Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/rc4/@/mips/atheros/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/rc4/@/mips/atheros/if_arge.c |
/*- * Copyright (c) 2009, Oleksandr Tymoshenko * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/mips/atheros/if_arge.c 229093 2011-12-31 14:12:12Z hselasky $"); /* * AR71XX gigabit ethernet driver */ #ifdef HAVE_KERNEL_OPTION_HEADERS #include "opt_device_polling.h" #endif #include <sys/param.h> #include <sys/endian.h> #include <sys/systm.h> #include <sys/sockio.h> #include <sys/mbuf.h> #include <sys/malloc.h> #include <sys/kernel.h> #include <sys/module.h> #include <sys/socket.h> #include <sys/taskqueue.h> #include <sys/sysctl.h> #include <net/if.h> #include <net/if_arp.h> #include <net/ethernet.h> #include <net/if_dl.h> #include <net/if_media.h> #include <net/if_types.h> #include <net/bpf.h> #include <machine/bus.h> #include <machine/cache.h> #include <machine/resource.h> #include <vm/vm_param.h> #include <vm/vm.h> #include <vm/pmap.h> #include <machine/pmap.h> #include <sys/bus.h> #include <sys/rman.h> #include <dev/mii/mii.h> #include <dev/mii/miivar.h> #include <dev/pci/pcireg.h> #include <dev/pci/pcivar.h> MODULE_DEPEND(arge, ether, 1, 1, 1); MODULE_DEPEND(arge, miibus, 1, 1, 1); #include "miibus_if.h" #include <mips/atheros/ar71xxreg.h> #include <mips/atheros/if_argevar.h> #include <mips/atheros/ar71xx_setup.h> #include <mips/atheros/ar71xx_cpudef.h> typedef enum { ARGE_DBG_MII = 0x00000001, ARGE_DBG_INTR = 0x00000002, ARGE_DBG_TX = 0x00000004, ARGE_DBG_RX = 0x00000008, ARGE_DBG_ERR = 0x00000010, ARGE_DBG_RESET = 0x00000020, } arge_debug_flags; #ifdef ARGE_DEBUG #define ARGEDEBUG(_sc, _m, ...) \ do { \ if ((_m) & (_sc)->arge_debug) \ device_printf((_sc)->arge_dev, __VA_ARGS__); \ } while (0) #else #define ARGEDEBUG(_sc, _m, ...) #endif static int arge_attach(device_t); static int arge_detach(device_t); static void arge_flush_ddr(struct arge_softc *); static int arge_ifmedia_upd(struct ifnet *); static void arge_ifmedia_sts(struct ifnet *, struct ifmediareq *); static int arge_ioctl(struct ifnet *, u_long, caddr_t); static void arge_init(void *); static void arge_init_locked(struct arge_softc *); static void arge_link_task(void *, int); static void arge_set_pll(struct arge_softc *, int, int); static int arge_miibus_readreg(device_t, int, int); static void arge_miibus_statchg(device_t); static int arge_miibus_writereg(device_t, int, int, int); static int arge_probe(device_t); static void arge_reset_dma(struct arge_softc *); static int arge_resume(device_t); static int arge_rx_ring_init(struct arge_softc *); static int arge_tx_ring_init(struct arge_softc *); #ifdef DEVICE_POLLING static int arge_poll(struct ifnet *, enum poll_cmd, int); #endif static int arge_shutdown(device_t); static void arge_start(struct ifnet *); static void arge_start_locked(struct ifnet *); static void arge_stop(struct arge_softc *); static int arge_suspend(device_t); static int arge_rx_locked(struct arge_softc *); static void arge_tx_locked(struct arge_softc *); static void arge_intr(void *); static int arge_intr_filter(void *); static void arge_tick(void *); /* * ifmedia callbacks for multiPHY MAC */ void arge_multiphy_mediastatus(struct ifnet *, struct ifmediareq *); int arge_multiphy_mediachange(struct ifnet *); static void arge_dmamap_cb(void *, bus_dma_segment_t *, int, int); static int arge_dma_alloc(struct arge_softc *); static void arge_dma_free(struct arge_softc *); static int arge_newbuf(struct arge_softc *, int); static __inline void arge_fixup_rx(struct mbuf *); static device_method_t arge_methods[] = { /* Device interface */ DEVMETHOD(device_probe, arge_probe), DEVMETHOD(device_attach, arge_attach), DEVMETHOD(device_detach, arge_detach), DEVMETHOD(device_suspend, arge_suspend), DEVMETHOD(device_resume, arge_resume), DEVMETHOD(device_shutdown, arge_shutdown), /* MII interface */ DEVMETHOD(miibus_readreg, arge_miibus_readreg), DEVMETHOD(miibus_writereg, arge_miibus_writereg), DEVMETHOD(miibus_statchg, arge_miibus_statchg), DEVMETHOD_END }; static driver_t arge_driver = { "arge", arge_methods, sizeof(struct arge_softc) }; static devclass_t arge_devclass; DRIVER_MODULE(arge, nexus, arge_driver, arge_devclass, 0, 0); DRIVER_MODULE(miibus, arge, miibus_driver, miibus_devclass, 0, 0); /* * RedBoot passes MAC address to entry point as environment * variable. platfrom_start parses it and stores in this variable */ extern uint32_t ar711_base_mac[ETHER_ADDR_LEN]; static struct mtx miibus_mtx; MTX_SYSINIT(miibus_mtx, &miibus_mtx, "arge mii lock", MTX_DEF); /* * Flushes all */ static void arge_flush_ddr(struct arge_softc *sc) { if (sc->arge_mac_unit == 0) ar71xx_device_flush_ddr_ge0(); else ar71xx_device_flush_ddr_ge1(); } static int arge_probe(device_t dev) { device_set_desc(dev, "Atheros AR71xx built-in ethernet interface"); return (0); } static void arge_attach_sysctl(device_t dev) { struct arge_softc *sc = device_get_softc(dev); struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev); struct sysctl_oid *tree = device_get_sysctl_tree(dev); #ifdef ARGE_DEBUG SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "debug", CTLFLAG_RW, &sc->arge_debug, 0, "arge interface debugging flags"); #endif SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "tx_pkts_aligned", CTLFLAG_RW, &sc->stats.tx_pkts_aligned, 0, "number of TX aligned packets"); SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "tx_pkts_unaligned", CTLFLAG_RW, &sc->stats.tx_pkts_unaligned, 0, "number of TX