Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/ral/@/powerpc/powerpc/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/ral/@/powerpc/powerpc/exec_machdep.c |
/*- * Copyright (C) 1995, 1996 Wolfgang Solfrank. * Copyright (C) 1995, 1996 TooLs GmbH. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by TooLs GmbH. * 4. The name of TooLs GmbH may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /*- * Copyright (C) 2001 Benno Rice * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * $NetBSD: machdep.c,v 1.74.2.1 2000/11/01 16:13:48 tv Exp $ */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/powerpc/powerpc/exec_machdep.c 234520 2012-04-21 00:26:03Z nwhitehorn $"); #include "opt_compat.h" #include <sys/param.h> #include <sys/proc.h> #include <sys/systm.h> #include <sys/bio.h> #include <sys/buf.h> #include <sys/bus.h> #include <sys/cons.h> #include <sys/cpu.h> #include <sys/exec.h> #include <sys/imgact.h> #include <sys/kernel.h> #include <sys/ktr.h> #include <sys/lock.h> #include <sys/malloc.h> #include <sys/mutex.h> #include <sys/signalvar.h> #include <sys/syscallsubr.h> #include <sys/syscall.h> #include <sys/sysent.h> #include <sys/sysproto.h> #include <sys/ucontext.h> #include <sys/uio.h> #include <machine/altivec.h> #include <machine/cpu.h> #include <machine/elf.h> #include <machine/fpu.h> #include <machine/pcb.h> #include <machine/reg.h> #include <machine/sigframe.h> #include <machine/trap.h> #include <machine/vmparam.h> #ifdef COMPAT_FREEBSD32 #include <compat/freebsd32/freebsd32_signal.h> #include <compat/freebsd32/freebsd32_util.h> #include <compat/freebsd32/freebsd32_proto.h> typedef struct __ucontext32 { sigset_t uc_sigmask; mcontext32_t uc_mcontext; uint32_t uc_link; struct sigaltstack32 uc_stack; uint32_t uc_flags; uint32_t __spare__[4]; } ucontext32_t; struct sigframe32 { ucontext32_t sf_uc; struct siginfo32 sf_si; }; static int grab_mcontext32(struct thread *td, mcontext32_t *, int flags); #endif static int grab_mcontext(struct thread *, mcontext_t *, int); void sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask) { struct trapframe *tf; struct sigacts *psp; struct sigframe sf; struct thread *td; struct proc *p; #ifdef COMPAT_FREEBSD32 struct siginfo32 siginfo32; struct sigframe32 sf32; #endif size_t sfpsize; caddr_t sfp, usfp; int oonstack, rndfsize; int sig; int code; td = curthread; p = td->td_proc; PROC_LOCK_ASSERT(p, MA_OWNED); psp = p->p_sigacts; mtx_assert(&psp->ps_mtx, MA_OWNED); tf = td->td_frame; oonstack = sigonstack(tf->fixreg[1]); /* * Fill siginfo structure. */ ksi->ksi_info.si_signo = ksi->ksi_signo; #ifdef AIM ksi->ksi_info.si_addr = (void *)((tf->exc == EXC_DSI) ? tf->cpu.aim.dar : tf->srr0); #else ksi->ksi_info.si_addr = (void *)((tf->exc == EXC_DSI) ? tf->cpu.booke.dear : tf->srr0); #endif #ifdef COMPAT_FREEBSD32 if (SV_PROC_FLAG(p, SV_ILP32)) { siginfo_to_siginfo32(&ksi->ksi_info, &siginfo32); sig = siginfo32.si_signo; code = siginfo32.si_code; sfp = (caddr_t)&sf32; sfpsize = sizeof(sf32); rndfsize = ((sizeof(sf32) + 15) / 16) * 16; /* * Save user context */ memset(&sf32, 0, sizeof(sf32)); grab_mcontext32(td, &sf32.sf_uc.uc_mcontext, 0); sf32.sf_uc.uc_sigmask = *mask; sf32.sf_uc.uc_stack.ss_sp = (uintptr_t)td->td_sigstk.ss_sp; sf32.sf_uc.uc_stack.ss_size = (uint32_t)td->td_sigstk.ss_size; sf32.