Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/rc4/@/dev/nge/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/rc4/@/dev/nge/if_nge.c |
/*- * Copyright (c) 2001 Wind River Systems * Copyright (c) 1997, 1998, 1999, 2000, 2001 * Bill Paul <wpaul@bsdi.com>. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/dev/nge/if_nge.c 229093 2011-12-31 14:12:12Z hselasky $"); /* * National Semiconductor DP83820/DP83821 gigabit ethernet driver * for FreeBSD. Datasheets are available from: * * http://www.national.com/ds/DP/DP83820.pdf * http://www.national.com/ds/DP/DP83821.pdf * * These chips are used on several low cost gigabit ethernet NICs * sold by D-Link, Addtron, SMC and Asante. Both parts are * virtually the same, except the 83820 is a 64-bit/32-bit part, * while the 83821 is 32-bit only. * * Many cards also use National gigE transceivers, such as the * DP83891, DP83861 and DP83862 gigPHYTER parts. The DP83861 datasheet * contains a full register description that applies to all of these * components: * * http://www.national.com/ds/DP/DP83861.pdf * * Written by Bill Paul <wpaul@bsdi.com> * BSDi Open Source Solutions */ /* * The NatSemi DP83820 and 83821 controllers are enhanced versions * of the NatSemi MacPHYTER 10/100 devices. They support 10, 100 * and 1000Mbps speeds with 1000baseX (ten bit interface), MII and GMII * ports. Other features include 8K TX FIFO and 32K RX FIFO, TCP/IP * hardware checksum offload (IPv4 only), VLAN tagging and filtering, * priority TX and RX queues, a 2048 bit multicast hash filter, 4 RX pattern * matching buffers, one perfect address filter buffer and interrupt * moderation. The 83820 supports both 64-bit and 32-bit addressing * and data transfers: the 64-bit support can be toggled on or off * via software. This affects the size of certain fields in the DMA * descriptors. * * There are two bugs/misfeatures in the 83820/83821 that I have * discovered so far: * * - Receive buffers must be aligned on 64-bit boundaries, which means * you must resort to copying data in order to fix up the payload * alignment. * * - In order to transmit jumbo frames larger than 8170 bytes, you have * to turn off transmit checksum offloading, because the chip can't * compute the checksum on an outgoing frame unless it fits entirely * within the TX FIFO, which is only 8192 bytes in size. If you have * TX checksum offload enabled and you transmit attempt to transmit a * frame larger than 8170 bytes, the transmitter will wedge. * * To work around the latter problem, TX checksum offload is disabled * if the user selects an MTU larger than 8152 (8170 - 18). */ #ifdef HAVE_KERNEL_OPTION_HEADERS #include "opt_device_polling.h" #endif #include <sys/param.h> #include <sys/systm.h> #include <sys/bus.h> #include <sys/endian.h> #include <sys/kernel.h> #include <sys/lock.h> #include <sys/malloc.h> #include <sys/mbuf.h> #include <sys/module.h> #include <sys/mutex.h> #include <sys/rman.h> #include <sys/socket.h> #include <sys/sockio.h> #include <sys/sysctl.h> #include <net/bpf.h> #include <net/if.h> #include <net/if_arp.h> #include <net/ethernet.h> #include <net/if_dl.h> #include <net/if_media.h> #include <net/if_types.h> #include <net/if_vlan_var.h> #include <dev/mii/mii.h> #include <dev/mii/mii_bitbang.h> #include <dev/mii/miivar.h> #include <dev/pci/pcireg.h> #include <dev/pci/pcivar.h> #include <machine/bus.h> #include <dev/nge/if_ngereg.h> /* "device miibus" required. See GENERIC if you get errors here. */ #include "miibus_if.h" MODULE_DEPEND(nge, pci, 1, 1, 1); MODULE_DEPEND(nge, ether, 1, 1, 1); MODULE_DEPEND(nge, miibus, 1, 1, 1); #define NGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP) /* * Various supported device vendors/types and their names. */ static const struct nge_type const nge_devs[] = { { NGE_VENDORID, NGE_DEVICEID, "National Semiconductor Gigabit Ethernet" }, { 0, 0, NULL } }; static int nge_probe(device_t); static int nge_attach(device_t); static int nge_detach(device_t); static int nge_shutdown(device_t); static int nge_suspend(device_t); static int nge_resume(device_t); static __inline void nge_discard_rxbuf(struct nge_softc *, int); static int nge_newbuf(struct nge_softc *, int); static int nge_encap(struct nge_softc *, struct mbuf **); #ifndef __NO_STRICT_ALIGNMENT static __inline void nge_fixup_rx(struct mbuf *); #endif static int nge_rxeof(struct nge_softc *); static void nge_txeof(struct nge_softc *); static void nge_intr(void *); static void nge_tick(void *); static void nge_stats_update(struct nge_softc *); static void nge_start(struct ifnet *); static void nge_start_locked(struct ifnet *); static int nge_ioctl(struct ifnet *, u_long, caddr_t); static void nge_init(void *); static void nge_init_locked(struct nge_softc *); static int nge_stop_mac(struct nge_softc *); static void nge_stop(struct nge_softc *); static void nge_wol(struct nge_softc *); static void nge_watchdog(struct nge_softc *); static int nge_mediachange(struct ifnet *); static void nge_mediastatus(struct ifnet *, struct ifmediareq *); static void nge_delay(struct nge_softc *); static void nge_eeprom_idle(struct nge_softc *); static void nge_eeprom_putbyte(struct nge_softc *, int); static void nge_eeprom_getword(struct nge_softc *, int, uint16_t *); static void nge_read_eeprom(struct nge_softc *, caddr_t, int, int); static int nge_miibus_readreg(device_t, int, int); static int nge_miibus_writereg(device_t, int, int, int); static void nge_miibus_statchg(device_t); static void nge_rxfilter(struct nge_softc *); static void nge_reset(struct nge_softc *); static void nge_dmamap_cb(void *, bus_dma_segment_t *, int, int); static int nge_dma_alloc(struct nge_softc *); static void nge_dma_free(struct nge_softc *); static int nge_list_rx_init(struct nge_softc *); static int nge_list_tx_init(struct nge_softc *); static void nge_sysctl_node(struct nge_softc *); static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int); static int sysctl_hw_nge_int_holdoff(SYSCTL_HANDLER_ARGS); /* * MII bit-bang glue */ static uint32_t nge_mii_bitbang_read(device_t); static void nge_mii_bitbang_write(device_t, uint32_t); static const struct mii_bitbang_ops nge_mii_bitbang_ops = { nge_mii_bitbang_read, nge_mii_bitbang_write, { NGE_MEAR_MII_DATA, /* MII_BIT_MDO */ NGE_MEAR_MII_DATA, /* MII_BIT_MDI */ NGE_MEAR_MII_CLK, /* MII_BIT_MDC */ NGE_MEAR_MII_DIR, /* MII_BIT_DIR_HOST_PHY */ 0, /* MII_BIT_DIR_PHY_HOST */ } }; static device_method_t nge_methods[] = { /* Device interface */ DEVMETHOD(device_probe, nge_probe), DEVMETHOD(device_attach, nge_attach), DEVMETHOD(device_detach, nge_detach), DEVMETHOD(device_shutdown, nge_shutdown), DEVMETHOD(device_suspend, nge_suspend), DEVMETHOD(device_resume, nge_resume), /* MII interface */ DEVMETHOD(miibus_readreg, nge_miibus_readreg), DEVMETHOD(miibus_writereg, nge_miibus_writereg), DEVMETHOD(miibus_statchg, nge_miibus_statchg), DEVMETHOD_END }; static driver_t nge_driver = { "nge", nge_methods, sizeof(struct nge_softc) }; static devclass_t nge_devclass; DRIVER_MODULE(nge, pci, nge_driver, nge_devclass, 0, 0); DRIVER_MODULE(miibus, nge, miibus_driver, miibus_devclass, 0, 0); #define NGE_SETBIT(sc, reg, x) \ CSR_WRITE_4(sc, reg, \ CSR_READ_4(sc, reg) | (x)) #define NGE_CLRBIT(sc, reg, x) \ CSR_WRITE_4(sc, reg, \ CSR_READ_4(sc, reg) & ~(x)) #define SIO_SET(x) \ CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) | (x)) #define SIO_CLR(x) \ CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) & ~(x)) static void nge_delay(struct nge_softc *sc) { int idx; for (idx = (300 / 33) + 1; idx > 0; idx--) CSR_READ_4(sc, NGE_CSR); } static void nge_eeprom_idle(struct nge_softc *sc) { int i; SIO_SET(NGE_MEAR_EE_CSEL); nge_delay(sc); SIO_SET(NGE_MEAR_EE_CLK); nge_delay(sc); for (i = 0; i < 25; i++) { SIO_CLR(NGE_MEAR_EE_CLK); nge_delay(sc); SIO_SET(NGE_MEAR_EE_CLK); nge_delay(sc); } SIO_CLR(NGE_MEAR_EE_CLK); nge_delay(sc); SIO_CLR(NGE_MEAR_EE_CSEL); nge_delay(sc); CSR_WRITE_4(sc, NGE_MEAR, 0x00000000); } /* * Send a read command and address to the EEPROM, check for ACK. */ static void nge_eeprom_putbyte(struct nge_softc *sc, int addr) { int d, i; d = addr | NGE_EECMD_READ; /* * Feed in each bit and stobe the clock. */ for (i = 0x400; i; i >>= 1) { if (d & i) { SIO_SET(NGE_MEAR_EE_DIN); } else { SIO_CLR(NGE_MEAR_EE_DIN); } nge_delay(sc); SIO_SET(NGE_MEAR_EE_CLK); nge_delay(sc); SIO_CLR(NGE_MEAR_EE_CLK); nge_delay(sc); } } /* * Read a word of data stored in the EEPROM at address 