Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/s3/@/amd64/compile/hs32/modules/usr/src/sys/modules/nmdm/@/dev/vte/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/s3/@/amd64/compile/hs32/modules/usr/src/sys/modules/nmdm/@/dev/vte/if_vte.c |
/*- * Copyright (c) 2010, Pyun YongHyeon <yongari@FreeBSD.org> * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* Driver for DM&P Electronics, Inc, Vortex86 RDC R6040 FastEthernet. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/dev/vte/if_vte.c 229689 2012-01-06 05:51:00Z kevlo $"); #include <sys/param.h> #include <sys/systm.h> #include <sys/bus.h> #include <sys/endian.h> #include <sys/kernel.h> #include <sys/lock.h> #include <sys/malloc.h> #include <sys/mbuf.h> #include <sys/module.h> #include <sys/mutex.h> #include <sys/rman.h> #include <sys/socket.h> #include <sys/sockio.h> #include <sys/sysctl.h> #include <net/bpf.h> #include <net/if.h> #include <net/if_arp.h> #include <net/ethernet.h> #include <net/if_dl.h> #include <net/if_llc.h> #include <net/if_media.h> #include <net/if_types.h> #include <net/if_vlan_var.h> #include <netinet/in.h> #include <netinet/in_systm.h> #include <dev/mii/mii.h> #include <dev/mii/miivar.h> #include <dev/pci/pcireg.h> #include <dev/pci/pcivar.h> #include <machine/bus.h> #include <dev/vte/if_vtereg.h> #include <dev/vte/if_vtevar.h> /* "device miibus" required. See GENERIC if you get errors here. */ #include "miibus_if.h" MODULE_DEPEND(vte, pci, 1, 1, 1); MODULE_DEPEND(vte, ether, 1, 1, 1); MODULE_DEPEND(vte, miibus, 1, 1, 1); /* Tunables. */ static int tx_deep_copy = 1; TUNABLE_INT("hw.vte.tx_deep_copy", &tx_deep_copy); /* * Devices supported by this driver. */ static const struct vte_ident vte_ident_table[] = { { VENDORID_RDC, DEVICEID_RDC_R6040, "RDC R6040 FastEthernet"}, { 0, 0, NULL} }; static int vte_attach(device_t); static int vte_detach(device_t); static int vte_dma_alloc(struct vte_softc *); static void vte_dma_free(struct vte_softc *); static void vte_dmamap_cb(void *, bus_dma_segment_t *, int, int); static struct vte_txdesc * vte_encap(struct vte_softc *, struct mbuf **); static const struct vte_ident * vte_find_ident(device_t); #ifndef __NO_STRICT_ALIGNMENT static struct mbuf * vte_fixup_rx(struct ifnet *, struct mbuf *); #endif static void vte_get_macaddr(struct vte_softc *); static void vte_init(void *); static void vte_init_locked(struct vte_softc *); static int vte_init_rx_ring(struct vte_softc *); static int vte_init_tx_ring(struct vte_softc *); static void vte_intr(void *); static int vte_ioctl(struct ifnet *, u_long, caddr_t); static void vte_mac_config(struct vte_softc *); static int vte_miibus_readreg(device_t, int, int); static void vte_miibus_statchg(device_t); static int vte_miibus_writereg(device_t, int, int, int); static int vte_mediachange(struct ifnet *); static int vte_mediachange_locked(struct ifnet *); static void vte_mediastatus(struct ifnet *, struct ifmediareq *); static int vte_newbuf(struct vte_softc *, struct vte_rxdesc *); static int vte_probe(device_t); static void vte_reset(struct vte_softc *); static int vte_resume(device_t); static void vte_rxeof(struct vte_softc *); static void vte_rxfilter(struct vte_softc *); static int vte_shutdown(device_t); static void vte_start(struct ifnet *); static void vte_start_locked(struct vte_softc *); static void vte_start_mac(struct vte_softc *); static void vte_stats_clear(struct vte_softc *); static void vte_stats_update(struct vte_softc *); static void vte_stop(struct vte_softc *); static void vte_stop_mac(struct vte_softc *); static int vte_suspend(device_t); static void vte_sysctl_node(struct vte_softc *); static void vte_tick(void *); static void vte_txeof(struct vte_softc *); static void vte_watchdog(struct vte_softc *); static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int); static int sysctl_hw_vte_int_mod(SYSCTL_HANDLER_ARGS); static device_method_t vte_methods[] = { /* Device interface. */ DEVMETHOD(device_probe, vte_probe), DEVMETHOD(device_attach, vte_attach), DEVMETHOD(device_detach, vte_detach), DEVMETHOD(device_shutdown, vte_shutdown), DEVMETHOD(device_suspend, vte_suspend), DEVMETHOD(device_resume, vte_resume), /* MII interface. */ DEVMETHOD(miibus_readreg, vte_miibus_readreg), DEVMETHOD(miibus_writereg, vte_miibus_writereg), DEVMETHOD(miibus_statchg, vte_miibus_statchg), DEVMETHOD_END }; static driver_t vte_driver = { "vte", vte_methods, sizeof(struct vte_softc) }; static devclass_t vte_devclass; DRIVER_MODULE(vte, pci, vte_driver, vte_devclass, 0, 0); DRIVER_MODULE(miibus, vte, miibus_driver, miibus_devclass, 0, 0); static int vte_miibus_readreg(device_t dev, int phy, int reg) { struct vte_softc *sc; int i; sc = device_get_softc(dev); CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_READ | (phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT)); for (i = VTE_PHY_TIMEOUT; i > 0; i--) { DELAY(5); if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_READ) == 0) break; } if (i == 0) { device_printf(sc->vte_dev, "phy read timeout : %d\n", reg); return (0); } return (CSR_READ_2(sc, VTE_MMRD)); } static int vte_miibus_writereg(device_t dev, int phy, int reg, int val) { struct vte_softc *sc; int i; sc = device_get_softc(dev); CSR_WRITE_2(sc, VTE_MMWD, val); CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_WRITE | (phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT)); for (i = VTE_PHY_TIMEOUT; i > 0; i--) { DELAY(5); if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_WRITE) == 0) break; } if (i == 0) device_printf(sc->vte_dev, "phy write timeout : %d\n", reg); return (0); } static void vte_miibus_statchg(device_t dev) { struct vte_softc *sc; struct mii_data *mii; struct ifnet *ifp; uint16_t val; sc = device_get_softc(dev); mii = device_get_softc(sc->vte_miibus); ifp = sc->vte_ifp; if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) return; sc->vte_flags &= ~VTE_FLAG_LINK; if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == (IFM_ACTIVE | IFM_AVALID)) { switch (IFM_SUBTYPE(mii->mii_media_active)) { case IFM_10_T: case IFM_100_TX: sc->vte_flags |= VTE_FLAG_LINK; break; default: break; } } /* Stop RX/TX MACs. */ vte_stop_mac(sc); /* Program MACs with resolved duplex and flow control. */ if ((sc->vte_flags & VTE_FLAG_LINK) != 0) { /* * Timer waiting time : (63 + TIMER * 64) MII clock. * MII clock : 25MHz(100Mbps) or 2.5MHz(10Mbps). */ if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) val = 18 << VTE_IM_TIMER_SHIFT; else val = 1 << VTE_IM_TIMER_SHIFT; val |= sc->vte_int_rx_mod << VTE_IM_BUNDLE_SHIFT; /* 48.6us for 100Mbps, 50.8us for 10Mbps */ CSR_WRITE_2(sc, VTE_MRICR, val); if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) val = 18 << VTE_IM_TIMER_SHIFT; else val = 1 << VTE_IM_TIMER_SHIFT; val |= sc->vte_int_tx_mod << VTE_IM_BUNDLE_SHIFT; /* 48.6us for 100Mbps, 50.8us for 10Mbps */ CSR_WRITE_2(sc, VTE_MTICR, val); vte_mac_config(sc); vte_start_mac(sc); } } static void vte_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) { struct vte_softc *sc; struct mii_data *mii; sc = ifp->if_softc; VTE_LOCK(sc); if ((ifp->if_flags & IFF_UP) == 0) { VTE_UNLOCK(sc); return; } mii = device_get_softc(sc->vte_miibus); mii_pollstat(mii); ifmr->ifm_status = mii->mii_media_status; ifmr->ifm_active = mii->mii_media_active; VTE_UNLOCK(sc); } static int vte_mediachange(struct ifnet *ifp) { struct vte_softc *sc; int error; sc = ifp->if_softc; VTE_LOCK(sc); error = vte_mediachange_locked(ifp); VTE_UNLOCK(sc); return (error); } static int vte_mediachange_locked(struct ifnet *ifp) { struct vte_softc *sc; struct mii_data *mii; struct mii_softc *miisc; int error; sc = ifp->if_softc; mii = device_get_softc(sc->vte_miibus); LIST_FOREACH(miisc, &mii->mii_phys, mii_list) PHY_RESET(miisc); error = mii_mediachg(mii); return (error); } static const struct vte_ident * vte_find_ident(device_t dev) { const struct vte_ident *ident; uint16_t vendor, devid; vendor = pci_get_vendor(dev); devid = pci_get_device(dev); for (ident = vte_ident_table; ident->name != NULL; ident++) { if (vendor == ident->vendorid && devid == ident->deviceid) return (ident); } return (NULL); } static int vte_probe(device_t dev) { const struct vte_ident *ident; ident = vte_find_ident(dev); if (ident != NULL) { device_set_desc(dev, ident->name); return (BUS_PROBE_DEFAULT); } return (ENXIO); } static void vte_get_macaddr(struct vte_softc *sc) { uint16_t mid; /* * It seems there is no way to reload station address and * it is supposed to be set by BIOS. */ mid = CSR_READ_2(sc, VTE_MID0L); sc->vte_eaddr[0] = (mid >> 0) & 0xFF; sc->vte_eaddr[1] = (mid >> 8) & 0xFF; mid = CSR_READ_2(sc, VTE_MID0M); sc->vte_eaddr[2] = (mid >> 0) & 0xFF; sc->vte_eaddr[3] = (mid >> 8) & 0xFF; mid = CSR_READ_2(sc, VTE_MID0H); sc->vte_eaddr[4] = (mid >> 0) & 0xFF; sc->vte_eaddr[5] = (mid >> 8) & 0xFF; } static int vte_attach(device_t dev) { struct vte_softc *sc; struct ifnet *ifp; uint16_t macid; int error, rid; error = 0; sc = device_get_softc(dev); sc->vte_dev = dev; mtx_init(&sc->vte_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF); callout_init_mtx(&sc->vte_tick_ch, &sc->vte_mtx, 0); sc->vte_ident = vte_find_ident(dev); /* Map the device. */ pci_enable_busmaster(dev); sc->vte_res_id = PCIR_BAR(1); sc->vte_res_type = SYS_RES_MEMORY; sc->vte_res = bus_alloc_resource_any(dev, sc->vte_res_type, &sc->vte_res_id, RF_ACTIVE); if (sc->vte_res == NULL) { sc->vte_res_id = PCIR_BAR(0); sc->vte_res_type = SYS_RES_IOPORT; sc->vte_res = bus_alloc_resource_any(dev, sc->vte_res_type, &sc->vte_res_id, RF_ACTIVE); if (sc->vte_res == NULL) { device_printf(dev, "cannot map memory/ports.\n"); mtx_destroy(&sc->vte_mtx); return (ENXIO); } } if (bootverbose) { device_printf(dev, "using %s space register mapping\n", sc->vte_res_type == SYS_RES_MEMORY ? "memory" : "I/O"); device_printf(dev, "MAC Identifier : 0x%04x\n", CSR_READ_2(sc, VTE_MACID)); macid = CSR_READ_2(sc, VTE_MACID_REV); device_printf(dev, "MAC Id. 0x%02x, Rev. 0x%02x\n", (macid & VTE_MACID_MASK) >> VTE_MACID_SHIFT, (macid & VTE_MACID_REV_MASK) >> VTE_MACID_REV_SHIFT); } rid = 0; sc->vte_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_SHAREABLE | RF_ACTIVE); if (sc->vte_irq == NULL) { device_printf(dev, "cannot allocate IRQ resources.