Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/reiserfs/@/dev/hwpmc/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/reiserfs/@/dev/hwpmc/hwpmc_ppro.c |
/*- * Copyright (c) 2003-2005,2008 Joseph Koshy * Copyright (c) 2007 The FreeBSD Foundation * All rights reserved. * * Portions of this software were developed by A. Joseph Koshy under * sponsorship from the FreeBSD Foundation and Google, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/dev/hwpmc/hwpmc_ppro.c 236238 2012-05-29 14:50:21Z fabient $"); #include <sys/param.h> #include <sys/bus.h> #include <sys/lock.h> #include <sys/mutex.h> #include <sys/pmc.h> #include <sys/pmckern.h> #include <sys/smp.h> #include <sys/systm.h> #include <machine/intr_machdep.h> #include <machine/apicvar.h> #include <machine/cpu.h> #include <machine/cpufunc.h> #include <machine/cputypes.h> #include <machine/md_var.h> #include <machine/pmc_mdep.h> #include <machine/specialreg.h> /* * PENTIUM PRO SUPPORT * * Quirks: * * - Both PMCs are enabled by a single bit P6_EVSEL_EN in performance * counter '0'. This bit needs to be '1' if any of the two * performance counters are in use. Perf counters can also be * switched off by writing zeros to their EVSEL register. * * - While the width of these counters is 40 bits, we do not appear to * have a way of writing 40 bits to the counter MSRs. A WRMSR * instruction will sign extend bit 31 of the value being written to * the perf counter -- a value of 0x80000000 written to an perf * counter register will be sign extended to 0xFF80000000. * * This quirk primarily affects thread-mode PMCs in counting mode, as * these PMCs read and write PMC registers at every context switch. */ struct p6pmc_descr { struct pmc_descr pm_descr; /* common information */ uint32_t pm_pmc_msr; uint32_t pm_evsel_msr; }; static struct p6pmc_descr p6_pmcdesc[P6_NPMCS] = { #define P6_PMC_CAPS (PMC_CAP_INTERRUPT | PMC_CAP_USER | PMC_CAP_SYSTEM | \ PMC_CAP_EDGE | PMC_CAP_THRESHOLD | PMC_CAP_READ | PMC_CAP_WRITE | \ PMC_CAP_INVERT | PMC_CAP_QUALIFIER) /* PMC 0 */ { .pm_descr = { .pd_name ="P6-0", .pd_class = PMC_CLASS_P6, .pd_caps = P6_PMC_CAPS, .pd_width = 40 }, .pm_pmc_msr = P6_MSR_PERFCTR0, .pm_evsel_msr = P6_MSR_EVSEL0 }, /* PMC 1 */ { .pm_descr = { .pd_name ="P6-1", .pd_class = PMC_CLASS_P6, .pd_caps = P6_PMC_CAPS, .pd_width = 40 }, .pm_pmc_msr = P6_MSR_PERFCTR1, .pm_evsel_msr = P6_MSR_EVSEL1 } }; static enum pmc_cputype p6_cputype; /* * P6 Event descriptor * * The 'pm_flags' field has the following structure: * - The upper 4 bits are used to track which counter an event is valid on. * - The lower bits form a bitmask of flags indicating support for the event * on a given CPU. */ struct p6_event_descr { const enum pmc_event pm_event; uint32_t pm_evsel; uint32_t pm_flags; uint32_t pm_unitmask; }; #define P6F_CTR(C) (1 << (28 + (C))) #define P6F_CTR0 P6F_CTR(0) #define P6F_CTR1 P6F_CTR(1) #define P6F(CPU) (1 << ((CPU) - PMC_CPU_INTEL_P6)) #define _P6F(C) P6F(PMC_CPU_INTEL_##C) #define P6F_P6 _P6F(P6) #define P6F_CL _P6F(CL) #define P6F_PII _P6F(PII) #define P6F_PIII _P6F(PIII) #define P6F_PM _P6F(PM) #define P6F_ALL_CPUS (P6F_P6 | P6F_PII | P6F_CL | P6F_PIII | P6F_PM) #define P6F_ALL_CTRS (P6F_CTR0 | P6F_CTR1) #define P6F_ALL (P6F_ALL_CPUS | P6F_ALL_CTRS) #define P6_EVENT_VALID_FOR_CPU(P,CPU) ((P)->pm_flags & P6F(CPU)) #define P6_EVENT_VALID_FOR_CTR(P,CTR) ((P)->pm_flags & P6F_CTR(CTR)) static const struct p6_event_descr p6_events[] = { #define P6_EVDESCR(NAME, EVSEL, FLAGS, UMASK) \ { \ .pm_event = PMC_EV_P6_##NAME, \ .pm_evsel = (EVSEL), \ .pm_flags = (FLAGS), \ .pm_unitmask = (UMASK) \ } P6_EVDESCR(DATA_MEM_REFS, 0x43, P6F_ALL, 0x00), P6_EVDESCR(DCU_LINES_IN, 0x45, P6F_ALL, 0x00), P6_EVDESCR(DCU_M_LINES_IN, 0x46, P6F_ALL, 0x00), P6_EVDESCR(DCU_M_LINES_OUT, 0x47, P6F_ALL, 0x00), P6_EVDESCR(DCU_MISS_OUTSTANDING, 0x47, P6F_ALL, 0x00), P6_EVDESCR(IFU_FETCH, 0x80, P6F_ALL, 0x00), P6_EVDESCR(IFU_FETCH_MISS, 0x81, P6F_ALL, 0x00), P6_EVDESCR(ITLB_MISS, 0x85, P6F_ALL, 0x00), P6_EVDESCR(IFU_MEM_STALL, 0x86, P6F_ALL, 0x00), P6_EVDESCR(ILD_STALL, 0x87, P6F_ALL, 0x00), P6_EVDESCR(L2_IFETCH, 0x28, P6F_ALL, 0x0F), P6_EVDESCR(L2_LD, 0x29, P6F_ALL, 0x0F), P6_EVDESCR(L2_ST, 0x2A, P6F_ALL, 0x0F), P6_EVDESCR(L2_LINES_IN, 0x24, P6F_ALL, 0x0F), P6_EVDESCR(L2_LINES_OUT, 0x26, P6F_ALL, 0x0F), P6_EVDESCR(L2_M_LINES_INM, 0x25, P6F_ALL, 0x00), P6_EVDESCR(L2_M_LINES_OUTM, 0x27, P6F_ALL, 0x0F), P6_EVDESCR(L2_RQSTS, 0x2E, P6F_ALL, 0x0F), P6_EVDESCR(L2_ADS, 0x21, P6F_ALL, 0x00), P6_EVDESCR(L2_DBUS_BUSY, 0x22, P6F_ALL, 0x00), P6_EVDESCR(L2_DBUS_BUSY_RD, 0x23, P6F_ALL, 0x00), P6_EVDESCR(BUS_DRDY_CLOCKS, 0x62, P6F_ALL, 0x20), P6_EVDESCR(BUS_LOCK_CLOCKS, 0x63, P6F_ALL, 0x20), P6_EVDESCR(BUS_REQ_OUTSTANDING, 0x60, P6F_ALL, 0x00), P6_EVDESCR(BUS_TRAN_BRD, 0x65, P6F_ALL, 0x20), P6_EVDESCR(BUS_TRAN_RFO, 0x66, P6F_ALL, 0x20), P6_EVDESCR(BUS_TRANS_WB, 0x67, P6F_ALL, 0x20), P6_EVDESCR(BUS_TRAN_IFETCH, 0x68, P6F_ALL, 0x20), P6_EVDESCR(BUS_TRAN_INVAL, 0x69, P6F_ALL, 0x20), P6_EVDESCR(BUS_TRAN_PWR, 0x6A, P6F_ALL, 0x20), P6_EVDESCR(BUS_TRANS_P, 0x6B, P6F_ALL, 0x20), P6_EVDESCR(BUS_TRANS_IO, 0x6C, P6F_ALL, 0x20), P6_EVDESCR(BUS_TRAN_DEF, 0x6D, P6F_ALL, 0x20), P6_EVDESCR(BUS_TRAN_BURST, 0x6E, P6F_ALL, 0x20), P6_EVDESCR(BUS_TRAN_ANY, 0x70, P6F_ALL, 0x20), P6_EVDESCR(BUS_TRAN_MEM, 0x6F, P6F_ALL, 0x20), P6_EVDESCR(BUS_DATA_RCV, 0x64, P6F_ALL, 0x00), P6_EVDESCR(BUS_BNR_DRV, 0x61, P6F_ALL, 0x00), P6_EVDESCR(BUS_HIT_DRV, 0x7A, P6F_ALL, 0x00), P6_EVDESCR(BUS_HITM_DRV, 0x7B, P6F_ALL, 0x00), P6_EVDESCR(BUS_SNOOP_STALL, 0x7E, P6F_ALL, 0x00), P6_EVDESCR(FLOPS, 0xC1, P6F_ALL_CPUS | P6F_CTR0, 0x00), P6_EVDESCR(FP_COMPS_OPS_EXE, 0x10, P6F_ALL_CPUS | P6F_CTR0, 0x00), P6_EVDESCR(FP_ASSIST, 0x11, P6F_ALL_CPUS | P6F_CTR1, 0x00), P6_EVDESCR(MUL, 0x12, P6F_ALL_CPUS | P6F_CTR1, 0x00), P6_EVDESCR(DIV, 0x13, P6F_ALL_CPUS | P6F_CTR1, 0x00), P6_EVDESCR(CYCLES_DIV_BUSY, 0x14, P6F_ALL_CPUS | P6F_CTR0, 0x00), P6_EVDESCR(LD_BLOCKS, 0x03, P6F_ALL, 0x00), P6_EVDESCR(SB_DRAINS, 0x04, P6F_ALL, 0x00), P6_EVDESCR(MISALIGN_MEM_REF, 0x05, P6F_ALL, 0x00), P6_EVDESCR(EMON_KNI_PREF_DISPATCHED, 0x07, P6F_PIII | P6F_ALL_CTRS, 0x03), P6_EVDESCR(EMON_KNI_PREF_MISS, 0x4B, P6F_PIII | P6F_ALL_CTRS, 0x03), P6_EVDESCR(INST_RETIRED, 0xC0, P6F_ALL, 0x00), P6_EVDESCR(UOPS_RETIRED, 0xC2, P6F_ALL, 0x00), P6_EVDESCR(INST_DECODED, 0xD0, P6F_ALL, 0x00), P6_EVDESCR(EMON_KNI_INST_RETIRED, 0xD8, P6F_PIII | P6F_ALL_CTRS, 0x01), P6_EVDESCR(EMON_KNI_COMP_INST_RET, 0xD9, P6F_PIII | P6F_ALL_CTRS, 0x01), P6_EVDESCR(HW_INT_RX, 0xC8, P6F_ALL, 0x00), P6_EVDESCR(CYCLES_INT_MASKED, 0xC6, P6F_ALL, 0x00), P6_EVDESCR(CYCLES_INT_PENDING_AND_MASKED, 0xC7, P6F_ALL, 0x00), P6_EVDESCR(BR_INST_RETIRED, 0xC4, P6F_ALL, 0x00), P6_EVDESCR(BR_MISS_PRED_RETIRED, 0xC5, P6F_ALL, 0x00), P6_EVDESCR(BR_TAKEN_RETIRED, 0xC9, P6F_ALL, 0x00), P6_EVDESCR(BR_MISS_PRED_TAKEN_RET, 0xCA, P6F_ALL, 0x00), P6_EVDESCR(BR_INST_DECODED, 0xE0, P6F_ALL, 0x00), P6_EVDESCR(BTB_MISSES, 0xE2, P6F_ALL, 0x00), P6_EVDESCR(BR_BOGUS, 0xE4, P6F_ALL, 0x00), P6_EVDESCR(BACLEARS, 0xE6, P6F_ALL, 0x00), P6_EVDESCR(RESOURCE_STALLS, 0xA2, P6F_ALL, 0x00), P6_EVDESCR(PARTIAL_RAT_STALLS, 0xD2, P6F_ALL, 0x00), P6_EVDESCR(SEGMENT_REG_LOADS, 0x06, P6F_ALL, 0x00), P6_EVDESCR(CPU_CLK_UNHALTED, 0x79, P6F_ALL, 0x00), P6_EVDESCR(MMX_INSTR_EXEC, 0xB0, P6F_ALL_CTRS | P6F_CL | P6F_PII, 0x00), P6_EVDESCR(MMX_SAT_INSTR_EXEC, 0xB1, P6F_ALL_CTRS | P6F_PII | P6F_PIII, 0x00), P6_EVDESCR(MMX_UOPS_EXEC, 0xB2, P6F_ALL_CTRS | P6F_PII | P6F_PIII, 0x0F), P6_EVDESCR(MMX_INSTR_TYPE_EXEC, 0xB3, P6F_ALL_CTRS | P6F_PII | P6F_PIII, 0x3F), P6_EVDESCR(FP_MMX_TRANS, 0xCC, P6F_ALL_CTRS | P6F_PII | P6F_PIII, 0x01), P6_EVDESCR(MMX_ASSIST, 0xCD, P6F_ALL_CTRS | P6F_PII | P6F_PIII, 0x00), P6_EVDESCR(MMX_INSTR_RET, 0xCE, P6F_ALL_CTRS | P6F_PII, 0x00), P6_EVDESCR(SEG_RENAME_STALLS, 0xD4, P6F_ALL_CTRS | P6F_PII | P6F_PIII, 0x0F), P6_EVDESCR(SEG_REG_RENAMES, 0xD5, P6F_ALL_CTRS | P6F_PII | P6F_PIII, 0x0F), P6_EVDESCR(RET_SEG_RENAMES, 0xD6, P6F_ALL_CTRS | P6F_PII | P6F_PIII, 0x00), P6_EVDESCR(EMON_EST_TRANS, 0x58, P6F_ALL_CTRS | P6F_PM, 0x02), P6_EVDESCR(EMON_THERMAL_TRIP, 0x59, P6F_ALL_CTRS | P6F_PM, 0x00), P6_EVDESCR(BR_INST_EXEC, 0x88, P6F_ALL_CTRS | P6F_PM, 0x00), P6_EVDESCR(BR_MISSP_EXEC, 0x89, P6F_ALL_CTRS | P6F_PM, 0x00), P6_EVDESCR(BR_BAC_MISSP_EXEC, 0x8A, P6F_ALL_CTRS | P6F_PM, 0x00), P6_EVDESCR(BR_CND_EXEC, 0x8B, P6F_ALL_CTRS | P6F_PM, 0x00), P6_EVDESCR(BR_CND_MISSP_EXEC, 0x8C, P6F_ALL_CTRS | P6F_PM, 0x00), P6_EVDESCR(BR_IND_EXEC, 0x8D, P6F_ALL_CTRS | P6F_PM, 0x00), P6_EVDESCR(BR_IND_MISSP_EXEC, 0x8E, P6F_ALL_CTRS | P6F_PM, 0x00), P6_EVDESCR(BR_RET_EXEC, 0x8F, P6F_ALL_CTRS | P6F_PM, 0x00), P6_EVDESCR(BR_RET_MISSP_EXEC, 0x90, P6F_ALL_CTRS | P6F_PM, 0x00), P6_EVDESCR(BR_RET_BAC_MISSP_EXEC, 0x91, P6F_ALL_CTRS | P6F_PM, 0x00), P6_EVDESCR(BR_CALL_EXEC, 0x92, P6F_ALL_CTRS | P6F_PM, 0x00), P6_EVDESCR(BR_CALL_MISSP_EXEC, 0x93, P6F_ALL_CTRS | P6F_PM, 0x00), P6_EVDESCR(BR_IND_CALL_EXEC, 0x94, P6F_ALL_CTRS | P6F_PM, 0x00), P6_EVDESCR(EMON_SIMD_INSTR_RETIRED, 0xCE, P6F_ALL_CTRS | P6F_PM, 0x00), P6_EVDESCR(EMON_SYNCH_UOPS, 0xD3, P6F_ALL_CTRS | P6F_PM, 0x00), P6_EVDESCR(EMON_ESP_UOPS, 0xD7, P6F_ALL_CTRS | P6F_PM, 0x00), P6_EVDESCR(EMON_FUSED_UOPS_RET, 0xDA, P6F_ALL_CTRS | P6F_PM, 0x03), P6_EVDESCR(EMON_UNFUSION, 0xDB, P6F_ALL_CTRS | P6F_PM, 0x00), P6_EVDESCR(EMON_PREF_RQSTS_UP, 0xF0, P6F_ALL_CTRS | P6F_PM, 0x00), P6_EVDESCR(EMON_PREF_RQSTS_DN, 0xD8, P6F_ALL_CTRS | P6F_PM, 0x00), P6_EVDESCR(EMON_SSE_SSE2_INST_RETIRED, 0xD8, P6F_ALL_CTRS | P6F_PM, 0x03), P6_EVDESCR(EMON_SSE_SSE2_COMP_INST_RETIRED, 0xD9, P6F_ALL_CTRS | P6F_PM, 0x03) #undef P6_EVDESCR }; #define P6_NEVENTS (PMC_EV_P6_LAST - PMC_EV_P6_FIRST + 1) static const struct p6_event_descr * p6_find_event(enum pmc_event ev) { int n; for (n = 0; n < P6_NEVENTS; n++) if (p6_events[n].pm_event == ev) break; if (n == P6_NEVENTS) return NULL; return &p6_events[n]; } /* * Per-CPU data structure for P6 class CPUs * * [common stuff] * [flags for maintaining PMC start/stop state] * [3 struct pmc_hw pointers] * [3 struct pmc_hw structures] */ struct p6_cpu { struct pmc_hw pc_p6pmcs[P6_NPMCS]; uint32_t pc_state; }; static struct p6_cpu **p6_pcpu; /* * If CTR1 is active, we need to keep the 'EN' bit if CTR0 set, * with the rest of CTR0 being zero'ed out. */ #define P6_SYNC_CTR_STATE(PC) do { \ uint32_t _config, _enable; \ _enable = 0; \ if ((PC)->pc_state & 0x02) \ _enable |= P6_EVSEL_EN; \ if ((PC)->pc_state & 0x01) \ _config = rdmsr(P6_MSR_EVSEL0) | \ P6_EVSEL_EN; \ else \ _config = 0; \ wrmsr(P6_MSR_EVSEL0, _config | _enable); \ } while (0) #define P6_MARK_STARTED(PC,RI) do { \ (PC)->pc_state |= (1 << ((RI)-1)); \ } while (0) #define P6_MARK_STOPPED(PC,RI) do { \ (PC)->pc_state &= ~(1<< ((RI)-1)); \ } while (0) static int p6_pcpu_init(struct pmc_mdep *md, int cpu) { int first_ri, n; struct p6_cpu *p6c; struct pmc_cpu *pc; struct pmc_hw *phw; KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), ("[p6,%d] bad cpu %d", __LINE__, cpu)); PMCDBG(MDP,INI,0,"p6-init cpu=%d", cpu); p6c = malloc(sizeof (struct p6_cpu), M_PMC, M_WAITOK|M_ZERO); pc = pmc_pcpu[cpu]; KASSERT(pc != NULL, ("[p6,%d] cpu %d null per-cpu", __LINE__, cpu)); phw = p6c->pc_p6pmcs; p6_pcpu[cpu] = p6c; first_ri = md->pmd_classdep[PMC_MDEP_CLASS_INDEX_P6].pcd_ri; for (n = 0; n < P6_NPMCS; n++, phw++) { phw->phw_state = PMC_PHW_FLAG_IS_ENABLED | PMC_PHW_CPU_TO_STATE(cpu) | PMC_PHW_INDEX_TO_STATE(n); phw->phw_pmc = NULL; pc->pc_hwpmcs[n + first_ri] = phw; } return (0); } static int p6_pcpu_fini(struct pmc_mdep *md, int cpu) { int first_ri, n; struct p6_cpu *p6c; struct pmc_cpu *pc; KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), ("[p6,%d] bad cpu %d", __LINE__, cpu)); PMCDBG(MDP,INI,0,"p6-cleanup cpu=%d", cpu); p6c = p6_pcpu[cpu]; p6_pcpu[cpu] = NULL; KASSERT(p6c != NULL, ("[p6,%d] null pcpu", __LINE__)); free(p6c, M_PMC); first_ri = md->pmd_classdep[PMC_MDEP_CLASS_INDEX_P6].pcd_ri; pc = pmc_pcpu[cpu]; for (n = 0; n < P6_NPMCS; n++) pc->pc_hwpmcs[n + first_ri] = NULL; return (0); } static int p6_read_pmc(int cpu, int ri, pmc_value_t *v) { struct pmc *pm; struct p6pmc_descr *pd; pmc_value_t tmp; KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), ("[p6,%d] illegal cpu value %d", __LINE__, cpu)); KASSERT(ri >= 0 && ri < P6_NPMCS, ("[p6,%d] illegal row-index %d", __LINE__, ri)); pm = p6_pcpu[cpu]->pc_p6pmcs[ri].phw_pmc; pd = &p6_pmcdesc[ri]; KASSERT(pm, ("[p6,%d] cpu %d ri %d pmc not configured", __LINE__, cpu, ri)); tmp = rdmsr(pd->pm_pmc_msr) & P6_PERFCTR_READ_MASK; if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm))) *v = P6_PERFCTR_VALUE_TO_RELOAD_COUNT(tmp); else *v = tmp; PMCDBG(MDP,REA,1, "p6-read cpu=%d ri=%d msr=0x%x -> v=%jx", cpu, ri, pd->pm_pmc_msr, *v); return (0); } static int p6_write_pmc(int cpu, int ri, pmc_value_t v) { struct pmc *pm; struct p6pmc_descr *pd; KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), ("[p6,%d] illegal cpu value %d", __LINE__, cpu)); KASSERT(ri >= 0 && ri < P6_NPMCS, ("[p6,%d] illegal row-index %d", __LINE__, ri)); pm = p6_pcpu[cpu]->pc_p6pmcs[ri].phw_pmc; pd = &p6_pmcdesc[ri]; KASSERT(pm, ("[p6,%d] cpu %d ri %d pmc not configured", __LINE__, cpu, ri)); PMCDBG(MDP,WRI,1, "p6-write cpu=%d ri=%d msr=0x%x v=%jx", cpu, ri, pd->pm_pmc_msr, v); if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm))) v = P6_RELOAD_COUNT_TO_PERFCTR_VALUE(v); wrmsr(pd->pm_pmc_msr, v & P6_PERFCTR_WRITE_MASK); return (0); } static int p6_config_pmc(int cpu, int ri, struct pmc *pm) { KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), ("[p6,%d] illegal CPU %d", __LINE__, cpu)); KASSERT(ri >= 0 && ri < P6_NPMCS, ("[p6,%d] illegal row-index %d", __LINE__, ri)); PMCDBG(MDP,CFG,1, "p6-config cpu=%d ri=%d pm=%p", cpu, ri, pm); KASSERT(p6_pcpu[cpu] != NULL, ("[p6,%d] null per-cpu %d", __LINE__, cpu)); p6_pcpu[cpu]->pc_p6pmcs[ri].phw_pmc = pm; return (0); } /* * Retrieve a configured PMC pointer from hardware state. */ static int p6_get_config(int cpu, int ri, struct pmc **ppm) { KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), ("[p6,%d] illegal CPU %d", __LINE__, cpu)); KASSERT(ri >= 0 && ri < P6_NPMCS, ("[p6,%d] illegal row-index %d", __LINE__, ri)); *ppm = p6_pcpu[cpu]->pc_p6pmcs[ri].phw_pmc; return (0); } /* * A pmc may be allocated to a given row index if: * - the event is valid for this CPU * - the event is valid for this counter index */ static int p6_allocate_pmc(int cpu, int ri, struct pmc *pm, const struct pmc_op_pmcallocate *a) { uint32_t allowed_unitmask, caps, config, unitmask; const struct p6pmc_descr *pd; const struct p6_event_descr *pevent; enum pmc_event ev; (void) cpu; KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), ("[p6,%d] illegal CPU %d", __LINE__, cpu)); KASSERT(ri >= 0 && ri < P6_NPMCS, ("[p6,%d] illegal row-index value %d", __LINE__, ri)); pd = &p6_pmcdesc[ri]; PMCDBG(MDP,ALL,1, "p6-allocate ri=%d class=%d pmccaps=0x%x " "reqcaps=0x%x", ri, pd->pm_descr.pd_class, pd->pm_descr.pd_caps, pm->pm_caps); /* check class */ if (pd->pm_descr.pd_class != a->pm_class) return (EINVAL); /* check requested capabilities */ caps = a->pm_caps; if ((pd->pm_descr.pd_caps & caps) != caps) return (EPERM); ev = pm->pm_event; if (ev < PMC_EV_P6_FIRST || ev > PMC_EV_P6_LAST) return (EINVAL); if ((pevent = p6_find_event(ev)) == NULL) return (ESRCH); if (!P6_EVENT_VALID_FOR_CPU(pevent, p6_cputype) || !P6_EVENT_VALID_FOR_CTR(pevent, (ri-1))) return (EINVAL); /* For certain events, Pentium M differs from the stock P6 */ allowed_unitmask = 0; if (p6_cputype == PMC_CPU_INTEL_PM) { if (ev == PMC_EV_P6_L2_LD || ev == PMC_EV_P6_L2_LINES_IN || ev == PMC_EV_P6_L2_LINES_OUT) allowed_unitmask = P6_EVSEL_TO_UMASK(0x3F); else if (ev == PMC_EV_P6_L2_M_LINES_OUTM) allowed_unitmask = P6_EVSEL_TO_UMASK(0x30); } else allowed_unitmask = P6_EVSEL_TO_UMASK(pevent->pm_unitmask); unitmask = a->pm_md.pm_ppro.pm_ppro_config & P6_EVSEL_UMASK_MASK; if (unitmask & ~allowed_unitmask) /* disallow reserved bits */ return (EINVAL); if (ev == PMC_EV_P6_MMX_UOPS_EXEC) /* hardcoded mask */ unitmask = P6_EVSEL_TO_UMASK(0x0F); config = 0; config |= P6_EVSEL_EVENT_SELECT(pevent->pm_evsel); if (unitmask & (caps & PMC_CAP_QUALIFIER)) config |= unitmask; if (caps & PMC_CAP_THRESHOLD) config |= a->pm_md.pm_ppro.pm_ppro_config & P6_EVSEL_CMASK_MASK; /* set at least one of the 'usr' or 'os' caps */ if (caps & PMC_CAP_USER) config |= P6_EVSEL_USR; if (caps & PMC_CAP_SYSTEM) config |= P6_EVSEL_OS; if ((caps & (PMC_CAP_USER|PMC_CAP_SYSTEM)) == 0) config |= (P6_EVSEL_USR|P6_EVSEL_OS); if (caps & PMC_CAP_EDGE) config |= P6_EVSEL_E; if (caps & PMC_CAP_INVERT) config |= P6_EVSEL_INV; if (caps & PMC_CAP_INTERRUPT) config |= P6_EVSEL_INT; pm->pm_md.pm_ppro.pm_ppro_evsel = config; PMCDBG(MDP,ALL,2, "p6-allocate config=0x%x", config); return (0); } static int p6_release_pmc(int cpu, int ri, struct pmc *pm) { (void) pm; PMCDBG(MDP,REL,1, "p6-release cpu=%d ri=%d pm=%p", cpu, ri, pm); KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), ("[p6,%d] illegal