Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/s3/@/amd64/compile/hs32/modules/usr/src/sys/modules/nfsd/@/contrib/octeon-sdk/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/s3/@/amd64/compile/hs32/modules/usr/src/sys/modules/nfsd/@/contrib/octeon-sdk/cvmx-bootmem.c |
/***********************license start*************** * Copyright (c) 2003-2010 Cavium Networks (support@cavium.com). All rights * reserved. * * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of Cavium Networks nor the names of * its contributors may be used to endorse or promote products * derived from this software without specific prior written * permission. * This Software, including technical data, may be subject to U.S. export control * laws, including the U.S. Export Administration Act and its associated * regulations, and may be subject to export or import regulations in other * countries. * TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS" * AND WITH ALL FAULTS AND CAVIUM NETWORKS MAKES NO PROMISES, REPRESENTATIONS OR * WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO * THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION OR * DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM * SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE, * MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF * VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR * CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT OF USE OR * PERFORMANCE OF THE SOFTWARE LIES WITH YOU. ***********************license end**************************************/ /** * @file * Simple allocate only memory allocator. Used to allocate memory at application * start time. * * <hr>$Revision: 52119 $<hr> * */ #ifdef CVMX_BUILD_FOR_LINUX_KERNEL #include <linux/module.h> #include <asm/octeon/cvmx.h> #include <asm/octeon/cvmx-bootmem.h> #else #if !defined(__FreeBSD__) || !defined(_KERNEL) #include "executive-config.h" #endif #include "cvmx.h" #include "cvmx-bootmem.h" #endif typedef uint32_t cvmx_spinlock_t; //#define DEBUG #define ULL unsigned long long #undef MAX #define MAX(a, b) (((a) > (b)) ? (a) : (b)) #undef MIN #define MIN(a, b) (((a) < (b)) ? (a) : (b)) #define ALIGN_ADDR_UP(addr, align) (((addr) + (~(align))) & (align)) /** * This is the physical location of a cvmx_bootmem_desc_t * structure in Octeon's memory. Note that dues to addressing * limits or runtime environment it might not be possible to * create a C pointer to this structure. */ static CVMX_SHARED uint64_t cvmx_bootmem_desc_addr = 0; /** * This macro returns the size of a member of a structure. * Logically it is the same as "sizeof(s::field)" in C++, but * C lacks the "::" operator. */ #define SIZEOF_FIELD(s, field) sizeof(((s*)NULL)->field) /** * This macro returns a member of the cvmx_bootmem_desc_t * structure. These members can't be directly addressed as * they might be in memory not directly reachable. In the case * where bootmem is compiled with LINUX_HOST, the structure * itself might be located on a remote Octeon. The argument * "field" is the member name of the cvmx_bootmem_desc_t to read. * Regardless of the type of the field, the return type is always * a uint64_t. */ #define CVMX_BOOTMEM_DESC_GET_FIELD(field) \ __cvmx_bootmem_desc_get(cvmx_bootmem_desc_addr, \ offsetof(cvmx_bootmem_desc_t, field), \ SIZEOF_FIELD(cvmx_bootmem_desc_t, field)) /** * This macro writes a member of the cvmx_bootmem_desc_t * structure. These members can't be directly addressed as * they might be in memory not directly reachable. In the case * where bootmem is compiled with LINUX_HOST, the structure * itself might be located on a remote Octeon. The argument * "field" is the member name of the cvmx_bootmem_desc_t to write. */ #define CVMX_BOOTMEM_DESC_SET_FIELD(field, value) \ __cvmx_bootmem_desc_set(cvmx_bootmem_desc_addr, \ offsetof(cvmx_bootmem_desc_t, field), \ SIZEOF_FIELD(cvmx_bootmem_desc_t, field), value) /** * This macro returns a member of the * cvmx_bootmem_named_block_desc_t structure. These members can't * be directly addressed as they might be in memory not directly * reachable. In the case where bootmem is compiled with * LINUX_HOST, the structure itself might be located on a remote * Octeon. The argument "field" is the member name of the * cvmx_bootmem_named_block_desc_t to read. Regardless of the type * of the field, the return type is always a uint64_t. The "addr" * parameter is the physical address of