Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/s3/@/amd64/compile/hs32/modules/usr/src/sys/modules/netgraph/bpf/@/arm/arm/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/s3/@/amd64/compile/hs32/modules/usr/src/sys/modules/netgraph/bpf/@/arm/arm/vm_machdep.c |
/*- * Copyright (c) 1982, 1986 The Regents of the University of California. * Copyright (c) 1989, 1990 William Jolitz * Copyright (c) 1994 John Dyson * All rights reserved. * * This code is derived from software contributed to Berkeley by * the Systems Programming Group of the University of Utah Computer * Science Department, and William Jolitz. * * Redistribution and use in source and binary :forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: @(#)vm_machdep.c 7.3 (Berkeley) 5/13/91 * Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$ */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/arm/arm/vm_machdep.c 218310 2011-02-05 03:30:29Z imp $"); #include <sys/param.h> #include <sys/systm.h> #include <sys/kernel.h> #include <sys/malloc.h> #include <sys/mbuf.h> #include <sys/proc.h> #include <sys/socketvar.h> #include <sys/sf_buf.h> #include <sys/syscall.h> #include <sys/sysent.h> #include <sys/unistd.h> #include <machine/cpu.h> #include <machine/pcb.h> #include <machine/sysarch.h> #include <sys/lock.h> #include <sys/mutex.h> #include <vm/vm.h> #include <vm/pmap.h> #include <vm/vm_extern.h> #include <vm/vm_kern.h> #include <vm/vm_page.h> #include <vm/vm_map.h> #include <vm/vm_param.h> #include <vm/vm_pageout.h> #include <vm/uma.h> #include <vm/uma_int.h> #include <machine/md_var.h> #ifndef NSFBUFS #define NSFBUFS (512 + maxusers * 16) #endif #ifndef ARM_USE_SMALL_ALLOC static void sf_buf_init(void *arg); SYSINIT(sock_sf, SI_SUB_MBUF, SI_ORDER_ANY, sf_buf_init, NULL); LIST_HEAD(sf_head, sf_buf); /* * A hash table of active sendfile(2) buffers */ static struct sf_head *sf_buf_active; static u_long sf_buf_hashmask; #define SF_BUF_HASH(m) (((m) - vm_page_array) & sf_buf_hashmask) static TAILQ_HEAD(, sf_buf) sf_buf_freelist; static u_int sf_buf_alloc_want; /* * A lock used to synchronize access to the hash table and free list */ static struct mtx sf_buf_lock; #endif /* * Finish a fork operation, with process p2 nearly set up. * Copy and update the pcb, set up the stack so that the child * ready to run and return to user mode. */ void cpu_fork(register struct thread *td1, register struct proc *p2, struct thread *td2, int flags) { struct pcb *pcb2; struct trapframe *tf; struct switchframe *sf; struct mdproc *mdp2; if ((flags & RFPROC) == 0) return; pcb2 = (struct pcb *)(td2->td_kstack + td2->td_kstack_pages * PAGE_SIZE) - 1; #ifdef __XSCALE__ #ifndef CPU_XSCALE_CORE3 pmap_use_minicache(td2->td_kstack, td2->td_kstack_pages * PAGE_SIZE); #endif #endif td2->td_pcb = pcb2; bcopy(td1->td_pcb, pcb2, sizeof(*pcb2)); mdp2 = &p2->p_md; bcopy(&td1->td_proc->p_md, mdp2, sizeof(*mdp2)); pcb2->un_32.pcb32_und_sp = td2->td_kstack + USPACE_UNDEF_STACK_TOP; pcb2->un_32.pcb32_sp = td2->td_kstack + USPACE_SVC_STACK_TOP - sizeof(*pcb2); pmap_activate(td2); td2->td_frame = tf = (struct trapframe *)pcb2->un_32.pcb32_sp - 1; *tf = *td1->td_frame; sf = (struct switchframe *)tf - 1; sf->sf_r4 = (u_int)fork_return; sf->sf_r5 = (u_int)td2; sf->sf_pc = (u_int)fork_trampoline; tf->tf_spsr &= ~PSR_C_bit; tf->tf_r0 = 0; tf->tf_r1 = 0; pcb2->un_32.pcb32_sp = (u_int)sf; /* Setup to release spin count in fork_exit(). */ td2->td_md.md_spinlock_count = 1; td2->td_md.md_saved_cspr = 0; td2->td_md.md_tp = *(register_t *)ARM_TP_ADDRESS; } void cpu_thread_swapin(struct thread *td) { } void cpu_thread_swapout(struct thread *td) { } /* * Detatch mapped page and release resources back to the system. */ void sf_buf_free(struct sf_buf *sf) { #ifndef ARM_USE_SMALL_ALLOC mtx_lock(&sf_buf_lock); sf->ref_count--; if (sf->ref_count == 0) { TAILQ_INSERT_TAIL(&sf_buf_freelist, sf, free_entry); nsfbufsused--; pmap_kremove(sf->kva); sf->m = NULL; LIST_REMOVE(sf, list_entry); if (sf_buf_alloc_want > 0) wakeup(&sf_buf_freelist); } mtx_unlock(&sf_buf_lock); #endif } #ifndef ARM_USE_SMALL_ALLOC /* * Allocate a pool of sf_bufs (sendfile(2) or "super-fast" if you prefer. :-)) */ static void sf_buf_init(void *arg) { struct sf_buf *sf_bufs; vm_offset_t sf_base; int i; nsfbufs = NSFBUFS; TUNABLE_INT_FETCH("kern.ipc.nsfbufs", &nsfbufs); sf_buf_active = hashinit(nsfbufs, M_TEMP, &sf_buf_hashmask); TAILQ_INIT(&sf_buf_freelist); sf_base = kmem_alloc_nofault(kernel_map, nsfbufs * PAGE_SIZE); sf_bufs = malloc(nsfbufs * sizeof(struct sf_buf), M_TEMP, M_NOWAIT | M_ZERO); for (i = 0; i < nsfbufs; i++) { sf_bufs[i].kva = sf_base + i * PAGE_SIZE; TAILQ_INSERT_TAIL(&sf_buf_freelist, &sf_bufs[i], free_entry); } sf_buf_alloc_want = 0; mtx_init(&sf_buf_lock, "sf_buf", NULL, MTX_DEF); } #endif /* * Get an sf_buf from the freelist. Will block if none are available. */ struct sf_buf * sf_buf_alloc(struct vm_page *m, int flags) { #ifdef ARM_USE_SMALL_ALLOC return ((struct sf_buf *)m); #else struct sf_head *hash_list; struct sf_buf *sf; int error; hash_list = &sf_buf_active[SF_BUF_HASH(m)]; mtx_lock(&sf_buf_lock); LIST_FOREACH(sf, hash_list, list_entry) { if (sf->m == m) { sf->ref_count++; if (sf->ref_count == 1) { TAILQ_REMOVE(&sf_buf_freelist, sf, free_entry); nsfbufsused++; nsfbufspeak = imax(nsfbufspeak, nsfbufsused); } goto done; } } while ((sf = TAILQ_FIRST(&sf_buf_freelist)) == NULL) { if (flags & SFB_NOWAIT) goto done; sf_buf_alloc_want++; mbstat.sf_allocwait++; error = msleep(&sf_buf_freelist, &sf_buf_lock, (flags & SFB_CATCH) ? PCATCH | PVM : PVM, "sfbufa", 0); sf_buf_alloc_want--; /* * If we got a signal, don't risk going back to sleep. */ if (error) goto done; } TAILQ_REMOVE(&sf_buf_freelist, sf, free_entry); if (sf->m != NULL) LIST_REMOVE(sf, list_entry); LIST_INSERT_HEAD(hash_list, sf, list_entry); sf->ref_count = 1; sf->m = m; nsfbufsused++; nsfbufspeak = imax(nsfbufspeak, nsfbufsused); pmap_kenter(sf->kva, VM_PAGE_TO_PHYS(sf->m)); done: mtx_unlock(&sf_buf_lock); return (sf); #endif } void cpu_set_syscall_retval(struct thread *td, int error) { trapframe_t *frame; int fixup; #ifdef __ARMEB__ uint32_t insn; #endif frame = td->td_frame; fixup = 0; #ifdef __ARMEB__ insn = *(u_int32_t *)(frame->tf_pc - INSN_SIZE); if ((insn & 0x000fffff) == SYS___syscall) { register_t *ap = &frame->tf_r0; register_t code = ap[_QUAD_LOWWORD]; if (td->td_proc->p_sysent->sv_mask) code &= td->td_proc->p_sysent->sv_mask; fixup = (code != SYS_freebsd6_lseek && code != SYS_lseek) ? 