Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/reiserfs/@/dev/acpica/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/reiserfs/@/dev/acpica/acpi_battery.c |
/*- * Copyright (c) 2005 Nate Lawson * Copyright (c) 2000 Mitsuru IWASAKI <iwasaki@jp.freebsd.org> * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/dev/acpica/acpi_battery.c 230595 2012-01-26 19:15:13Z dumbbell $"); #include "opt_acpi.h" #include <sys/param.h> #include <sys/kernel.h> #include <sys/malloc.h> #include <sys/bus.h> #include <sys/ioccom.h> #include <sys/sysctl.h> #include <contrib/dev/acpica/include/acpi.h> #include <dev/acpica/acpivar.h> #include <dev/acpica/acpiio.h> /* Default seconds before re-sampling the battery state. */ #define ACPI_BATTERY_INFO_EXPIRE 5 static int acpi_batteries_initted; static int acpi_battery_info_expire = ACPI_BATTERY_INFO_EXPIRE; static struct acpi_battinfo acpi_battery_battinfo; static struct sysctl_ctx_list acpi_battery_sysctl_ctx; static struct sysctl_oid *acpi_battery_sysctl_tree; ACPI_SERIAL_DECL(battery, "ACPI generic battery"); static void acpi_reset_battinfo(struct acpi_battinfo *info); static void acpi_battery_clean_str(char *str, int len); static device_t acpi_battery_find_dev(u_int logical_unit); static int acpi_battery_ioctl(u_long cmd, caddr_t addr, void *arg); static int acpi_battery_sysctl(SYSCTL_HANDLER_ARGS); static int acpi_battery_units_sysctl(SYSCTL_HANDLER_ARGS); static int acpi_battery_init(void); int acpi_battery_register(device_t dev) { int error; error = 0; ACPI_SERIAL_BEGIN(battery); if (!acpi_batteries_initted) error = acpi_battery_init(); ACPI_SERIAL_END(battery); return (error); } int acpi_battery_remove(device_t dev) { return (0); } int acpi_battery_get_units(void) { devclass_t batt_dc; batt_dc = devclass_find("battery"); if (batt_dc == NULL) return (0); return (devclass_get_count(batt_dc)); } int acpi_battery_get_info_expire(void) { return (acpi_battery_info_expire); } /* Check _BST results for validity. */ int acpi_battery_bst_valid(struct acpi_bst *bst) { return (bst->state != ACPI_BATT_STAT_NOT_PRESENT && bst->cap != ACPI_BATT_UNKNOWN && bst->volt != ACPI_BATT_UNKNOWN); } /* Check _BIF results for validity. */ int acpi_battery_bif_valid(struct acpi_bif *bif) { return (bif->lfcap != 0); } /* Get info about one or all batteries. */ int acpi_battery_get_battinfo(device_t dev, struct acpi_battinfo *battinfo) { int batt_stat, devcount, dev_idx, error, i; int total_cap, total_min, valid_rate, valid_units; devclass_t batt_dc; device_t batt_dev; struct acpi_bst *bst; struct acpi_bif *bif; struct acpi_battinfo *bi; /* * Get the battery devclass and max unit for battery devices. If there * are none or error, return immediately. */ batt_dc = devclass_find("battery"); if (batt_dc == NULL) return (ENXIO); devcount = devclass_get_maxunit(batt_dc); if (devcount == 0) return (ENXIO); /* * Allocate storage for all _BST data, their derived battinfo data, * and the current battery's _BIF data. */ bst = malloc(devcount * sizeof(*bst), M_TEMP, M_WAITOK | M_ZERO); bi = malloc(devcount * sizeof(*bi), M_TEMP, M_WAITOK | M_ZERO); bif = malloc(sizeof(*bif), M_TEMP, M_WAITOK | M_ZERO); /* * Pass 1: for each battery