the structure. */ #define CVMX_BOOTMEM_NAMED_GET_FIELD(addr, field) \ __cvmx_bootmem_desc_get(addr, \ offsetof(cvmx_bootmem_named_block_desc_t, field), \ SIZEOF_FIELD(cvmx_bootmem_named_block_desc_t, field)) /** * This macro writes a member of the cvmx_bootmem_named_block_desc_t * structure. These members can't be directly addressed as * they might be in memory not directly reachable. In the case * where bootmem is compiled with LINUX_HOST, the structure * itself might be located on a remote Octeon. The argument * "field" is the member name of the * cvmx_bootmem_named_block_desc_t to write. The "addr" parameter * is the physical address of the structure. */ #define CVMX_BOOTMEM_NAMED_SET_FIELD(addr, field, value) \ __cvmx_bootmem_desc_set(addr, \ offsetof(cvmx_bootmem_named_block_desc_t, field), \ SIZEOF_FIELD(cvmx_bootmem_named_block_desc_t, field), value) /** * This function is the implementation of the get macros defined * for individual structure members. The argument are generated * by the macros inorder to read only the needed memory. * * @param base 64bit physical address of the complete structure * @param offset Offset from the beginning of the structure to the member being * accessed. * @param size Size of the structure member. * * @return Value of the structure member promoted into a uint64_t. */ static inline uint64_t __cvmx_bootmem_desc_get(uint64_t base, int offset, int size) { base = (1ull << 63) | (base + offset); switch (size) { case 4: return cvmx_read64_uint32(base); case 8: return cvmx_read64_uint64(base); default: return 0; } } /** * This function is the implementation of the set macros defined * for individual structure members. The argument are generated * by the macros in order to write only the needed memory. * * @param base 64bit physical address of the complete structure * @param offset Offset from the beginning of the structure to the member being * accessed. * @param size Size of the structure member. * @param value Value to write into the structure */ static inline void __cvmx_bootmem_desc_set(uint64_t base, int offset, int size, uint64_t value) { base = (1ull << 63) | (base + offset); switch (size) { case 4: cvmx_write64_uint32(base, value); break; case 8: cvmx_write64_uint64(base, value); break; default: break; } } /** * This function retrieves the string name of a named block. It is * more complicated than a simple memcpy() since the named block * descriptor may not be directly accessable. * * @param addr Physical address of the named block descriptor * @param str String to receive the named block string name * @param len Length of the string buffer, which must match the length * stored in the bootmem descriptor. */ static void CVMX_BOOTMEM_NAMED_GET_NAME(uint64_t addr, char *str, int len) { #ifndef CVMX_BUILD_FOR_LINUX_HOST int l = len; char *ptr = str; addr |= (1ull << 63); addr += offsetof(cvmx_bootmem_named_block_desc_t, name); while (l--) *ptr++ = cvmx_read64_uint8(addr++); str[len] = 0; #else extern void octeon_remote_read_mem(void *buffer, uint64_t physical_address, int length); addr += offsetof(cvmx_bootmem_named_block_desc_t, name); octeon_remote_read_mem(str, addr, len); str[len] = 0; #endif } /** * This function stores the string name of a named block. It is * more complicated than a simple memcpy() since the named block * descriptor may not be directly accessable. * * @param addr Physical address of the named block descriptor * @param str String to store into the named block string name * @param len Length of the string buffer, which must match the length * stored in the bootmem descriptor. */ static void CVMX_BOOTMEM_NAMED_SET_NAME(uint64_t addr, const char *str, int len) { #ifndef CVMX_BUILD_FOR_LINUX_HOST int l = len; addr |= (1ull << 63); addr += offsetof(cvmx_bootmem_named_block_desc_t, name); while (l--) { if (l) cvmx_write64_uint8(addr++, *str++); else cvmx_write64_uint8(addr++, 0); } #else extern void octeon_remote_write_mem(uint64_t physical_address, const void *buffer, int length); char zero = 0; addr += offsetof(cvmx_bootmem_named_block_desc_t, name); octeon_remote_write_mem(addr, str, len-1); octeon_remote_write_mem(addr+len-1, &zero, 1); #endif } /* See header file for descriptions of functions */ /* Wrapper functions are provided for reading/writing the size and next block ** values as these may not be directly addressible (in 32 bit applications, for instance.) */ /* Offsets of data elements