'addr.' */ static void nge_eeprom_getword(struct nge_softc *sc, int addr, uint16_t *dest) { int i; uint16_t word = 0; /* Force EEPROM to idle state. */ nge_eeprom_idle(sc); /* Enter EEPROM access mode. */ nge_delay(sc); SIO_CLR(NGE_MEAR_EE_CLK); nge_delay(sc); SIO_SET(NGE_MEAR_EE_CSEL); nge_delay(sc); /* * Send address of word we want to read. */ nge_eeprom_putbyte(sc, addr); /* * Start reading bits from EEPROM. */ for (i = 0x8000; i; i >>= 1) { SIO_SET(NGE_MEAR_EE_CLK); nge_delay(sc); if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_EE_DOUT) word |= i; nge_delay(sc); SIO_CLR(NGE_MEAR_EE_CLK); nge_delay(sc); } /* Turn off EEPROM access mode. */ nge_eeprom_idle(sc); *dest = word; } /* * Read a sequence of words from the EEPROM. */ static void nge_read_eeprom(struct nge_softc *sc, caddr_t dest, int off, int cnt) { int i; uint16_t word = 0, *ptr; for (i = 0; i < cnt; i++) { nge_eeprom_getword(sc, off + i, &word); ptr = (uint16_t *)(dest + (i * 2)); *ptr = word; } } /* * Read the MII serial port for the MII bit-bang module. */ static uint32_t nge_mii_bitbang_read(device_t dev) { struct nge_softc *sc; uint32_t val; sc = device_get_softc(dev); val = CSR_READ_4(sc, NGE_MEAR); CSR_BARRIER_4(sc, NGE_MEAR, BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); return (val); } /* * Write the MII serial port for the MII bit-bang module. */ static void nge_mii_bitbang_write(device_t dev, uint32_t val) { struct nge_softc *sc; sc = device_get_softc(dev); CSR_WRITE_4(sc, NGE_MEAR, val); CSR_BARRIER_4(sc, NGE_MEAR, BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); } static int nge_miibus_readreg(device_t dev, int phy, int reg) { struct nge_softc *sc; int rv; sc = device_get_softc(dev); if ((sc->nge_flags & NGE_FLAG_TBI) != 0) { /* Pretend PHY is at address 0. */ if (phy != 0) return (0); switch (reg) { case MII_BMCR: reg = NGE_TBI_BMCR; break; case MII_BMSR: /* 83820/83821 has different bit layout for BMSR. */ rv = BMSR_ANEG | BMSR_EXTCAP | BMSR_EXTSTAT; reg = CSR_READ_4(sc, NGE_TBI_BMSR); if ((reg & NGE_TBIBMSR_ANEG_DONE) != 0) rv |= BMSR_ACOMP; if ((reg & NGE_TBIBMSR_LINKSTAT) != 0) rv |= BMSR_LINK; return (rv); case MII_ANAR: reg = NGE_TBI_ANAR; break; case MII_ANLPAR: reg = NGE_TBI_ANLPAR; break; case MII_ANER: reg = NGE_TBI_ANER; break; case MII_EXTSR: reg = NGE_TBI_ESR; break; case MII_PHYIDR1: case MII_PHYIDR2: return (0); default: device_printf(sc->nge_dev, "bad phy register read : %d\n", reg); return (0); } return (CSR_READ_4(sc, reg)); } return (mii_bitbang_readreg(dev, &nge_mii_bitbang_ops, phy, reg)); } static int nge_miibus_writereg(device_t dev, int phy, int reg, int data) { struct nge_softc *sc; sc = device_get_softc(dev); if ((sc->nge_flags & NGE_FLAG_TBI) != 0) { /* Pretend PHY is at address 0. */ if (phy != 0) return (0); switch (reg) { case MII_BMCR: reg = NGE_TBI_BMCR; break; case MII_BMSR: return (0); case MII_ANAR: reg = NGE_TBI_ANAR; break; case MII_ANLPAR: reg = NGE_TBI_ANLPAR; break; case MII_ANER: reg = NGE_TBI_ANER; break; case MII_EXTSR: reg = NGE_TBI_ESR; break; case MII_PHYIDR1: case MII_PHYIDR2: return (0); default: device_printf(sc->nge_dev, "bad phy register write : %d\n", reg); return (0); } CSR_WRITE_4(sc, reg, data); return (0); } mii_bitbang_writereg(dev, &nge_mii_bitbang_ops, phy, reg, data); return (0); } /* * media status/link state change handler. */ static void nge_miibus_statchg(device_t dev) { struct nge_softc *sc; struct mii_data *mii; struct ifnet *ifp; struct nge_txdesc *txd; uint32_t done, reg, status; int i; sc = device_get_softc(dev); NGE_LOCK_ASSERT(sc); mii = device_get_softc(sc->nge_miibus); ifp = sc->nge_ifp; if (mii == NULL || ifp == NULL || (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) return; sc->nge_flags &= ~NGE_FLAG_LINK; if ((mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) == (IFM_AVALID | IFM_ACTIVE)) { switch (IFM_SUBTYPE(mii->mii_media_active)) { case IFM_10_T: case IFM_100_TX: case IFM_1000_T: case IFM_1000_SX: case IFM_1000_LX: case IFM_1000_CX: sc->nge_flags |= NGE_FLAG_LINK; break; default: break; } } /* Stop Tx/Rx MACs. */ if (nge_stop_mac(sc) == ETIMEDOUT) device_printf(sc->nge_dev, "%s: unable to stop Tx/Rx MAC\n", __func__); nge_txeof(sc); nge_rxeof(sc); if (sc->nge_head != NULL) { m_freem(sc->nge_head); sc->nge_head = sc->nge_tail = NULL; } /* Release queued frames. */ for (i = 0; i < NGE_TX_RING_CNT; i++) { txd = &sc->nge_cdata.nge_txdesc[i]; if (txd->tx_m != NULL) { bus_dmamap_sync(sc->nge_cdata.nge_tx_tag, txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->nge_cdata.nge_tx_tag, txd->tx_dmamap); m_freem(txd->tx_m); txd->tx_m = NULL; } } /* Program MAC with resolved speed/duplex. */ if ((sc->nge_flags & NGE_FLAG_LINK) != 0) { if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) { NGE_SETBIT(sc, NGE_TX_CFG, (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR)); NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX); #ifdef notyet /* Enable flow-control. */ if ((IFM_OPTIONS(mii->mii_media_active) & (IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE)) != 0) NGE_SETBIT(sc, NGE_PAUSECSR, NGE_PAUSECSR_PAUSE_ENB); #endif } else { NGE_CLRBIT(sc, NGE_TX_CFG, (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR)); NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX); NGE_CLRBIT(sc, NGE_PAUSECSR, NGE_PAUSECSR_PAUSE_ENB); } /* If we have a 1000Mbps link, set the mode_1000 bit. */ reg = CSR_READ_4(sc, NGE_CFG); switch (IFM_SUBTYPE(mii->mii_media_active)) { case IFM_1000_SX: case IFM_1000_LX: case IFM_1000_CX: case IFM_1000_T: reg |= NGE_CFG_MODE_1000; break; default: reg &= ~NGE_CFG_MODE_1000; break; } CSR_WRITE_4(sc, NGE_CFG, reg); /* Reset Tx/Rx MAC. */ reg = CSR_READ_4(sc, NGE_CSR); reg |= NGE_CSR_TX_RESET | NGE_CSR_RX_RESET; CSR_WRITE_4(sc, NGE_CSR, reg); /* Check the completion of reset. */ done = 0; for (i = 0; i < NGE_TIMEOUT; i++) { DELAY(1); status = CSR_READ_4(sc, NGE_ISR); if ((status & NGE_ISR_RX_RESET_DONE) != 0) done |= NGE_ISR_RX_RESET_DONE; if ((status & NGE_ISR_TX_RESET_DONE) != 0) done |= NGE_ISR_TX_RESET_DONE; if (done == (NGE_ISR_TX_RESET_DONE | NGE_ISR_RX_RESET_DONE)) break; } if (i == NGE_TIMEOUT) device_printf(sc->nge_dev, "%s: unable to reset Tx/Rx MAC\n", __func__); /* Reuse Rx buffer and reset consumer pointer. */ sc->nge_cdata.nge_rx_cons = 0; /* * It seems that resetting Rx/Tx MAC results in * resetting Tx/Rx descriptor pointer registers such * that reloading Tx/Rx lists address are needed. */ CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI, NGE_ADDR_HI(sc->nge_rdata.nge_rx_ring_paddr)); CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO, NGE_ADDR_LO(sc->nge_rdata.nge_rx_ring_paddr)); CSR_WRITE_4(sc, NGE_TX_LISTPTR_HI, NGE_ADDR_HI(sc->nge_rdata.nge_tx_ring_paddr)); CSR_WRITE_4(sc, NGE_TX_LISTPTR_LO, NGE_ADDR_LO(sc->nge_rdata.nge_tx_ring_paddr)); /* Reinitialize Tx buffers. */ nge_list_tx_init(sc); /* Restart Rx MAC. */ reg = CSR_READ_4(sc, NGE_CSR); reg |= NGE_CSR_RX_ENABLE; CSR_WRITE_4(sc, NGE_CSR, reg); for (i = 0; i < NGE_TIMEOUT; i++) { if ((CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RX_ENABLE) != 0) break; DELAY(1); } if (i == NGE_TIMEOUT) device_printf(sc->nge_dev, "%s: unable to restart Rx MAC\n", __func__); } /* Data LED off for TBI mode */ if ((sc->nge_flags & NGE_FLAG_TBI) != 0) CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO) & ~NGE_GPIO_GP3_OUT); } static void nge_rxfilter(struct nge_softc *sc) { struct ifnet *ifp; struct ifmultiaddr *ifma; uint32_t h, i, rxfilt; int bit, index; NGE_LOCK_ASSERT(sc); ifp = sc->nge_ifp; /* Make sure to stop Rx filtering. */ rxfilt = CSR_READ_4(sc, NGE_RXFILT_CTL); rxfilt &= ~NGE_RXFILTCTL_ENABLE; CSR_WRITE_4(sc, NGE_RXFILT_CTL, rxfilt); CSR_BARRIER_4(sc, NGE_RXFILT_CTL, BUS_SPACE_BARRIER_WRITE); rxfilt &= ~(NGE_RXFILTCTL_ALLMULTI | NGE_RXFILTCTL_ALLPHYS); rxfilt &= ~NGE_RXFILTCTL_BROAD; /* * We don't want to use the hash table for matching unicast * addresses. */ rxfilt &= ~(NGE_RXFILTCTL_MCHASH | NGE_RXFILTCTL_UCHASH); /* * For the NatSemi chip, we have to explicitly enable the * reception of ARP frames, as well as turn on the 'perfect * match' filter where we store the station address, otherwise * we won't receive unicasts meant for this host. */ rxfilt |= NGE_RXFILTCTL_ARP | NGE_RXFILTCTL_PERFECT; /* * Set the capture broadcast bit to capture broadcast frames. */ if ((ifp->if_flags & IFF_BROADCAST) != 0) rxfilt |= NGE_RXFILTCTL_BROAD; if ((ifp->if_flags & IFF_PROMISC) != 0 || (ifp->if_flags & IFF_ALLMULTI) != 0) { rxfilt |= NGE_RXFILTCTL_ALLMULTI; if ((ifp->if_flags & IFF_PROMISC) != 0) rxfilt |= NGE_RXFILTCTL_ALLPHYS; goto done; } /* * We have to explicitly enable the multicast hash table * on the NatSemi chip if we want to use it, which we do. */ rxfilt |= NGE_RXFILTCTL_MCHASH; /* first, zot all the existing hash bits */ for (i = 0; i < NGE_MCAST_FILTER_LEN; i += 2) { CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + i); CSR_WRITE_4(sc, NGE_RXFILT_DATA, 0); } /* * From the 11 bits returned by the crc routine, the top 7 * bits represent the 16-bit word in the mcast hash table * that needs to be updated, and the lower 4 bits represent * which bit within that byte needs to be set. */ if_maddr_rlock(ifp); TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; h = ether_crc32_be(LLADDR((struct sockaddr_dl *) ifma->ifma_addr), ETHER_ADDR_LEN) >> 21; index = (h >> 4) & 0x7F; bit = h & 0xF; CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + (index * 2)); NGE_SETBIT(sc, NGE_RXFILT_DATA, (1 << bit)); } if_maddr_runlock(ifp); done: CSR_WRITE_4(sc, NGE_RXFILT_CTL, rxfilt); /* Turn the receive filter on. */ rxfilt |= NGE_RXFILTCTL_ENABLE; CSR_WRITE_4(sc, NGE_RXFILT_CTL, rxfilt); CSR_BARRIER_4(sc, NGE_RXFILT_CTL, BUS_SPACE_BARRIER_WRITE); } static void nge_reset(struct nge_softc *sc) { uint32_t v; int i; NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RESET); for (i = 0; i < NGE_TIMEOUT; i++) { if (!(CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RESET)) break; DELAY(1); } if (i == NGE_TIMEOUT) device_printf(sc->nge_dev, "reset never completed\n"); /* Wait a little while for the chip to get its brains in order. */ DELAY(1000); /* * If this is a NetSemi chip, make sure to clear * PME mode. */ CSR_WRITE_4(sc, NGE_CLKRUN, NGE_CLKRUN_PMESTS); CSR_WRITE_4(sc, NGE_CLKRUN, 0); /* Clear WOL events which may interfere normal Rx filter opertaion. */ CSR_WRITE_4(sc, NGE_WOLCSR, 0); /* * Only DP83820 supports 64bits addressing/data transfers and * 64bit addressing requires different descriptor structures. * To make it simple, disable 64bit addressing/data transfers. */ v = CSR_READ_4(sc, NGE_CFG); v &= ~(NGE_CFG_64BIT_ADDR_ENB | NGE_CFG_64BIT_DATA_ENB); CSR_WRITE_4(sc, NGE_CFG, v); } /* * Probe for a NatSemi chip. Check the PCI vendor and device * IDs against our list and return a device name if we find a match. */ static int nge_probe(device_t dev) { const struct nge_type *t; t = nge_devs; while (t->nge_name != NULL) { if ((pci_get_vendor(dev) == t->nge_vid) && (pci_get_device(dev) == t->nge_did)) { device_set_desc(dev, t->nge_name); return (BUS_PROBE_DEFAULT); } t++; } return (ENXIO); } /* * Attach the interface. Allocate softc structures, do ifmedia * setup and ethernet/BPF attach. */ static int nge_attach(device_t dev) { uint8_t eaddr[ETHER_ADDR_LEN]; uint16_t ea[ETHER_ADDR_LEN/2], ea_temp, reg; struct nge_softc *sc; struct ifnet *ifp; int error, i, rid; error = 0; sc = device_get_softc(dev); sc->nge_dev = dev; NGE_LOCK_INIT(sc, device_get_nameunit(dev)); callout_init_mtx(&sc->nge_stat_ch, &sc->nge_mtx, 0); /* * Map control/status registers. */ pci_enable_busmaster(dev); #ifdef NGE_USEIOSPACE sc->nge_res_type = SYS_RES_IOPORT; sc->nge_res_id = PCIR_BAR(0); #else sc->nge_res_type = SYS_RES_MEMORY; sc->nge_res_id = PCIR_BAR(1); #endif sc->nge_res = bus_alloc_resource_any(dev, sc->nge_res_type, &sc->nge_res_id, RF_ACTIVE); if (sc->nge_res == NULL) { if (sc->nge_res_type == SYS_RES_MEMORY) { sc->nge_res_type = SYS_RES_IOPORT; sc->nge_res_id = PCIR_BAR(0); } else { sc->nge_res_type = SYS_RES_MEMORY; sc->nge_res_id = PCIR_BAR(1); } sc->nge_res = bus_alloc_resource_any(dev, sc->nge_res_type, &sc->nge_res_id, RF_ACTIVE); if (sc->nge_res == NULL) { device_printf(dev, "couldn't allocate %s resources\n", sc->nge_res_type == SYS_RES_MEMORY ? "memory" : "I/O"); NGE_LOCK_DESTROY(sc); return (ENXIO); } } /* Allocate interrupt */ rid = 0; sc->nge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_SHAREABLE | RF_ACTIVE); if (sc->nge_irq == NULL) { device_printf(dev, "couldn't map interrupt\n"); error = ENXIO; goto fail; } /* Enable MWI. */ reg = pci_read_config(dev, PCIR_COMMAND, 2); reg |= PCIM_CMD_MWRICEN; pci_write_config(dev, PCIR_COMMAND, reg, 2); /* Reset the adapter. */ nge_reset(sc); /* * Get station address from the EEPROM. */ nge_read_eeprom(sc, (caddr_t)ea, NGE_EE_NODEADDR, 3); for (i = 0; i < ETHER_ADDR_LEN / 2; i++) ea[i] = le16toh(ea[i]); ea_temp = ea[0]; ea[0] = ea[2]; ea[2] = ea_temp; bcopy(ea, eaddr, sizeof(eaddr)); if (nge_dma_alloc(sc) != 0) { error = ENXIO; goto fail; } nge_sysctl_node(sc); ifp = sc->nge_ifp = if_alloc(IFT_ETHER); if (ifp == NULL) { device_printf(dev, "can not allocate ifnet structure\n"); error = ENOSPC; goto fail; } ifp->if_softc = sc; if_initname(ifp, device_get_name(dev), device_get_unit(dev)); ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = nge_ioctl; ifp->if_start = nge_start; ifp->if_init = nge_init; ifp->if_snd.ifq_drv_maxlen = NGE_TX_RING_CNT - 1; IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen); IFQ_SET_READY(&ifp->if_snd); ifp->if_hwassist = NGE_CSUM_FEATURES; ifp->if_capabilities = IFCAP_HWCSUM; /* * It seems that some hardwares doesn't provide 3.3V auxiliary * supply(3VAUX) to drive PME such that checking PCI power * management capability is necessary. */ if (pci_find_cap(sc->nge_dev, PCIY_PMG, &i) == 0) ifp->if_capabilities |= IFCAP_WOL; ifp->if_capenable = ifp->if_capabilities; if ((CSR_READ_4(sc, NGE_CFG) & NGE_CFG_TBI_EN) != 0) { sc->nge_flags |= NGE_FLAG_TBI; device_printf(dev, "Using TBI\n"); /* Configure GPIO. */ CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO) | NGE_GPIO_GP4_OUT | NGE_GPIO_GP1_OUTENB | NGE_GPIO_GP2_OUTENB | NGE_GPIO_GP3_OUTENB | NGE_GPIO_GP3_IN | NGE_GPIO_GP4_IN); } /* * Do MII setup. */ error = mii_attach(dev, &sc->nge_miibus, ifp, nge_mediachange, nge_mediastatus, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0); if (error != 0) { device_printf(dev, "attaching PHYs failed\n"); goto fail; } /* * Call MI attach routine. */ ether_ifattach(ifp, eaddr); /* VLAN capability setup. */ ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING; ifp->if_capabilities |= IFCAP_VLAN_HWCSUM; ifp->if_capenable = ifp->if_capabilities; #ifdef DEVICE_POLLING ifp->if_capabilities |= IFCAP_POLLING; #endif /* * Tell the upper layer(s) we support long frames. * Must appear after the call to ether_ifattach() because * ether_ifattach() sets ifi_hdrlen to the default value. */ ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); /* * Hookup IRQ last. */ error = bus_setup_intr(dev, sc->nge_irq, INTR_TYPE_NET | INTR_MPSAFE, NULL, nge_intr, sc, &sc->nge_intrhand); if (error) { device_printf(dev, "couldn't set up irq\n"); goto fail; } fail: if (error != 0) nge_detach(dev); return (error); } static int nge_detach(device_t dev) { struct nge_softc *sc; struct ifnet *ifp; sc = device_get_softc(dev); ifp = sc->nge_ifp; #ifdef DEVICE_POLLING if (ifp != NULL && ifp->if_capenable & IFCAP_POLLING) ether_poll_deregister(ifp); #endif if (device_is_attached(dev)) { NGE_LOCK(sc); sc->nge_flags |= NGE_FLAG_DETACH; nge_stop(sc); NGE_UNLOCK(sc); callout_drain(&sc->nge_stat_ch); if (ifp != NULL) ether_ifdetach(ifp); } if (sc->nge_miibus != NULL) { device_delete_child(dev, sc->nge_miibus); sc->nge_miibus = NULL; } bus_generic_detach(dev); if (sc->nge_intrhand != NULL) bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand); if (sc->nge_irq != NULL) bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq); if (sc->nge_res != NULL) bus_release_resource(dev, sc->nge_res_type, sc->nge_res_id, sc->nge_res); nge_dma_free(sc); if (ifp != NULL) if_free(ifp); NGE_LOCK_DESTROY(sc); return (0); } struct nge_dmamap_arg { bus_addr_t nge_busaddr; }; static void nge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error) { struct nge_dmamap_arg *ctx; if (error != 0) return; ctx = arg; ctx->nge_busaddr = segs[0].ds_addr; } static int nge_dma_alloc(struct nge_softc *sc) { struct nge_dmamap_arg ctx; struct nge_txdesc *txd; struct nge_rxdesc *rxd; int error, i; /* Create parent DMA tag. */ error = bus_dma_tag_create( bus_get_dma_tag(sc->nge_dev), /* parent */ 1, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ BUS_SPACE_MAXSIZE_32BIT, /* maxsize */ 0, /* nsegments */ BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->nge_cdata.nge_parent_tag); if (error != 0) { device_printf(sc->nge_dev, "failed to create parent DMA