that is present and valid, get its status, * calculate percent capacity remaining, and sum all the current * discharge rates. */ dev_idx = -1; batt_stat = valid_rate = valid_units = 0; for (i = 0; i < devcount; i++) { /* Default info for every battery is "not present". */ acpi_reset_battinfo(&bi[i]); /* * Find the device. Since devcount is in terms of max units, this * may be a sparse array so skip devices that aren't present. */ batt_dev = devclass_get_device(batt_dc, i); if (batt_dev == NULL) continue; /* If examining a specific battery and this is it, record its index. */ if (dev != NULL && dev == batt_dev) dev_idx = i; /* * Be sure we can get various info from the battery. Note that * acpi_BatteryIsPresent() is not enough because smart batteries only * return that the device is present. */ if (!acpi_BatteryIsPresent(batt_dev) || ACPI_BATT_GET_STATUS(batt_dev, &bst[i]) != 0 || ACPI_BATT_GET_INFO(batt_dev, bif) != 0) continue; /* If a battery is not installed, we sometimes get strange values. */ if (!acpi_battery_bst_valid(&bst[i]) || !acpi_battery_bif_valid(bif)) continue; /* * Record current state. If both charging and discharging are set, * ignore the charging flag. */ valid_units++; if ((bst[i].state & ACPI_BATT_STAT_DISCHARG) != 0) bst[i].state &= ~ACPI_BATT_STAT_CHARGING; batt_stat |= bst[i].state; bi[i].state = bst[i].state; /* * If the battery info is in terms of mA, convert to mW by * multiplying by the design voltage. If the design voltage * is 0 (due to some error reading the battery), skip this * conversion. */ if (bif->units == ACPI_BIF_UNITS_MA && bif->dvol != 0 && dev == NULL) { bst[i].rate = (bst[i].rate * bif->dvol) / 1000; bst[i].cap = (bst[i].cap * bif->dvol) / 1000; bif->lfcap = (bif->lfcap * bif->dvol) / 1000; } /* * The calculation above may set bif->lfcap to zero. This was * seen on a laptop with a broken battery. The result of the * division was rounded to zero. */ if (!acpi_battery_bif_valid(bif)) continue; /* Calculate percent capacity remaining. */ bi[i].cap = (100 * bst[i].cap) / bif->lfcap; /* * Some laptops report the "design-capacity" instead of the * "real-capacity" when the battery is fully charged. That breaks * the above arithmetic as it needs to be 100% maximum. */ if (bi[i].cap > 100) bi[i].cap = 100; /* * On systems with more than one battery, they may get used * sequentially, thus bst.rate may only signify the one currently * in use. For the remaining batteries, bst.rate will be zero, * which makes it impossible to calculate the total remaining time. * Therefore, we sum the bst.rate for batteries in the discharging * state and use the sum to calculate the total remaining time. */ if (bst[i].rate != ACPI_BATT_UNKNOWN && (bst[i].state & ACPI_BATT_STAT_DISCHARG) != 0) valid_rate += bst[i].rate; } /* If the caller asked for a device but we didn't find it, error. */ if (dev != NULL && dev_idx == -1) { error = ENXIO; goto out; } /* Pass 2: calculate capacity and remaining time for all batteries. */ total_cap = total_min = 0; for (i = 0; i < devcount; i++) { /* * If any batteries are discharging, use the sum of the bst.rate * values. Otherwise, we are on AC power, and there is infinite * time remaining