in bootmem list, must match cvmx_bootmem_block_header_t */ #define NEXT_OFFSET 0 #define SIZE_OFFSET 8 static void cvmx_bootmem_phy_set_size(uint64_t addr, uint64_t size) { cvmx_write64_uint64((addr + SIZE_OFFSET) | (1ull << 63), size); } static void cvmx_bootmem_phy_set_next(uint64_t addr, uint64_t next) { cvmx_write64_uint64((addr + NEXT_OFFSET) | (1ull << 63), next); } static uint64_t cvmx_bootmem_phy_get_size(uint64_t addr) { return(cvmx_read64_uint64((addr + SIZE_OFFSET) | (1ull << 63))); } static uint64_t cvmx_bootmem_phy_get_next(uint64_t addr) { return(cvmx_read64_uint64((addr + NEXT_OFFSET) | (1ull << 63))); } /** * Check the version information on the bootmem descriptor * * @param exact_match * Exact major version to check against. A zero means * check that the version supports named blocks. * * @return Zero if the version is correct. Negative if the version is * incorrect. Failures also cause a message to be displayed. */ static int __cvmx_bootmem_check_version(int exact_match) { int major_version; #ifdef CVMX_BUILD_FOR_LINUX_HOST if (!cvmx_bootmem_desc_addr) cvmx_bootmem_desc_addr = cvmx_read64_uint64(0x24100); #endif major_version = CVMX_BOOTMEM_DESC_GET_FIELD(major_version); if ((major_version > 3) || (exact_match && major_version != exact_match)) { cvmx_dprintf("ERROR: Incompatible bootmem descriptor version: %d.%d at addr: 0x%llx\n", major_version, (int)CVMX_BOOTMEM_DESC_GET_FIELD(minor_version), (ULL)cvmx_bootmem_desc_addr); return -1; } else return 0; } /** * Get the low level bootmem descriptor lock. If no locking * is specified in the flags, then nothing is done. * * @param flags CVMX_BOOTMEM_FLAG_NO_LOCKING means this functions should do * nothing. This is used to support nested bootmem calls. */ static inline void __cvmx_bootmem_lock(uint32_t flags) { if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING)) { #ifndef CVMX_BUILD_FOR_LINUX_HOST /* Unfortunately we can't use the normal cvmx-spinlock code as the memory for the bootmem descriptor may be not accessable by a C pointer. We use a 64bit XKPHYS address to access the memory directly */ uint64_t lock_addr = (1ull << 63) | (cvmx_bootmem_desc_addr + offsetof(cvmx_bootmem_desc_t, lock)); unsigned int tmp; __asm__ __volatile__( ".set noreorder \n" "1: ll %[tmp], 0(%[addr])\n" " bnez %[tmp], 1b \n" " li %[tmp], 1 \n" " sc %[tmp], 0(%[addr])\n" " beqz %[tmp], 1b \n" " nop \n" ".set reorder \n" : [tmp] "=&r" (tmp) : [addr] "r" (lock_addr) : "memory"); #endif } } /** * Release the low level bootmem descriptor lock. If no locking * is specified in the flags, then nothing is done. * * @param flags CVMX_BOOTMEM_FLAG_NO_LOCKING means this functions should do * nothing. This is used to support nested bootmem calls. */ static inline void __cvmx_bootmem_unlock(uint32_t flags) { if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING)) { #ifndef CVMX_BUILD_FOR_LINUX_HOST /* Unfortunately we can't use the normal cvmx-spinlock code as the memory for the bootmem descriptor may be not accessable by a C pointer. We use a 64bit XKPHYS address to access the memory directly */ uint64_t lock_addr = (1ull << 63) | (cvmx_bootmem_desc_addr + offsetof(cvmx_bootmem_desc_t, lock)); CVMX_SYNCW; __asm__ __volatile__("sw $0, 0(%[addr])\n" :: [addr] "r" (lock_addr) : "memory"); CVMX_SYNCW; #endif } } /* Some of the cvmx-bootmem functions dealing with C pointers are not supported when we are compiling for CVMX_BUILD_FOR_LINUX_HOST. This ifndef removes these functions when they aren't needed */ #ifndef CVMX_BUILD_FOR_LINUX_HOST /* This functions takes an address range and adjusts it as necessary to ** match the ABI that is currently being used. This is required to ensure ** that bootmem_alloc* functions only return valid pointers for 32 bit ABIs */ static int __cvmx_validate_mem_range(uint64_t *min_addr_ptr, uint64_t *max_addr_ptr) { #if defined(__linux__) && defined(CVMX_ABI_N32) { extern uint64_t linux_mem32_min; extern uint64_t linux_mem32_max; /* For 32 bit Linux apps, we need to restrict the allocations to the range ** of memory configured for access from userspace. Also, we need to add mappings ** for the data structures that we access.*/ /* Narrow range requests to be bounded by the 32 bit limits. octeon_phy_mem_block_alloc() ** will reject inconsistent req_size/range requests, so we don't repeat those checks here. ** If max unspecified, set to 32 bit maximum. */ *min_addr_ptr = MIN(MAX(*min_addr_ptr, linux_mem32_min), linux_mem32_max); if (!