h" static const HAL_PERCAL_DATA ar9280_iq_cal = { /* single sample */ .calName = "IQ", .calType = IQ_MISMATCH_CAL, .calNumSamples = MIN_CAL_SAMPLES, .calCountMax = PER_MAX_LOG_COUNT, .calCollect = ar5416IQCalCollect, .calPostProc = ar5416IQCalibration }; static const HAL_PERCAL_DATA ar9280_adc_gain_cal = { /* single sample */ .calName = "ADC Gain", .calType = ADC_GAIN_CAL, .calNumSamples = MIN_CAL_SAMPLES, .calCountMax = PER_MAX_LOG_COUNT, .calCollect = ar5416AdcGainCalCollect, .calPostProc = ar5416AdcGainCalibration }; static const HAL_PERCAL_DATA ar9280_adc_dc_cal = { /* single sample */ .calName = "ADC DC", .calType = ADC_DC_CAL, .calNumSamples = MIN_CAL_SAMPLES, .calCountMax = PER_MAX_LOG_COUNT, .calCollect = ar5416AdcDcCalCollect, .calPostProc = ar5416AdcDcCalibration }; static const HAL_PERCAL_DATA ar9280_adc_init_dc_cal = { .calName = "ADC Init DC", .calType = ADC_DC_INIT_CAL, .calNumSamples = MIN_CAL_SAMPLES, .calCountMax = INIT_LOG_COUNT, .calCollect = ar5416AdcDcCalCollect, .calPostProc = ar5416AdcDcCalibration }; static void ar9280ConfigPCIE(struct ath_hal *ah, HAL_BOOL restore); static HAL_BOOL ar9280FillCapabilityInfo(struct ath_hal *ah); static void ar9280WriteIni(struct ath_hal *ah, const struct ieee80211_channel *chan); static void ar9280AniSetup(struct ath_hal *ah) { /* * These are the parameters from the AR5416 ANI code; * they likely need quite a bit of adjustment for the * AR9280. */ static const struct ar5212AniParams aniparams = { .maxNoiseImmunityLevel = 4, /* levels 0..4 */ .totalSizeDesired = { -55, -55, -55, -55, -62 }, .coarseHigh = { -14, -14, -14, -14, -12 }, .coarseLow = { -64, -64, -64, -64, -70 }, .firpwr = { -78, -78, -78, -78, -80 }, .maxSpurImmunityLevel = 2, .cycPwrThr1 = { 2, 4, 6 }, .maxFirstepLevel = 2, /* levels 0..2 */ .firstep = { 0, 4, 8 }, .ofdmTrigHigh = 500, .ofdmTrigLow = 200, .cckTrigHigh = 200, .cckTrigLow = 100, .rssiThrHigh = 40, .rssiThrLow = 7, .period = 100, }; /* NB: disable ANI noise immmunity for reliable RIFS rx */ AH5416(ah)->ah_ani_function &= ~(1 << HAL_ANI_NOISE_IMMUNITY_LEVEL); /* NB: ANI is not enabled yet */ ar5416AniAttach(ah, &aniparams, &aniparams, AH_TRUE); } void ar9280InitPLL(struct ath_hal *ah, const struct ieee80211_channel *chan) { uint32_t pll = SM(0x5, AR_RTC_SOWL_PLL_REFDIV); if (AR_SREV_MERLIN_20(ah) && chan != AH_NULL && IEEE80211_IS_CHAN_5GHZ(chan)) { /* * PLL WAR for Merlin 2.0/2.1 * When doing fast clock, set PLL to 0x142c * Else, set PLL to 0x2850 to prevent reset-to-reset variation */ pll = IS_5GHZ_FAST_CLOCK_EN(ah, chan) ? 0x142c : 0x2850; } else if (AR_SREV_MERLIN_10_OR_LATER(ah)) { pll = SM(0x5, AR_RTC_SOWL_PLL_REFDIV); if (chan != AH_NULL) { if (IEEE80211_IS_CHAN_HALF(chan)) pll |= SM(0x1, AR_RTC_SOWL_PLL_CLKSEL); else if (IEEE80211_IS_CHAN_QUARTER(chan)) pll |= SM(0x2, AR_RTC_SOWL_PLL_CLKSEL); if (IEEE80211_IS_CHAN_5GHZ(chan)) pll |= SM(0x28, AR_RTC_SOWL_PLL_DIV); else pll |= SM(0x2c, AR_RTC_SOWL_PLL_DIV); } else pll |= SM(0x2c, AR_RTC_SOWL_PLL_DIV); } OS_REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll); OS_DELAY(RTC_PLL_SETTLE_DELAY); OS_REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_SLEEP_DERIVED_CLK); } /* XXX shouldn't be here! */ #define EEP_MINOR(_ah) \ (AH_PRIVATE(_ah)->ah_eeversion & AR5416_EEP_VER_MINOR_MASK) /* * Attach