unaligned packets"); #ifdef ARGE_DEBUG SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "tx_prod", CTLFLAG_RW, &sc->arge_cdata.arge_tx_prod, 0, ""); SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "tx_cons", CTLFLAG_RW, &sc->arge_cdata.arge_tx_cons, 0, ""); SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "tx_cnt", CTLFLAG_RW, &sc->arge_cdata.arge_tx_cnt, 0, ""); #endif } static int arge_attach(device_t dev) { uint8_t eaddr[ETHER_ADDR_LEN]; struct ifnet *ifp; struct arge_softc *sc; int error = 0, rid, phymask; uint32_t reg, rnd; int is_base_mac_empty, i, phys_total; uint32_t hint; long eeprom_mac_addr = 0; sc = device_get_softc(dev); sc->arge_dev = dev; sc->arge_mac_unit = device_get_unit(dev); /* * Some units (eg the TP-Link WR-1043ND) do not have a convenient * EEPROM location to read the ethernet MAC address from. * OpenWRT simply snaffles it from a fixed location. * * Since multiple units seem to use this feature, include * a method of setting the MAC address based on an flash location * in CPU address space. */ if (sc->arge_mac_unit == 0 && resource_long_value(device_get_name(dev), device_get_unit(dev), "eeprommac", &eeprom_mac_addr) == 0) { int i; const char *mac = (const char *) MIPS_PHYS_TO_KSEG1(eeprom_mac_addr); device_printf(dev, "Overriding MAC from EEPROM\n"); for (i = 0; i < 6; i++) { ar711_base_mac[i] = mac[i]; } } KASSERT(((sc->arge_mac_unit == 0) || (sc->arge_mac_unit == 1)), ("if_arge: Only MAC0 and MAC1 supported")); /* * Get which PHY of 5 available we should use for this unit */ if (resource_int_value(device_get_name(dev), device_get_unit(dev), "phymask", &phymask) != 0) { /* * Use port 4 (WAN) for GE0. For any other port use * its PHY the same as its unit number */ if (sc->arge_mac_unit == 0) phymask = (1 << 4); else /* Use all phys up to 4 */ phymask = (1 << 4) - 1; device_printf(dev, "No PHY specified, using mask %d\n", phymask); } /* * Get default media & duplex mode, by default its Base100T * and full duplex */ if (resource_int_value(device_get_name(dev), device_get_unit(dev), "media", &hint) != 0) hint = 0; if (hint == 1000) sc->arge_media_type = IFM_1000_T; else sc->arge_media_type = IFM_100_TX; if (resource_int_value(device_get_name(dev), device_get_unit(dev), "fduplex", &hint) != 0) hint = 1; if (hint) sc->arge_duplex_mode = IFM_FDX; else sc->arge_duplex_mode = 0; sc->arge_phymask = phymask; mtx_init(&sc->arge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF); callout_init_mtx(&sc->arge_stat_callout, &sc->arge_mtx, 0); TASK_INIT(&sc->arge_link_task, 0, arge_link_task, sc); /* Map control/status registers. */ sc->arge_rid = 0; sc->arge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->arge_rid, RF_ACTIVE); if (sc->arge_res == NULL) { device_printf(dev, "couldn't map memory\n"); error = ENXIO; goto fail; } /* Allocate interrupts */ rid = 0; sc->arge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_SHAREABLE | RF_ACTIVE); if (sc->arge_irq == NULL) { device_printf(dev, "couldn't map interrupt\n"); error = ENXIO; goto fail; } /* Allocate ifnet structure. */ ifp = sc->arge_ifp = if_alloc(IFT_ETHER); if (ifp == NULL) { device_printf(dev, "couldn't allocate ifnet structure\n"); error = ENOSPC; goto fail; } ifp->if_softc = sc; if_initname(ifp, device_get_name(dev), device_get_unit(dev)); ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = arge_ioctl; ifp->if_start = arge_start; ifp->if_init = arge_init; sc->arge_if_flags = ifp->if_flags; /* XXX: add real size */ IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); ifp->if_snd.ifq_maxlen = ifqmaxlen; IFQ_SET_READY(&ifp->if_snd); ifp->if_capenable = ifp->if_capabilities; #ifdef DEVICE_POLLING ifp->if_capabilities |= IFCAP_POLLING; #endif is_base_mac_empty = 1; for (i = 0; i < ETHER_ADDR_LEN; i++) { eaddr[i] = ar711_base_mac[i] & 0xff; if (eaddr[i] != 0) is_base_mac_empty = 0; } if (is_base_mac_empty) { /* * No MAC address configured. Generate the random one. */ if (bootverbose) device_printf(dev, "Generating random ethernet address.\n"); rnd = arc4random(); eaddr[0] = 'b'; eaddr[1] = 's'; eaddr[2] = 'd'; eaddr[3] = (rnd >> 24) & 0xff; eaddr[4] = (rnd >> 16) & 0xff; eaddr[5] = (rnd >> 8) & 0xff; } if (sc->arge_mac_unit != 0) eaddr[5] += sc->arge_mac_unit; if (arge_dma_alloc(sc) != 0) { error = ENXIO; goto fail; } /* Initialize the MAC block */ /* Step 1. Soft-reset MAC */ ARGE_SET_BITS(sc, AR71XX_MAC_CFG1, MAC_CFG1_SOFT_RESET); DELAY(20); /* Step 2. Punt the MAC core from the central reset register */ ar71xx_device_stop(sc->arge_mac_unit == 0 ? RST_RESET_GE0_MAC : RST_RESET_GE1_MAC); DELAY(100); ar71xx_device_start(sc->arge_mac_unit == 0 ? RST_RESET_GE0_MAC : RST_RESET_GE1_MAC); /* Step 3. Reconfigure MAC block */ ARGE_WRITE(sc, AR71XX_MAC_CFG1, MAC_CFG1_SYNC_RX | MAC_CFG1_RX_ENABLE | MAC_CFG1_SYNC_TX | MAC_CFG1_TX_ENABLE); reg = ARGE_READ(sc, AR71XX_MAC_CFG2); reg |= MAC_CFG2_ENABLE_PADCRC | MAC_CFG2_LENGTH_FIELD ; ARGE_WRITE(sc, AR71XX_MAC_CFG2, reg); ARGE_WRITE(sc, AR71XX_MAC_MAX_FRAME_LEN, 1536); /* Reset MII bus */ ARGE_WRITE(sc, AR71XX_MAC_MII_CFG, MAC_MII_CFG_RESET); DELAY(100); ARGE_WRITE(sc, AR71XX_MAC_MII_CFG, MAC_MII_CFG_CLOCK_DIV_28); DELAY(100); /* * Set all Ethernet address registers to the same initial values * set all four addresses to 66-88-aa-cc-dd-ee */ ARGE_WRITE(sc, AR71XX_MAC_STA_ADDR1, (eaddr[2] << 24) | (eaddr[3] << 16) | (eaddr[4] << 8) | eaddr[5]); ARGE_WRITE(sc, AR71XX_MAC_STA_ADDR2, (eaddr[0] << 8) | eaddr[1]); ARGE_WRITE(sc, AR71XX_MAC_FIFO_CFG0, FIFO_CFG0_ALL << FIFO_CFG0_ENABLE_SHIFT); switch (ar71xx_soc) { case AR71XX_SOC_AR7240: case AR71XX_SOC_AR7241: case AR71XX_SOC_AR7242: ARGE_WRITE(sc, AR71XX_MAC_FIFO_CFG1, 0x0010ffff); ARGE_WRITE(sc, AR71XX_MAC_FIFO_CFG2, 0x015500aa); break; default: ARGE_WRITE(sc, AR71XX_MAC_FIFO_CFG1, 0x0fff0000); ARGE_WRITE(sc, AR71XX_MAC_FIFO_CFG2, 0x00001fff); } ARGE_WRITE(sc, AR71XX_MAC_FIFO_RX_FILTMATCH, FIFO_RX_FILTMATCH_DEFAULT); ARGE_WRITE(sc, AR71XX_MAC_FIFO_RX_FILTMASK, FIFO_RX_FILTMASK_DEFAULT); /* * Check if we have single-PHY MAC or multi-PHY */ phys_total = 0; for (i = 0; i < ARGE_NPHY; i++) if (phymask & (1 << i)) phys_total ++; if (phys_total == 0) { error = EINVAL; goto fail; } if (phys_total == 1) { /* Do MII setup. */ error = mii_attach(dev, &sc->arge_miibus, ifp, arge_ifmedia_upd, arge_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0); if (error != 0) { device_printf(dev, "attaching PHYs failed\n"); goto fail; } } else { ifmedia_init(&sc->arge_ifmedia, 0, arge_multiphy_mediachange, arge_multiphy_mediastatus); ifmedia_add(&sc->arge_ifmedia, IFM_ETHER | sc->arge_media_type | sc->arge_duplex_mode, 0, NULL); ifmedia_set(&sc->arge_ifmedia, IFM_ETHER | sc->arge_media_type | sc->arge_duplex_mode); arge_set_pll(sc, sc->arge_media_type, sc->arge_duplex_mode); } /* Call MI attach routine. */ ether_ifattach(ifp, eaddr); /* Hook interrupt last to avoid having to lock softc */ error = bus_setup_intr(dev, sc->arge_irq, INTR_TYPE_NET | INTR_MPSAFE, arge_intr_filter, arge_intr, sc, &sc->arge_intrhand); if (error) { device_printf(dev, "couldn't set up irq\n"); ether_ifdetach(ifp); goto fail; } /* setup sysctl variables */ arge_attach_sysctl(dev); fail: if (error) arge_detach(dev); return (error); } static int arge_detach(device_t dev) { struct arge_softc *sc = device_get_softc(dev); struct ifnet *ifp = sc->arge_ifp; KASSERT(mtx_initialized(&sc->arge_mtx), ("arge mutex not initialized")); /* These should only be active if attach succeeded */ if (device_is_attached(dev)) { ARGE_LOCK(sc); sc->arge_detach = 1; #ifdef DEVICE_POLLING if (ifp->if_capenable & IFCAP_POLLING) ether_poll_deregister(ifp); #endif arge_stop(sc); ARGE_UNLOCK(sc); taskqueue_drain(taskqueue_swi, &sc->arge_link_task); ether_ifdetach(ifp); } if (sc->arge_miibus) device_delete_child(dev, sc->arge_miibus); bus_generic_detach(dev); if (sc->arge_intrhand) bus_teardown_intr(dev, sc->arge_irq, sc->arge_intrhand); if (sc->arge_res) bus_release_resource(dev, SYS_RES_MEMORY, sc->arge_rid, sc->arge_res); if (ifp) if_free(ifp); arge_dma_free(sc); mtx_destroy(&sc->arge_mtx); return (0); } static int arge_suspend(device_t dev) { panic("%s", __func__); return 0; } static int arge_resume(device_t dev) { panic("%s", __func__); return 0; } static int arge_shutdown(device_t dev) { struct arge_softc *sc; sc = device_get_softc(dev); ARGE_LOCK(sc); arge_stop(sc); ARGE_UNLOCK(sc); return (0); } static int arge_miibus_readreg(device_t dev, int phy, int reg) { struct arge_softc * sc = device_get_softc(dev); int i, result; uint32_t addr = (phy << MAC_MII_PHY_ADDR_SHIFT) | (reg & MAC_MII_REG_MASK); if ((sc->arge_phymask & (1 << phy)) == 0) return (0); mtx_lock(&miibus_mtx); ARGE_MII_WRITE(AR71XX_MAC_MII_CMD, MAC_MII_CMD_WRITE); ARGE_MII_WRITE(AR71XX_MAC_MII_ADDR, addr); ARGE_MII_WRITE(AR71XX_MAC_MII_CMD, MAC_MII_CMD_READ); i = ARGE_MII_TIMEOUT; while ((ARGE_MII_READ(AR71XX_MAC_MII_INDICATOR) & MAC_MII_INDICATOR_BUSY) && (i--)) DELAY(5); if (i < 0) { mtx_unlock(&miibus_mtx); ARGEDEBUG(sc, ARGE_DBG_MII, "%s timedout\n", __func__); /* XXX: return ERRNO istead? */ return (-1); } result = ARGE_MII_READ(AR71XX_MAC_MII_STATUS) & MAC_MII_STATUS_MASK; ARGE_MII_WRITE(AR71XX_MAC_MII_CMD, MAC_MII_CMD_WRITE); mtx_unlock(&miibus_mtx); ARGEDEBUG(sc, ARGE_DBG_MII, "%s: phy=%d, reg=%02x, value[%08x]=%04x\n", __func__, phy, reg, addr, result); return (result); } static int arge_miibus_writereg(device_t dev, int phy, int reg, int data) { struct arge_softc * sc = device_get_softc(dev); int i; uint32_t addr = (phy << MAC_MII_PHY_ADDR_SHIFT) | (reg & MAC_MII_REG_MASK); if ((sc->arge_phymask & (1 << phy)) == 0) return (-1); ARGEDEBUG(sc, ARGE_DBG_MII, "%s: phy=%d, reg=%02x, value=%04x\n", __func__, phy, reg, data); mtx_lock(&miibus_mtx); ARGE_MII_WRITE(AR71XX_MAC_MII_ADDR, addr); ARGE_MII_WRITE(AR71XX_MAC_MII_CONTROL, data); i = ARGE_MII_TIMEOUT; while ((ARGE_MII_READ(AR71XX_MAC_MII_INDICATOR) & MAC_MII_INDICATOR_BUSY) && (i--)) DELAY(5); mtx_unlock(&miibus_mtx); if (i < 0) { ARGEDEBUG(sc, ARGE_DBG_MII, "%s timedout\n", __func__); /* XXX: return ERRNO istead? */ return (-1); } return (0); } static void arge_miibus_statchg(device_t dev) { struct arge_softc *sc; sc = device_get_softc(dev); taskqueue_enqueue(taskqueue_swi, &sc->arge_link_task); } static void arge_link_task(void *arg, int pending) { struct arge_softc *sc; struct mii_data *mii; struct ifnet *ifp; uint32_t media, duplex; sc = (struct arge_softc *)arg; ARGE_LOCK(sc); mii = device_get_softc(sc->arge_miibus); ifp = sc->arge_ifp; if (mii == NULL || ifp == NULL || (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { ARGE_UNLOCK(sc); return; } if (mii->mii_media_status & IFM_ACTIVE) { media = IFM_SUBTYPE(mii->mii_media_active); if (media != IFM_NONE) { sc->arge_link_status = 1; duplex = mii->mii_media_active & IFM_GMASK; arge_set_pll(sc, media, duplex); } } else sc->arge_link_status = 0; ARGE_UNLOCK(sc); } static void arge_set_pll(struct arge_softc *sc, int media, int duplex) { uint32_t cfg, ifcontrol, rx_filtmask; uint32_t fifo_tx; int if_speed; cfg = ARGE_READ(sc, AR71XX_MAC_CFG2); cfg &= ~(MAC_CFG2_IFACE_MODE_1000 | MAC_CFG2_IFACE_MODE_10_100 | MAC_CFG2_FULL_DUPLEX); if (duplex == IFM_FDX) cfg |= MAC_CFG2_FULL_DUPLEX; ifcontrol = ARGE_READ(sc, AR71XX_MAC_IFCONTROL); ifcontrol &= ~MAC_IFCONTROL_SPEED; rx_filtmask = ARGE_READ(sc, AR71XX_MAC_FIFO_RX_FILTMASK); rx_filtmask &= ~FIFO_RX_MASK_BYTE_MODE; switch(media) { case IFM_10_T: cfg |= MAC_CFG2_IFACE_MODE_10_100; if_speed = 10; break; case IFM_100_TX: cfg |= MAC_CFG2_IFACE_MODE_10_100; ifcontrol |= MAC_IFCONTROL_SPEED; if_speed = 100; break; case IFM_1000_T: case IFM_1000_SX: cfg |= MAC_CFG2_IFACE_MODE_1000; rx_filtmask |= FIFO_RX_MASK_BYTE_MODE; if_speed = 1000; break; default: if_speed = 100; device_printf(sc->arge_dev, "Unknown media %d\n", media); } switch (ar71xx_soc) { case AR71XX_SOC_AR7240: case AR71XX_SOC_AR7241: case AR71XX_SOC_AR7242: fifo_tx = 0x01f00140; break; case AR71XX_SOC_AR9130: case AR71XX_SOC_AR9132: fifo_tx = 0x00780fff; break; default: fifo_tx = 0x008001ff; } ARGE_WRITE(sc, AR71XX_MAC_CFG2, cfg); ARGE_WRITE(sc, AR71XX_MAC_IFCONTROL, ifcontrol); ARGE_WRITE(sc, AR71XX_MAC_FIFO_RX_FILTMASK, rx_filtmask); ARGE_WRITE(sc, AR71XX_MAC_FIFO_TX_THRESHOLD, fifo_tx); /* set PLL registers */ if (sc->arge_mac_unit == 0) ar71xx_device_set_pll_ge0(if_speed); else ar71xx_device_set_pll_ge1(if_speed); } static void arge_reset_dma(struct arge_softc *sc) { ARGE_WRITE(sc, AR71XX_DMA_RX_CONTROL, 0); ARGE_WRITE(sc, AR71XX_DMA_TX_CONTROL, 0); ARGE_WRITE(sc, AR71XX_DMA_RX_DESC, 0); ARGE_WRITE(sc, AR71XX_DMA_TX_DESC, 0); /* Clear all possible RX interrupts */ while(ARGE_READ(sc, AR71XX_DMA_RX_STATUS) & DMA_RX_STATUS_PKT_RECVD) ARGE_WRITE(sc, AR71XX_DMA_RX_STATUS, DMA_RX_STATUS_PKT_RECVD); /* * Clear all possible TX interrupts */ while(ARGE_READ(sc, AR71XX_DMA_TX_STATUS) & DMA_TX_STATUS_PKT_SENT) ARGE_WRITE(sc, AR71XX_DMA_TX_STATUS, DMA_TX_STATUS_PKT_SENT); /* * Now Rx/Tx errors */ ARGE_WRITE(sc, AR71XX_DMA_RX_STATUS, DMA_RX_STATUS_BUS_ERROR | DMA_RX_STATUS_OVERFLOW); ARGE_WRITE(sc, AR71XX_DMA_TX_STATUS, DMA_TX_STATUS_BUS_ERROR | DMA_TX_STATUS_UNDERRUN); } static void arge_init(void *xsc) { struct arge_softc *sc = xsc; ARGE_LOCK(sc); arge_init_locked(sc); ARGE_UNLOCK(sc); } static void arge_init_locked(struct arge_softc *sc) { struct ifnet *ifp = sc->arge_ifp; struct mii_data *mii; ARGE_LOCK_ASSERT(sc); arge_stop(sc); /* Init circular RX list. */ if (arge_rx_ring_init(sc) != 0) { device_printf(sc->arge_dev, "initialization failed: no memory for rx buffers\n"); arge_stop(sc); return; } /* Init tx descriptors. */ arge_tx_ring_init(sc); arge_reset_dma(sc); if (sc->arge_miibus) { sc->arge_link_status = 0; mii = device_get_softc(sc->arge_miibus); mii_mediachg(mii); } else { /* * Sun always shines over multiPHY interface */ sc->arge_link_status = 1; } ifp->if_drv_flags |= IFF_DRV_RUNNING; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; if (sc->arge_miibus) callout_reset(&sc->arge_stat_callout, hz, arge_tick, sc); ARGE_WRITE(sc, AR71XX_DMA_TX_DESC, ARGE_TX_RING_ADDR(sc, 0)); ARGE_WRITE(sc, AR71XX_DMA_RX_DESC, ARGE_RX_RING_ADDR(sc, 0)); /* Start listening */ ARGE_WRITE(sc, AR71XX_DMA_RX_CONTROL, DMA_RX_CONTROL_EN); /* Enable interrupts */ ARGE_WRITE(sc, AR71XX_DMA_INTR, DMA_INTR_ALL); } /* * Return whether the mbuf chain is correctly aligned * for the arge TX engine. * * The TX engine requires each fragment to be aligned to a * 4 byte boundary and the size of each fragment except * the last to be a multiple of 4 bytes. */ static int arge_mbuf_chain_is_tx_aligned(struct mbuf *m0) { struct mbuf *m; for (m = m0; m != NULL; m = m->m_next) { if((mtod(m, intptr_t) & 3) != 0) return 0; if ((m->m_next != NULL) && ((m->m_len & 0x03) != 0)) return 0; } return 1; } /* * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data * pointers to the fragment pointers. */ static int arge_encap(struct arge_softc *sc, struct mbuf **m_head) { struct arge_txdesc *txd; struct arge_desc *desc, *prev_desc; bus_dma_segment_t txsegs[ARGE_MAXFRAGS]; int error, i, nsegs, prod, prev_prod; struct mbuf *m; ARGE_LOCK_ASSERT(sc); /* * Fix mbuf chain, all fragments should be 4 bytes aligned and * even 4 bytes */ m = *m_head; if (! arge_mbuf_chain_is_tx_aligned(m)) { sc->stats.tx_pkts_unaligned++; m = m_defrag(*m_head, M_DONTWAIT); if (m == NULL) { *m_head = NULL; return (ENOBUFS); } *m_head = m; } else sc->stats.tx_pkts_aligned++; prod = sc->arge_cdata.arge_tx_prod; txd = &sc->arge_cdata.arge_txdesc[prod]; error = bus_dmamap_load_mbuf_sg(sc->arge_cdata.arge_tx_tag, txd->tx_dmamap, *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT); if (error == EFBIG) { panic("EFBIG"); } else if (error != 0) return (error); if (nsegs == 0) { m_freem(*m_head); *m_head = NULL; return (EIO); } /* Check number of available descriptors. */ if (sc->arge_cdata.arge_tx_cnt + nsegs >= (ARGE_TX_RING_COUNT - 1)) { bus_dmamap_unload(sc->arge_cdata.arge_tx_tag, txd->tx_dmamap); return (ENOBUFS); } txd->tx_m = *m_head; bus_dmamap_sync(sc->arge_cdata.arge_tx_tag, txd->tx_dmamap, BUS_DMASYNC_PREWRITE); /* * Make a list of descriptors for this packet. DMA controller will * walk through it while arge_link is not zero. */ prev_prod = prod; desc = prev_desc = NULL; for (i = 0; i < nsegs; i++) { desc = &sc->arge_rdata.arge_tx_ring[prod]; desc->packet_ctrl = ARGE_DMASIZE(txsegs[i].ds_len); if (txsegs[i].ds_addr & 3) panic("TX packet address unaligned\n"); desc->packet_addr = txsegs[i].ds_addr; /* link with previous descriptor */ if (prev_desc) prev_desc->packet_ctrl |= ARGE_DESC_MORE; sc->arge_cdata.arge_tx_cnt++; prev_desc = desc; ARGE_INC(prod, ARGE_TX_RING_COUNT); } /* Update producer index. */ sc->arge_cdata.arge_tx_prod = prod; /* Sync descriptors. */ bus_dmamap_sync(sc->arge_cdata.arge_tx_ring_tag, sc->arge_cdata.arge_tx_ring_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); /* Start transmitting */ ARGEDEBUG(sc, ARGE_DBG_TX, "%s: setting DMA_TX_CONTROL_EN\n", __func__); ARGE_WRITE(sc, AR71XX_DMA_TX_CONTROL, DMA_TX_CONTROL_EN); return (0); } static void arge_start(struct ifnet *ifp) { struct arge_softc *sc; sc = ifp->if_softc; ARGE_LOCK(sc); arge_start_locked(ifp); ARGE_UNLOCK(sc); } static void arge_start_locked(struct ifnet *ifp) { struct arge_softc *sc; struct mbuf *m_head; int enq = 0; sc = ifp->if_softc; ARGE_LOCK_ASSERT(sc); ARGEDEBUG(sc, ARGE_DBG_TX, "%s: beginning\n", __func__); if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != IFF_DRV_RUNNING || sc->arge_link_status == 0 ) return; /* * Before we go any further, check whether we're already full. * The below check errors out immediately if the ring is full * and never gets a chance to set this flag. Although it's * likely never needed, this at least avoids an unexpected * situation. */ if (sc->arge_cdata.arge_tx_cnt >= ARGE_TX_RING_COUNT - 2) { ifp->if_drv_flags |= IFF_DRV_OACTIVE; ARGEDEBUG(sc, ARGE_DBG_ERR, "%s: tx_cnt %d >= max %d; setting IFF_DRV_OACTIVE\n", __func__, sc->arge_cdata.arge_tx_cnt, ARGE_TX_RING_COUNT - 2); return; } arge_flush_ddr(sc); for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) && sc->arge_cdata.arge_tx_cnt < ARGE_TX_RING_COUNT - 2; ) { IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); if (m_head == NULL) break; /* * Pack the data into the transmit ring. */ if (arge_encap(sc, &m_head)) { if (m_head == NULL) break; IFQ_DRV_PREPEND(&ifp->if_snd, m_head); ifp->if_drv_flags |= IFF_DRV_OACTIVE; break; } enq++; /* * If there's a BPF listener, bounce a copy of this frame * to him. */ ETHER_BPF_MTAP(ifp, m_head); } ARGEDEBUG(sc, ARGE_DBG_TX, "%s: finished; queued %d packets\n", __func__, enq); } static void arge_stop(struct arge_softc *sc) { struct ifnet *ifp; ARGE_LOCK_ASSERT(sc); ifp = sc->arge_ifp; ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); if (sc->arge_miibus) callout_stop(&sc->arge_stat_callout); /* mask out interrupts */ ARGE_WRITE(sc, AR71XX_DMA_INTR, 0); arge_reset_dma(sc); } static int arge_ioctl(struct ifnet *ifp, u_long command, caddr_t data) { struct arge_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *) data; struct mii_data *mii; int error; #ifdef DEVICE_POLLING int mask; #endif switch (command) { case SIOCSIFFLAGS: ARGE_LOCK(sc); if ((ifp->if_flags & IFF_UP) != 0) { if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { if (((ifp->if_flags ^ sc->arge_if_flags) & (IFF_PROMISC | IFF_ALLMULTI)) != 0) { /* XXX: handle promisc & multi flags */ } } else { if (!sc->arge_detach) arge_init_locked(sc); } } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { ifp->if_drv_flags &= ~IFF_DRV_RUNNING; arge_stop(sc); } sc->arge_if_flags = ifp->if_flags; ARGE_UNLOCK(sc); error = 0; break; case SIOCADDMULTI: case SIOCDELMULTI: /* XXX: implement SIOCDELMULTI */ error = 0; break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: if (sc->arge_miibus) { mii = device_get_softc(sc->arge_miibus); error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); } else error = ifmedia_ioctl(ifp, ifr, &sc->arge_ifmedia, command); break; case SIOCSIFCAP: /* XXX: Check other capabilities */ #ifdef DEVICE_POLLING mask = ifp->if_capenable ^ ifr->ifr_reqcap; if (mask & IFCAP_POLLING) { if (ifr->ifr_reqcap & IFCAP_POLLING) { ARGE_WRITE(sc, AR71XX_DMA_INTR, 0); error = ether_poll_register(arge_poll, ifp); if (error) return error; ARGE_LOCK(sc); ifp->if_capenable |= IFCAP_POLLING; ARGE_UNLOCK(sc); } else { ARGE_WRITE(sc, AR71XX_DMA_INTR, DMA_INTR_ALL); error = ether_poll_deregister(ifp); ARGE_LOCK(sc); ifp->if_capenable &= ~IFCAP_POLLING; ARGE_UNLOCK(sc); } } error = 0; break; #endif default: error = ether_ioctl(ifp, command, data); break; } return (error); } /* * Set media options. */ static int arge_ifmedia_upd(struct ifnet *ifp) { struct arge_softc *sc; struct mii_data *mii; struct mii_softc *miisc; int error; sc = ifp->if_softc; ARGE_LOCK(sc); mii = device_get_softc(sc->arge_miibus); LIST_FOREACH(miisc, &mii->mii_phys, mii_list) PHY_RESET(miisc); error = mii_mediachg(mii); ARGE_UNLOCK(sc); return (error); } /* * Report current media status. */ static void arge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) { struct arge_softc *sc = ifp->if_softc; struct mii_data *mii; mii = device_get_softc(sc->arge_miibus); ARGE_LOCK(sc); mii_pollstat(mii); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; ARGE_UNLOCK(sc); } struct arge_dmamap_arg { bus_addr_t arge_busaddr; }; static void arge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error) { struct arge_dmamap_arg *ctx; if (error != 0) return; ctx = arg; ctx->arge_busaddr = segs[0].ds_addr; } static int arge_dma_alloc(struct arge_softc *sc) { struct arge_dmamap_arg ctx; struct arge_txdesc *txd; struct arge_rxdesc *rxd; int error, i; /* Create parent DMA tag. */ error = bus_dma_tag_create( bus_get_dma_tag(sc->arge_dev), /* parent */ 1, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ BUS_SPACE_MAXSIZE_32BIT, /* maxsize */ 0, /* nsegments */ BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->arge_cdata.arge_parent_tag); if (error != 0) { device_printf(sc->arge_dev, "failed to create parent DMA tag\n"); goto fail; } /* Create tag for Tx ring. */ error = bus_dma_tag_create( sc->arge_cdata.arge_parent_tag, /* parent */ ARGE_RING_ALIGN, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ ARGE_TX_DMA_SIZE, /* maxsize */ 1, /* nsegments */ ARGE_TX_DMA_SIZE, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->arge_cdata.arge_tx_ring_tag); if (error != 0) { device_printf(sc->arge_dev, "failed to create Tx ring DMA tag\n"); goto fail; } /* Create tag for Rx ring. */ error = bus_dma_tag_create( sc->arge_cdata.arge_parent_tag, /* parent */ ARGE_RING_ALIGN, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ ARGE_RX_DMA_SIZE, /* maxsize */ 1, /* nsegments */ ARGE_RX_DMA_SIZE, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->arge_cdata.arge_rx_ring_tag); if (error != 0) { device_printf(sc->arge_dev, "failed to create Rx ring DMA tag\n"); goto fail; } /* Create tag for Tx buffers. */ error = bus_dma_tag_create( sc->arge_cdata.arge_parent_tag, /* parent */ sizeof(uint32_t), 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ MCLBYTES * ARGE_MAXFRAGS, /* maxsize */ ARGE_MAXFRAGS, /* nsegments */ MCLBYTES, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->arge_cdata.arge_tx_tag); if (error != 0) { device_printf(sc->arge_dev, "failed to create Tx DMA tag\n"); goto fail; } /* Create tag for Rx buffers. */ error = bus_dma_tag_create( sc->arge_cdata.arge_parent_tag, /* parent */ ARGE_RX_ALIGN, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ MCLBYTES, /* maxsize */ ARGE_MAXFRAGS, /* nsegments */ MCLBYTES, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->arge_cdata.arge_rx_tag); if (error != 0) { device_printf(sc->arge_dev, "failed to create Rx DMA tag\n"); goto fail; } /* Allocate DMA'able memory and load the DMA map for Tx ring. */ error = bus_dmamem_alloc(sc->arge_cdata.arge_tx_ring_tag, (void **)&sc->arge_rdata.arge_tx_ring, BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->arge_cdata.arge_tx_ring_map); if (error != 0) { device_printf(sc->arge_dev, "failed to allocate DMA'able memory for Tx ring\n"); goto fail; } ctx.arge_busaddr = 0; error = bus_dmamap_load(sc->arge_cdata.arge_tx_ring_tag, sc->arge_cdata.arge_tx_ring_map, sc->arge_rdata.arge_tx_ring, ARGE_TX_DMA_SIZE, arge_dmamap_cb, &ctx, 0); if (error != 0 || ctx.arge_busaddr == 0) { device_printf(sc->arge_dev, "failed to load DMA'able memory for Tx ring\n"); goto fail; } sc->arge_rdata.arge_tx_ring_paddr = ctx.arge_busaddr; /* Allocate DMA'able memory and load the DMA map for Rx ring. */ error = bus_dmamem_alloc(sc->arge_cdata.arge_rx_ring_tag, (void **)&sc->arge_rdata.arge_rx_ring, BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->arge_cdata.arge_rx_ring_map); if (error != 0) { device_printf(sc->arge_dev, "failed to allocate DMA'able memory for Rx ring\n"); goto fail; } ctx.arge_busaddr = 0; error = bus_dmamap_load(sc->arge_cdata.arge_rx_ring_tag, sc->arge_cdata.arge_rx_ring_map, sc->arge_rdata.arge_rx_ring, ARGE_RX_DMA_SIZE, arge_dmamap_cb, &ctx, 0); if (error != 0 || ctx.arge_busaddr == 0) { device_printf(sc->arge_dev, "failed to load DMA'able memory for Rx ring\n"); goto fail; } sc->arge_rdata.arge_rx_ring_paddr = ctx.arge_busaddr; /* Create DMA maps for Tx buffers. */ for (i = 0; i < ARGE_TX_RING_COUNT; i++) { txd = &sc->arge_cdata.arge_txdesc[i]; txd->tx_m = NULL; txd->tx_dmamap = NULL; error = bus_dmamap_create(sc->arge_cdata.arge_tx_tag, 0, &txd->tx_dmamap); if (error != 0) { device_printf(sc->arge_dev, "failed to create Tx dmamap\n"); goto fail; } } /* Create DMA maps for Rx buffers. */ if ((error = bus_dmamap_create(sc->arge_cdata.arge_rx_tag, 0, &sc->arge_cdata.arge_rx_sparemap)) != 0) { device_printf(sc->arge_dev, "failed to create spare Rx dmamap\n"); goto fail; } for (i = 0; i < ARGE_RX_RING_COUNT; i++) { rxd = &sc->arge_cdata.arge_rxdesc[i]; rxd->rx_m = NULL; rxd->rx_dmamap = NULL; error = bus_dmamap_create(sc->arge_cdata.arge_rx_tag, 0, &rxd->rx_dmamap); if (error != 0) { device_printf(sc->arge_dev, "failed to create Rx dmamap\n"); goto fail; } } fail: return (error); } static void arge_dma_free(struct arge_softc *sc) { struct arge_txdesc *txd; struct arge_rxdesc *rxd; int i; /* Tx ring. */ if (sc->arge_cdata.arge_tx_ring_tag) { if (sc->arge_cdata.arge_tx_ring_map) bus_dmamap_unload(sc->arge_cdata.arge_tx_ring_tag, sc->arge_cdata.arge_tx_ring_map); if (sc->arge_cdata.arge_tx_ring_map && sc->arge_rdata.arge_tx_ring) bus_dmamem_free(sc->arge_cdata.arge_tx_ring_tag, sc->arge_rdata.arge_tx_ring, sc->arge_cdata.arge_tx_ring_map); sc->arge_rdata.arge_tx_ring = NULL; sc->arge_cdata.arge_tx_ring_map = NULL; bus_dma_tag_destroy(sc->arge_cdata.arge_tx_ring_tag); sc->arge_cdata.arge_tx_ring_tag = NULL; } /* Rx ring. */ if (sc->arge_cdata.arge_rx_ring_tag) { if (sc->arge_cdata.arge_rx_ring_map) bus_dmamap_unload(sc->arge_cdata.arge_rx_ring_tag, sc->arge_cdata.arge_rx_ring_map); if (sc->arge_cdata.arge_rx_ring_map && sc->arge_rdata.arge_rx_ring) bus_dmamem_free(sc->arge_cdata.arge_rx_ring_tag, sc->arge_rdata.arge_rx_ring, sc->arge_cdata.arge_rx_ring_map); sc->arge_rdata.arge_rx_ring = NULL; sc->arge_cdata.arge_rx_ring_map = NULL; bus_dma_tag_destroy(sc->arge_cdata.arge_rx_ring_tag); sc->arge_cdata.arge_rx_ring_tag = NULL; } /* Tx buffers. */ if (sc->arge_cdata.arge_tx_tag) { for (i = 0; i < ARGE_TX_RING_COUNT; i++) { txd = &sc->arge_cdata.arge_txdesc[i]; if (txd->tx_dmamap) { bus_dmamap_destroy(sc->arge_cdata.arge_tx_tag, txd->tx_dmamap); txd->tx_dmamap = NULL; } } bus_dma_tag_destroy(sc->arge_cdata.arge_tx_tag); sc->arge_cdata.arge_tx_tag = NULL; } /* Rx buffers. */ if (sc->arge_cdata.arge_rx_tag) { for (i = 0; i < ARGE_RX_RING_COUNT; i++) { rxd = &sc->arge_cdata.arge_rxdesc[i]; if (rxd->rx_dmamap) { bus_dmamap_destroy(sc->arge_cdata.arge_rx_tag, rxd->rx_dmamap); rxd->rx_dmamap = NULL; } } if (sc->arge_cdata.arge_rx_sparemap) { bus_dmamap_destroy(sc->arge_cdata.arge_rx_tag, sc->arge_cdata.arge_rx_sparemap); sc->arge_cdata.arge_rx_sparemap = 0; } bus_dma_tag_destroy(sc->arge_cdata.arge_rx_tag); sc->arge_cdata.arge_rx_tag = NULL; } if (sc->arge_cdata.arge_parent_tag) { bus_dma_tag_destroy(sc->arge_cdata.arge_parent_tag); sc->arge_cdata.arge_parent_tag = NULL; } } /* * Initialize the transmit descriptors. */ static int arge_tx_ring_init(struct arge_softc *sc) { struct arge_ring_data *rd; struct arge_txdesc *txd; bus_addr_t addr; int i; sc->arge_cdata.arge_tx_prod = 0; sc->arge_cdata.arge_tx_cons = 0; sc->arge_cdata.arge_tx_cnt = 0; rd = &sc->arge_rdata; bzero(rd->arge_tx_ring, sizeof(rd->arge_tx_ring)); for (i = 0; i < ARGE_TX_RING_COUNT; i++) { if (i == ARGE_TX_RING_COUNT - 1) addr = ARGE_TX_RING_ADDR(sc, 0); else addr = ARGE_TX_RING_ADDR(sc, i + 1); rd->arge_tx_ring[i].packet_ctrl = ARGE_DESC_EMPTY; rd->arge_tx_ring[i].next_desc = addr; txd = &sc->arge_cdata.arge_txdesc[i]; txd->tx_m = NULL; } bus_dmamap_sync(sc->arge_cdata.arge_tx_ring_tag, sc->arge_cdata.arge_tx_ring_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); return (0); } /* * Initialize the RX descriptors and allocate mbufs for them. Note that * we arrange the descriptors in a closed ring, so that the last descriptor * points back to the first. */ static int arge_rx_ring_init(struct arge_softc *sc) { struct arge_ring_data *rd; struct arge_rxdesc *rxd; bus_addr_t addr; int i; sc->arge_cdata.arge_rx_cons = 0; rd = &sc->arge_rdata; bzero(rd->arge_rx_ring, sizeof(rd->arge_rx_ring)); for (i = 0; i < ARGE_RX_RING_COUNT; i++) { rxd = &sc->arge_cdata.arge_rxdesc[i]; rxd->rx_m = NULL; rxd->desc = &rd->arge_rx_ring[i]; if (i == ARGE_RX_RING_COUNT - 1) addr = ARGE_RX_RING_ADDR(sc, 0); else addr = ARGE_RX_RING_ADDR(sc, i + 1); rd->arge_rx_ring[i].next_desc = addr; if (arge_newbuf(sc, i) != 0) { return (ENOBUFS); } } bus_dmamap_sync(sc->arge_cdata.arge_rx_ring_tag, sc->arge_cdata.arge_rx_ring_map, BUS_DMASYNC_PREWRITE); return (0); } /* * Initialize an RX descriptor and attach an MBUF cluster. */ static int arge_newbuf(struct arge_softc *sc, int idx) { struct arge_desc *desc; struct arge_rxdesc *rxd; struct mbuf *m; bus_dma_segment_t segs[1]; bus_dmamap_t map; int nsegs; m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); if (m == NULL) return (ENOBUFS); m->m_len = m->m_pkthdr.len = MCLBYTES; m_adj(m, sizeof(uint64_t)); if (bus_dmamap_load_mbuf_sg(sc->arge_cdata.arge_rx_tag, sc->arge_cdata.arge_rx_sparemap, m, segs, &nsegs, 0) != 0) { m_freem(m); return (ENOBUFS); } KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); rxd = &sc->arge_cdata.arge_rxdesc[idx]; if (rxd->rx_m != NULL) { bus_dmamap_unload(sc->arge_cdata.arge_rx_tag, rxd->rx_dmamap); } map = rxd->rx_dmamap; rxd->rx_dmamap = sc->arge_cdata.arge_rx_sparemap; sc->arge_cdata.arge_rx_sparemap = map; rxd->rx_m = m; desc = rxd->desc; if (segs[0].ds_addr & 3) panic("RX packet address unaligned"); desc->packet_addr = segs[0].ds_addr; desc->packet_ctrl = ARGE_DESC_EMPTY | ARGE_DMASIZE(segs[0].ds_len); bus_dmamap_sync(sc->arge_cdata.arge_rx_ring_tag, sc->arge_cdata.arge_rx_ring_map, BUS_DMASYNC_PREWRITE); return (0); } static __inline void arge_fixup_rx(struct mbuf *m) { int i; uint16_t *src, *dst; src = mtod(m, uint16_t *); dst = src - 1; for (i = 0; i < m->m_len / sizeof(uint16_t); i++) { *dst++ = *src++; } if (m->m_len % sizeof(uint16_t)) *(uint8_t *)dst = *(uint8_t *)src; m->m_data -= ETHER_ALIGN; } #ifdef DEVICE_POLLING static int arge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count) { struct arge_softc *sc = ifp->if_softc; int rx_npkts = 0; if (ifp->if_drv_flags & IFF_DRV_RUNNING) { ARGE_LOCK(sc); arge_tx_locked(sc); rx_npkts = arge_rx_locked(sc); ARGE_UNLOCK(sc); } return (rx_npkts); } #endif /* DEVICE_POLLING */ static void arge_tx_locked(struct arge_softc *sc) { struct arge_txdesc *txd; struct arge_desc *cur_tx; struct ifnet *ifp; uint32_t ctrl; int cons, prod; ARGE_LOCK_ASSERT(sc); cons = sc->arge_cdata.arge_tx_cons; prod = sc->arge_cdata.arge_tx_prod; ARGEDEBUG(sc, ARGE_DBG_TX, "%s: cons=%d, prod=%d\n", __func__, cons, prod); if (cons == prod) return; bus_dmamap_sync(sc->arge_cdata.arge_tx_ring_tag, sc->arge_cdata.arge_tx_ring_map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); ifp = sc->arge_ifp; /* * Go through our tx list and free mbufs for those * frames that have been transmitted. */ for (; cons != prod; ARGE_INC(cons, ARGE_TX_RING_COUNT)) { cur_tx = &sc->arge_rdata.arge_tx_ring[cons]; ctrl = cur_tx->packet_ctrl; /* Check if descriptor has "finished" flag */ if ((ctrl & ARGE_DESC_EMPTY) == 0) break; ARGE_WRITE(sc, AR71XX_DMA_TX_STATUS, DMA_TX_STATUS_PKT_SENT); sc->arge_cdata.arge_tx_cnt--; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; txd = &sc->arge_cdata.arge_txdesc[cons]; ifp->if_opackets++; bus_dmamap_sync(sc->arge_cdata.arge_tx_tag, txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->arge_cdata.arge_tx_tag, txd->tx_dmamap); /* Free only if it's first descriptor in list */ if (txd->tx_m) m_freem(txd->tx_m); txd->tx_m = NULL; /* reset descriptor */ cur_tx->packet_addr = 0; } sc->arge_cdata.arge_tx_cons = cons; bus_dmamap_sync(sc->arge_cdata.arge_tx_ring_tag, sc->arge_cdata.arge_tx_ring_map, BUS_DMASYNC_PREWRITE); } static int arge_rx_locked(struct