*max_addr_ptr) *max_addr_ptr = linux_mem32_max; else *max_addr_ptr = MAX(MIN(*max_addr_ptr, linux_mem32_max), linux_mem32_min); } #elif defined(CVMX_ABI_N32) { uint32_t max_phys = 0x0FFFFFFF; /* Max physical address when 1-1 mappings not used */ #if CVMX_USE_1_TO_1_TLB_MAPPINGS max_phys = 0x7FFFFFFF; #endif /* We are are running standalone simple executive, so we need to limit the range ** that we allocate from */ /* Narrow range requests to be bounded by the 32 bit limits. octeon_phy_mem_block_alloc() ** will reject inconsistent req_size/range requests, so we don't repeat those checks here. ** If max unspecified, set to 32 bit maximum. */ *min_addr_ptr = MIN(MAX(*min_addr_ptr, 0x0), max_phys); if (!*max_addr_ptr) *max_addr_ptr = max_phys; else *max_addr_ptr = MAX(MIN(*max_addr_ptr, max_phys), 0x0); } #endif return 0; } void *cvmx_bootmem_alloc_range(uint64_t size, uint64_t alignment, uint64_t min_addr, uint64_t max_addr) { int64_t address; __cvmx_validate_mem_range(&min_addr, &max_addr); address = cvmx_bootmem_phy_alloc(size, min_addr, max_addr, alignment, 0); if (address > 0) return cvmx_phys_to_ptr(address); else return NULL; } #ifdef CVMX_BUILD_FOR_LINUX_KERNEL EXPORT_SYMBOL(cvmx_bootmem_alloc_range); #endif void *cvmx_bootmem_alloc_address(uint64_t size, uint64_t address, uint64_t alignment) { return cvmx_bootmem_alloc_range(size, alignment, address, address + size); } void *cvmx_bootmem_alloc(uint64_t size, uint64_t alignment) { return cvmx_bootmem_alloc_range(size, alignment, 0, 0); } #ifdef CVMX_BUILD_FOR_LINUX_KERNEL EXPORT_SYMBOL(cvmx_bootmem_alloc); #endif void *cvmx_bootmem_alloc_named_range(uint64_t size, uint64_t min_addr, uint64_t max_addr, uint64_t align, const char *name) { int64_t addr; __cvmx_validate_mem_range(&min_addr, &max_addr); addr = cvmx_bootmem_phy_named_block_alloc(size, min_addr, max_addr, align, name, 0); if (addr >= 0) return cvmx_phys_to_ptr(addr); else return NULL; } void *cvmx_bootmem_alloc_named_address(uint64_t size, uint64_t address, const char *name) { return(cvmx_bootmem_alloc_named_range(size, address, address + size, 0, name)); } void *cvmx_bootmem_alloc_named(uint64_t size, uint64_t alignment, const char *name) { return(cvmx_bootmem_alloc_named_range(size, 0, 0, alignment, name)); } int cvmx_bootmem_free_named(const char *name) { return(cvmx_bootmem_phy_named_block_free(name, 0)); } #endif const cvmx_bootmem_named_block_desc_t *cvmx_bootmem_find_named_block(const char *name) { /* FIXME: Returning a single static object is probably a bad thing */ static cvmx_bootmem_named_block_desc_t desc; uint64_t named_addr = cvmx_bootmem_phy_named_block_find(name, 0); if (named_addr) { desc.base_addr = CVMX_BOOTMEM_NAMED_GET_FIELD(named_addr, base_addr); desc.size = CVMX_BOOTMEM_NAMED_GET_FIELD(named_addr, size); strncpy(desc.name, name, sizeof(desc.name)); desc.name[sizeof(desc.name)-1] = 0; return &desc; } else return NULL; } void cvmx_bootmem_print_named(void) { cvmx_bootmem_phy_named_block_print(); } int cvmx_bootmem_init(uint64_t mem_desc_addr) { /* Verify that the size of cvmx_spinlock_t meets our assumptions */ if (sizeof(cvmx_spinlock_t) != 4) { cvmx_dprintf("ERROR: Unexpected size of cvmx_spinlock_t\n"); return(-1); } if (!cvmx_bootmem_desc_addr) cvmx_bootmem_desc_addr = mem_desc_addr; return(0); } uint64_t cvmx_bootmem_available_mem(uint64_t min_block_size) { return(cvmx_bootmem_phy_available_mem(min_block_size)); } /********************************************************************* ** The cvmx_bootmem_phy* functions below return 64 bit physical addresses, ** and expose more features that the cvmx_bootmem_functions above. These are ** required for full memory space access in 32 bit applications, as well as for ** using some advance features. ** Most applications should not need to use these. ** **/ int64_t cvmx_bootmem_phy_alloc(uint64_t req_size, uint64_t address_min, uint64_t address_max, uint64_t alignment, uint32_t flags) { uint64_t head_addr; uint64_t ent_addr; uint64_t prev_addr = 0; /* points to previous list entry, NULL current entry is head of list */ uint64_t new_ent_addr = 0; uint64_t desired_min_addr; uint64_t alignment_mask = ~(alignment - 1); #ifdef DEBUG cvmx_dprintf("cvmx_bootmem_phy_alloc: req_size: 0x%llx, min_addr: 0x%llx, max_addr: 0x%llx, align: 0x%llx\n", (ULL)req_size, (ULL)address_min, (ULL)address_max, (ULL)alignment); #endif if (__cvmx_bootmem_check_version(0)) goto error_out; /* Do a variety of checks to validate the arguments. The allocator code will later assume ** that these checks have been made. We validate that the requested constraints are not ** self-contradictory before we look through the list of available memory */ /* 0 is not a valid req_size for this allocator */ if (!req_size) goto error_out; /* Round req_size up to mult of minimum alignment bytes */ req_size = (req_size + (CVMX_BOOTMEM_ALIGNMENT_SIZE - 1)) & ~(CVMX_BOOTMEM_ALIGNMENT_SIZE - 1); /* Convert !0 address_min and 0 address_max to special case of range that specifies an exact ** memory block to allocate. Do this before other checks and adjustments so that this tranformation will be validated */ if (address_min && !address_max) address_max = address_min + req_size; else if (!address_min && !address_max) address_max = ~0ull; /* If no limits given, use max limits */ /* Enforce minimum alignment (this also keeps the minimum free block ** req_size the same as the alignment req_size */ if (alignment < CVMX_BOOTMEM_ALIGNMENT_SIZE) { alignment = CVMX_BOOTMEM_ALIGNMENT_SIZE; } alignment_mask = ~(alignment - 1); /* Adjust address minimum based on requested alignment (round up to meet alignment). Do this here so we can ** reject impossible requests up front. (NOP for address_min == 0) */ if (alignment) address_min = (address_min + (alignment - 1)) & ~(alignment - 1); /* Reject inconsistent args. We have adjusted these, so this may fail due to our internal changes ** even if this check would pass for the values the user supplied. */ if (req_size > address_max - address_min) goto error_out; /* Walk through the list entries - first fit found is returned */ __cvmx_bootmem_lock(flags); head_addr = CVMX_BOOTMEM_DESC_GET_FIELD(head_addr); ent_addr = head_addr; while (ent_addr) { uint64_t usable_base, usable_max; uint64_t ent_size = cvmx_bootmem_phy_get_size(ent_addr); if (cvmx_bootmem_phy_get_next(ent_addr) && ent_addr > cvmx_bootmem_phy_get_next(ent_addr)) { cvmx_dprintf("Internal bootmem_alloc() error: ent: 0x%llx, next: 0x%llx\n", (ULL)ent_addr, (ULL)cvmx_bootmem_phy_get_next(ent_addr)); goto error_out; } /* Determine if this is an entry that can satisify the request */ /* Check to make sure entry is large enough to satisfy request */ usable_base = ALIGN_ADDR_UP(MAX(address_min, ent_addr), alignment_mask); usable_max = MIN(address_max, ent_addr + ent_size); /* We should be able to allocate block at address usable_base */ desired_min_addr = usable_base; /* Determine if request can be satisfied from the current entry */ if ((((ent_addr + ent_size) > usable_base && ent_addr < address_max)) && req_size <= usable_max - usable_base) { /* We have found an entry that has room to satisfy the request, so allocate it from this entry */ /* If end CVMX_BOOTMEM_FLAG_END_ALLOC set, then allocate from the end of this block ** rather than the beginning */ if (flags & CVMX_BOOTMEM_FLAG_END_ALLOC) { desired_min_addr = usable_max - req_size; /* Align desired address down to required alignment */ desired_min_addr &= alignment_mask; } /* Match at start of entry */ if (desired_min_addr == ent_addr) { if (req_size < ent_size) { /* big enough to create a new block from top portion of block */ new_ent_addr = ent_addr + req_size; cvmx_bootmem_phy_set_next(new_ent_addr, cvmx_bootmem_phy_get_next(ent_addr)); cvmx_bootmem_phy_set_size(new_ent_addr, ent_size - req_size); /* Adjust next pointer as following code uses this */ cvmx_bootmem_phy_set_next(ent_addr, new_ent_addr); } /* adjust prev ptr or head to remove this entry from list */ if (prev_addr) { cvmx_bootmem_phy_set_next(prev_addr, cvmx_bootmem_phy_get_next(ent_addr)); } else { /* head of list being returned, so update head ptr */ CVMX_BOOTMEM_DESC_SET_FIELD(head_addr, cvmx_bootmem_phy_get_next(ent_addr)); } __cvmx_bootmem_unlock(flags); return(desired_min_addr); } /* block returned doesn't start at beginning of entry, so we know ** that we will be splitting a block off the front of this one. Create a new block ** from the beginning, add to list, and go to top of loop again. ** ** create new block from high portion of block, so that top block ** starts at desired addr **/ new_ent_addr = desired_min_addr; cvmx_bootmem_phy_set_next(new_ent_addr, cvmx_bootmem_phy_get_next(ent_addr)); cvmx_bootmem_phy_set_size(new_ent_addr, cvmx_bootmem_phy_get_size(ent_addr) - (desired_min_addr - ent_addr)); cvmx_bootmem_phy_set_size(ent_addr, desired_min_addr - ent_addr); cvmx_bootmem_phy_set_next(ent_addr, new_ent_addr); /* Loop again to handle actual alloc from new block */ } prev_addr = ent_addr; ent_addr = cvmx_bootmem_phy_get_next(ent_addr); } error_out: /* We didn't find anything, so return error */ __cvmx_bootmem_unlock(flags); return(-1); } int __cvmx_bootmem_phy_free(uint64_t phy_addr, uint64_t size, uint32_t flags) { uint64_t cur_addr; uint64_t prev_addr = 0; /* zero is invalid */ int retval = 0; #ifdef DEBUG cvmx_dprintf("__cvmx_bootmem_phy_free addr: 0x%llx, size: 0x%llx\n", (ULL)phy_addr, (ULL)size); #endif if (__cvmx_bootmem_check_version(0)) return(0); /* 0 is not a valid size for this allocator */ if (!size) return(0); __cvmx_bootmem_lock(flags); cur_addr = CVMX_BOOTMEM_DESC_GET_FIELD(head_addr); if (cur_addr == 0 || phy_addr < cur_addr) { /* add at front of list - special case with changing head ptr */ if (cur_addr && phy_addr + size > cur_addr) goto bootmem_free_done; /* error, overlapping section */ else if (phy_addr + size == cur_addr) { /* Add to front of existing first block */ cvmx_bootmem_phy_set_next(phy_addr, cvmx_bootmem_phy_get_next(cur_addr)); cvmx_bootmem_phy_set_size(phy_addr, cvmx_bootmem_phy_get_size(cur_addr) + size); CVMX_BOOTMEM_DESC_SET_FIELD(head_addr, phy_addr); } else { /* New block before first block */ cvmx_bootmem_phy_set_next(phy_addr, cur_addr); /* OK if cur_addr is 0 */ cvmx_bootmem_phy_set_size(phy_addr, size); CVMX_BOOTMEM_DESC_SET_FIELD(head_addr, phy_addr); } retval = 1; goto bootmem_free_done; } /* Find place in list to add block */ while (cur_addr && phy_addr > cur_addr) { prev_addr = cur_addr; cur_addr = cvmx_bootmem_phy_get_next(cur_addr); } if (!cur_addr) { /* We have reached the end of the list, add on to end, checking ** to see if we need to combine with last block **/ if (prev_addr + cvmx_bootmem_phy_get_size(prev_addr) == phy_addr) { cvmx_bootmem_phy_set_size(prev_addr, cvmx_bootmem_phy_get_size(prev_addr) + size); } else { cvmx_bootmem_phy_set_next(prev_addr, phy_addr); cvmx_bootmem_phy_set_size(phy_addr, size); cvmx_bootmem_phy_set_next(phy_addr, 0); } retval = 1; goto bootmem_free_done; } else { /* insert between prev and cur nodes, checking for merge with either/both */ if (prev_addr + cvmx_bootmem_phy_get_size(prev_addr) == phy_addr) { /* Merge with previous */ cvmx_bootmem_phy_set_size(prev_addr, cvmx_bootmem_phy_get_size(prev_addr) + size); if (phy_addr + size == cur_addr) { /* Also merge with current */ cvmx_bootmem_phy_set_size(prev_addr, cvmx_bootmem_phy_get_size(cur_addr) + cvmx_bootmem_phy_get_size(prev_addr)); cvmx_bootmem_phy_set_next(prev_addr, cvmx_bootmem_phy_get_next(cur_addr)); } retval = 1; goto bootmem_free_done; } else if (phy_addr + size == cur_addr) { /* Merge with current */ cvmx_bootmem_phy_set_size(phy_addr, cvmx_bootmem_phy_get_size(cur_addr) + size); cvmx_bootmem_phy_set_next(phy_addr, cvmx_bootmem_phy_get_next(cur_addr)); cvmx_bootmem_phy_set_next(prev_addr, phy_addr); retval = 1; goto bootmem_free_done; } /* It is a standalone block, add in between prev and cur */ cvmx_bootmem_phy_set_size(phy_addr, size); cvmx_bootmem_phy_set_next(phy_addr, cur_addr); cvmx_bootmem_phy_set_next(prev_addr, phy_addr); } retval = 1; bootmem_free_done: __cvmx_bootmem_unlock(flags); return(retval); } void cvmx_bootmem_phy_list_print(void) { uint64_t addr; addr = CVMX_BOOTMEM_DESC_GET_FIELD(head_addr); cvmx_dprintf("\n\n\nPrinting bootmem block list, descriptor: 0x%llx, head is 0x%llx\n", (ULL)cvmx_bootmem_desc_addr, (ULL)addr); cvmx_dprintf("Descriptor version: %d.%d\n", (int)CVMX_BOOTMEM_DESC_GET_FIELD(major_version), (int)CVMX_BOOTMEM_DESC_GET_FIELD(minor_version)); if (CVMX_BOOTMEM_DESC_GET_FIELD(major_version) > 3) { cvmx_dprintf("Warning: Bootmem descriptor version is newer than expected\n"); } if (!addr) { cvmx_dprintf("mem list is empty!\n"); } while (addr) { cvmx_dprintf("Block address: 0x%08qx, size: 0x%08qx, next: 0x%08qx\n", (ULL)addr, (ULL)cvmx_bootmem_phy_get_size(addr), (ULL)cvmx_bootmem_phy_get_next(addr)); addr = cvmx_bootmem_phy_get_next(addr); } cvmx_dprintf("\n\n"); } uint64_t cvmx_bootmem_phy_available_mem(uint64_t min_block_size) { uint64_t addr; uint64_t available_mem = 0; __cvmx_bootmem_lock(0); addr = CVMX_BOOTMEM_DESC_GET_FIELD(head_addr); while (addr) { if (cvmx_bootmem_phy_get_size(addr) >= min_block_size) available_mem += cvmx_bootmem_phy_get_size(addr); addr = cvmx_bootmem_phy_get_next(addr); } __cvmx_bootmem_unlock(0); return(available_mem); } uint64_t cvmx_bootmem_phy_named_block_find(const char *name, uint32_t flags) { uint64_t result = 0; #ifdef DEBUG cvmx_dprintf("cvmx_bootmem_phy_named_block_find: %s\n", name); #endif __cvmx_bootmem_lock(flags); if (!