for an AR9280 part. */ static struct ath_hal * ar9280Attach(uint16_t devid, HAL_SOFTC sc, HAL_BUS_TAG st, HAL_BUS_HANDLE sh, uint16_t *eepromdata, HAL_STATUS *status) { struct ath_hal_9280 *ahp9280; struct ath_hal_5212 *ahp; struct ath_hal *ah; uint32_t val; HAL_STATUS ecode; HAL_BOOL rfStatus; int8_t pwr_table_offset; uint8_t pwr; HALDEBUG_G(AH_NULL, HAL_DEBUG_ATTACH, "%s: sc %p st %p sh %p\n", __func__, sc, (void*) st, (void*) sh); /* NB: memory is returned zero'd */ ahp9280 = ath_hal_malloc(sizeof (struct ath_hal_9280)); if (ahp9280 == AH_NULL) { HALDEBUG_G(AH_NULL, HAL_DEBUG_ANY, "%s: cannot allocate memory for state block\n", __func__); *status = HAL_ENOMEM; return AH_NULL; } ahp = AH5212(ahp9280); ah = &ahp->ah_priv.h; ar5416InitState(AH5416(ah), devid, sc, st, sh, status); /* XXX override with 9280 specific state */ /* override 5416 methods for our needs */ AH5416(ah)->ah_initPLL = ar9280InitPLL; ah->ah_setAntennaSwitch = ar9280SetAntennaSwitch; ah->ah_configPCIE = ar9280ConfigPCIE; AH5416(ah)->ah_cal.iqCalData.calData = &ar9280_iq_cal; AH5416(ah)->ah_cal.adcGainCalData.calData = &ar9280_adc_gain_cal; AH5416(ah)->ah_cal.adcDcCalData.calData = &ar9280_adc_dc_cal; AH5416(ah)->ah_cal.adcDcCalInitData.calData = &ar9280_adc_init_dc_cal; AH5416(ah)->ah_cal.suppCals = ADC_GAIN_CAL | ADC_DC_CAL | IQ_MISMATCH_CAL; AH5416(ah)->ah_spurMitigate = ar9280SpurMitigate; AH5416(ah)->ah_writeIni = ar9280WriteIni; AH5416(ah)->ah_olcInit = ar9280olcInit; AH5416(ah)->ah_olcTempCompensation = ar9280olcTemperatureCompensation; AH5416(ah)->ah_setPowerCalTable = ar9280SetPowerCalTable; AH5416(ah)->ah_rx_chainmask = AR9280_DEFAULT_RXCHAINMASK; AH5416(ah)->ah_tx_chainmask = AR9280_DEFAULT_TXCHAINMASK; if (!ar5416SetResetReg(ah, HAL_RESET_POWER_ON)) { /* reset chip */ HALDEBUG(ah, HAL_DEBUG_ANY, "%s: couldn't reset chip\n", __func__); ecode = HAL_EIO; goto bad; } if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: couldn't wakeup chip\n", __func__); ecode = HAL_EIO; goto bad; } /* Read Revisions from Chips before taking out of reset */ val = OS_REG_READ(ah, AR_SREV); HALDEBUG(ah, HAL_DEBUG_ATTACH, "%s: ID 0x%x VERSION 0x%x TYPE 0x%x REVISION 0x%x\n", __func__, MS(val, AR_XSREV_ID), MS(val, AR_XSREV_VERSION), MS(val, AR_XSREV_TYPE), MS(val, AR_XSREV_REVISION)); /* NB: include chip type to differentiate from pre-Sowl versions */ AH_PRIVATE(ah)->ah_macVersion = (val & AR_XSREV_VERSION) >> AR_XSREV_TYPE_S; AH_PRIVATE(ah)->ah_macRev = MS(val, AR_XSREV_REVISION); AH_PRIVATE(ah)->ah_ispcie = (val & AR_XSREV_TYPE_HOST_MODE) == 0; /* setup common ini data; rf backends handle remainder */ if (AR_SREV_MERLIN_20_OR_LATER(ah)) { HAL_INI_INIT(&ahp->ah_ini_modes, ar9280Modes_v2, 6); HAL_INI_INIT(&ahp->ah_ini_common, ar9280Common_v2, 2); HAL_INI_INIT(&AH5416(ah)->ah_ini_pcieserdes, ar9280PciePhy_clkreq_always_on_L1_v2, 2); HAL_INI_INIT(&ahp9280->ah_ini_xmodes, ar9280Modes_fast_clock_v2, 3); } else { HAL_INI_INIT(&ahp->ah_ini_modes, ar9280Modes_v1, 6); HAL_INI_INIT(&ahp->ah_ini_common, ar9280Common_v1, 2); HAL_INI_INIT(&AH5416(ah)->ah_ini_pcieserdes, ar9280PciePhy_v1, 2); } ar5416AttachPCIE(ah); ecode = ath_hal_v14EepromAttach(ah); if (ecode != HAL_OK) goto bad; if (!ar5416ChipReset(ah, AH_NULL)) { /* reset chip */ HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__); ecode = HAL_EIO; goto bad; } AH_PRIVATE(ah)->ah_phyRev = OS_REG_READ(ah, AR_PHY_CHIP_ID); if (!ar5212ChipTest(ah)) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: hardware self-test failed\n", __func__); ecode = HAL_ESELFTEST; goto bad; } /* * Set correct Baseband to analog shift * setting to access analog chips. */ OS_REG_WRITE(ah, AR_PHY(0), 0x00000007); /* Read Radio Chip Rev Extract */ AH_PRIVATE(ah)->ah_analog5GhzRev = ar5416GetRadioRev(ah); switch (AH_PRIVATE(ah)->ah_analog5GhzRev & AR_RADIO_SREV_MAJOR) { case AR_RAD2133_SREV_MAJOR: /* Sowl: 2G/3x3 */ case AR_RAD5133_SREV_MAJOR: /* Sowl: 2+5G/3x3 */ break; default: if (AH_PRIVATE(ah)->ah_analog5GhzRev == 0) { AH_PRIVATE(ah)->ah_analog5GhzRev = AR_RAD5133_SREV_MAJOR; break; } #ifdef AH_DEBUG HALDEBUG(ah, HAL_DEBUG_ANY, "%s: 5G Radio Chip Rev 0x%02X is not supported by " "this driver\n", __func__, AH_PRIVATE(ah)->ah_analog5GhzRev); ecode = HAL_ENOTSUPP; goto bad; #endif } rfStatus = ar9280RfAttach(ah, &ecode); if (!rfStatus) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RF setup failed, status %u\n", __func__, ecode); goto bad; } /* Enable fixup for AR_AN_TOP2 if necessary */ /* * The v14 EEPROM layer returns HAL_EIO if PWDCLKIND isn't supported * by the EEPROM version. * * ath9k checks the EEPROM minor version is >= 0x0a here, instead of * the abstracted EEPROM access layer. */ ecode = ath_hal_eepromGet(ah, AR_EEP_PWDCLKIND, &pwr); if (AR_SREV_MERLIN_20_OR_LATER(ah) && ecode == HAL_OK && pwr == 0) { printf("[ath] enabling AN_TOP2_FIXUP\n"); AH5416(ah)->ah_need_an_top2_fixup = 1; } /* * Check whether the power table offset isn't the default. * This can occur with eeprom minor V21 or greater on Merlin. */ (void) ath_hal_eepromGet(ah, AR_EEP_PWR_TABLE_OFFSET, &pwr_table_offset); if (pwr_table_offset != AR5416_PWR_TABLE_OFFSET_DB) ath_hal_printf(ah, "[ath]: default pwr offset: %d dBm != EEPROM pwr offset: %d dBm; curves will be adjusted.\n", AR5416_PWR_TABLE_OFFSET_DB, (int) pwr_table_offset); /* XXX check for >= minor ver 17 */ if (AR_SREV_MERLIN_20(ah)) { /* setup rxgain table */ switch (ath_hal_eepromGet(ah, AR_EEP_RXGAIN_TYPE, AH_NULL)) { case AR5416_EEP_RXGAIN_13dB_BACKOFF: HAL_INI_INIT(&ahp9280->ah_ini_rxgain, ar9280Modes_backoff_13db_rxgain_v2, 6); break; case AR5416_EEP_RXGAIN_23dB_BACKOFF: HAL_INI_INIT(&ahp9280->ah_ini_rxgain, ar9280Modes_backoff_23db_rxgain_v2, 6); break; case AR5416_EEP_RXGAIN_ORIG: HAL_INI_INIT(&ahp9280->ah_ini_rxgain, ar9280Modes_original_rxgain_v2, 6); break; default: HALASSERT(AH_FALSE); goto bad; /* XXX ? try to continue */ } } /* XXX check for >= minor ver 19 */ if (AR_SREV_MERLIN_20(ah)) { /* setp txgain table */ switch (ath_hal_eepromGet(ah, AR_EEP_TXGAIN_TYPE, AH_NULL)) { case AR5416_EEP_TXGAIN_HIGH_POWER: HAL_INI_INIT(&ahp9280->ah_ini_txgain, ar9280Modes_high_power_tx_gain_v2, 6); break; case AR5416_EEP_TXGAIN_ORIG: HAL_INI_INIT(&ahp9280->ah_ini_txgain, ar9280Modes_original_tx_gain_v2, 6); break; default: HALASSERT(AH_FALSE); goto bad; /* XXX ? try to continue */ } } /* * Got everything we need now to setup the capabilities. */ if (!ar9280FillCapabilityInfo(ah)) { ecode = HAL_EEREAD; goto bad; } ecode = ath_hal_eepromGet(ah, AR_EEP_MACADDR, ahp->ah_macaddr); if (ecode != HAL_OK) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: error getting mac address from EEPROM\n", __func__); goto bad; } /* XXX How about the serial number ? */ /* Read Reg Domain */ AH_PRIVATE(ah)->ah_currentRD = ath_hal_eepromGet(ah, AR_EEP_REGDMN_0, AH_NULL); AH_PRIVATE(ah)->ah_currentRDext = ath_hal_eepromGet(ah, AR_EEP_REGDMN_1, AH_NULL); /* * ah_miscMode is populated by ar5416FillCapabilityInfo() * starting from griffin. Set here to make sure that * AR_MISC_MODE_MIC_NEW_LOC_ENABLE is set before a GTK is * placed into hardware. */ if (ahp->ah_miscMode != 0) OS_REG_WRITE(ah, AR_MISC_MODE, OS_REG_READ(ah, AR_MISC_MODE) | ahp->ah_miscMode); ar9280AniSetup(ah); /* Anti Noise Immunity */ /* Setup noise floor min/max/nominal values */ AH5416(ah)->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9280_2GHZ; AH5416(ah)->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9280_2GHZ; AH5416(ah)->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9280_2GHZ; AH5416(ah)->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9280_5GHZ; AH5416(ah)->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_9280_5GHZ; AH5416(ah)->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_9280_5GHZ; ar5416InitNfHistBuff(AH5416(ah)->ah_cal.nfCalHist); HALDEBUG(ah, HAL_DEBUG_ATTACH, "%s: return\n", __func__); return ah; bad: if (ah != AH_NULL) ah->ah_detach(ah); if (status) *status = ecode; return AH_NULL; } static void ar9280ConfigPCIE(struct ath_hal *ah, HAL_BOOL restore) { if (AH_PRIVATE(ah)->ah_ispcie && !restore) { ath_hal_ini_write(ah, &AH5416(ah)->ah_ini_pcieserdes, 1, 0); OS_DELAY(1000); OS_REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA); OS_REG_WRITE(ah, AR_WA, AR9280_WA_DEFAULT); } } static void ar9280WriteIni(struct ath_hal *ah, const struct ieee80211_channel *chan) { u_int modesIndex, freqIndex; int regWrites = 0; int i; const HAL_INI_ARRAY *ia; /* Setup the indices for the next set of register array writes */ /* XXX Ignore 11n dynamic mode on the AR5416 for the moment */ if (IEEE80211_IS_CHAN_2GHZ(chan)) { freqIndex = 2; if (IEEE80211_IS_CHAN_HT40(chan)) modesIndex = 3; else if (IEEE80211_IS_CHAN_108G(chan)) modesIndex = 5; else modesIndex = 4; } else { freqIndex = 1; if (IEEE80211_IS_CHAN_HT40(chan) || IEEE80211_IS_CHAN_TURBO(chan)) modesIndex = 2; else modesIndex = 1; } /* Set correct Baseband to analog shift setting to access analog chips. */ OS_REG_WRITE(ah, AR_PHY(0), 0x00000007); OS_REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC); /* * This is unwound because at the moment, there's a requirement * for Merlin (and later, perhaps) to have a specific bit fixed * in the AR_AN_TOP2 register before writing it. */ ia = &AH5212(ah)->ah_ini_modes; #if 0 regWrites = ath_hal_ini_write(ah, &AH5212(ah)->ah_ini_modes, modesIndex, regWrites); #endif HALASSERT(modesIndex < ia->cols); for (i = 0; i < ia->rows; i++) { uint32_t reg = HAL_INI_VAL(ia, i, 0); uint32_t val = HAL_INI_VAL(ia, i, modesIndex); if (reg == AR_AN_TOP2 && AH5416(ah)->ah_need_an_top2_fixup) val &= ~AR_AN_TOP2_PWDCLKIND; OS_REG_WRITE(ah, reg, val); /* Analog shift register delay seems needed for Merlin - PR kern/154220 */ if (reg >= 0x7800 && reg < 0x7900) OS_DELAY(100); DMA_YIELD(regWrites); } if (AR_SREV_MERLIN_20_OR_LATER(ah)) { regWrites = ath_hal_ini_write(ah, &AH9280(ah)->ah_ini_rxgain, modesIndex, regWrites); regWrites = ath_hal_ini_write(ah, &AH9280(ah)->ah_ini_txgain, modesIndex, regWrites); } /* XXX Merlin 100us delay for shift registers */ regWrites = ath_hal_ini_write(ah, &AH5212(ah)->ah_ini_common, 1, regWrites); if (AR_SREV_MERLIN_20(ah) && IS_5GHZ_FAST_CLOCK_EN(ah, chan)) { /* 5GHz channels w/ Fast Clock use different modal values */ regWrites = ath_hal_ini_write(ah, &AH9280(ah)->ah_ini_xmodes, modesIndex, regWrites); } } #define AR_BASE_FREQ_2GHZ 2300 #define AR_BASE_FREQ_5GHZ 4900 #define AR_SPUR_FEEQ_BOUND_HT40 19 #define AR_SPUR_FEEQ_BOUND_HT20 10 void ar9280SpurMitigate(struct ath_hal *ah, const struct ieee80211_channel *chan) { static const int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8, AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60 }; static const int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10, AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60 }; static int inc[4] = { 0, 100, 0, 0 }; int bb_spur = AR_NO_SPUR; int freq; int bin, cur_bin; int bb_spur_off, spur_subchannel_sd; int spur_freq_sd; int spur_delta_phase; int denominator; int upper, lower, cur_vit_mask; int tmp, newVal; int i; CHAN_CENTERS centers; int8_t mask_m[123]; int8_t mask_p[123]; int8_t mask_amt; int tmp_mask; int cur_bb_spur; HAL_BOOL is2GHz = IEEE80211_IS_CHAN_2GHZ(chan); OS_MEMZERO(&mask_m, sizeof(int8_t) * 123); OS_MEMZERO(&mask_p, sizeof(int8_t) * 123); ar5416GetChannelCenters(ah, chan, ¢ers); freq = centers.synth_center; /* * Need to verify range +/- 9.38 for static ht20 and +/- 18.75 for ht40, * otherwise spur is out-of-band and can be ignored. */ for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) { cur_bb_spur = ath_hal_getSpurChan(ah, i, is2GHz); /* Get actual spur freq in MHz from EEPROM read value */ if (is2GHz) { cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ; } else { cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ; } if (AR_NO_SPUR == cur_bb_spur) break; cur_bb_spur = cur_bb_spur - freq; if (IEEE80211_IS_CHAN_HT40(chan)) { if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) && (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) { bb_spur = cur_bb_spur; break; } } else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) && (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) { bb_spur = cur_bb_spur; break; } } if (AR_NO_SPUR == bb_spur) { #if 1 /* * MRC CCK can interfere with beacon detection and cause deaf/mute. * Disable MRC CCK for now. */ OS_REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK, AR_PHY_FORCE_CLKEN_CCK_MRC_MUX); #else /* Enable MRC CCK if no spur is found in this channel. */ OS_REG_SET_BIT(ah, AR_PHY_FORCE_CLKEN_CCK, AR_PHY_FORCE_CLKEN_CCK_MRC_MUX); #endif return; } else { /* * For Merlin, spur can break CCK MRC algorithm. Disable CCK MRC if spur * is found in this channel. */ OS_REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK, AR_PHY_FORCE_CLKEN_CCK_MRC_MUX); } bin = bb_spur * 320; tmp = OS_REG_READ(ah, AR_PHY_TIMING_CTRL4_CHAIN(0)); newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI | AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER | AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK | AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK); OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4_CHAIN(0), newVal); newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL | AR_PHY_SPUR_REG_ENABLE_MASK_PPM | AR_PHY_SPUR_REG_MASK_RATE_SELECT | AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI | SM(AR5416_SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH)); OS_REG_WRITE(ah, AR_PHY_SPUR_REG, newVal); /* Pick control or extn channel to cancel the spur */ if (IEEE80211_IS_CHAN_HT40(chan)) { if (bb_spur < 0) { spur_subchannel_sd = 1; bb_spur_off = bb_spur + 10; } else { spur_subchannel_sd = 0; bb_spur_off = bb_spur - 10; } } else { spur_subchannel_sd = 0; bb_spur_off = bb_spur; } /* * spur_delta_phase = bb_spur/40 * 2**21 for static ht20, * /80 for dyn2040. */ if (IEEE80211_IS_CHAN_HT40(chan)) spur_delta_phase = ((bb_spur * 262144) / 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE; else spur_delta_phase = ((bb_spur * 524288) / 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE; /* * in 11A mode the denominator of spur_freq_sd should be 40 and * it should be 44 in 11G */ denominator = IEEE80211_IS_CHAN_2GHZ(chan) ? 44 : 40; spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff; newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC | SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) | SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE)); OS_REG_WRITE(ah, AR_PHY_TIMING11, newVal); /* Choose to cancel between control and extension channels */ newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S; OS_REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal); /* * ============================================ * Set Pilot and Channel Masks * * pilot mask 1 [31:0] = +6..-26, no 0 bin * pilot mask 2 [19:0] = +26..+7 * * channel mask 1 [31:0] = +6..-26, no 0 bin * channel mask 2 [19:0] = +26..+7 */ cur_bin = -6000; upper = bin + 100; lower = bin - 100; for (i = 0; i < 4; i++) { int pilot_mask = 0; int chan_mask = 0; int bp = 0; for (bp = 0; bp < 30; bp++) { if ((cur_bin > lower) && (cur_bin < upper)) { pilot_mask = pilot_mask | 0x1 << bp; chan_mask = chan_mask | 0x1 << bp; } cur_bin += 100; } cur_bin += inc[i]; OS_REG_WRITE(ah, pilot_mask_reg[i], pilot_mask); OS_REG_WRITE(ah, chan_mask_reg[i], chan_mask); } /* ================================================= * viterbi mask 1 based on channel magnitude * four levels 0-3 * - mask (-27 to 27) (reg 64,0x9900 to 67,0x990c) * [1 2 2 1] for -9.6 or [1 2 1] for +16 * - enable_mask_ppm, all bins move with freq * * - mask_select, 8 bits for rates (reg 67,0x990c) * - mask_rate_cntl, 8 bits for rates (reg 67,0x990c) * choose which mask to use mask or mask2 */ /* * viterbi mask 2 2nd set for per data rate puncturing * four levels 0-3 * - mask_select, 8 bits for rates (reg 67) * - mask (-27 to 27) (reg 98,0x9988 to 101,0x9994) * [1 2 2 1] for -9.6 or [1 2 1] for +16 */ cur_vit_mask = 6100; upper = bin + 120; lower = bin - 120; for (i = 0; i < 123; i++) { if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) { if ((abs(cur_vit_mask - bin)) < 75) { mask_amt = 1; } else { mask_amt = 0; } if (cur_vit_mask < 0) { mask_m[abs(cur_vit_mask / 100)] = mask_amt; } else { mask_p[cur_vit_mask / 100] = mask_amt; } } cur_vit_mask -= 100; } tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28) | (mask_m[48] << 26) | (mask_m[49] << 