tag\n"); goto fail; } /* Create tag for Tx ring. */ error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */ NGE_RING_ALIGN, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ NGE_TX_RING_SIZE, /* maxsize */ 1, /* nsegments */ NGE_TX_RING_SIZE, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->nge_cdata.nge_tx_ring_tag); if (error != 0) { device_printf(sc->nge_dev, "failed to create Tx ring DMA tag\n"); goto fail; } /* Create tag for Rx ring. */ error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */ NGE_RING_ALIGN, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ NGE_RX_RING_SIZE, /* maxsize */ 1, /* nsegments */ NGE_RX_RING_SIZE, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->nge_cdata.nge_rx_ring_tag); if (error != 0) { device_printf(sc->nge_dev, "failed to create Rx ring DMA tag\n"); goto fail; } /* Create tag for Tx buffers. */ error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */ 1, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ MCLBYTES * NGE_MAXTXSEGS, /* maxsize */ NGE_MAXTXSEGS, /* nsegments */ MCLBYTES, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->nge_cdata.nge_tx_tag); if (error != 0) { device_printf(sc->nge_dev, "failed to create Tx DMA tag\n"); goto fail; } /* Create tag for Rx buffers. */ error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */ NGE_RX_ALIGN, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ MCLBYTES, /* maxsize */ 1, /* nsegments */ MCLBYTES, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->nge_cdata.nge_rx_tag); if (error != 0) { device_printf(sc->nge_dev, "failed to create Rx DMA tag\n"); goto fail; } /* Allocate DMA'able memory and load the DMA map for Tx ring. */ error = bus_dmamem_alloc(sc->nge_cdata.nge_tx_ring_tag, (void **)&sc->nge_rdata.nge_tx_ring, BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->nge_cdata.nge_tx_ring_map); if (error != 0) { device_printf(sc->nge_dev, "failed to allocate DMA'able memory for Tx ring\n"); goto fail; } ctx.nge_busaddr = 0; error = bus_dmamap_load(sc->nge_cdata.nge_tx_ring_tag, sc->nge_cdata.nge_tx_ring_map, sc->nge_rdata.nge_tx_ring, NGE_TX_RING_SIZE, nge_dmamap_cb, &ctx, 0); if (error != 0 || ctx.nge_busaddr == 0) { device_printf(sc->nge_dev, "failed to load DMA'able memory for Tx ring\n"); goto fail; } sc->nge_rdata.nge_tx_ring_paddr = ctx.nge_busaddr; /* Allocate DMA'able memory and load the DMA map for Rx ring. */ error = bus_dmamem_alloc(sc->nge_cdata.nge_rx_ring_tag, (void **)&sc->nge_rdata.nge_rx_ring, BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->nge_cdata.nge_rx_ring_map); if (error != 0) { device_printf(sc->nge_dev, "failed to allocate DMA'able memory for Rx ring\n"); goto fail; } ctx.nge_busaddr = 0; error = bus_dmamap_load(sc->nge_cdata.nge_rx_ring_tag, sc->nge_cdata.nge_rx_ring_map, sc->nge_rdata.nge_rx_ring, NGE_RX_RING_SIZE, nge_dmamap_cb, &ctx, 0); if (error != 0 || ctx.nge_busaddr == 0) { device_printf(sc->nge_dev, "failed to load DMA'able memory for Rx ring\n"); goto fail; } sc->nge_rdata.nge_rx_ring_paddr = ctx.nge_busaddr; /* Create DMA maps for Tx buffers. */ for (i = 0; i < NGE_TX_RING_CNT; i++) { txd = &sc->nge_cdata.nge_txdesc[i]; txd->tx_m = NULL; txd->tx_dmamap = NULL; error = bus_dmamap_create(sc->nge_cdata.nge_tx_tag, 0, &txd->tx_dmamap); if (error != 0) { device_printf(sc->nge_dev, "failed to create Tx dmamap\n"); goto fail; } } /* Create DMA maps for Rx buffers. */ if ((error = bus_dmamap_create(sc->nge_cdata.nge_rx_tag, 0, &sc->nge_cdata.nge_rx_sparemap)) != 0) { device_printf(sc->nge_dev, "failed to create spare Rx dmamap\n"); goto fail; } for (i = 0; i < NGE_RX_RING_CNT; i++) { rxd = &sc->nge_cdata.nge_rxdesc[i]; rxd->rx_m = NULL; rxd->rx_dmamap = NULL; error = bus_dmamap_create(sc->nge_cdata.nge_rx_tag, 0, &rxd->rx_dmamap); if (error != 0) { device_printf(sc->nge_dev, "failed to create Rx dmamap\n"); goto fail; } } fail: return (error); } static void nge_dma_free(struct nge_softc *sc) { struct nge_txdesc *txd; struct nge_rxdesc *rxd; int i; /* Tx ring. */ if (sc->nge_cdata.nge_tx_ring_tag) { if (sc->nge_cdata.nge_tx_ring_map) bus_dmamap_unload(sc->nge_cdata.nge_tx_ring_tag, sc->nge_cdata.nge_tx_ring_map); if (sc->nge_cdata.nge_tx_ring_map && sc->nge_rdata.nge_tx_ring) bus_dmamem_free(sc->nge_cdata.nge_tx_ring_tag, sc->nge_rdata.nge_tx_ring, sc->nge_cdata.nge_tx_ring_map); sc->nge_rdata.nge_tx_ring = NULL; sc->nge_cdata.nge_tx_ring_map = NULL; bus_dma_tag_destroy(sc->nge_cdata.nge_tx_ring_tag); sc->nge_cdata.nge_tx_ring_tag = NULL; } /* Rx ring. */ if (sc->nge_cdata.nge_rx_ring_tag) { if (sc->nge_cdata.nge_rx_ring_map) bus_dmamap_unload(sc->nge_cdata.nge_rx_ring_tag, sc->nge_cdata.nge_rx_ring_map); if (sc->nge_cdata.nge_rx_ring_map && sc->nge_rdata.nge_rx_ring) bus_dmamem_free(sc->nge_cdata.nge_rx_ring_tag, sc->nge_rdata.nge_rx_ring, sc->nge_cdata.nge_rx_ring_map); sc->nge_rdata.nge_rx_ring = NULL; sc->nge_cdata.nge_rx_ring_map = NULL; bus_dma_tag_destroy(sc->nge_cdata.nge_rx_ring_tag); sc->nge_cdata.nge_rx_ring_tag = NULL; } /* Tx buffers. */ if (sc->nge_cdata.nge_tx_tag) { for (i = 0; i < NGE_TX_RING_CNT; i++) { txd = &sc->nge_cdata.nge_txdesc[i]; if (txd->tx_dmamap) { bus_dmamap_destroy(sc->nge_cdata.nge_tx_tag, txd->tx_dmamap); txd->tx_dmamap = NULL; } } bus_dma_tag_destroy(sc->nge_cdata.nge_tx_tag); sc->nge_cdata.nge_tx_tag = NULL; } /* Rx buffers. */ if (sc->nge_cdata.nge_rx_tag) { for (i = 0; i < NGE_RX_RING_CNT; i++) { rxd = &sc->nge_cdata.nge_rxdesc[i]; if (rxd->rx_dmamap) { bus_dmamap_destroy(sc->nge_cdata.nge_rx_tag, rxd->rx_dmamap); rxd->rx_dmamap = NULL; } } if (sc->nge_cdata.nge_rx_sparemap) { bus_dmamap_destroy(sc->nge_cdata.nge_rx_tag, sc->nge_cdata.nge_rx_sparemap); sc->nge_cdata.nge_rx_sparemap = 0; } bus_dma_tag_destroy(sc->nge_cdata.nge_rx_tag); sc->nge_cdata.nge_rx_tag = NULL; } if (sc->nge_cdata.nge_parent_tag) { bus_dma_tag_destroy(sc->nge_cdata.nge_parent_tag); sc->nge_cdata.nge_parent_tag = NULL; } } /* * Initialize the transmit descriptors. */ static int nge_list_tx_init(struct nge_softc *sc) { struct nge_ring_data *rd; struct nge_txdesc *txd; bus_addr_t addr; int i; sc->nge_cdata.nge_tx_prod = 0; sc->nge_cdata.nge_tx_cons = 0; sc->nge_cdata.nge_tx_cnt = 0; rd = &sc->nge_rdata; bzero(rd->nge_tx_ring, sizeof(struct nge_desc) * NGE_TX_RING_CNT); for (i = 0; i < NGE_TX_RING_CNT; i++) { if (i == NGE_TX_RING_CNT - 1) addr = NGE_TX_RING_ADDR(sc, 0); else addr = NGE_TX_RING_ADDR(sc, i + 1); rd->nge_tx_ring[i].nge_next = htole32(NGE_ADDR_LO(addr)); txd = &sc->nge_cdata.nge_txdesc[i]; txd->tx_m = NULL; } bus_dmamap_sync(sc->nge_cdata.nge_tx_ring_tag, sc->nge_cdata.nge_tx_ring_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); return (0); } /* * Initialize the RX descriptors and allocate mbufs for them. Note that * we arrange the descriptors in a closed ring, so that the last descriptor * points back to the first. */ static int nge_list_rx_init(struct nge_softc *sc) { struct nge_ring_data *rd; bus_addr_t addr; int i; sc->nge_cdata.nge_rx_cons = 0; sc->nge_head = sc->nge_tail = NULL; rd = &sc->nge_rdata; bzero(rd->nge_rx_ring, sizeof(struct nge_desc) * NGE_RX_RING_CNT); for (i = 0; i < NGE_RX_RING_CNT; i++) { if (nge_newbuf(sc, i) != 0) return (ENOBUFS); if (i == NGE_RX_RING_CNT - 1) addr = NGE_RX_RING_ADDR(sc, 0); else addr = NGE_RX_RING_ADDR(sc, i + 1); rd->nge_rx_ring[i].nge_next = htole32(NGE_ADDR_LO(addr)); } bus_dmamap_sync(sc->nge_cdata.nge_rx_ring_tag, sc->nge_cdata.nge_rx_ring_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); return (0); } static __inline void nge_discard_rxbuf(struct nge_softc *sc, int idx) { struct nge_desc *desc; desc = &sc->nge_rdata.nge_rx_ring[idx]; desc->nge_cmdsts = htole32(MCLBYTES - sizeof(uint64_t)); desc->nge_extsts = 0; } /* * Initialize an RX descriptor and attach an MBUF cluster. */ static int nge_newbuf(struct nge_softc *sc, int idx) { struct nge_desc *desc; struct nge_rxdesc *rxd; struct mbuf *m; bus_dma_segment_t segs[1]; bus_dmamap_t map; int nsegs; m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); if (m == NULL) return (ENOBUFS); m->m_len = m->m_pkthdr.len = MCLBYTES; m_adj(m, sizeof(uint64_t)); if (bus_dmamap_load_mbuf_sg(sc->nge_cdata.nge_rx_tag, sc->nge_cdata.nge_rx_sparemap, m, segs, &nsegs, 0) != 0) { m_freem(m); return (ENOBUFS); } KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); rxd = &sc->nge_cdata.nge_rxdesc[idx]; if (rxd->rx_m != NULL) { bus_dmamap_sync(sc->nge_cdata.nge_rx_tag, rxd->rx_dmamap, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->nge_cdata.nge_rx_tag, rxd->rx_dmamap); } map = rxd->rx_dmamap; rxd->rx_dmamap = sc->nge_cdata.nge_rx_sparemap; sc->nge_cdata.nge_rx_sparemap = map; bus_dmamap_sync(sc->nge_cdata.nge_rx_tag, rxd->rx_dmamap, BUS_DMASYNC_PREREAD); rxd->rx_m = m; desc = &sc->nge_rdata.nge_rx_ring[idx]; desc->nge_ptr = htole32(NGE_ADDR_LO(segs[0].ds_addr)); desc->nge_cmdsts = htole32(segs[0].ds_len); desc->nge_extsts = 0; return (0); } #ifndef __NO_STRICT_ALIGNMENT static __inline void nge_fixup_rx(struct mbuf *m) { int i; uint16_t *src, *dst; src = mtod(m, uint16_t *); dst = src - 1; for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++) *dst++ = *src++; m->m_data -= ETHER_ALIGN; } #endif /* * A frame has been uploaded: pass the resulting mbuf chain up to * the higher level protocols. */ static int nge_rxeof(struct nge_softc *sc) { struct mbuf *m; struct ifnet *ifp; struct nge_desc *cur_rx; struct nge_rxdesc *rxd; int cons, prog, rx_npkts, total_len; uint32_t cmdsts, extsts; NGE_LOCK_ASSERT(sc); ifp = sc->nge_ifp; cons = sc->nge_cdata.nge_rx_cons; rx_npkts = 0; bus_dmamap_sync(sc->nge_cdata.nge_rx_ring_tag, sc->nge_cdata.nge_rx_ring_map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); for (prog = 0; prog < NGE_RX_RING_CNT && (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0; NGE_INC(cons, NGE_RX_RING_CNT)) { #ifdef DEVICE_POLLING if (ifp->if_capenable & IFCAP_POLLING) { if (sc->rxcycles <= 0) break; sc->rxcycles--; } #endif cur_rx = &sc->nge_rdata.nge_rx_ring[cons]; cmdsts = le32toh(cur_rx->nge_cmdsts); extsts = le32toh(cur_rx->nge_extsts); if ((cmdsts & NGE_CMDSTS_OWN) == 0) break; prog++; rxd = &sc->nge_cdata.nge_rxdesc[cons]; m = rxd->rx_m; total_len = cmdsts & NGE_CMDSTS_BUFLEN; if ((cmdsts & NGE_CMDSTS_MORE) != 0) { if (nge_newbuf(sc, cons) != 0) { ifp->if_iqdrops++; if (sc->nge_head != NULL) { m_freem(sc->nge_head); sc->nge_head = sc->nge_tail = NULL; } nge_discard_rxbuf(sc, cons); continue; } m->m_len = total_len; if (sc->nge_head == NULL) { m->m_pkthdr.len = total_len; sc->nge_head = sc->nge_tail = m; } else { m->m_flags &= ~M_PKTHDR; sc->nge_head->m_pkthdr.len += total_len; sc->nge_tail->m_next = m; sc->nge_tail = m; } continue; } /* * If an error occurs, update stats, clear the * status word and leave the mbuf cluster in place: * it should simply get re-used next time this descriptor * comes up in the ring. */ if ((cmdsts & NGE_CMDSTS_PKT_OK) == 0) { if ((cmdsts & NGE_RXSTAT_RUNT) && total_len >= (ETHER_MIN_LEN - ETHER_CRC_LEN - 4)) { /* * Work-around hardware bug, accept runt frames * if its length is larger than or equal to 56. */ } else { /* * Input error counters are updated by hardware. */ if (sc->nge_head != NULL) { m_freem(sc->nge_head); sc->nge_head = sc->nge_tail = NULL; } nge_discard_rxbuf(sc, cons); continue; } } /* Try conjure up a replacement mbuf. */ if (nge_newbuf(sc, cons) != 0) { ifp->if_iqdrops++; if (sc->nge_head != NULL) { m_freem(sc->nge_head); sc->nge_head = sc->nge_tail = NULL; } nge_discard_rxbuf(sc, cons); continue; } /* Chain received mbufs. */ if (sc->nge_head != NULL) { m->m_len = total_len; m->m_flags &= ~M_PKTHDR; sc->nge_tail->m_next = m; m = sc->nge_head; m->m_pkthdr.len += total_len; sc->nge_head = sc->nge_tail = NULL; } else m->m_pkthdr.len = m->m_len = total_len; /* * Ok. NatSemi really screwed up here. This is the * only gigE chip I know of with alignment constraints * on receive buffers. RX buffers must be 64-bit aligned. */ /* * By popular demand, ignore the alignment problems * on the non-strict alignment platform. The performance hit * incurred due to unaligned accesses is much smaller * than the hit produced by forcing buffer copies all * the time, especially with jumbo frames. We still * need to fix up the alignment everywhere else though. */ #ifndef __NO_STRICT_ALIGNMENT nge_fixup_rx(m); #endif m->m_pkthdr.rcvif = ifp; ifp->if_ipackets++; if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) { /* Do IP checksum checking. */ if ((extsts & NGE_RXEXTSTS_IPPKT) != 0) m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; if ((extsts & NGE_RXEXTSTS_IPCSUMERR) == 0) m->m_pkthdr.csum_flags |= CSUM_IP_VALID; if ((extsts & NGE_RXEXTSTS_TCPPKT && !(extsts & NGE_RXEXTSTS_TCPCSUMERR)) || (extsts & NGE_RXEXTSTS_UDPPKT && !(extsts & NGE_RXEXTSTS_UDPCSUMERR))) { m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR; m->m_pkthdr.csum_data = 0xffff; } } /* * If we received a packet with a vlan tag, pass it * to vlan_input() instead of ether_input(). */ if ((extsts & NGE_RXEXTSTS_VLANPKT) != 0 && (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) { m->m_pkthdr.ether_vtag = bswap16(extsts & NGE_RXEXTSTS_VTCI); m->m_flags |= M_VLANTAG; } NGE_UNLOCK(sc); (*ifp->if_input)(ifp, m); NGE_LOCK(sc); rx_npkts++; } if (prog > 0) { sc->nge_cdata.nge_rx_cons = cons; bus_dmamap_sync(sc->nge_cdata.nge_rx_ring_tag, sc->nge_cdata.nge_rx_ring_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } return (rx_npkts); } /* * A frame was downloaded to the chip. It's safe for us to clean up * the list buffers. */ static void nge_txeof(struct nge_softc *sc) { struct nge_desc *cur_tx; struct nge_txdesc *txd; struct ifnet *ifp; uint32_t cmdsts; int cons, prod; NGE_LOCK_ASSERT(sc); ifp = sc->nge_ifp; cons = sc->nge_cdata.nge_tx_cons; prod = sc->nge_cdata.nge_tx_prod; if (cons == prod) return; bus_dmamap_sync(sc->nge_cdata.nge_tx_ring_tag, sc->nge_cdata.nge_tx_ring_map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); /* * Go through our tx list and free mbufs for those * frames that have been transmitted. */ for (; cons != prod; NGE_INC(cons, NGE_TX_RING_CNT)) { cur_tx = &sc->nge_rdata.nge_tx_ring[cons]; cmdsts = le32toh(cur_tx->nge_cmdsts); if ((cmdsts & NGE_CMDSTS_OWN) != 0) break; sc->nge_cdata.nge_tx_cnt--; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; if ((cmdsts & NGE_CMDSTS_MORE) != 0) continue; txd = &sc->nge_cdata.nge_txdesc[cons]; bus_dmamap_sync(sc->nge_cdata.nge_tx_tag, txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->nge_cdata.nge_tx_tag, txd->tx_dmamap); if ((cmdsts & NGE_CMDSTS_PKT_OK) == 0) { ifp->if_oerrors++; if ((cmdsts & NGE_TXSTAT_EXCESSCOLLS) != 0) ifp->if_collisions++; if ((cmdsts & NGE_TXSTAT_OUTOFWINCOLL) != 0) ifp->if_collisions++; } else ifp->if_opackets++; ifp->if_collisions += (cmdsts & NGE_TXSTAT_COLLCNT) >> 16; KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!\n", __func__)); m_freem(txd->tx_m); txd->tx_m = NULL; } sc->nge_cdata.nge_tx_cons = cons; if (sc->nge_cdata.nge_tx_cnt == 0) sc->nge_watchdog_timer = 0; } static void nge_tick(void *xsc) { struct nge_softc *sc; struct mii_data *mii; sc = xsc; NGE_LOCK_ASSERT(sc); mii = device_get_softc(sc->nge_miibus); mii_tick(mii); /* * For PHYs that does not reset established link, it is * necessary to check whether driver still have a valid * link(e.g link state change callback is not called). * Otherwise, driver think it lost link because driver * initialization routine clears link state flag. */ if ((sc->nge_flags & NGE_FLAG_LINK) == 0) nge_miibus_statchg(sc->nge_dev); nge_stats_update(sc); nge_watchdog(sc); callout_reset(&sc->nge_stat_ch, hz, nge_tick, sc); } static void nge_stats_update(struct nge_softc *sc) { struct ifnet *ifp; struct nge_stats now, *stats, *nstats; NGE_LOCK_ASSERT(sc); ifp = sc->nge_ifp; stats = &now; stats->rx_pkts_errs = CSR_READ_4(sc, NGE_MIB_RXERRPKT) & 0xFFFF; stats->rx_crc_errs = CSR_READ_4(sc, NGE_MIB_RXERRFCS) & 0xFFFF; stats->rx_fifo_oflows = CSR_READ_4(sc, NGE_MIB_RXERRMISSEDPKT) & 0xFFFF; stats->rx_align_errs = CSR_READ_4(sc, NGE_MIB_RXERRALIGN) & 0xFFFF; stats->rx_sym_errs = CSR_READ_4(sc, NGE_MIB_RXERRSYM) & 0xFFFF; stats->rx_pkts_jumbos = CSR_READ_4(sc, NGE_MIB_RXERRGIANT) & 0xFFFF; stats->rx_len_errs = CSR_READ_4(sc, NGE_MIB_RXERRRANGLEN) & 0xFFFF; stats->rx_unctl_frames = CSR_READ_4(sc, NGE_MIB_RXBADOPCODE) & 0xFFFF; stats->rx_pause = CSR_READ_4(sc, NGE_MIB_RXPAUSEPKTS) & 0xFFFF; stats->tx_pause = CSR_READ_4(sc, NGE_MIB_TXPAUSEPKTS) & 0xFFFF; stats->tx_seq_errs = CSR_READ_4(sc, NGE_MIB_TXERRSQE) & 0xFF; /* * Since we've accept errored frames exclude Rx length errors. */ ifp->if_ierrors += stats->rx_pkts_errs + stats->rx_crc_errs + stats->rx_fifo_oflows + stats->rx_sym_errs; nstats = &sc->nge_stats; nstats->rx_pkts_errs += stats->rx_pkts_errs; nstats->rx_crc_errs += stats->rx_crc_errs; nstats->rx_fifo_oflows += stats->rx_fifo_oflows; nstats->rx_align_errs += stats->rx_align_errs; nstats->rx_sym_errs += stats->rx_sym_errs; nstats->rx_pkts_jumbos += stats->rx_pkts_jumbos; nstats->rx_len_errs += stats->rx_len_errs; nstats->rx_unctl_frames += stats->rx_unctl_frames; nstats->rx_pause += stats->rx_pause; nstats->tx_pause += stats->tx_pause; nstats->tx_seq_errs += stats->tx_seq_errs; } #ifdef DEVICE_POLLING static poll_handler_t nge_poll; static int nge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count) { struct nge_softc *sc; int rx_npkts = 0; sc = ifp->if_softc; NGE_LOCK(sc); if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { NGE_UNLOCK(sc); return (rx_npkts); } /* * On the nge, reading the status register also clears it. * So before returning to intr mode we must make sure that all * possible pending sources of interrupts have been served. * In practice this means run to completion the *eof routines, * and then call the interrupt routine. */ sc->rxcycles = count; rx_npkts = nge_rxeof(sc); nge_txeof(sc); if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) nge_start_locked(ifp); if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) { uint32_t status; /* Reading the ISR register clears all interrupts. */ status = CSR_READ_4(sc, NGE_ISR); if ((status & (NGE_ISR_RX_ERR|NGE_ISR_RX_OFLOW)) != 0) rx_npkts += nge_rxeof(sc); if ((status & NGE_ISR_RX_IDLE) != 0) NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE); if ((status & NGE_ISR_SYSERR) != 0) { ifp->if_drv_flags &= ~IFF_DRV_RUNNING; nge_init_locked(sc); } } NGE_UNLOCK(sc); return (rx_npkts); } #endif /* DEVICE_POLLING */ static void nge_intr(void *arg) { struct nge_softc *sc; struct ifnet *ifp; uint32_t status; sc = (struct nge_softc *)arg; ifp = sc->nge_ifp; NGE_LOCK(sc); if ((sc->nge_flags & NGE_FLAG_SUSPENDED) != 0) goto done_locked; /* Reading the ISR register clears all interrupts. */ status = CSR_READ_4(sc, NGE_ISR); if (status == 0xffffffff || (status & NGE_INTRS) == 0) goto done_locked; #ifdef DEVICE_POLLING if ((ifp->if_capenable & IFCAP_POLLING) != 0) goto done_locked; #endif if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) goto done_locked; /* Disable interrupts. */ CSR_WRITE_4(sc, NGE_IER, 0); /* Data LED on for TBI mode */ if ((sc->nge_flags & NGE_FLAG_TBI) != 0) CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO) | NGE_GPIO_GP3_OUT); for (; (status & NGE_INTRS) != 0;) { if ((status & (NGE_ISR_TX_DESC_OK | NGE_ISR_TX_ERR | NGE_ISR_TX_OK | NGE_ISR_TX_IDLE)) != 0) nge_txeof(sc); if ((status & (NGE_ISR_RX_DESC_OK | NGE_ISR_RX_ERR | NGE_ISR_RX_OFLOW | NGE_ISR_RX_FIFO_OFLOW | NGE_ISR_RX_IDLE | NGE_ISR_RX_OK)) != 0) nge_rxeof(sc); if ((status & NGE_ISR_RX_IDLE) != 0) NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE); if ((status & NGE_ISR_SYSERR) != 0) { ifp->if_drv_flags &= ~IFF_DRV_RUNNING; nge_init_locked(sc); } /* Reading the ISR register clears all interrupts. */ status = CSR_READ_4(sc, NGE_ISR); } /* Re-enable interrupts. */ CSR_WRITE_4(sc, NGE_IER, 1); if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) nge_start_locked(ifp); /* Data LED off for TBI mode */ if ((sc->nge_flags & NGE_FLAG_TBI) != 0) CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO) & ~NGE_GPIO_GP3_OUT); done_locked: NGE_UNLOCK(sc); } /* * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data * pointers to the fragment pointers. */ static int nge_encap(struct nge_softc *sc, struct mbuf **m_head) { struct nge_txdesc *txd, *txd_last; struct nge_desc *desc; struct mbuf *m; bus_dmamap_t map; bus_dma_segment_t txsegs[NGE_MAXTXSEGS]; int error, i, nsegs, prod, si; NGE_LOCK_ASSERT(sc); m = *m_head; prod = sc->nge_cdata.nge_tx_prod; txd = &sc->nge_cdata.nge_txdesc[prod]; txd_last = txd; map = txd->tx_dmamap; error = bus_dmamap_load_mbuf_sg(sc->nge_cdata.nge_tx_tag, map, *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT); if (error == EFBIG) { m = m_collapse(*m_head, M_DONTWAIT, NGE_MAXTXSEGS); if (m == NULL) { m_freem(*m_head); *m_head = NULL; return (ENOBUFS); } *m_head = m; error = bus_dmamap_load_mbuf_sg(sc->nge_cdata.nge_tx_tag, map, *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT); if (error != 0) { m_freem(*m_head); *m_head = NULL; return (error); } } else if (error != 0) return (error); if (nsegs == 0) { m_freem(*m_head); *m_head = NULL; return (EIO); } /* Check number of available descriptors. */ if (sc->nge_cdata.nge_tx_cnt + nsegs >= (NGE_TX_RING_CNT - 1)) { bus_dmamap_unload(sc->nge_cdata.nge_tx_tag, map); return (ENOBUFS); } bus_dmamap_sync(sc->nge_cdata.nge_tx_tag, map, BUS_DMASYNC_PREWRITE); si = prod; for (i = 0; i < nsegs; i++) { desc = &sc->nge_rdata.nge_tx_ring[prod]; desc->nge_ptr = htole32(NGE_ADDR_LO(txsegs[i].ds_addr)); if (i == 0) desc->nge_cmdsts = htole32(txsegs[i].ds_len | NGE_CMDSTS_MORE); else desc->nge_cmdsts = htole32(txsegs[i].ds_len | NGE_CMDSTS_MORE | NGE_CMDSTS_OWN); desc->nge_extsts = 0; sc->nge_cdata.nge_tx_cnt++; NGE_INC(prod, NGE_TX_RING_CNT); } /* Update producer index. */ sc->nge_cdata.nge_tx_prod = prod; prod = (prod + NGE_TX_RING_CNT - 1) % NGE_TX_RING_CNT; desc = &sc->nge_rdata.nge_tx_ring[prod]; /* Check if we have a VLAN tag to insert. */ if ((m->m_flags & M_VLANTAG) != 0) desc->nge_extsts |= htole32(NGE_TXEXTSTS_VLANPKT | bswap16(m->m_pkthdr.ether_vtag)); /* Set EOP on the last desciptor. */ desc->nge_cmdsts &= htole32(~NGE_CMDSTS_MORE); /* Set checksum offload in the first descriptor. */ desc = &sc->nge_rdata.nge_tx_ring[si]; if ((m->m_pkthdr.csum_flags & NGE_CSUM_FEATURES) != 0) { if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0) desc->nge_extsts |= htole32(NGE_TXEXTSTS_IPCSUM); if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0) desc->nge_extsts |= htole32(NGE_TXEXTSTS_TCPCSUM); if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0) desc->nge_extsts |= htole32(NGE_TXEXTSTS_UDPCSUM); } /* Lastly, turn the first descriptor ownership to hardware. */ desc->nge_cmdsts |= htole32(NGE_CMDSTS_OWN); txd = &sc->nge_cdata.nge_txdesc[prod]; map = txd_last->tx_dmamap; txd_last->tx_dmamap = txd->tx_dmamap; txd->tx_dmamap = map; txd->tx_m = m; return (0); } /* * Main transmit routine. To avoid having to do mbuf copies, we put pointers * to the mbuf data regions directly in the transmit lists. We also save a * copy of the pointers since the transmit list fragment pointers are * physical addresses. */ static void nge_start(struct ifnet *ifp) { struct nge_softc *sc; sc = ifp->if_softc; NGE_LOCK(sc); nge_start_locked(ifp); NGE_UNLOCK(sc); } static void nge_start_locked(struct ifnet *ifp) { struct nge_softc *sc; struct mbuf *m_head; int enq; sc = ifp->if_softc; NGE_LOCK_ASSERT(sc); if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != IFF_DRV_RUNNING || (sc->nge_flags & NGE_FLAG_LINK) == 0) return; for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) && sc->nge_cdata.nge_tx_cnt < NGE_TX_RING_CNT - 2; ) { IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); if (m_head == NULL) break; /* * Pack the data into the transmit ring. If we * don't have room, set the OACTIVE flag and wait * for the NIC to drain the ring. */ if (nge_encap(sc, &m_head)) { if (m_head == NULL) break; IFQ_DRV_PREPEND(&ifp->if_snd, m_head); ifp->if_drv_flags |= IFF_DRV_OACTIVE; break; } enq++; /* * If there's a BPF listener, bounce a copy of this frame * to him. */ ETHER_BPF_MTAP(ifp, m_head); } if (enq > 0) { bus_dmamap_sync(sc->nge_cdata.nge_tx_ring_tag, sc->nge_cdata.nge_tx_ring_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); /* Transmit */ NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_ENABLE); /* Set a timeout in case the chip goes out to lunch. */ sc->nge_watchdog_timer = 5; } } static void nge_init(void *xsc) { struct nge_softc *sc = xsc; NGE_LOCK(sc); nge_init_locked(sc); NGE_UNLOCK(sc); } static void nge_init_locked(struct nge_softc *sc) { struct ifnet *ifp = sc->nge_ifp; struct mii_data *mii; uint8_t *eaddr; uint32_t reg; NGE_LOCK_ASSERT(sc); if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) return; /* * Cancel pending I/O and free all RX/TX buffers. */ nge_stop(sc); /* Reset the adapter. */ nge_reset(sc); /* Disable Rx filter prior to programming Rx filter. */ CSR_WRITE_4(sc, NGE_RXFILT_CTL, 0); CSR_BARRIER_4(sc, NGE_RXFILT_CTL, BUS_SPACE_BARRIER_WRITE); mii = device_get_softc(sc->nge_miibus); /* Set MAC address. */ eaddr = IF_LLADDR(sc->nge_ifp); CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR0); CSR_WRITE_4(sc, NGE_RXFILT_DATA, (eaddr[1] << 8) | eaddr[0]); CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR1); CSR_WRITE_4(sc, NGE_RXFILT_DATA, (eaddr[3] << 