1 : 0; } #endif switch (error) { case 0: if (fixup) { frame->tf_r0 = 0; frame->tf_r1 = td->td_retval[0]; } else { frame->tf_r0 = td->td_retval[0]; frame->tf_r1 = td->td_retval[1]; } frame->tf_spsr &= ~PSR_C_bit; /* carry bit */ break; case ERESTART: /* * Reconstruct the pc to point at the swi. */ frame->tf_pc -= INSN_SIZE; break; case EJUSTRETURN: /* nothing to do */ break; default: frame->tf_r0 = error; frame->tf_spsr |= PSR_C_bit; /* carry bit */ break; } } /* * Initialize machine state (pcb and trap frame) for a new thread about to * upcall. Put enough state in the new thread's PCB to get it to go back * userret(), where we can intercept it again to set the return (upcall) * Address and stack, along with those from upcals that are from other sources * such as those generated in thread_userret() itself. */ void cpu_set_upcall(struct thread *td, struct thread *td0) { struct trapframe *tf; struct switchframe *sf; bcopy(td0->td_frame, td->td_frame, sizeof(struct trapframe)); bcopy(td0->td_pcb, td->td_pcb, sizeof(struct pcb)); tf = td->td_frame; sf = (struct switchframe *)tf - 1; sf->sf_r4 = (u_int)fork_return; sf->sf_r5 = (u_int)td; sf->sf_pc = (u_int)fork_trampoline; tf->tf_spsr &= ~PSR_C_bit; tf->tf_r0 = 0; td->td_pcb->un_32.pcb32_sp = (u_int)sf; td->td_pcb->un_32.pcb32_und_sp = td->td_kstack + USPACE_UNDEF_STACK_TOP; /* Setup to release spin count in fork_exit(). */ td->td_md.md_spinlock_count = 1; td->td_md.md_saved_cspr = 0; } /* * Set that machine state for performing an upcall that has to * be done in thread_userret() so that those upcalls generated * in thread_userret() itself can be done as well. */ void cpu_set_upcall_kse(struct thread *td, void (*entry)(void *), void *arg, stack_t *stack) { struct trapframe *tf = td->td_frame; tf->tf_usr_sp = ((int)stack->ss_sp + stack->ss_size - sizeof(struct trapframe)) & ~7; tf->tf_pc = (int)entry; tf->tf_r0 = (int)arg; tf->tf_spsr = PSR_USR32_MODE; } int cpu_set_user_tls(struct thread *td, void *tls_base) { if (td != curthread) td->td_md.md_tp = (register_t)tls_base; else { critical_enter(); *(register_t *)ARM_TP_ADDRESS = (register_t)tls_base; critical_exit(); } return (0); } void cpu_thread_exit(struct thread *td) { } void cpu_thread_alloc(struct thread *td) { td->td_pcb = (struct pcb *)(td->td_kstack + td->td_kstack_pages * PAGE_SIZE) - 1; td->td_frame = (struct trapframe *) ((u_int)td->td_kstack + USPACE_SVC_STACK_TOP - sizeof(struct pcb)) - 1; #ifdef __XSCALE__ #ifndef CPU_XSCALE_CORE3 pmap_use_minicache(td->td_kstack, td->td_kstack_pages * PAGE_SIZE); #endif #endif } void cpu_thread_free(struct thread *td) { } void cpu_thread_clean(struct thread *td) { } /* * Intercept the return address from a freshly forked process that has NOT * been scheduled yet. * * This is needed to make kernel threads stay in kernel mode. */ void cpu_set_fork_handler(struct thread *td, void (*func)(void *), void *arg) { struct switchframe *sf; struct trapframe *tf; tf = td->td_frame; sf = (struct switchframe *)tf - 1; sf->sf_r4 = (u_int)func; sf->sf_r5 = (u_int)arg; td->td_pcb->un_32.pcb32_sp = (u_int)sf; } /* * Software interrupt handler for queued VM system processing. */ void swi_vm(void *dummy) { if (busdma_swi_pending) busdma_swi(); } void cpu_exit(struct thread *td) { } #define BITS_PER_INT (8 * sizeof(int)) vm_offset_t