24) | (mask_m[50] << 22) | (mask_m[51] << 20) | (mask_m[52] << 18) | (mask_m[53] << 16) | (mask_m[54] << 14) | (mask_m[55] << 12) | (mask_m[56] << 10) | (mask_m[57] << 8) | (mask_m[58] << 6) | (mask_m[59] << 4) | (mask_m[60] << 2) | (mask_m[61] << 0); OS_REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask); OS_REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask); tmp_mask = (mask_m[31] << 28) | (mask_m[32] << 26) | (mask_m[33] << 24) | (mask_m[34] << 22) | (mask_m[35] << 20) | (mask_m[36] << 18) | (mask_m[37] << 16) | (mask_m[48] << 14) | (mask_m[39] << 12) | (mask_m[40] << 10) | (mask_m[41] << 8) | (mask_m[42] << 6) | (mask_m[43] << 4) | (mask_m[44] << 2) | (mask_m[45] << 0); OS_REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask); OS_REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask); tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28) | (mask_m[18] << 26) | (mask_m[18] << 24) | (mask_m[20] << 22) | (mask_m[20] << 20) | (mask_m[22] << 18) | (mask_m[22] << 16) | (mask_m[24] << 14) | (mask_m[24] << 12) | (mask_m[25] << 10) | (mask_m[26] << 8) | (mask_m[27] << 6) | (mask_m[28] << 4) | (mask_m[29] << 2) | (mask_m[30] << 0); OS_REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask); OS_REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask); tmp_mask = (mask_m[ 0] << 30) | (mask_m[ 1] << 28) | (mask_m[ 2] << 26) | (mask_m[ 3] << 24) | (mask_m[ 4] << 22) | (mask_m[ 5] << 20) | (mask_m[ 6] << 18) | (mask_m[ 7] << 16) | (mask_m[ 8] << 14) | (mask_m[ 9] << 12) | (mask_m[10] << 10) | (mask_m[11] << 8) | (mask_m[12] << 6) | (mask_m[13] << 4) | (mask_m[14] << 2) | (mask_m[15] << 0); OS_REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask); OS_REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask); tmp_mask = (mask_p[15] << 28) | (mask_p[14] << 26) | (mask_p[13] << 24) | (mask_p[12] << 22) | (mask_p[11] << 20) | (mask_p[10] << 18) | (mask_p[ 9] << 16) | (mask_p[ 8] << 14) | (mask_p[ 7] << 12) | (mask_p[ 6] << 10) | (mask_p[ 5] << 8) | (mask_p[ 4] << 6) | (mask_p[ 3] << 4) | (mask_p[ 2] << 2) | (mask_p[ 1] << 0); OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask); OS_REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask); tmp_mask = (mask_p[30] << 28) | (mask_p[29] << 26) | (mask_p[28] << 24) | (mask_p[27] << 22) | (mask_p[26] << 20) | (mask_p[25] << 18) | (mask_p[24] << 16) | (mask_p[23] << 14) | (mask_p[22] << 12) | (mask_p[21] << 10) | (mask_p[20] << 8) | (mask_p[19] << 6) | (mask_p[18] << 4) | (mask_p[17] << 2) | (mask_p[16] << 0); OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask); OS_REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask); tmp_mask = (mask_p[45] << 28) | (mask_p[44] << 26) | (mask_p[43] << 24) | (mask_p[42] << 22) | (mask_p[41] << 20) | (mask_p[40] << 18) | (mask_p[39] << 16) | (mask_p[38] << 14) | (mask_p[37] << 12) | (mask_p[36] << 10) | (mask_p[35] << 8) | (mask_p[34] << 6) | (mask_p[33] << 4) | (mask_p[32] << 2) | (mask_p[31] << 0); OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask); OS_REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask); tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28) | (mask_p[59] << 26) | (mask_p[58] << 24) | (mask_p[57] << 22) | (mask_p[56] << 20) | (mask_p[55] << 18) | (mask_p[54] << 