8) | eaddr[2]); CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR2); CSR_WRITE_4(sc, NGE_RXFILT_DATA, (eaddr[5] << 8) | eaddr[4]); /* Init circular RX list. */ if (nge_list_rx_init(sc) == ENOBUFS) { device_printf(sc->nge_dev, "initialization failed: no " "memory for rx buffers\n"); nge_stop(sc); return; } /* * Init tx descriptors. */ nge_list_tx_init(sc); /* * For the NatSemi chip, we have to explicitly enable the * reception of ARP frames, as well as turn on the 'perfect * match' filter where we store the station address, otherwise * we won't receive unicasts meant for this host. */ NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ARP); NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_PERFECT); /* * Set the capture broadcast bit to capture broadcast frames. */ if (ifp->if_flags & IFF_BROADCAST) { NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD); } else { NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD); } /* Turn the receive filter on. */ NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ENABLE); /* Set Rx filter. */ nge_rxfilter(sc); /* Disable PRIQ ctl. */ CSR_WRITE_4(sc, NGE_PRIOQCTL, 0); /* * Set pause frames paramters. * Rx stat FIFO hi-threshold : 2 or more packets * Rx stat FIFO lo-threshold : less than 2 packets * Rx data FIFO hi-threshold : 2K or more bytes * Rx data FIFO lo-threshold : less than 2K bytes * pause time : (512ns * 0xffff) -> 33.55ms */ CSR_WRITE_4(sc, NGE_PAUSECSR, NGE_PAUSECSR_PAUSE_ON_MCAST | NGE_PAUSECSR_PAUSE_ON_DA | ((1 << 24) & NGE_PAUSECSR_RX_STATFIFO_THR_HI) | ((1 << 22) & NGE_PAUSECSR_RX_STATFIFO_THR_LO) | ((1 << 20) & NGE_PAUSECSR_RX_DATAFIFO_THR_HI) | ((1 << 18) & NGE_PAUSECSR_RX_DATAFIFO_THR_LO) | NGE_PAUSECSR_CNT); /* * Load the address of the RX and TX lists. */ CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI, NGE_ADDR_HI(sc->nge_rdata.nge_rx_ring_paddr)); CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO, NGE_ADDR_LO(sc->nge_rdata.nge_rx_ring_paddr)); CSR_WRITE_4(sc, NGE_TX_LISTPTR_HI, NGE_ADDR_HI(sc->nge_rdata.nge_tx_ring_paddr)); CSR_WRITE_4(sc, NGE_TX_LISTPTR_LO, NGE_ADDR_LO(sc->nge_rdata.nge_tx_ring_paddr)); /* Set RX configuration. */ CSR_WRITE_4(sc, NGE_RX_CFG, NGE_RXCFG); CSR_WRITE_4(sc, NGE_VLAN_IP_RXCTL, 0); /* * Enable hardware checksum validation for all IPv4 * packets, do not reject packets with bad checksums. */ if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_IPCSUM_ENB); /* * Tell the chip to detect and strip VLAN tag info from * received frames. The tag will be provided in the extsts * field in the RX descriptors. */ NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_TAG_DETECT_ENB); if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_TAG_STRIP_ENB); /* Set TX configuration. */ CSR_WRITE_4(sc, NGE_TX_CFG, NGE_TXCFG); /* * Enable TX IPv4 checksumming on a per-packet basis. */ CSR_WRITE_4(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_CSUM_PER_PKT); /* * Tell the chip to insert VLAN tags on a per-packet basis as * dictated by the code in the frame encapsulation routine. */ NGE_SETBIT(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_TAG_PER_PKT); /* * Enable the delivery of PHY interrupts based on * link/speed/duplex status changes. Also enable the * extsts field in the DMA descriptors (needed for * TCP/IP checksum offload on transmit). */ NGE_SETBIT(sc, NGE_CFG, NGE_CFG_PHYINTR_SPD | NGE_CFG_PHYINTR_LNK | NGE_CFG_PHYINTR_DUP | NGE_CFG_EXTSTS_ENB); /* * Configure interrupt holdoff (moderation). We can * have the chip delay interrupt delivery for a certain * period. Units are in 100us, and the max setting * is 25500us (0xFF x 100us). Default is a 100us holdoff. */ CSR_WRITE_4(sc, NGE_IHR, sc->nge_int_holdoff); /* * Enable MAC statistics counters and clear. */ reg = CSR_READ_4(sc, NGE_MIBCTL); reg &= ~NGE_MIBCTL_FREEZE_CNT; reg |= NGE_MIBCTL_CLEAR_CNT; CSR_WRITE_4(sc, NGE_MIBCTL, reg); /* * Enable interrupts. */ CSR_WRITE_4(sc, NGE_IMR, NGE_INTRS); #ifdef DEVICE_POLLING /* * ... only enable interrupts if we are not polling, make sure * they are off otherwise. */ if ((ifp->if_capenable & IFCAP_POLLING) != 0) CSR_WRITE_4(sc, NGE_IER, 0); else #endif CSR_WRITE_4(sc, NGE_IER, 1); sc->nge_flags &= ~NGE_FLAG_LINK; mii_mediachg(mii); sc->nge_watchdog_timer = 0; callout_reset(&sc->nge_stat_ch, hz, nge_tick, sc); ifp->if_drv_flags |= IFF_DRV_RUNNING; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; } /* * Set media options. */ static int nge_mediachange(struct ifnet *ifp) { struct nge_softc *sc; struct mii_data *mii; struct mii_softc *miisc; int error; sc = ifp->if_softc; NGE_LOCK(sc); mii = device_get_softc(sc->nge_miibus); LIST_FOREACH(miisc, &mii->mii_phys, mii_list) PHY_RESET(miisc); error = mii_mediachg(mii); NGE_UNLOCK(sc); return (error); } /* * Report current media status. */ static void nge_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) { struct nge_softc *sc; struct mii_data *mii; sc = ifp->if_softc; NGE_LOCK(sc); mii = device_get_softc(sc->nge_miibus); mii_pollstat(mii); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; NGE_UNLOCK(sc); } static int nge_ioctl(struct ifnet *ifp, u_long command, caddr_t data) { struct nge_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *) data; struct mii_data *mii; int error = 0, mask; switch (command) { case SIOCSIFMTU: if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > NGE_JUMBO_MTU) error = EINVAL; else { NGE_LOCK(sc); ifp->if_mtu = ifr->ifr_mtu; /* * Workaround: if the MTU is larger than * 8152 (TX FIFO size minus 64 minus 18), turn off * TX checksum offloading. */ if (ifr->ifr_mtu >= 8152) { ifp->if_capenable &= ~IFCAP_TXCSUM; ifp->if_hwassist &= ~NGE_CSUM_FEATURES; } else { ifp->if_capenable |= IFCAP_TXCSUM; ifp->if_hwassist |= NGE_CSUM_FEATURES; } NGE_UNLOCK(sc); VLAN_CAPABILITIES(ifp); } break; case SIOCSIFFLAGS: NGE_LOCK(sc); if ((ifp->if_flags & IFF_UP) != 0) { if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { if ((ifp->if_flags ^ sc->nge_if_flags) & (IFF_PROMISC | IFF_ALLMULTI)) nge_rxfilter(sc); } else { if ((sc->nge_flags & NGE_FLAG_DETACH) == 0) nge_init_locked(sc); } } else { if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) nge_stop(sc); } sc->nge_if_flags = ifp->if_flags; NGE_UNLOCK(sc); error = 0; break; case SIOCADDMULTI: case SIOCDELMULTI: NGE_LOCK(sc); nge_rxfilter(sc); NGE_UNLOCK(sc); error = 0; break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: mii = device_get_softc(sc->nge_miibus); error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); break; case SIOCSIFCAP: NGE_LOCK(sc); mask = ifr->ifr_reqcap ^ ifp->if_capenable; #ifdef DEVICE_POLLING if ((mask & IFCAP_POLLING) != 0 && (IFCAP_POLLING & ifp->if_capabilities) != 0) { ifp->if_capenable ^= IFCAP_POLLING; if ((IFCAP_POLLING & ifp->if_capenable) != 0) { error = ether_poll_register(nge_poll, ifp); if (error != 0) { NGE_UNLOCK(sc); break; } /* Disable interrupts. */ CSR_WRITE_4(sc, NGE_IER, 0); } else { error = ether_poll_deregister(ifp); /* Enable interrupts. */ CSR_WRITE_4(sc, NGE_IER, 1); } } #endif /* DEVICE_POLLING */ if ((mask & IFCAP_TXCSUM) != 0 && (IFCAP_TXCSUM & ifp->if_capabilities) != 0) { ifp->if_capenable ^= IFCAP_TXCSUM; if ((IFCAP_TXCSUM & ifp->if_capenable) != 0) ifp->if_hwassist |= NGE_CSUM_FEATURES; else ifp->if_hwassist &= ~NGE_CSUM_FEATURES; } if ((mask & IFCAP_RXCSUM) != 0 && (IFCAP_RXCSUM & ifp->if_capabilities) != 0) ifp->if_capenable ^= IFCAP_RXCSUM; if ((mask & IFCAP_WOL) != 0 && (ifp->if_capabilities & IFCAP_WOL) != 0) { if ((mask & IFCAP_WOL_UCAST) != 0) ifp->if_capenable ^= IFCAP_WOL_UCAST; if ((mask & IFCAP_WOL_MCAST) != 0) ifp->if_capenable ^= IFCAP_WOL_MCAST; if ((mask & IFCAP_WOL_MAGIC) != 0) ifp->if_capenable ^= IFCAP_WOL_MAGIC; } if ((mask & IFCAP_VLAN_HWCSUM) != 0 && (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0) ifp->if_capenable ^= IFCAP_VLAN_HWCSUM; if ((mask & IFCAP_VLAN_HWTAGGING) != 0 && (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) { ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_TAG_STRIP_ENB); else NGE_CLRBIT(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_TAG_STRIP_ENB); } } /* * Both VLAN hardware tagging and checksum offload is * required to do checksum offload on VLAN interface. */ if ((ifp->if_capenable & IFCAP_TXCSUM) == 0) ifp->if_capenable &= ~IFCAP_VLAN_HWCSUM; if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0) ifp->if_capenable &= ~IFCAP_VLAN_HWCSUM; NGE_UNLOCK(sc); VLAN_CAPABILITIES(ifp); break; default: error = ether_ioctl(ifp, command, data); break; } return (error); } static void nge_watchdog(struct nge_softc *sc) { struct ifnet *ifp; NGE_LOCK_ASSERT(sc); if (sc->nge_watchdog_timer == 0 || --sc->nge_watchdog_timer) return; ifp = sc->nge_ifp; ifp->if_oerrors++; if_printf(ifp, "watchdog timeout\n"); ifp->if_drv_flags &= ~IFF_DRV_RUNNING; nge_init_locked(sc); if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) nge_start_locked(ifp); } static int nge_stop_mac(struct nge_softc *sc) { uint32_t reg; int i; NGE_LOCK_ASSERT(sc); reg = CSR_READ_4(sc, NGE_CSR); if ((reg & (NGE_CSR_TX_ENABLE | NGE_CSR_RX_ENABLE)) != 0) { reg &= ~(NGE_CSR_TX_ENABLE | NGE_CSR_RX_ENABLE); reg |= NGE_CSR_TX_DISABLE | NGE_CSR_RX_DISABLE; CSR_WRITE_4(sc, NGE_CSR, reg); for (i = 0; i < NGE_TIMEOUT; i++) { DELAY(1); if ((CSR_READ_4(sc, NGE_CSR) & (NGE_CSR_RX_ENABLE | NGE_CSR_TX_ENABLE)) == 0) break; } if (i == NGE_TIMEOUT) return (ETIMEDOUT); } return (0); } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ static void nge_stop(struct nge_softc *sc) { struct nge_txdesc *txd; struct nge_rxdesc *rxd; int i; struct ifnet *ifp; NGE_LOCK_ASSERT(sc); ifp = sc->nge_ifp; ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); sc->nge_flags &= ~NGE_FLAG_LINK; callout_stop(&sc->nge_stat_ch); sc->nge_watchdog_timer = 0; CSR_WRITE_4(sc, NGE_IER, 0); CSR_WRITE_4(sc, NGE_IMR, 0); if (nge_stop_mac(sc) == ETIMEDOUT) device_printf(sc->nge_dev, "%s: unable to stop Tx/Rx MAC\n", __func__); CSR_WRITE_4(sc, NGE_TX_LISTPTR_HI, 0); CSR_WRITE_4(sc, NGE_TX_LISTPTR_LO, 0); CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI, 0); CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO, 0); nge_stats_update(sc); if (sc->nge_head != NULL) { m_freem(sc->nge_head); sc->nge_head = sc->nge_tail = NULL; } /* * Free RX and TX mbufs still in the queues. */ for (i = 0; i < NGE_RX_RING_CNT; i++) { rxd = &sc->nge_cdata.nge_rxdesc[i]; if (rxd->rx_m != NULL) { bus_dmamap_sync(sc->nge_cdata.nge_rx_tag, rxd->rx_dmamap, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->nge_cdata.nge_rx_tag, rxd->rx_dmamap); m_freem(rxd->rx_m); rxd->rx_m = NULL; } } for (i = 0; i < NGE_TX_RING_CNT; i++) { txd = &sc->nge_cdata.nge_txdesc[i]; if (txd->tx_m != NULL) { bus_dmamap_sync(sc->nge_cdata.nge_tx_tag, txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->nge_cdata.nge_tx_tag, txd->tx_dmamap); m_freem(txd->tx_m); txd->tx_m = NULL; } } } /* * Before setting WOL bits, caller should have stopped Receiver. */ static void nge_wol(struct nge_softc *sc) { struct ifnet *ifp; uint32_t reg; uint16_t pmstat; int pmc; NGE_LOCK_ASSERT(sc); if (pci_find_cap(sc->nge_dev, PCIY_PMG, &pmc) != 0) return; ifp = sc->nge_ifp; if ((ifp->if_capenable & IFCAP_WOL) == 0) { /* Disable WOL & disconnect CLKRUN to save power. */ CSR_WRITE_4(sc, NGE_WOLCSR, 0); CSR_WRITE_4(sc, NGE_CLKRUN, 0); } else { if (nge_stop_mac(sc) == ETIMEDOUT) device_printf(sc->nge_dev, "%s: unable to stop Tx/Rx MAC\n", __func__); /* * Make sure wake frames will be buffered in the Rx FIFO. * (i.e. Silent Rx mode.) */ CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI, 0); CSR_BARRIER_4(sc, NGE_RX_LISTPTR_HI, BUS_SPACE_BARRIER_WRITE); CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO, 0); CSR_BARRIER_4(sc, NGE_RX_LISTPTR_LO, BUS_SPACE_BARRIER_WRITE); /* Enable Rx again. */ NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE); CSR_BARRIER_4(sc, NGE_CSR, BUS_SPACE_BARRIER_WRITE); /* Configure WOL events. */ reg = 0; if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0) reg |= NGE_WOLCSR_WAKE_ON_UNICAST; if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0) reg |= NGE_WOLCSR_WAKE_ON_MULTICAST; if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) reg |= NGE_WOLCSR_WAKE_ON_MAGICPKT; CSR_WRITE_4(sc, NGE_WOLCSR, reg); /* Activate CLKRUN. */ reg = CSR_READ_4(sc, NGE_CLKRUN); reg |= NGE_CLKRUN_PMEENB | NGE_CLNRUN_CLKRUN_ENB; CSR_WRITE_4(sc, NGE_CLKRUN, reg); } /* Request PME. */ pmstat = pci_read_config(sc->nge_dev, pmc + PCIR_POWER_STATUS, 2); pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE); if ((ifp->if_capenable & IFCAP_WOL) != 0) pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE; pci_write_config(sc->nge_dev, pmc + PCIR_POWER_STATUS, pmstat, 2); } /* * Stop all chip I/O so that the kernel's probe routines don't * get confused by errant DMAs when rebooting. */ static int nge_shutdown(device_t dev) { return (nge_suspend(dev)); } static int nge_suspend(device_t dev) { struct nge_softc *sc; sc = device_get_softc(dev); NGE_LOCK(sc); nge_stop(sc); nge_wol(sc); sc->nge_flags |= NGE_FLAG_SUSPENDED; NGE_UNLOCK(sc); return (0); } static int nge_resume(device_t dev) { struct nge_softc *sc; struct ifnet *ifp; uint16_t pmstat; int pmc; sc = device_get_softc(dev); NGE_LOCK(sc); ifp = sc->nge_ifp; if (pci_find_cap(sc->nge_dev, PCIY_PMG, &pmc) == 0) { /* Disable PME and clear PME status. */ pmstat = pci_read_config(sc->nge_dev, pmc + PCIR_POWER_STATUS, 2); if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) { pmstat &= ~PCIM_PSTAT_PMEENABLE; pci_write_config(sc->nge_dev, pmc + PCIR_POWER_STATUS, pmstat, 2); } } if (ifp->if_flags & IFF_UP) { ifp->if_drv_flags &= ~IFF_DRV_RUNNING; nge_init_locked(sc); } sc->nge_flags &= ~NGE_FLAG_SUSPENDED; NGE_UNLOCK(sc); return (0); } #define NGE_SYSCTL_STAT_ADD32(c, h, n, p, d) \ SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d) static void nge_sysctl_node(struct nge_softc *sc) { struct sysctl_ctx_list *ctx; struct sysctl_oid_list *child, *parent; struct sysctl_oid *tree; struct nge_stats *stats; int error; ctx = device_get_sysctl_ctx(sc->nge_dev); child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->nge_dev)); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_holdoff", CTLTYPE_INT | CTLFLAG_RW, &sc->nge_int_holdoff, 0, sysctl_hw_nge_int_holdoff, "I", "NGE interrupt moderation"); /* Pull in device tunables. */ sc->nge_int_holdoff = NGE_INT_HOLDOFF_DEFAULT; error = resource_int_value(device_get_name(sc->nge_dev), device_get_unit(sc->nge_dev), "int_holdoff", &sc->nge_int_holdoff); if (error == 0) { if (sc->nge_int_holdoff < NGE_INT_HOLDOFF_MIN || sc->nge_int_holdoff > NGE_INT_HOLDOFF_MAX ) { device_printf(sc->nge_dev, "int_holdoff value out of range; " "using default: %d(%d us)\n", NGE_INT_HOLDOFF_DEFAULT, NGE_INT_HOLDOFF_DEFAULT * 100); sc->nge_int_holdoff = NGE_INT_HOLDOFF_DEFAULT; } } stats = &sc->nge_stats; tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD, NULL, "NGE statistics"); parent = SYSCTL_CHILDREN(tree); /* Rx statistics. */ tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD, NULL, "Rx MAC statistics"); child = SYSCTL_CHILDREN(tree); NGE_SYSCTL_STAT_ADD32(ctx, child, "pkts_errs", &stats->rx_pkts_errs, "Packet errors including both wire errors and FIFO overruns"); NGE_SYSCTL_STAT_ADD32(ctx, child, "crc_errs", &stats->rx_crc_errs, "CRC errors"); NGE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows", &stats->rx_fifo_oflows, "FIFO overflows"); NGE_SYSCTL_STAT_ADD32(ctx, child, "align_errs", &stats->rx_align_errs, "Frame alignment errors"); NGE_SYSCTL_STAT_ADD32(ctx, child, "sym_errs", &stats->rx_sym_errs, "One or more symbol errors"); NGE_SYSCTL_STAT_ADD32(ctx, child, "pkts_jumbos", &stats->rx_pkts_jumbos, "Packets received with length greater than 1518 bytes"); NGE_SYSCTL_STAT_ADD32(ctx, child, "len_errs", &stats->rx_len_errs, "In Range Length errors"); NGE_SYSCTL_STAT_ADD32(ctx, child, "unctl_frames", &stats->rx_unctl_frames, "Control frames with unsupported opcode"); NGE_SYSCTL_STAT_ADD32(ctx, child, "pause", &stats->rx_pause, "Pause frames"); /* Tx statistics. */ tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD, NULL, "Tx MAC statistics"); child = SYSCTL_CHILDREN(tree); NGE_SYSCTL_STAT_ADD32(ctx, child, "pause", &stats->tx_pause, "Pause frames"); NGE_SYSCTL_STAT_ADD32(ctx, child, "seq_errs", &stats->tx_seq_errs, "Loss of collision heartbeat during transmission"); } #undef NGE_SYSCTL_STAT_ADD32 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high) { int error, value; if (arg1 == NULL) return (EINVAL); value = *(int *)arg1; error = sysctl_handle_int(oidp, &value, 0, req); if (error != 0 || req->newptr == NULL) return (error); if (value < low || value > high) return (EINVAL); *(int *)arg1 = value; return (0); } static int sysctl_hw_nge_int_holdoff(SYSCTL_HANDLER_ARGS) { return (sysctl_int_range(oidp, arg1, arg2, req, NGE_INT_HOLDOFF_MIN, NGE_INT_HOLDOFF_MAX)); }