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK) ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE; sf32.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0; } else { #endif sig = ksi->ksi_signo; code = ksi->ksi_code; sfp = (caddr_t)&sf; sfpsize = sizeof(sf); #ifdef __powerpc64__ /* * 64-bit PPC defines a 288 byte scratch region * below the stack. */ rndfsize = 288 + ((sizeof(sf) + 47) / 48) * 48; #else rndfsize = ((sizeof(sf) + 15) / 16) * 16; #endif /* * Save user context */ memset(&sf, 0, sizeof(sf)); grab_mcontext(td, &sf.sf_uc.uc_mcontext, 0); sf.sf_uc.uc_sigmask = *mask; sf.sf_uc.uc_stack = td->td_sigstk; sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK) ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE; sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0; #ifdef COMPAT_FREEBSD32 } #endif CTR4(KTR_SIG, "sendsig: td=%p (%s) catcher=%p sig=%d", td, p->p_comm, catcher, sig); /* * Allocate and validate space for the signal handler context. */ if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack && SIGISMEMBER(psp->ps_sigonstack, sig)) { usfp = (void *)(td->td_sigstk.ss_sp + td->td_sigstk.ss_size - rndfsize); } else { usfp = (void *)(tf->fixreg[1] - rndfsize); } /* * Translate the signal if appropriate (Linux emu ?) */ if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize) sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)]; /* * Save the floating-point state, if necessary, then copy it. */ /* XXX */ /* * Set up the registers to return to sigcode. * * r1/sp - sigframe ptr * lr - sig function, dispatched to by blrl in trampoline * r3 - sig number * r4 - SIGINFO ? &siginfo : exception code * r5 - user context * srr0 - trampoline function addr */ tf->lr = (register_t)catcher; tf->fixreg[1] = (register_t)usfp; tf->fixreg[FIRSTARG] = sig; #ifdef COMPAT_FREEBSD32 tf->fixreg[FIRSTARG+2] = (register_t)usfp + ((SV_PROC_FLAG(p, SV_ILP32)) ? offsetof(struct sigframe32, sf_uc) : offsetof(struct sigframe, sf_uc)); #else tf->fixreg[FIRSTARG+2] = (register_t)usfp + offsetof(struct sigframe, sf_uc); #endif if (SIGISMEMBER(psp->ps_siginfo, sig)) { /* * Signal handler installed with SA_SIGINFO. */ #ifdef COMPAT_FREEBSD32 if (SV_PROC_FLAG(p, SV_ILP32)) { sf32.sf_si = siginfo32; tf->fixreg[FIRSTARG+1] = (register_t)usfp + offsetof(struct sigframe32, sf_si); sf32.sf_si = siginfo32; } else { #endif tf->fixreg[FIRSTARG+1] = (register_t)usfp + offsetof(struct sigframe, sf_si); sf.sf_si = ksi->ksi_info; #ifdef COMPAT_FREEBSD32 } #endif } else { /* Old FreeBSD-style arguments. */ tf->fixreg[FIRSTARG+1] = code; #ifdef AIM tf->fixreg[FIRSTARG+3] = (tf->exc == EXC_DSI) ? tf->cpu.aim.dar : tf->srr0; #else tf->fixreg[FIRSTARG+3] = (tf->exc == EXC_DSI) ? tf->cpu.booke.dear : tf->srr0; #endif } mtx_unlock(&psp->ps_mtx); PROC_UNLOCK(p); tf->srr0 = (register_t)p->p_sysent->sv_sigcode_base; /* * copy the frame out to userland. */ if (copyout(sfp, usfp, sfpsize) != 0) { /* * Process has trashed its stack. Kill it. */ CTR2(KTR_SIG, "sendsig: sigexit td=%p