__cvmx_bootmem_check_version(3)) { int i; uint64_t named_block_array_addr = CVMX_BOOTMEM_DESC_GET_FIELD(named_block_array_addr); int num_blocks = CVMX_BOOTMEM_DESC_GET_FIELD(named_block_num_blocks); int name_length = CVMX_BOOTMEM_DESC_GET_FIELD(named_block_name_len); uint64_t named_addr = named_block_array_addr; for (i = 0; i < num_blocks; i++) { uint64_t named_size = CVMX_BOOTMEM_NAMED_GET_FIELD(named_addr, size); if (name && named_size) { char name_tmp[name_length]; CVMX_BOOTMEM_NAMED_GET_NAME(named_addr, name_tmp, name_length); if (!strncmp(name, name_tmp, name_length - 1)) { result = named_addr; break; } } else if (!name && !named_size) { result = named_addr; break; } named_addr += sizeof(cvmx_bootmem_named_block_desc_t); } } __cvmx_bootmem_unlock(flags); return result; } int cvmx_bootmem_phy_named_block_free(const char *name, uint32_t flags) { uint64_t named_block_addr; if (__cvmx_bootmem_check_version(3)) return(0); #ifdef DEBUG cvmx_dprintf("cvmx_bootmem_phy_named_block_free: %s\n", name); #endif /* Take lock here, as name lookup/block free/name free need to be atomic */ __cvmx_bootmem_lock(flags); named_block_addr = cvmx_bootmem_phy_named_block_find(name, CVMX_BOOTMEM_FLAG_NO_LOCKING); if (named_block_addr) { uint64_t named_addr = CVMX_BOOTMEM_NAMED_GET_FIELD(named_block_addr, base_addr); uint64_t named_size = CVMX_BOOTMEM_NAMED_GET_FIELD(named_block_addr, size); #ifdef DEBUG cvmx_dprintf("cvmx_bootmem_phy_named_block_free: %s, base: 0x%llx, size: 0x%llx\n", name, (ULL)named_addr, (ULL)named_size); #endif __cvmx_bootmem_phy_free(named_addr, named_size, CVMX_BOOTMEM_FLAG_NO_LOCKING); /* Set size to zero to indicate block not used. */ CVMX_BOOTMEM_NAMED_SET_FIELD(named_block_addr, size, 0); } __cvmx_bootmem_unlock(flags); return(!!named_block_addr); /* 0 on failure, 1 on success */ } int64_t cvmx_bootmem_phy_named_block_alloc(uint64_t size, uint64_t min_addr, uint64_t max_addr, uint64_t alignment, const char *name, uint32_t flags) { int64_t addr_allocated; uint64_t named_block_desc_addr; #ifdef DEBUG cvmx_dprintf("cvmx_bootmem_phy_named_block_alloc: size: 0x%llx, min: 0x%llx, max: 0x%llx, align: 0x%llx, name: %s\n", (ULL)size, (ULL)min_addr, (ULL)max_addr, (ULL)alignment, name); #endif if (__cvmx_bootmem_check_version(3)) return(-1); /* Take lock here, as name lookup/block alloc/name add need to be atomic */ __cvmx_bootmem_lock(flags); named_block_desc_addr = cvmx_bootmem_phy_named_block_find(name, flags | CVMX_BOOTMEM_FLAG_NO_LOCKING); if (named_block_desc_addr) { __cvmx_bootmem_unlock(flags); return(-1); } /* Get pointer to first available named block descriptor */ named_block_desc_addr = cvmx_bootmem_phy_named_block_find(NULL, flags | CVMX_BOOTMEM_FLAG_NO_LOCKING); if (!named_block_desc_addr) { __cvmx_bootmem_unlock(flags); return(-1); } /* Round size up to mult of minimum alignment bytes ** We need the actual size allocated to allow for blocks to be coallesced ** when they are freed. The alloc routine does the same rounding up ** on all allocations. */ size = (size + (CVMX_BOOTMEM_ALIGNMENT_SIZE - 1)) & ~(CVMX_BOOTMEM_ALIGNMENT_SIZE - 1); addr_allocated = cvmx_bootmem_phy_alloc(size, min_addr, max_addr, alignment, flags | CVMX_BOOTMEM_FLAG_NO_LOCKING); if (addr_allocated >= 0) { CVMX_BOOTMEM_NAMED_SET_FIELD(named_block_desc_addr, base_addr, addr_allocated); CVMX_BOOTMEM_NAMED_SET_FIELD(named_block_desc_addr, size, size); CVMX_BOOTMEM_NAMED_SET_NAME(named_block_desc_addr, name, CVMX_BOOTMEM_DESC_GET_FIELD(named_block_name_len)); } __cvmx_bootmem_unlock(flags); return(addr_allocated); } void cvmx_bootmem_phy_named_block_print(void) { int i; int printed = 0; uint64_t named_block_array_addr = CVMX_BOOTMEM_DESC_GET_FIELD(named_block_array_addr); int num_blocks = CVMX_BOOTMEM_DESC_GET_FIELD(named_block_num_blocks); int name_length = CVMX_BOOTMEM_DESC_GET_FIELD(named_block_name_len); uint64_t named_block_addr = named_block_array_addr; #ifdef DEBUG cvmx_dprintf("cvmx_bootmem_phy_named_block_print, desc addr: 0x%llx\n", (ULL)cvmx_bootmem_desc_addr); #endif if (__cvmx_bootmem_check_version(3)) return; cvmx_dprintf("List of currently allocated named bootmem blocks:\n"); for (i = 0; i < num_blocks; i++) { uint64_t named_size = CVMX_BOOTMEM_NAMED_GET_FIELD(named_block_addr, size); if (named_size) { char name_tmp[name_length]; uint64_t named_addr = CVMX_BOOTMEM_NAMED_GET_FIELD(named_block_addr, base_addr); CVMX_BOOTMEM_NAMED_GET_NAME(named_block_addr, name_tmp, name_length); printed++; cvmx_dprintf("Name: %s, address: 0x%08qx, size: 0x%08qx, index: %d\n", name_tmp, (ULL)named_addr, (ULL)named_size, i); } named_block_addr += sizeof(cvmx_bootmem_named_block_desc_t); } if (!printed) { cvmx_dprintf("No named bootmem blocks exist.