16) | (mask_p[53] << 14) | (mask_p[52] << 12) | (mask_p[51] << 10) | (mask_p[50] << 8) | (mask_p[49] << 6) | (mask_p[48] << 4) | (mask_p[47] << 2) | (mask_p[46] << 0); OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask); OS_REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask); } /* * Fill all software cached or static hardware state information. * Return failure if capabilities are to come from EEPROM and * cannot be read. */ static HAL_BOOL ar9280FillCapabilityInfo(struct ath_hal *ah) { HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps; if (!ar5416FillCapabilityInfo(ah)) return AH_FALSE; pCap->halNumGpioPins = 10; pCap->halWowSupport = AH_TRUE; pCap->halWowMatchPatternExact = AH_TRUE; #if 0 pCap->halWowMatchPatternDword = AH_TRUE; #endif /* AR9280 is a 2x2 stream device */ pCap->halTxStreams = 2; pCap->halRxStreams = 2; pCap->halCSTSupport = AH_TRUE; pCap->halRifsRxSupport = AH_TRUE; pCap->halRifsTxSupport = AH_TRUE; pCap->halRtsAggrLimit = 64*1024; /* 802.11n max */ pCap->halExtChanDfsSupport = AH_TRUE; pCap->halUseCombinedRadarRssi = AH_TRUE; #if 0 /* XXX bluetooth */ pCap->halBtCoexSupport = AH_TRUE; #endif pCap->halAutoSleepSupport = AH_FALSE; /* XXX? */ pCap->hal4kbSplitTransSupport = AH_FALSE; /* Disable this so Block-ACK works correctly */ pCap->halHasRxSelfLinkedTail = AH_FALSE; pCap->halMbssidAggrSupport = AH_TRUE; pCap->hal4AddrAggrSupport = AH_TRUE; if (AR_SREV_MERLIN_20(ah)) { pCap->halPSPollBroken = AH_FALSE; /* * This just enables the support; it doesn't * state 5ghz fast clock will always be used. */ pCap->halSupportsFastClock5GHz = AH_TRUE; } pCap->halRxStbcSupport = 1; pCap->halTxStbcSupport = 1; pCap->halEnhancedDfsSupport = AH_TRUE; return AH_TRUE; } /* * This has been disabled - having the HAL flip chainmasks on/off * when attempting to implement 11n disrupts things. For now, just * leave this flipped off and worry about implementing TX diversity * for legacy and MCS0-7 when 11n is fully functioning. */ HAL_BOOL ar9280SetAntennaSwitch(struct ath_hal *ah, HAL_ANT_SETTING settings) { #define ANTENNA0_CHAINMASK 0x1 #define ANTENNA1_CHAINMASK 0x2 #if 0 struct ath_hal_5416 *ahp = AH5416(ah); /* Antenna selection is done by setting the tx/rx chainmasks approp. */ switch (settings) { case HAL_ANT_FIXED_A: /* Enable first antenna only */ ahp->ah_tx_chainmask = ANTENNA0_CHAINMASK; ahp->ah_rx_chainmask = ANTENNA0_CHAINMASK; break; case HAL_ANT_FIXED_B: /* Enable second antenna only, after checking capability */ if (AH_PRIVATE(ah)->ah_caps.halTxChainMask > ANTENNA1_CHAINMASK) ahp->ah_tx_chainmask = ANTENNA1_CHAINMASK; ahp->ah_rx_chainmask = ANTENNA1_CHAINMASK; break; case HAL_ANT_VARIABLE: /* Restore original chainmask settings */ /* XXX */ ahp->ah_tx_chainmask = AR9280_DEFAULT_TXCHAINMASK; ahp->ah_rx_chainmask = AR9280_DEFAULT_RXCHAINMASK; break; } HALDEBUG(ah, HAL_DEBUG_ANY, "%s: settings=%d, tx/rx chainmask=%d/%d\n", __func__, settings, ahp->ah_tx_chainmask, ahp->ah_rx_chainmask); #endif return AH_TRUE; #undef ANTENNA0_CHAINMASK #undef ANTENNA1_CHAINMASK } static const char* ar9280Probe(uint16_t vendorid, uint16_t devid) { if (vendorid == ATHEROS_VENDOR_ID && (devid == AR9280_DEVID_PCI || devid == AR9280_DEVID_PCIE)) return "Atheros 9280"; return AH_NULL; } AH_CHIP(AR9280, ar9280Probe, ar9280Attach);