for this battery until we go offline. */ if (valid_rate > 0) bi[i].min = (60 * bst[i].cap) / valid_rate; else bi[i].min = 0; total_min += bi[i].min; /* If this battery is not present, don't use its capacity. */ if (bi[i].cap != -1) total_cap += bi[i].cap; } /* * Return total battery percent and time remaining. If there are * no valid batteries, report values as unknown. */ if (valid_units > 0) { if (dev == NULL) { battinfo->cap = total_cap / valid_units; battinfo->min = total_min; battinfo->state = batt_stat; battinfo->rate = valid_rate; } else { battinfo->cap = bi[dev_idx].cap; battinfo->min = bi[dev_idx].min; battinfo->state = bi[dev_idx].state; battinfo->rate = bst[dev_idx].rate; } /* * If the queried battery has no discharge rate or is charging, * report that we don't know the remaining time. */ if (valid_rate == 0 || (battinfo->state & ACPI_BATT_STAT_CHARGING)) battinfo->min = -1; } else acpi_reset_battinfo(battinfo); error = 0; out: if (bi) free(bi, M_TEMP); if (bif) free(bif, M_TEMP); if (bst) free(bst, M_TEMP); return (error); } static void acpi_reset_battinfo(struct acpi_battinfo *info) { info->cap = -1; info->min = -1; info->state = ACPI_BATT_STAT_NOT_PRESENT; info->rate = -1; } /* Make string printable, removing invalid chars. */ static void acpi_battery_clean_str(char *str, int len) { int i; for (i = 0; i < len && *str != '\0'; i++, str++) { if (!isprint(*str)) *str = '?'; } /* NUL-terminate the string if we reached the end. */ if (i == len) *str = '\0'; } /* * The battery interface deals with devices and methods but userland * expects a logical unit number. Convert a logical unit to a device_t. */ static device_t acpi_battery_find_dev(u_int logical_unit) { int found_unit, i, maxunit; device_t dev; devclass_t batt_dc; dev = NULL; found_unit = 0; batt_dc = devclass_find("battery"); maxunit = devclass_get_maxunit(batt_dc); for (i = 0; i < maxunit; i++) { dev = devclass_get_device(batt_dc, i); if (dev == NULL) continue; if (logical_unit == found_unit) break; found_unit++; dev = NULL; } return (dev); } static int acpi_battery_ioctl(u_long cmd, caddr_t addr, void *arg) { union acpi_battery_ioctl_arg *ioctl_arg; int error, unit; device_t dev; /* For commands that use the ioctl_arg struct, validate it first. */ error = ENXIO; unit = 0; dev = NULL; ioctl_arg = NULL; if (IOCPARM_LEN(cmd) == sizeof(*ioctl_arg)) { ioctl_arg = (union acpi_battery_ioctl_arg *)addr; unit = ioctl_arg->unit; if (unit != ACPI_BATTERY_ALL_UNITS) dev = acpi_battery_find_dev(unit); } /* * No security check required: information retrieval only. If * new functions are added here, a check might be required. */ switch (cmd) { case ACPIIO_BATT_GET_UNITS: *(int *)addr = acpi_battery_get_units(); error = 0; break; case ACPIIO_BATT_GET_BATTINFO: if (dev != NULL || unit == ACPI_BATTERY_ALL_UNITS) { bzero(&ioctl_arg->battinfo, sizeof(ioctl_arg->battinfo)); error = acpi_battery_get_battinfo(dev, &ioctl_arg->battinfo); } break; case ACPIIO_BATT_GET_BIF: if (dev != NULL) { bzero(&ioctl_arg->bif, sizeof(ioctl_arg->bif)); error = ACPI_BATT_GET_INFO(dev, &ioctl_arg->bif); /* * Remove invalid characters. Perhaps this should be done * within a convenience function so all