sfp=%p", td, sfp); PROC_LOCK(p); sigexit(td, SIGILL); } CTR3(KTR_SIG, "sendsig: return td=%p pc=%#x sp=%#x", td, tf->srr0, tf->fixreg[1]); PROC_LOCK(p); mtx_lock(&psp->ps_mtx); } int sys_sigreturn(struct thread *td, struct sigreturn_args *uap) { ucontext_t uc; int error; CTR2(KTR_SIG, "sigreturn: td=%p ucp=%p", td, uap->sigcntxp); if (copyin(uap->sigcntxp, &uc, sizeof(uc)) != 0) { CTR1(KTR_SIG, "sigreturn: efault td=%p", td); return (EFAULT); } error = set_mcontext(td, &uc.uc_mcontext); if (error != 0) return (error); kern_sigprocmask(td, SIG_SETMASK, &uc.uc_sigmask, NULL, 0); CTR3(KTR_SIG, "sigreturn: return td=%p pc=%#x sp=%#x", td, uc.uc_mcontext.mc_srr0, uc.uc_mcontext.mc_gpr[1]); return (EJUSTRETURN); } #ifdef COMPAT_FREEBSD4 int freebsd4_sigreturn(struct thread *td, struct freebsd4_sigreturn_args *uap) { return sys_sigreturn(td, (struct sigreturn_args *)uap); } #endif /* * Construct a PCB from a trapframe. This is called from kdb_trap() where * we want to start a backtrace from the function that caused us to enter * the debugger. We have the context in the trapframe, but base the trace * on the PCB. The PCB doesn't have to be perfect, as long as it contains * enough for a backtrace. */ void makectx(struct trapframe *tf, struct pcb *pcb) { pcb->pcb_lr = tf->srr0; pcb->pcb_sp = tf->fixreg[1]; } /* * get_mcontext/sendsig helper routine that doesn't touch the * proc lock */ static int grab_mcontext(struct thread *td, mcontext_t *mcp, int flags) { struct pcb *pcb; pcb = td->td_pcb; memset(mcp, 0, sizeof(mcontext_t)); mcp->mc_vers = _MC_VERSION; mcp->mc_flags = 0; memcpy(&mcp->mc_frame, td->td_frame, sizeof(struct trapframe)); if (flags & GET_MC_CLEAR_RET) { mcp->mc_gpr[3] = 0; mcp->mc_gpr[4] = 0; } #ifdef AIM /* * This assumes that floating-point context is *not* lazy, * so if the thread has used FP there would have been a * FP-unavailable exception that would have set things up * correctly. */ if (pcb->pcb_flags & PCB_FPU) { KASSERT(td == curthread, ("get_mcontext: fp save not curthread")); critical_enter(); save_fpu(td); critical_exit(); mcp->mc_flags |= _MC_FP_VALID; memcpy(&mcp->mc_fpscr, &pcb->pcb_fpu.fpscr, sizeof(double)); memcpy(mcp->mc_fpreg, pcb->pcb_fpu.fpr, 32*sizeof(double)); } /* * Repeat for Altivec context */ if (pcb->pcb_flags & PCB_VEC) { KASSERT(td == curthread, ("get_mcontext: fp save not curthread")); critical_enter(); save_vec(td); critical_exit(); mcp->mc_flags |= _MC_AV_VALID; mcp->mc_vscr = pcb->pcb_vec.vscr; mcp->mc_vrsave = pcb->pcb_vec.vrsave; memcpy(mcp->mc_avec, pcb->pcb_vec.vr, sizeof(mcp->mc_avec)); } #endif mcp->mc_len = sizeof(*mcp); return (0); } int get_mcontext(struct thread *td, mcontext_t *mcp, int flags) { int error; error = grab_mcontext(td, mcp, flags); if (error == 0) { PROC_LOCK(curthread->td_proc); mcp->mc_onstack = sigonstack(td->td_frame->fixreg[1]); PROC_UNLOCK(curthread->td_proc); } return (error); } int set_mcontext(struct thread *td, const mcontext_t *mcp) { struct pcb *pcb; struct trapframe *tf; register_t tls; pcb = td->td_pcb; tf = td->td_frame; if (mcp->mc_vers != _MC_VERSION || mcp->mc_len != sizeof(*mcp)) return (EINVAL); #ifdef AIM /* * Don't let the user set privileged MSR