\n"); } } /* Real physical addresses of memory regions */ #define OCTEON_DDR0_BASE (0x0ULL) #define OCTEON_DDR0_SIZE (0x010000000ULL) #define OCTEON_DDR1_BASE (OCTEON_IS_MODEL(OCTEON_CN6XXX) ? 0x20000000ULL : 0x410000000ULL) #define OCTEON_DDR1_SIZE (0x010000000ULL) #define OCTEON_DDR2_BASE (OCTEON_IS_MODEL(OCTEON_CN6XXX) ? 0x30000000ULL : 0x20000000ULL) #define OCTEON_DDR2_SIZE (OCTEON_IS_MODEL(OCTEON_CN6XXX) ? 0x7d0000000ULL : 0x3e0000000ULL) #define OCTEON_MAX_PHY_MEM_SIZE (OCTEON_IS_MODEL(OCTEON_CN63XX) ? 32*1024*1024*1024ULL : 16*1024*1024*1024ULL) int64_t cvmx_bootmem_phy_mem_list_init(uint64_t mem_size, uint32_t low_reserved_bytes, cvmx_bootmem_desc_t *desc_buffer) { uint64_t cur_block_addr; int64_t addr; int i; #ifdef DEBUG cvmx_dprintf("cvmx_bootmem_phy_mem_list_init (arg desc ptr: %p, cvmx_bootmem_desc: 0x%llx)\n", desc_buffer, (ULL)cvmx_bootmem_desc_addr); #endif /* Descriptor buffer needs to be in 32 bit addressable space to be compatible with ** 32 bit applications */ if (!desc_buffer) { cvmx_dprintf("ERROR: no memory for cvmx_bootmem descriptor provided\n"); return 0; } if (mem_size > OCTEON_MAX_PHY_MEM_SIZE) { mem_size = OCTEON_MAX_PHY_MEM_SIZE; cvmx_dprintf("ERROR: requested memory size too large, truncating to maximum size\n"); } if (cvmx_bootmem_desc_addr) return 1; /* Initialize cvmx pointer to descriptor */ #ifndef CVMX_BUILD_FOR_LINUX_HOST cvmx_bootmem_init(cvmx_ptr_to_phys(desc_buffer)); #else cvmx_bootmem_init((unsigned long)desc_buffer); #endif /* Fill the bootmem descriptor */ CVMX_BOOTMEM_DESC_SET_FIELD(lock, 0); CVMX_BOOTMEM_DESC_SET_FIELD(flags, 0); CVMX_BOOTMEM_DESC_SET_FIELD(head_addr, 0); CVMX_BOOTMEM_DESC_SET_FIELD(major_version, CVMX_BOOTMEM_DESC_MAJ_VER); CVMX_BOOTMEM_DESC_SET_FIELD(minor_version, CVMX_BOOTMEM_DESC_MIN_VER); CVMX_BOOTMEM_DESC_SET_FIELD(app_data_addr, 0); CVMX_BOOTMEM_DESC_SET_FIELD(app_data_size, 0); /* Set up global pointer to start of list, exclude low 64k for exception vectors, space for global descriptor */ cur_block_addr = (OCTEON_DDR0_BASE + low_reserved_bytes); if (mem_size <= OCTEON_DDR0_SIZE) { __cvmx_bootmem_phy_free(cur_block_addr, mem_size - low_reserved_bytes, 0); goto frees_done; } __cvmx_bootmem_phy_free(cur_block_addr, OCTEON_DDR0_SIZE - low_reserved_bytes, 0); mem_size -= OCTEON_DDR0_SIZE; /* Add DDR2 block next if present */ if (mem_size > OCTEON_DDR1_SIZE) { __cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, OCTEON_DDR1_SIZE, 0); __cvmx_bootmem_phy_free(OCTEON_DDR2_BASE, mem_size - OCTEON_DDR1_SIZE, 0); } else { __cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, mem_size, 0); } frees_done: /* Initialize the named block structure */ CVMX_BOOTMEM_DESC_SET_FIELD(named_block_name_len, CVMX_BOOTMEM_NAME_LEN); CVMX_BOOTMEM_DESC_SET_FIELD(named_block_num_blocks, CVMX_BOOTMEM_NUM_NAMED_BLOCKS); CVMX_BOOTMEM_DESC_SET_FIELD(named_block_array_addr, 0); /* Allocate this near the top of the low 256 MBytes of memory */ addr = cvmx_bootmem_phy_alloc(CVMX_BOOTMEM_NUM_NAMED_BLOCKS * sizeof(cvmx_bootmem_named_block_desc_t),0, 0x10000000, 0 ,CVMX_BOOTMEM_FLAG_END_ALLOC); if (addr >= 0) CVMX_BOOTMEM_DESC_SET_FIELD(named_block_array_addr, addr); #ifdef DEBUG cvmx_dprintf("cvmx_bootmem_phy_mem_list_init: named_block_array_addr: 0x%llx)\n", (ULL)addr); #endif if (!addr) { cvmx_dprintf("FATAL ERROR: unable to allocate memory for bootmem descriptor!\n"); return(0); } for (i=0; i<CVMX_BOOTMEM_NUM_NAMED_BLOCKS; i++) { CVMX_BOOTMEM_NAMED_SET_FIELD(addr, base_addr, 0); CVMX_BOOTMEM_NAMED_SET_FIELD(addr, size, 0); addr += sizeof(cvmx_bootmem_named_block_desc_t); } return(1); } void cvmx_bootmem_lock(void) { __cvmx_bootmem_lock(0); } void cvmx_bootmem_unlock(void) { __cvmx_bootmem_unlock(0); } #ifndef CVMX_BUILD_FOR_LINUX_HOST void *__cvmx_bootmem_internal_get_desc_ptr(void) { return cvmx_phys_to_ptr(cvmx_bootmem_desc_addr); } #endif