CPU value %d", __LINE__, cpu)); KASSERT(ri >= 0 && ri < P6_NPMCS, ("[p6,%d] illegal row-index %d", __LINE__, ri)); KASSERT(p6_pcpu[cpu]->pc_p6pmcs[ri].phw_pmc == NULL, ("[p6,%d] PHW pmc non-NULL", __LINE__)); return (0); } static int p6_start_pmc(int cpu, int ri) { uint32_t config; struct pmc *pm; struct p6_cpu *pc; const struct p6pmc_descr *pd; KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), ("[p6,%d] illegal CPU value %d", __LINE__, cpu)); KASSERT(ri >= 0 && ri < P6_NPMCS, ("[p6,%d] illegal row-index %d", __LINE__, ri)); pc = p6_pcpu[cpu]; pm = pc->pc_p6pmcs[ri].phw_pmc; pd = &p6_pmcdesc[ri]; KASSERT(pm, ("[p6,%d] starting cpu%d,ri%d with no pmc configured", __LINE__, cpu, ri)); PMCDBG(MDP,STA,1, "p6-start cpu=%d ri=%d", cpu, ri); config = pm->pm_md.pm_ppro.pm_ppro_evsel; PMCDBG(MDP,STA,2, "p6-start/2 cpu=%d ri=%d evselmsr=0x%x config=0x%x", cpu, ri, pd->pm_evsel_msr, config); P6_MARK_STARTED(pc, ri); wrmsr(pd->pm_evsel_msr, config); P6_SYNC_CTR_STATE(pc); return (0); } static int p6_stop_pmc(int cpu, int ri) { struct pmc *pm; struct p6_cpu *pc; struct p6pmc_descr *pd; KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), ("[p6,%d] illegal cpu value %d", __LINE__, cpu)); KASSERT(ri >= 0 && ri < P6_NPMCS, ("[p6,%d] illegal row index %d", __LINE__, ri)); pc = p6_pcpu[cpu]; pm = pc->pc_p6pmcs[ri].phw_pmc; pd = &p6_pmcdesc[ri]; KASSERT(pm, ("[p6,%d] cpu%d ri%d no configured PMC to stop", __LINE__, cpu, ri)); PMCDBG(MDP,STO,1, "p6-stop cpu=%d ri=%d", cpu, ri); wrmsr(pd->pm_evsel_msr, 0); /* stop hw */ P6_MARK_STOPPED(pc, ri); /* update software state */ P6_SYNC_CTR_STATE(pc); /* restart CTR1 if need be */ PMCDBG(MDP,STO,2, "p6-stop/2 cpu=%d ri=%d", cpu, ri); return (0); } static int p6_intr(int cpu, struct trapframe *tf) { int error, retval, ri; uint32_t perf0cfg; struct pmc *pm; struct p6_cpu *pc; pmc_value_t v; KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), ("[p6,%d] CPU %d out of range", __LINE__, cpu)); retval = 0; pc = p6_pcpu[cpu]; /* stop both PMCs */ perf0cfg = rdmsr(P6_MSR_EVSEL0); wrmsr(P6_MSR_EVSEL0, perf0cfg & ~P6_EVSEL_EN); for (ri = 0; ri < P6_NPMCS; ri++) { if ((pm = pc->pc_p6pmcs[ri].phw_pmc) == NULL || !PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm))) { continue; } if (!P6_PMC_HAS_OVERFLOWED(ri)) continue; retval = 1; if (pm->pm_state != PMC_STATE_RUNNING) continue; error = pmc_process_interrupt(cpu, PMC_HR, pm, tf, TRAPF_USERMODE(tf)); if (error) P6_MARK_STOPPED(pc,ri); /* reload sampling count */ v = pm->pm_sc.pm_reloadcount; wrmsr(P6_MSR_PERFCTR0 + ri, P6_RELOAD_COUNT_TO_PERFCTR_VALUE(v)); } /* * On P6 processors, the LAPIC needs to have its PMC interrupt * unmasked after a PMC interrupt. */ if (retval) lapic_reenable_pmc(); atomic_add_int(retval ? &pmc_stats.pm_intr_processed : &pmc_stats.pm_intr_ignored, 1); /* restart