bits */ if ((mcp->mc_srr1 & PSL_USERSTATIC) != (tf->srr1 & PSL_USERSTATIC)) { return (EINVAL); } #endif /* Copy trapframe, preserving TLS pointer across context change */ if (SV_PROC_FLAG(td->td_proc, SV_LP64)) tls = tf->fixreg[13]; else tls = tf->fixreg[2]; memcpy(tf, mcp->mc_frame, sizeof(mcp->mc_frame)); if (SV_PROC_FLAG(td->td_proc, SV_LP64)) tf->fixreg[13] = tls; else tf->fixreg[2] = tls; #ifdef AIM if (mcp->mc_flags & _MC_FP_VALID) { if ((pcb->pcb_flags & PCB_FPU) != PCB_FPU) { critical_enter(); enable_fpu(td); critical_exit(); } memcpy(&pcb->pcb_fpu.fpscr, &mcp->mc_fpscr, sizeof(double)); memcpy(pcb->pcb_fpu.fpr, mcp->mc_fpreg, 32*sizeof(double)); } if (mcp->mc_flags & _MC_AV_VALID) { if ((pcb->pcb_flags & PCB_VEC) != PCB_VEC) { critical_enter(); enable_vec(td); critical_exit(); } pcb->pcb_vec.vscr = mcp->mc_vscr; pcb->pcb_vec.vrsave = mcp->mc_vrsave; memcpy(pcb->pcb_vec.vr, mcp->mc_avec, sizeof(mcp->mc_avec)); } #endif return (0); } /* * Set set up registers on exec. */ void exec_setregs(struct thread *td, struct image_params *imgp, u_long stack) { struct trapframe *tf; register_t argc; #ifdef __powerpc64__ register_t entry_desc[3]; #endif tf = trapframe(td); bzero(tf, sizeof *tf); #ifdef __powerpc64__ tf->fixreg[1] = -roundup(-stack + 48, 16); #else tf->fixreg[1] = -roundup(-stack + 8, 16); #endif /* * Set up arguments for _start(): * _start(argc, argv, envp, obj, cleanup, ps_strings); * * Notes: * - obj and cleanup are the auxilliary and termination * vectors. They are fixed up by ld.elf_so. * - ps_strings is a NetBSD extention, and will be * ignored by executables which are strictly * compliant with the SVR4 ABI. * * XXX We have to set both regs and retval here due to different * XXX calling convention in trap.c and init_main.c. */ /* Collect argc from the user stack */ argc = fuword((void *)stack); /* * XXX PG: these get overwritten in the syscall return code. * execve() should return EJUSTRETURN, like it does on NetBSD. * Emulate by setting the syscall return value cells. The * registers still have to be set for init's fork trampoline. */ td->td_retval[0] = argc; td->td_retval[1] = stack + sizeof(register_t); tf->fixreg[3] = argc; tf->fixreg[4] = stack + sizeof(register_t); tf->fixreg[5] = stack + (2 + argc)*sizeof(register_t); tf->fixreg[6] = 0; /* auxillary vector */ tf->fixreg[7] = 0; /* termination vector */ tf->fixreg[8] = (register_t)imgp->ps_strings; /* NetBSD extension */ #ifdef __powerpc64__ /* * For 64-bit, we need to disentangle the function descriptor * * 0. entry point * 1. TOC value (r2) * 2. Environment pointer (r11) */ (void)copyin((void *)imgp->entry_addr, entry_desc, sizeof(entry_desc)); tf->srr0 = entry_desc[0] + imgp->reloc_base; tf->fixreg[2] = entry_desc[1] + imgp->reloc_base; tf->fixreg[11] = entry_desc[2] + imgp->reloc_base; tf->srr1 = PSL_SF | PSL_USERSET | PSL_FE_DFLT; if (mfmsr() & PSL_HV) tf->srr1 |= PSL_HV; #else tf->srr0 = imgp->entry_addr; tf->srr1 = PSL_USERSET | PSL_FE_DFLT; #endif td->td_pcb->pcb_flags = 0; } #ifdef COMPAT_FREEBSD32 void ppc32_setregs(struct thread *td, struct image_params *imgp, u_long stack) { struct trapframe *tf; uint32_t argc; tf = trapframe(td); bzero(tf, sizeof *tf); tf->fixreg[1] = -roundup(-stack + 8, 16); argc = fuword32((void *)stack); td->td_retval[0] = argc; td->td_retval[1] = stack + sizeof(uint32_t); tf->fixreg[3] = argc; tf->fixreg[4] = stack + sizeof(uint32_t); tf->fixreg[5] = stack + (2 + argc)*sizeof(uint32_t); tf->fixreg[6] = 0; /* auxillary vector */ tf->fixreg[7] = 0; /* termination vector */ tf->fixreg[8] = (register_t)imgp->ps_strings; /* NetBSD extension */ tf->srr0 = imgp->entry_addr; tf->srr1 = PSL_MBO | PSL_USERSET | PSL_FE_DFLT; tf->srr1 &= ~PSL_SF; if (mfmsr() & PSL_HV) tf->srr1 |= PSL_HV; td->td_pcb->pcb_flags = 0; } #endif int fill_regs(struct thread *td, struct reg *regs) { struct trapframe *tf; tf = td->td_frame; memcpy(regs, tf, sizeof(struct reg)); return (0); } int fill_dbregs(struct thread *td, struct dbreg *dbregs) { /* No debug registers on PowerPC */ return (ENOSYS); } int fill_fpregs(struct thread *td, struct fpreg *fpregs) { struct pcb *pcb; pcb = td->td_pcb; if ((pcb->pcb_flags & PCB_FPU) == 0) memset(fpregs, 0, sizeof(struct fpreg)); else memcpy(fpregs, &pcb->pcb_fpu, sizeof(struct fpreg)); return (0); } int set_regs(struct thread *td, struct reg *regs) { struct trapframe *tf; tf = td->td_frame; memcpy(tf, regs, sizeof(struct reg)); return (0); } int set_dbregs(struct thread *td, struct dbreg *dbregs) { /* No debug registers on PowerPC */ return (ENOSYS); } int set_fpregs(struct thread *td, struct fpreg *fpregs) { #ifdef AIM struct pcb *pcb; pcb = td->td_pcb; if ((pcb->pcb_flags & PCB_FPU) == 0) enable_fpu(td); memcpy(&pcb->pcb_fpu, fpregs, sizeof(struct fpreg)); #endif return (0); } #ifdef COMPAT_FREEBSD32 int set_regs32(struct thread *td, struct reg32 *regs) { struct trapframe *tf; int i; tf = td->td_frame; for (i = 0; i < 32; i++) tf->fixreg[i] = regs->fixreg[i]; tf->lr = regs->lr; tf->cr = regs->cr; tf->xer = regs->xer; tf->ctr = regs->ctr; tf->srr0 = regs->pc; return (0); } int fill_regs32(struct thread *td, struct reg32 *regs) { struct trapframe *tf; int i; tf = td->td_frame; for (i = 0; i < 32; i++) regs->fixreg[i] = tf->fixreg[i]; regs->lr = tf->lr; regs->cr = tf->cr; regs->xer = tf->xer; regs->ctr = tf->ctr; regs->pc = tf->srr0; return (0); } static int grab_mcontext32(struct thread *td, mcontext32_t *mcp, int flags) { mcontext_t mcp64; int i, error; error = grab_mcontext(td, &mcp64, flags); if (error != 0) return (error); mcp->mc_vers = mcp64.mc_vers; mcp->mc_flags = mcp64.mc_flags; mcp->mc_onstack = mcp64.mc_onstack; mcp->mc_len = mcp64.mc_len; memcpy(mcp->mc_avec,mcp64.mc_avec,sizeof(mcp64.mc_avec)); memcpy(mcp->mc_av,mcp64.mc_av,sizeof(mcp64.mc_av)); for (i = 0; i < 42; i++) mcp->mc_frame[i] = mcp64.mc_frame[i]; memcpy(mcp->mc_fpreg,mcp64.mc_fpreg,sizeof(mcp64.mc_fpreg)); return (0); } static int get_mcontext32(struct thread *td, mcontext32_t *mcp, int flags) { int error; error = grab_mcontext32(td, mcp, flags); if (error == 0) { PROC_LOCK(curthread->td_proc); mcp->mc_onstack = sigonstack(td->td_frame->fixreg[1]); PROC_UNLOCK(curthread->td_proc); } return (error); } static int set_mcontext32(struct thread *td, const mcontext32_t *mcp) { mcontext_t mcp64; int i, error; mcp64.mc_vers = mcp->mc_vers; mcp64.mc_flags = mcp->mc_flags; mcp64.mc_onstack = mcp->mc_onstack; mcp64.mc_len = mcp->mc_len; memcpy(mcp64.mc_avec,mcp->mc_avec,sizeof(mcp64.mc_avec)); memcpy(mcp64.mc_av,mcp->mc_av,sizeof(mcp64.mc_av)); for (i = 0; i < 42; i++) mcp64.mc_frame[i] = mcp->mc_frame[i]; memcpy(mcp64.mc_fpreg,mcp->mc_fpreg,sizeof(mcp64.mc_fpreg)); error = set_mcontext(td, &mcp64); return (error); } #endif #ifdef COMPAT_FREEBSD32 int freebsd32_sigreturn(struct thread *td, struct freebsd32_sigreturn_args *uap) { ucontext32_t uc; int error; CTR2(KTR_SIG, "sigreturn: td=%p ucp=%p", td, uap->sigcntxp); if (copyin(uap->sigcntxp, &uc, sizeof(uc)) != 0) { CTR1(KTR_SIG, "sigreturn: efault td=%p", td); return (EFAULT); } error = set_mcontext32(td, &uc.uc_mcontext); if (error != 0) return (error); kern_sigprocmask(td, SIG_SETMASK, &uc.uc_sigmask, NULL, 0); CTR3(KTR_SIG, "sigreturn: return td=%p pc=%#x sp=%#x", td, uc.uc_mcontext.mc_srr0, uc.uc_mcontext.mc_gpr[1]); return (EJUSTRETURN); } /* * The first two fields of a ucontext_t are the signal mask and the machine * context. The next field is uc_link; we want to avoid destroying the link * when copying out contexts. */ #define UC32_COPY_SIZE offsetof(ucontext32_t, uc_link) int freebsd32_getcontext(struct thread *td, struct freebsd32_getcontext_args *uap) { ucontext32_t uc; int ret; if (uap->ucp == NULL) ret = EINVAL; else { get_mcontext32(td, &uc.uc_mcontext, GET_MC_CLEAR_RET); PROC_LOCK(td->td_proc); uc.uc_sigmask = td->td_sigmask; PROC_UNLOCK(td->td_proc); ret = copyout(&uc, uap->ucp, UC32_COPY_SIZE); } return (ret); } int freebsd32_setcontext(struct thread *td, struct freebsd32_setcontext_args *uap) { ucontext32_t uc; int ret; if (uap->ucp == NULL) ret = EINVAL; else { ret = copyin(uap->ucp, &uc, UC32_COPY_SIZE); if (ret == 0) { ret = set_mcontext32(td, &uc.uc_mcontext); if (ret == 0) { kern_sigprocmask(td, SIG_SETMASK, &uc.uc_sigmask, NULL, 0); } } } return (ret == 0 ? EJUSTRETURN : ret); } int freebsd32_swapcontext(struct thread *td, struct freebsd32_swapcontext_args *uap) { ucontext32_t uc; int ret; if (uap->oucp == NULL || uap->ucp == NULL) ret = EINVAL; else { get_mcontext32(td, &uc.uc_mcontext, GET_MC_CLEAR_RET); PROC_LOCK(td->td_proc); uc.uc_sigmask = td->td_sigmask; PROC_UNLOCK(td->td_proc); ret = copyout(&uc, uap->oucp, UC32_COPY_SIZE); if (ret == 0) { ret = copyin(uap->ucp, &uc, UC32_COPY_SIZE); if (ret == 0) { ret = set_mcontext32(td, &uc.uc_mcontext); if (ret == 0) { kern_sigprocmask(td, SIG_SETMASK, &uc.uc_sigmask, NULL, 0); } } } } return (ret == 0 ? EJUSTRETURN : ret); } #endif void cpu_set_syscall_retval(struct thread *td, int error) { struct proc *p; struct trapframe *tf; int fixup; if (error == EJUSTRETURN) return; p = td->td_proc; tf = td->td_frame; if (tf->fixreg[0] == SYS___syscall && (SV_PROC_FLAG(p, SV_ILP32))) { int code = tf->fixreg[FIRSTARG + 1]; if (p->p_sysent->sv_mask) code &= p->p_sysent->sv_mask; fixup = (code != SYS_freebsd6_lseek && code != SYS_lseek) ? 