\n"); error = ENXIO; goto fail; } /* Reset the ethernet controller. */ vte_reset(sc); if ((error = vte_dma_alloc(sc) != 0)) goto fail; /* Create device sysctl node. */ vte_sysctl_node(sc); /* Load station address. */ vte_get_macaddr(sc); ifp = sc->vte_ifp = if_alloc(IFT_ETHER); if (ifp == NULL) { device_printf(dev, "cannot allocate ifnet structure.\n"); error = ENXIO; goto fail; } ifp->if_softc = sc; if_initname(ifp, device_get_name(dev), device_get_unit(dev)); ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = vte_ioctl; ifp->if_start = vte_start; ifp->if_init = vte_init; ifp->if_snd.ifq_drv_maxlen = VTE_TX_RING_CNT - 1; IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen); IFQ_SET_READY(&ifp->if_snd); /* * Set up MII bus. * BIOS would have initialized VTE_MPSCCR to catch PHY * status changes so driver may be able to extract * configured PHY address. Since it's common to see BIOS * fails to initialize the register(including the sample * board I have), let mii(4) probe it. This is more * reliable than relying on BIOS's initialization. * * Advertising flow control capability to mii(4) was * intentionally disabled due to severe problems in TX * pause frame generation. See vte_rxeof() for more * details. */ error = mii_attach(dev, &sc->vte_miibus, ifp, vte_mediachange, vte_mediastatus, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0); if (error != 0) { device_printf(dev, "attaching PHYs failed\n"); goto fail; } ether_ifattach(ifp, sc->vte_eaddr); /* VLAN capability setup. */ ifp->if_capabilities |= IFCAP_VLAN_MTU; ifp->if_capenable = ifp->if_capabilities; /* Tell the upper layer we support VLAN over-sized frames. */ ifp->if_hdrlen = sizeof(struct ether_vlan_header); error = bus_setup_intr(dev, sc->vte_irq, INTR_TYPE_NET | INTR_MPSAFE, NULL, vte_intr, sc, &sc->vte_intrhand); if (error != 0) { device_printf(dev, "could not set up interrupt handler.\n"); ether_ifdetach(ifp); goto fail; } fail: if (error != 0) vte_detach(dev); return (error); } static int vte_detach(device_t dev) { struct vte_softc *sc; struct ifnet *ifp; sc = device_get_softc(dev); ifp = sc->vte_ifp; if (device_is_attached(dev)) { VTE_LOCK(sc); vte_stop(sc); VTE_UNLOCK(sc); callout_drain(&sc->vte_tick_ch); ether_ifdetach(ifp); } if (sc->vte_miibus != NULL) { device_delete_child(dev, sc->vte_miibus); sc->vte_miibus = NULL; } bus_generic_detach(dev); if (sc->vte_intrhand != NULL) { bus_teardown_intr(dev, sc->vte_irq, sc->vte_intrhand); sc->vte_intrhand = NULL; } if (sc->vte_irq != NULL) { bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vte_irq); sc->vte_irq = NULL; } if (sc->vte_res != NULL) { bus_release_resource(dev, sc->vte_res_type, sc->vte_res_id, sc->vte_res); sc->vte_res = NULL; } if (ifp != NULL) { if_free(ifp); sc->vte_ifp = NULL; } vte_dma_free(sc); mtx_destroy(&sc->vte_mtx); return (0); } #define VTE_SYSCTL_STAT_ADD32(c, h, n, p, d) \ SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d) static void vte_sysctl_node(struct vte_softc *sc) { struct sysctl_ctx_list *ctx; struct sysctl_oid_list *child, *parent; struct sysctl_oid *tree; struct vte_hw_stats *stats; int error; stats = &sc->vte_stats; ctx = device_get_sysctl_ctx(sc->vte_dev); child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->vte_dev)); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_rx_mod", CTLTYPE_INT | CTLFLAG_RW, &sc->vte_int_rx_mod, 0, sysctl_hw_vte_int_mod, "I", "vte RX interrupt moderation"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_tx_mod", CTLTYPE_INT | CTLFLAG_RW, &sc->vte_int_tx_mod, 0, sysctl_hw_vte_int_mod, "I", "vte TX interrupt moderation"); /* Pull in device tunables. */ sc->vte_int_rx_mod = VTE_IM_RX_BUNDLE_DEFAULT; error = resource_int_value(device_get_name(sc->vte_dev), device_get_unit(sc->vte_dev), "int_rx_mod", &sc->vte_int_rx_mod); if (error == 0) { if (sc->vte_int_rx_mod < VTE_IM_BUNDLE_MIN || sc->vte_int_rx_mod > VTE_IM_BUNDLE_MAX) { device_printf(sc->vte_dev, "int_rx_mod value out of " "range; using default: %d\n", VTE_IM_RX_BUNDLE_DEFAULT); sc->vte_int_rx_mod = VTE_IM_RX_BUNDLE_DEFAULT; } } sc->vte_int_tx_mod = VTE_IM_TX_BUNDLE_DEFAULT; error = resource_int_value(device_get_name(sc->vte_dev), device_get_unit(sc->vte_dev), "int_tx_mod", &sc->vte_int_tx_mod); if (error == 0) { if (sc->vte_int_tx_mod < VTE_IM_BUNDLE_MIN || sc->vte_int_tx_mod > VTE_IM_BUNDLE_MAX) { device_printf(sc->vte_dev, "int_tx_mod value out of " "range; using default: %d\n", VTE_IM_TX_BUNDLE_DEFAULT); sc->vte_int_tx_mod = VTE_IM_TX_BUNDLE_DEFAULT; } } tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD, NULL, "VTE statistics"); parent = SYSCTL_CHILDREN(tree); /* RX statistics. */ tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD, NULL, "RX MAC statistics"); child = SYSCTL_CHILDREN(tree); VTE_SYSCTL_STAT_ADD32(ctx, child, "good_frames", &stats->rx_frames, "Good frames"); VTE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames", &stats->rx_bcast_frames, "Good broadcast frames"); VTE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames", &stats->rx_mcast_frames, "Good multicast frames"); VTE_SYSCTL_STAT_ADD32(ctx, child, "runt", &stats->rx_runts, "Too short frames"); VTE_SYSCTL_STAT_ADD32(ctx, child, "crc_errs", &stats->rx_crcerrs, "CRC errors"); VTE_SYSCTL_STAT_ADD32(ctx, child, "long_frames", &stats->rx_long_frames, "Frames that have longer length than maximum packet length"); VTE_SYSCTL_STAT_ADD32(ctx, child, "fifo_full", &stats->rx_fifo_full, "FIFO full"); VTE_SYSCTL_STAT_ADD32(ctx, child, "desc_unavail", &stats->rx_desc_unavail, "Descriptor unavailable frames"); VTE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames", &stats->rx_pause_frames, "Pause control frames"); /* TX statistics. */ tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD, NULL, "TX MAC statistics"); child = SYSCTL_CHILDREN(tree); VTE_SYSCTL_STAT_ADD32(ctx, child, "good_frames", &stats->tx_frames, "Good frames"); VTE_SYSCTL_STAT_ADD32(ctx, child, "underruns", &stats->tx_underruns, "FIFO underruns"); VTE_SYSCTL_STAT_ADD32(ctx, child, "late_colls", &stats->tx_late_colls, "Late collisions"); VTE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames", &stats->tx_pause_frames, "Pause control frames"); } #undef VTE_SYSCTL_STAT_ADD32 struct vte_dmamap_arg { bus_addr_t vte_busaddr; }; static void vte_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) { struct vte_dmamap_arg *ctx; if (error != 