Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/rc4/@/ofed/drivers/infiniband/core/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/rc4/@/ofed/drivers/infiniband/core/umem.c |
/* * Copyright (c) 2005 Topspin Communications. All rights reserved. * Copyright (c) 2005 Cisco Systems. All rights reserved. * Copyright (c) 2005 Mellanox Technologies. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include <linux/mm.h> #include <linux/dma-mapping.h> #include <linux/sched.h> #ifdef __linux__ #include <linux/hugetlb.h> #endif #include <linux/dma-attrs.h> #include <sys/priv.h> #include <sys/resource.h> #include <sys/resourcevar.h> #include <vm/vm.h> #include <vm/vm_map.h> #include <vm/vm_object.h> #include <vm/vm_pageout.h> #include "uverbs.h" static int allow_weak_ordering; module_param(allow_weak_ordering, bool, 0444); MODULE_PARM_DESC(allow_weak_ordering, "Allow weak ordering for data registered memory"); #define IB_UMEM_MAX_PAGE_CHUNK \ ((PAGE_SIZE - offsetof(struct ib_umem_chunk, page_list)) / \ ((void *) &((struct ib_umem_chunk *) 0)->page_list[1] - \ (void *) &((struct ib_umem_chunk *) 0)->page_list[0])) #ifdef __ia64__ extern int dma_map_sg_hp_wa; static int dma_map_sg_ia64(struct ib_device *ibdev, struct scatterlist *sg, int nents, enum dma_data_direction dir) { int i, rc, j, lents = 0; struct device *dev; if (!dma_map_sg_hp_wa) return ib_dma_map_sg(ibdev, sg, nents, dir); dev = ibdev->dma_device; for (i = 0; i < nents; ++i) { rc = dma_map_sg(dev, sg + i, 1, dir); if (rc <= 0) { for (j = 0; j < i; ++j) dma_unmap_sg(dev, sg + j, 1, dir); return 0; } lents += rc; } return lents; } static void dma_unmap_sg_ia64(struct ib_device *ibdev, struct scatterlist *sg, int nents, enum dma_data_direction dir) { int i; struct device *dev; if (!dma_map_sg_hp_wa) return ib_dma_unmap_sg(ibdev, sg, nents, dir); dev = ibdev->dma_device; for (i = 0; i < nents; ++i) dma_unmap_sg(dev, sg + i, 1, dir); } #define ib_dma_map_sg(dev, sg, nents, dir) dma_map_sg_ia64(dev, sg, nents, dir) #define ib_dma_unmap_sg(dev, sg, nents, dir) dma_unmap_sg_ia64(dev, sg, nents, dir) #endif static void __ib_umem_release(struct ib_device *dev, struct ib_umem *umem, int dirty) { #ifdef __linux__ struct ib_umem_chunk *chunk, *tmp; int i; list_for_each_entry_safe(chunk, tmp, &umem->chunk_list, list) { ib_dma_unmap_sg_attrs(dev, chunk->page_list, chunk->nents, DMA_BIDIRECTIONAL, &chunk->attrs); for (i = 0; i < chunk->nents; ++i) { struct page *page = sg_page(&chunk->page_list[i]); if (umem->writable && dirty) set_page_dirty_lock(page); put_page(page); } kfree(chunk); } #else struct ib_umem_chunk *chunk, *tmp; vm_object_t object; int i; object = NULL; list_for_each_entry_safe(chunk, tmp, &umem->chunk_list, list) { ib_dma_unmap_sg_attrs(dev, chunk->page_list, chunk->nents, DMA_BIDIRECTIONAL, &chunk->attrs); for (i = 0; i < chunk->nents; ++i) { struct page *page = sg_page(&chunk->page_list[i]); if (umem->writable && dirty) { if (object && object != page->object) VM_OBJECT_UNLOCK(object); if (object != page->object) { object = page->object; VM_OBJECT_LOCK(object); } vm_page_dirty(page); } } kfree(chunk); } if (object) VM_OBJECT_UNLOCK(object); #endif } /** * ib_umem_get - Pin and DMA map userspace memory. * @context: userspace context to pin memory for * @addr: userspace virtual address to start at * @size: length of region to pin * @access: IB_ACCESS_xxx flags for memory being pinned * @dmasync: flush in-flight DMA when the memory region is written */ struct ib_umem *ib_umem_get(struct ib_ucontext *context, unsigned long addr, size_t size, int access, int dmasync) { #ifdef __linux__ struct ib_umem *umem; struct page **page_list; struct vm_area_struct **vma_list; struct ib_umem_chunk *chunk; unsigned long locked; unsigned long lock_limit; unsigned long cur_base; unsigned long npages; int ret; int off; int i; DEFINE_DMA_ATTRS(attrs); if (dmasync) dma_set_attr(DMA_ATTR_WRITE_BARRIER, &attrs); else if (allow_weak_ordering) dma_set_attr(DMA_ATTR_WEAK_ORDERING, &attrs); if (!can_do_mlock()) return ERR_PTR(-EPERM); umem = kmalloc(sizeof *umem, GFP_KERNEL); if (!umem) return ERR_PTR(-ENOMEM); umem->context = context; umem->length = size; umem->offset = addr & ~PAGE_MASK; umem->page_size = PAGE_SIZE; /* * We ask for writable memory if any access flags other than * "remote read" are set. "Local write" and "remote write" * obviously require write access. "Remote atomic" can do * things like fetch and add, which will modify memory, and * "MW bind" can change permissions by binding a window. */ umem->writable = !!(access & ~IB_ACCESS_REMOTE_READ); /* We assume the memory is from hugetlb until proved otherwise */ umem->hugetlb = 1; INIT_LIST_HEAD(&umem->chunk_list); page_list = (struct page **) __get_free_page(GFP_KERNEL); if (!page_list) { kfree(umem); return ERR_PTR(-ENOMEM); } /* * if we can't alloc the vma_list, it's not so bad; * just assume the memory is not hugetlb memory */ vma_list = (struct vm_area_struct **) __get_free_page(GFP_KERNEL); if (!vma_list) umem->hugetlb = 0; npages = PAGE_ALIGN(size + umem->offset) >> PAGE_SHIFT; down_write(¤t->mm->mmap_sem); locked = npages + current->mm->locked_vm; lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT; if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) { ret = -ENOMEM; goto out; } cur_base = addr & PAGE_MASK; ret = 0; while (npages) { ret = get_user_pages(current, current->mm, cur_base, min_t(unsigned long, npages, PAGE_SIZE / sizeof (struct page *)), 1, !umem->writable, page_list, vma_list); if (ret < 0) goto out; cur_base += ret * PAGE_SIZE; npages -= ret; off = 0; while (ret) { chunk = kmalloc(sizeof *chunk + sizeof (struct scatterlist) * min_t(int, ret, IB_UMEM_MAX_PAGE_CHUNK), GFP_KERNEL); if (!chunk) { ret = -ENOMEM; goto out; } chunk->attrs = attrs; chunk->nents = min_t(int, ret, IB_UMEM_MAX_PAGE_CHUNK); sg_init_table(chunk->page_list, chunk->nents); for (i = 0; i < chunk->nents; ++i) { if (vma_list && !is_vm_hugetlb_page(vma_list[i + off])) umem->hugetlb = 0; sg_set_page(&chunk->page_list[i], page_list[i + off], PAGE_SIZE, 0); } chunk->nmap = ib_dma_map_sg_attrs(context->device, &chunk->page_list[0], chunk->nents, DMA_BIDIRECTIONAL, &attrs); if (chunk->nmap <= 0) { for (i = 0; i < chunk->nents; ++i) put_page(sg_page(&chunk->page_list[i])); kfree(chunk); ret = -ENOMEM; goto out; } ret -= chunk->nents; off += chunk->nents; list_add_tail(&chunk->list, &umem->chunk_list); } ret = 0; } out: if (ret < 0) { __ib_umem_release(context->device, umem, 0); kfree(umem); } else current->mm->locked_vm = locked; up_write(¤t->mm->mmap_sem); if (vma_list) free_page((unsigned long) vma_list); free_page((unsigned long) page_list); return ret < 0 ? ERR_PTR(ret) : umem; #else struct ib_umem *umem; struct ib_umem_chunk *chunk; struct proc *proc; pmap_t pmap; vm_offset_t end, last, start; vm_size_t npages; int error; int ents; int ret; int i; DEFINE_DMA_ATTRS(attrs); error = priv_check(curthread, PRIV_VM_MLOCK); if (error) return ERR_PTR(-error); last = addr + size; start = addr & PAGE_MASK; /* Use the linux PAGE_MASK definition. */ end = roundup2(last, PAGE_SIZE); /* Use PAGE_MASK safe operation. */ if (last < addr || end < addr) return ERR_PTR(-EINVAL); npages = atop(end - start); if (npages > vm_page_max_wired) return ERR_PTR(-ENOMEM); umem = kzalloc(sizeof *umem, GFP_KERNEL); if (!umem) return ERR_PTR(-ENOMEM); proc = curthread->td_proc; PROC_LOCK(proc); if (ptoa(npages + pmap_wired_count(vm_map_pmap(&proc->p_vmspace->vm_map))) > lim_cur(proc, RLIMIT_MEMLOCK)) { PROC_UNLOCK(proc); kfree(umem); return ERR_PTR(-ENOMEM); } PROC_UNLOCK(proc); if (npages + cnt.v_wire_count > vm_page_max_wired) { kfree(umem); return ERR_PTR(-EAGAIN); } error = vm_map_wire(&proc->p_vmspace->vm_map, start, end, VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES | (umem->writable ? VM_MAP_WIRE_WRITE : 0)); if (error != KERN_SUCCESS) { kfree(umem); return ERR_PTR(-ENOMEM); } umem->context = context; umem->length = size; umem->offset = addr & ~PAGE_MASK; umem->page_size = PAGE_SIZE; umem->start = addr; /* * We ask for writable memory if any access flags other than * "remote read" are set. "Local write" and "remote write" * obviously require write access. "Remote atomic" can do * things like fetch and add, which will modify memory, and * "MW bind" can change permissions by binding a window. */ umem->writable = !!