1 : 0; } else fixup = 0; switch (error) { case 0: if (fixup) { /* * 64-bit return, 32-bit syscall. Fixup byte order */ tf->fixreg[FIRSTARG] = 0; tf->fixreg[FIRSTARG + 1] = td->td_retval[0]; } else { tf->fixreg[FIRSTARG] = td->td_retval[0]; tf->fixreg[FIRSTARG + 1] = td->td_retval[1]; } tf->cr &= ~0x10000000; /* Unset summary overflow */ break; case ERESTART: /* * Set user's pc back to redo the system call. */ tf->srr0 -= 4; break; default: if (p->p_sysent->sv_errsize) { error = (error < p->p_sysent->sv_errsize) ? p->p_sysent->sv_errtbl[error] : -1; } tf->fixreg[FIRSTARG] = error; tf->cr |= 0x10000000; /* Set summary overflow */ break; } } /* * Threading functions */ void cpu_thread_exit(struct thread *td) { } void cpu_thread_clean(struct thread *td) { } void cpu_thread_alloc(struct thread *td) { struct pcb *pcb; pcb = (struct pcb *)((td->td_kstack + td->td_kstack_pages * PAGE_SIZE - sizeof(struct pcb)) & ~0x2fUL); td->td_pcb = pcb; td->td_frame = (struct trapframe *)pcb - 1; } void cpu_thread_free(struct thread *td) { } int cpu_set_user_tls(struct thread *td, void *tls_base) { if (SV_PROC_FLAG(td->td_proc, SV_LP64)) td->td_frame->fixreg[13] = (register_t)tls_base + 0x7010; else td->td_frame->fixreg[2] = (register_t)tls_base + 0x7008; return (0); } void cpu_set_upcall(struct thread *td, struct thread *td0) { struct pcb *pcb2; struct trapframe *tf; struct callframe *cf; pcb2 = td->td_pcb; /* Copy the upcall pcb */ bcopy(td0->td_pcb, pcb2, sizeof(*pcb2)); /* Create a stack for the new thread */ tf = td->td_frame; bcopy(td0->td_frame, tf, sizeof(struct trapframe)); tf->fixreg[FIRSTARG] = 0; tf->fixreg[FIRSTARG + 1] = 0; tf->cr &= ~0x10000000; /* Set registers for trampoline to user mode. */ cf = (struct callframe *)tf - 1; memset(cf, 0, sizeof(struct callframe)); cf->cf_func = (register_t)fork_return; cf->cf_arg0 = (register_t)td; cf->cf_arg1 = (register_t)tf; pcb2->pcb_sp = (register_t)cf; #ifdef __powerpc64__ pcb2->pcb_lr = ((register_t *)fork_trampoline)[0]; pcb2->pcb_toc = ((register_t *)fork_trampoline)[1]; #else pcb2->pcb_lr = (register_t)fork_trampoline; #endif pcb2->pcb_cpu.aim.usr_vsid = 0; /* Setup to release spin count in fork_exit(). */ td->td_md.md_spinlock_count = 1; td->td_md.md_saved_msr = PSL_KERNSET; } void cpu_set_upcall_kse(struct thread *td, void (*entry)(void *), void *arg, stack_t *stack) { struct trapframe *tf; uintptr_t sp; tf = td->td_frame; /* align stack and alloc space for frame ptr and saved LR */ #ifdef __powerpc64__ sp = ((uintptr_t)stack->ss_sp + stack->ss_size - 48) & ~0x1f; #else sp = ((uintptr_t)stack->ss_sp + stack->ss_size - 8) & ~0x1f; #endif bzero(tf, sizeof(struct trapframe)); tf->fixreg[1] = (register_t)sp; tf->fixreg[3] = (register_t)arg; if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) { tf->srr0 = (register_t)entry; #ifdef AIM tf->srr1 = PSL_MBO | PSL_USERSET | PSL_FE_DFLT; #ifdef __powerpc64__ tf->srr1 &= ~PSL_SF; #endif #else tf->srr1 = PSL_USERSET; #endif } else { #ifdef __powerpc64__ register_t entry_desc[3]; (void)copyin((void *)entry, entry_desc, sizeof(entry_desc)); tf->srr0 = entry_desc[0]; tf->fixreg[2] = entry_desc[1]; tf->fixreg[11] = entry_desc[2]; tf->srr1 = PSL_SF | PSL_MBO | PSL_USERSET | PSL_FE_DFLT; #endif } #ifdef __powerpc64__ if (mfmsr() & PSL_HV) tf->srr1 |= PSL_HV; #endif td->td_pcb->pcb_flags = 0; td->td_retval[0] = (register_t)entry; td->td_retval[1] = 0; }