arge_softc *sc) { struct arge_rxdesc *rxd; struct ifnet *ifp = sc->arge_ifp; int cons, prog, packet_len, i; struct arge_desc *cur_rx; struct mbuf *m; int rx_npkts = 0; ARGE_LOCK_ASSERT(sc); cons = sc->arge_cdata.arge_rx_cons; bus_dmamap_sync(sc->arge_cdata.arge_rx_ring_tag, sc->arge_cdata.arge_rx_ring_map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); for (prog = 0; prog < ARGE_RX_RING_COUNT; ARGE_INC(cons, ARGE_RX_RING_COUNT)) { cur_rx = &sc->arge_rdata.arge_rx_ring[cons]; rxd = &sc->arge_cdata.arge_rxdesc[cons]; m = rxd->rx_m; if ((cur_rx->packet_ctrl & ARGE_DESC_EMPTY) != 0) break; ARGE_WRITE(sc, AR71XX_DMA_RX_STATUS, DMA_RX_STATUS_PKT_RECVD); prog++; packet_len = ARGE_DMASIZE(cur_rx->packet_ctrl); bus_dmamap_sync(sc->arge_cdata.arge_rx_tag, rxd->rx_dmamap, BUS_DMASYNC_POSTREAD); m = rxd->rx_m; arge_fixup_rx(m); m->m_pkthdr.rcvif = ifp; /* Skip 4 bytes of CRC */ m->m_pkthdr.len = m->m_len = packet_len - ETHER_CRC_LEN; ifp->if_ipackets++; rx_npkts++; ARGE_UNLOCK(sc); (*ifp->if_input)(ifp, m); ARGE_LOCK(sc); cur_rx->packet_addr = 0; } if (prog > 0) { i = sc->arge_cdata.arge_rx_cons; for (; prog > 0 ; prog--) { if (arge_newbuf(sc, i) != 0) { device_printf(sc->arge_dev, "Failed to allocate buffer\n"); break; } ARGE_INC(i, ARGE_RX_RING_COUNT); } bus_dmamap_sync(sc->arge_cdata.arge_rx_ring_tag, sc->arge_cdata.arge_rx_ring_map, BUS_DMASYNC_PREWRITE); sc->arge_cdata.arge_rx_cons = cons; } return (rx_npkts); } static int arge_intr_filter(void *arg) { struct arge_softc *sc = arg; uint32_t status, ints; status = ARGE_READ(sc, AR71XX_DMA_INTR_STATUS); ints = ARGE_READ(sc, AR71XX_DMA_INTR); ARGEDEBUG(sc, ARGE_DBG_INTR, "int mask(filter) = %b\n", ints, "\20\10RX_BUS_ERROR\7RX_OVERFLOW\5RX_PKT_RCVD" "\4TX_BUS_ERROR\2TX_UNDERRUN\1TX_PKT_SENT"); ARGEDEBUG(sc, ARGE_DBG_INTR, "status(filter) = %b\n", status, "\20\10RX_BUS_ERROR\7RX_OVERFLOW\5RX_PKT_RCVD" "\4TX_BUS_ERROR\2TX_UNDERRUN\1TX_PKT_SENT"); if (status & DMA_INTR_ALL) { sc->arge_intr_status |= status; ARGE_WRITE(sc, AR71XX_DMA_INTR, 0); return (FILTER_SCHEDULE_THREAD); } sc->arge_intr_status = 0; return (FILTER_STRAY); } static void arge_intr(void *arg) { struct arge_softc *sc = arg; uint32_t status; struct ifnet *ifp = sc->arge_ifp; status = ARGE_READ(sc, AR71XX_DMA_INTR_STATUS); status |= sc->arge_intr_status; ARGEDEBUG(sc, ARGE_DBG_INTR, "int status(intr) = %b\n", status, "\20\10\7RX_OVERFLOW\5RX_PKT_RCVD" "\4TX_BUS_ERROR\2TX_UNDERRUN\1TX_PKT_SENT"); /* * Is it our interrupt at all? */ if (status == 0) return; if (status & DMA_INTR_RX_BUS_ERROR) { ARGE_WRITE(sc, AR71XX_DMA_RX_STATUS, DMA_RX_STATUS_BUS_ERROR); device_printf(sc->arge_dev, "RX bus error"); return; } if (status & DMA_INTR_TX_BUS_ERROR) { ARGE_WRITE(sc, AR71XX_DMA_TX_STATUS, DMA_TX_STATUS_BUS_ERROR); device_printf(sc->arge_dev, "TX bus error"); return; } ARGE_LOCK(sc); if (status & DMA_INTR_RX_PKT_RCVD) arge_rx_locked(sc); /* * RX overrun disables the receiver. * Clear indication and re-enable rx. */ if ( status & DMA_INTR_RX_OVERFLOW) { ARGE_WRITE(sc, AR71XX_DMA_RX_STATUS, DMA_RX_STATUS_OVERFLOW); ARGE_WRITE(sc, AR71XX_DMA_RX_CONTROL, DMA_RX_CONTROL_EN); sc->stats.rx_overflow++; } if (status & DMA_INTR_TX_PKT_SENT) arge_tx_locked(sc); /* * Underrun turns off TX. Clear underrun indication. * If there's anything left in the ring, reactivate the tx. */ if (status & DMA_INTR_TX_UNDERRUN) { ARGE_WRITE(sc, AR71XX_DMA_TX_STATUS, DMA_TX_STATUS_UNDERRUN); sc->stats.tx_underflow++; ARGEDEBUG(sc, ARGE_DBG_TX, "%s: TX underrun; tx_cnt=%d\n", __func__, sc->arge_cdata.arge_tx_cnt); if (sc->arge_cdata.arge_tx_cnt > 0 ) { ARGE_WRITE(sc, AR71XX_DMA_TX_CONTROL, DMA_TX_CONTROL_EN); } } /* * If we've finished TXing and there's space for more packets * to be queued for TX, do so. Otherwise we may end up in a * situation where the interface send queue was filled * whilst the hardware queue was full, then the hardware * queue was drained by the interface send queue wasn't, * and thus if_start() is never called to kick-start * the send process (and all subsequent packets are simply * discarded. * * XXX TODO: make sure that the hardware deals nicely * with the possibility of the queue being enabled above * after a TX underrun, then having the hardware queue added * to below. */ if (status & (DMA_INTR_TX_PKT_SENT | DMA_INTR_TX_UNDERRUN) && (ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0) { if (!IFQ_IS_EMPTY(&ifp->if_snd)) arge_start_locked(ifp); } /* * We handled all bits, clear status */ sc->arge_intr_status = 0; ARGE_UNLOCK(sc); /* * re-enable all interrupts */ ARGE_WRITE(sc, AR71XX_DMA_INTR, DMA_INTR_ALL); } static void arge_tick(void *xsc) { struct arge_softc *sc = xsc; struct mii_data *mii; ARGE_LOCK_ASSERT(sc); if (sc->arge_miibus) { mii = device_get_softc(sc->arge_miibus); mii_tick(mii); callout_reset(&sc->arge_stat_callout, hz, arge_tick, sc); } } int arge_multiphy_mediachange(struct ifnet *ifp) { struct arge_softc *sc = ifp->if_softc; struct ifmedia *ifm = &sc->arge_ifmedia; struct ifmedia_entry *ife = ifm->ifm_cur; if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) return (EINVAL); if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO) { device_printf(sc->arge_dev, "AUTO is not supported for multiphy MAC"); return (EINVAL); } /* * Ignore everything */ return (0); } void arge_multiphy_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) { struct arge_softc *sc = ifp->if_softc; ifmr->ifm_status = IFM_AVALID | IFM_ACTIVE; ifmr->ifm_active = IFM_ETHER | sc->arge_media_type | sc->arge_duplex_mode; }