arm_nocache_startaddr; static int arm_nocache_allocated[ARM_NOCACHE_KVA_SIZE / (PAGE_SIZE * BITS_PER_INT)]; /* * Functions to map and unmap memory non-cached into KVA the kernel won't try * to allocate. The goal is to provide uncached memory to busdma, to honor * BUS_DMA_COHERENT. * We can allocate at most ARM_NOCACHE_KVA_SIZE bytes. * The allocator is rather dummy, each page is represented by a bit in * a bitfield, 0 meaning the page is not allocated, 1 meaning it is. * As soon as it finds enough contiguous pages to satisfy the request, * it returns the address. */ void * arm_remap_nocache(void *addr, vm_size_t size) { int i, j; size = round_page(size); for (i = 0; i < ARM_NOCACHE_KVA_SIZE / PAGE_SIZE; i++) { if (!(arm_nocache_allocated[i / BITS_PER_INT] & (1 << (i % BITS_PER_INT)))) { for (j = i; j < i + (size / (PAGE_SIZE)); j++) if (arm_nocache_allocated[j / BITS_PER_INT] & (1 << (j % BITS_PER_INT))) break; if (j == i + (size / (PAGE_SIZE))) break; } } if (i < ARM_NOCACHE_KVA_SIZE / PAGE_SIZE) { vm_offset_t tomap = arm_nocache_startaddr + i * PAGE_SIZE; void *ret = (void *)tomap; vm_paddr_t physaddr = vtophys((vm_offset_t)addr); vm_offset_t vaddr = (vm_offset_t) addr; vaddr = vaddr & ~PAGE_MASK; for (; tomap < (vm_offset_t)ret + size; tomap += PAGE_SIZE, vaddr += PAGE_SIZE, physaddr += PAGE_SIZE, i++) { cpu_idcache_wbinv_range(vaddr, PAGE_SIZE); cpu_l2cache_wbinv_range(vaddr, PAGE_SIZE); pmap_kenter_nocache(tomap, physaddr); cpu_tlb_flushID_SE(vaddr); arm_nocache_allocated[i / BITS_PER_INT] |= 1 << (i % BITS_PER_INT); } return (ret); } return (NULL); } void arm_unmap_nocache(void *addr, vm_size_t size) { vm_offset_t raddr = (vm_offset_t)addr; int i; size = round_page(size); i = (raddr - arm_nocache_startaddr) / (PAGE_SIZE); for (; size > 0; size -= PAGE_SIZE, i++) { arm_nocache_allocated[i / BITS_PER_INT] &= ~(1 << (i % BITS_PER_INT)); pmap_kremove(raddr); raddr += PAGE_SIZE; } } #ifdef ARM_USE_SMALL_ALLOC static TAILQ_HEAD(,arm_small_page) pages_normal = TAILQ_HEAD_INITIALIZER(pages_normal); static TAILQ_HEAD(,arm_small_page) pages_wt = TAILQ_HEAD_INITIALIZER(pages_wt); static TAILQ_HEAD(,arm_small_page) free_pgdesc = TAILQ_HEAD_INITIALIZER(free_pgdesc); extern uma_zone_t l2zone; struct mtx smallalloc_mtx; MALLOC_DEFINE(M_VMSMALLALLOC, "vm_small_alloc", "VM Small alloc data"); vm_offset_t alloc_firstaddr; #ifdef ARM_HAVE_SUPERSECTIONS #define S_FRAME L1_SUP_FRAME #define S_SIZE L1_SUP_SIZE #else #define S_FRAME L1_S_FRAME #define S_SIZE L1_S_SIZE #endif vm_offset_t arm_ptovirt(vm_paddr_t pa) { int i; vm_offset_t addr = alloc_firstaddr; KASSERT(alloc_firstaddr != 0, ("arm_ptovirt called too early ?")); for (i = 0; dump_avail[i + 1]; i += 2) { if (pa >= dump_avail[i] && pa < dump_avail[i + 1]) break; addr += (dump_avail[i + 1] & S_FRAME) + S_SIZE - (dump_avail[i] & S_FRAME); } KASSERT(dump_avail[i + 1] != 0, ("Trying to access invalid physical address")); return (addr + (pa - (dump_avail[i] & S_FRAME))); } void arm_init_smallalloc(void) { vm_offset_t to_map = 0, mapaddr; int i; /* * We need to use dump_avail and not phys_avail, since we want to * map the whole memory and not just the memory available to the VM * to be able to do a pa => va association for any address. */ for (i = 0; dump_avail[i + 1]; i+= 2) { to_map += (dump_avail[i + 1] & S_FRAME) + S_SIZE - (dump_avail[i] & S_FRAME); } alloc_firstaddr = mapaddr = KERNBASE - to_map; for (i = 0; dump_avail[i + 1]; i+= 2) { vm_offset_t size = (dump_avail[i + 1] & S_FRAME) + S_SIZE - (dump_avail[i] & S_FRAME); vm_offset_t did = 0; while (size > 0) { #ifdef ARM_HAVE_SUPERSECTIONS pmap_kenter_supersection(mapaddr, (dump_avail[i] & L1_SUP_FRAME) + did, SECTION_CACHE); #else pmap_kenter_section(mapaddr, (dump_avail[i] & L1_S_FRAME) + did, SECTION_CACHE); #endif mapaddr += S_SIZE; did += S_SIZE; size -= S_SIZE; } } } void arm_add_smallalloc_pages(void *list, void *mem, int bytes, int pagetable) { struct arm_small_page *pg; bytes &= ~PAGE_MASK; while (bytes > 0) { pg = (struct arm_small_page *)list; pg->addr = mem; if (pagetable) TAILQ_INSERT_HEAD(&pages_wt, pg, pg_list); else TAILQ_INSERT_HEAD(&pages_normal, pg, pg_list); list = (char *)list + sizeof(*pg); mem = (char *)mem + PAGE_SIZE; bytes -= PAGE_SIZE; } } void * uma_small_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait) { void *ret; struct arm_small_page *sp; TAILQ_HEAD(,arm_small_page) *head; static vm_pindex_t color; vm_page_t m; *flags = UMA_SLAB_PRIV; /* * For CPUs where we setup page tables as write back, there's no * need to maintain two separate pools. */ if (zone == l2zone && pte_l1_s_cache_mode != pte_l1_s_cache_mode_pt) head = (void *)&pages_wt; else head = (void *)&pages_normal; mtx_lock(&smallalloc_mtx); sp = TAILQ_FIRST(head); if (!sp) { int pflags; mtx_unlock(&smallalloc_mtx); if (zone == l2zone && pte_l1_s_cache_mode != pte_l1_s_cache_mode_pt) { *flags = UMA_SLAB_KMEM; ret = ((void *)kmem_malloc(kmem_map, bytes, M_NOWAIT)); return (ret); } if ((wait & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT) pflags = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED; else pflags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED; if (wait & M_ZERO) pflags |= VM_ALLOC_ZERO; for (;;) { m = vm_page_alloc(NULL, color++, pflags | VM_ALLOC_NOOBJ); if (m == NULL) { if (wait & M_NOWAIT) return (NULL); VM_WAIT; } else break; } ret = (void *)arm_ptovirt(VM_PAGE_TO_PHYS(m)); if ((wait & M_ZERO) && (m->flags & PG_ZERO) == 0) bzero(ret, PAGE_SIZE); return (ret); } TAILQ_REMOVE(head, sp, pg_list); TAILQ_INSERT_HEAD(&free_pgdesc, sp, pg_list); ret = sp->addr; mtx_unlock(&smallalloc_mtx); if ((wait & M_ZERO)) bzero(ret, bytes); return (ret); } void uma_small_free(void *mem, int size, u_int8_t flags) { pd_entry_t *pd; pt_entry_t *pt; if (flags & UMA_SLAB_KMEM) kmem_free(kmem_map, (vm_offset_t)mem, size); else { struct arm_small_page *sp; if ((vm_offset_t)mem >= KERNBASE) { mtx_lock(&smallalloc_mtx); sp = TAILQ_FIRST(&free_pgdesc); KASSERT(sp != NULL, ("No more free page descriptor ?")); TAILQ_REMOVE(&free_pgdesc, sp, pg_list); sp->addr = mem; pmap_get_pde_pte(kernel_pmap, (vm_offset_t)mem, &pd, &pt); if ((*pd & pte_l1_s_cache_mask) == pte_l1_s_cache_mode_pt && pte_l1_s_cache_mode_pt != pte_l1_s_cache_mode) TAILQ_INSERT_HEAD(&pages_wt, sp, pg_list); else TAILQ_INSERT_HEAD(&pages_normal, sp, pg_list); mtx_unlock(&smallalloc_mtx); } else { vm_page_t m; vm_paddr_t pa = vtophys((vm_offset_t)mem); m = PHYS_TO_VM_PAGE(pa); m->wire_count--; vm_page_free(m); atomic_subtract_int(&cnt.v_wire_count, 1); } } } #endif