counters that can be restarted */ P6_SYNC_CTR_STATE(pc); return (retval); } static int p6_describe(int cpu, int ri, struct pmc_info *pi, struct pmc **ppmc) { int error; size_t copied; struct pmc_hw *phw; struct p6pmc_descr *pd; KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), ("[p6,%d] illegal CPU %d", __LINE__, cpu)); KASSERT(ri >= 0 && ri < P6_NPMCS, ("[p6,%d] row-index %d out of range", __LINE__, ri)); phw = pmc_pcpu[cpu]->pc_hwpmcs[ri]; pd = &p6_pmcdesc[ri]; KASSERT(phw == &p6_pcpu[cpu]->pc_p6pmcs[ri], ("[p6,%d] phw mismatch", __LINE__)); if ((error = copystr(pd->pm_descr.pd_name, pi->pm_name, PMC_NAME_MAX, &copied)) != 0) return (error); pi->pm_class = pd->pm_descr.pd_class; if (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) { pi->pm_enabled = TRUE; *ppmc = phw->phw_pmc; } else { pi->pm_enabled = FALSE; *ppmc = NULL; } return (0); } static int p6_get_msr(int ri, uint32_t *msr) { KASSERT(ri >= 0 && ri < P6_NPMCS, ("[p6,%d ri %d out of range", __LINE__, ri)); *msr = p6_pmcdesc[ri].pm_pmc_msr - P6_MSR_PERFCTR0; return (0); } int pmc_p6_initialize(struct pmc_mdep *md, int ncpus) { struct pmc_classdep *pcd; KASSERT(cpu_vendor_id == CPU_VENDOR_INTEL, ("[p6,%d] Initializing non-intel processor", __LINE__)); PMCDBG(MDP,INI,1, "%s", "p6-initialize"); /* Allocate space for pointers to per-cpu descriptors. */ p6_pcpu = malloc(sizeof(struct p6_cpu **) * ncpus, M_PMC, M_ZERO|M_WAITOK); /* Fill in the class dependent descriptor. */ pcd = &md->pmd_classdep[PMC_MDEP_CLASS_INDEX_P6]; switch (md->pmd_cputype) { /* * P6 Family Processors */ case PMC_CPU_INTEL_P6: case PMC_CPU_INTEL_CL: case PMC_CPU_INTEL_PII: case PMC_CPU_INTEL_PIII: case PMC_CPU_INTEL_PM: p6_cputype = md->pmd_cputype; pcd->pcd_caps = P6_PMC_CAPS; pcd->pcd_class = PMC_CLASS_P6; pcd->pcd_num = P6_NPMCS; pcd->pcd_ri = md->pmd_npmc; pcd->pcd_width = 40; pcd->pcd_allocate_pmc = p6_allocate_pmc; pcd->pcd_config_pmc = p6_config_pmc; pcd->pcd_describe = p6_describe; pcd->pcd_get_config = p6_get_config; pcd->pcd_get_msr = p6_get_msr; pcd->pcd_pcpu_fini = p6_pcpu_fini; pcd->pcd_pcpu_init = p6_pcpu_init; pcd->pcd_read_pmc = p6_read_pmc; pcd->pcd_release_pmc = p6_release_pmc; pcd->pcd_start_pmc = p6_start_pmc; pcd->pcd_stop_pmc = p6_stop_pmc; pcd->pcd_write_pmc = p6_write_pmc; md->pmd_pcpu_fini = NULL; md->pmd_pcpu_init = NULL; md->pmd_intr = p6_intr; md->pmd_npmc += P6_NPMCS; break; default: KASSERT(0,("[p6,%d] Unknown CPU type", __LINE__)); return ENOSYS; } return (0); } void pmc_p6_finalize(struct pmc_mdep *md) { #if defined(INVARIANTS) int i, ncpus; #endif KASSERT(p6_pcpu != NULL, ("[p6,%d] NULL p6_pcpu", __LINE__)); #if defined(INVARIANTS) ncpus = pmc_cpu_max(); for (i = 0; i < ncpus; i++) KASSERT(p6_pcpu[i] == NULL, ("[p6,%d] non-null pcpu %d", __LINE__, i)); #endif free(p6_pcpu, M_PMC); p6_pcpu = NULL; }