(access & ~IB_ACCESS_REMOTE_READ); umem->hugetlb = 0; INIT_LIST_HEAD(&umem->chunk_list); pmap = vm_map_pmap(&proc->p_vmspace->vm_map); ret = 0; while (npages) { ents = min_t(int, npages, IB_UMEM_MAX_PAGE_CHUNK); chunk = kmalloc(sizeof(*chunk) + (sizeof(struct scatterlist) * ents), GFP_KERNEL); if (!chunk) { ret = -ENOMEM; goto out; } chunk->attrs = attrs; chunk->nents = ents; sg_init_table(&chunk->page_list[0], ents); for (i = 0; i < chunk->nents; ++i) { vm_paddr_t pa; pa = pmap_extract(pmap, start); if (pa == 0) { ret = -ENOMEM; kfree(chunk); goto out; } sg_set_page(&chunk->page_list[i], PHYS_TO_VM_PAGE(pa), PAGE_SIZE, 0); npages--; start += PAGE_SIZE; } chunk->nmap = ib_dma_map_sg_attrs(context->device, &chunk->page_list[0], chunk->nents, DMA_BIDIRECTIONAL, &attrs); if (chunk->nmap != chunk->nents) { kfree(chunk); ret = -ENOMEM; goto out; } list_add_tail(&chunk->list, &umem->chunk_list); } out: if (ret < 0) { __ib_umem_release(context->device, umem, 0); kfree(umem); } return ret < 0 ? ERR_PTR(ret) : umem; #endif } EXPORT_SYMBOL(ib_umem_get); #ifdef __linux__ static void ib_umem_account(struct work_struct *work) { struct ib_umem *umem = container_of(work, struct ib_umem, work); down_write(&umem->mm->mmap_sem); umem->mm->locked_vm -= umem->diff; up_write(&umem->mm->mmap_sem); mmput(umem->mm); kfree(umem); } #endif /** * ib_umem_release - release memory pinned with ib_umem_get * @umem: umem struct to release */ void ib_umem_release(struct ib_umem *umem) { #ifdef __linux__ struct ib_ucontext *context = umem->context; struct mm_struct *mm; unsigned long diff; __ib_umem_release(umem->context->device, umem, 1); mm = get_task_mm(current); if (!mm) { kfree(umem); return; } diff = PAGE_ALIGN(umem->length + umem->offset) >> PAGE_SHIFT; /* * We may be called with the mm's mmap_sem already held. This * can happen when a userspace munmap() is the call that drops * the last reference to our file and calls our release * method. If there are memory regions to destroy, we'll end * up here and not be able to take the mmap_sem. In that case * we defer the vm_locked accounting to the system workqueue. */ if (context->closing) { if (!down_write_trylock(&mm->mmap_sem)) { INIT_WORK(&umem->work, ib_umem_account); umem->mm = mm; umem->diff = diff; schedule_work(&umem->work); return; } } else down_write(&mm->mmap_sem); current->mm->locked_vm -= diff; up_write(&mm->mmap_sem); mmput(mm); #else vm_offset_t addr, end, last, start; vm_size_t size; int error; __ib_umem_release(umem->context->device, umem, 1); if (umem->context->closing) { kfree(umem); return; } error = priv_check(curthread, PRIV_VM_MUNLOCK); if (error) return; addr = umem->start; size = umem->length; last = addr + size; start = addr & PAGE_MASK; /* Use the linux PAGE_MASK definition. */ end = roundup2(last, PAGE_SIZE); /* Use PAGE_MASK safe operation. */ vm_map_unwire(&curthread->td_proc->p_vmspace->vm_map, start, end, VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); #endif kfree(umem); } EXPORT_SYMBOL(ib_umem_release); int ib_umem_page_count(struct ib_umem *umem) { struct ib_umem_chunk *chunk; int shift; int i; int n; shift = ilog2(umem->page_size); n = 0; list_for_each_entry(chunk, &umem->chunk_list, list) for (i = 0; i < chunk->nmap; ++i) n += sg_dma_len(&chunk->page_list[i]) >> shift; return n; } EXPORT_SYMBOL(ib_umem_page_count);