callers get the * benefit. */ acpi_battery_clean_str(ioctl_arg->bif.model, sizeof(ioctl_arg->bif.model)); acpi_battery_clean_str(ioctl_arg->bif.serial, sizeof(ioctl_arg->bif.serial)); acpi_battery_clean_str(ioctl_arg->bif.type, sizeof(ioctl_arg->bif.type)); acpi_battery_clean_str(ioctl_arg->bif.oeminfo, sizeof(ioctl_arg->bif.oeminfo)); } break; case ACPIIO_BATT_GET_BST: if (dev != NULL) { bzero(&ioctl_arg->bst, sizeof(ioctl_arg->bst)); error = ACPI_BATT_GET_STATUS(dev, &ioctl_arg->bst); } break; default: error = EINVAL; } return (error); } static int acpi_battery_sysctl(SYSCTL_HANDLER_ARGS) { int val, error; acpi_battery_get_battinfo(NULL, &acpi_battery_battinfo); val = *(u_int *)oidp->oid_arg1; error = sysctl_handle_int(oidp, &val, 0, req); return (error); } static int acpi_battery_units_sysctl(SYSCTL_HANDLER_ARGS) { int count, error; count = acpi_battery_get_units(); error = sysctl_handle_int(oidp, &count, 0, req); return (error); } static int acpi_battery_init(void) { struct acpi_softc *sc; device_t dev; int error; ACPI_SERIAL_ASSERT(battery); error = ENXIO; dev = devclass_get_device(devclass_find("acpi"), 0); if (dev == NULL) goto out; sc = device_get_softc(dev); error = acpi_register_ioctl(ACPIIO_BATT_GET_UNITS, acpi_battery_ioctl, NULL); if (error != 0) goto out; error = acpi_register_ioctl(ACPIIO_BATT_GET_BATTINFO, acpi_battery_ioctl, NULL); if (error != 0) goto out; error = acpi_register_ioctl(ACPIIO_BATT_GET_BIF, acpi_battery_ioctl, NULL); if (error != 0) goto out; error = acpi_register_ioctl(ACPIIO_BATT_GET_BST, acpi_battery_ioctl, NULL); if (error != 0) goto out; sysctl_ctx_init(&acpi_battery_sysctl_ctx); acpi_battery_sysctl_tree = SYSCTL_ADD_NODE(&acpi_battery_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), OID_AUTO, "battery", CTLFLAG_RD, 0, "battery status and info"); SYSCTL_ADD_PROC(&acpi_battery_sysctl_ctx, SYSCTL_CHILDREN(acpi_battery_sysctl_tree), OID_AUTO, "life", CTLTYPE_INT | CTLFLAG_RD, &acpi_battery_battinfo.cap, 0, acpi_battery_sysctl, "I", "percent capacity remaining"); SYSCTL_ADD_PROC(&acpi_battery_sysctl_ctx, SYSCTL_CHILDREN(acpi_battery_sysctl_tree), OID_AUTO, "time", CTLTYPE_INT | CTLFLAG_RD, &acpi_battery_battinfo.min, 0, acpi_battery_sysctl, "I", "remaining time in minutes"); SYSCTL_ADD_PROC(&acpi_battery_sysctl_ctx, SYSCTL_CHILDREN(acpi_battery_sysctl_tree), OID_AUTO, "state", CTLTYPE_INT | CTLFLAG_RD, &acpi_battery_battinfo.state, 0, acpi_battery_sysctl, "I", "current status flags"); SYSCTL_ADD_PROC(&acpi_battery_sysctl_ctx, SYSCTL_CHILDREN(acpi_battery_sysctl_tree), OID_AUTO, "units", CTLTYPE_INT | CTLFLAG_RD, NULL, 0, acpi_battery_units_sysctl, "I", "number of batteries"); SYSCTL_ADD_INT(&acpi_battery_sysctl_ctx, SYSCTL_CHILDREN(acpi_battery_sysctl_tree), OID_AUTO, "info_expire", CTLFLAG_RW, &acpi_battery_info_expire, 0, "time in seconds until info is refreshed"); acpi_batteries_initted = TRUE; out: if (error != 0) { acpi_deregister_ioctl(ACPIIO_BATT_GET_UNITS, acpi_battery_ioctl); acpi_deregister_ioctl(ACPIIO_BATT_GET_BATTINFO, acpi_battery_ioctl); acpi_deregister_ioctl(ACPIIO_BATT_GET_BIF, acpi_battery_ioctl); acpi_deregister_ioctl(ACPIIO_BATT_GET_BST, acpi_battery_ioctl); } return (error); }