0) return; KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); ctx = (struct vte_dmamap_arg *)arg; ctx->vte_busaddr = segs[0].ds_addr; } static int vte_dma_alloc(struct vte_softc *sc) { struct vte_txdesc *txd; struct vte_rxdesc *rxd; struct vte_dmamap_arg ctx; int error, i; /* Create parent DMA tag. */ error = bus_dma_tag_create( bus_get_dma_tag(sc->vte_dev), /* parent */ 1, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ BUS_SPACE_MAXSIZE_32BIT, /* maxsize */ 0, /* nsegments */ BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->vte_cdata.vte_parent_tag); if (error != 0) { device_printf(sc->vte_dev, "could not create parent DMA tag.\n"); goto fail; } /* Create DMA tag for TX descriptor ring. */ error = bus_dma_tag_create( sc->vte_cdata.vte_parent_tag, /* parent */ VTE_TX_RING_ALIGN, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ VTE_TX_RING_SZ, /* maxsize */ 1, /* nsegments */ VTE_TX_RING_SZ, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->vte_cdata.vte_tx_ring_tag); if (error != 0) { device_printf(sc->vte_dev, "could not create TX ring DMA tag.\n"); goto fail; } /* Create DMA tag for RX free descriptor ring. */ error = bus_dma_tag_create( sc->vte_cdata.vte_parent_tag, /* parent */ VTE_RX_RING_ALIGN, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ VTE_RX_RING_SZ, /* maxsize */ 1, /* nsegments */ VTE_RX_RING_SZ, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->vte_cdata.vte_rx_ring_tag); if (error != 0) { device_printf(sc->vte_dev, "could not create RX ring DMA tag.\n"); goto fail; } /* Allocate DMA'able memory and load the DMA map for TX ring. */ error = bus_dmamem_alloc(sc->vte_cdata.vte_tx_ring_tag, (void **)&sc->vte_cdata.vte_tx_ring, BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->vte_cdata.vte_tx_ring_map); if (error != 0) { device_printf(sc->vte_dev, "could not allocate DMA'able memory for TX ring.\n"); goto fail; } ctx.vte_busaddr = 0; error = bus_dmamap_load(sc->vte_cdata.vte_tx_ring_tag, sc->vte_cdata.vte_tx_ring_map, sc->vte_cdata.vte_tx_ring, VTE_TX_RING_SZ, vte_dmamap_cb, &ctx, 0); if (error != 0 || ctx.vte_busaddr == 0) { device_printf(sc->vte_dev, "could not load DMA'able memory for TX ring.\n"); goto fail; } sc->vte_cdata.vte_tx_ring_paddr = ctx.vte_busaddr; /* Allocate DMA'able memory and load the DMA map for RX ring. */ error = bus_dmamem_alloc(sc->vte_cdata.vte_rx_ring_tag, (void **)&sc->vte_cdata.vte_rx_ring, BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->vte_cdata.vte_rx_ring_map); if (error != 0) { device_printf(sc->vte_dev, "could not allocate DMA'able memory for RX ring.\n"); goto fail; } ctx.vte_busaddr = 0; error = bus_dmamap_load(sc->vte_cdata.vte_rx_ring_tag, sc->vte_cdata.vte_rx_ring_map, sc->vte_cdata.vte_rx_ring, VTE_RX_RING_SZ, vte_dmamap_cb, &ctx, 0); if (error != 0 || ctx.vte_busaddr == 0) { device_printf(sc->vte_dev, "could not load DMA'able memory for RX ring.\n"); goto fail; } sc->vte_cdata.vte_rx_ring_paddr = ctx.vte_busaddr; /* Create TX buffer parent tag. */ error = bus_dma_tag_create( bus_get_dma_tag(sc->vte_dev), /* parent */ 1, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ BUS_SPACE_MAXSIZE_32BIT, /* maxsize */ 0, /* nsegments */ BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->vte_cdata.vte_buffer_tag); if (error != 0) { device_printf(sc->vte_dev, "could not create parent buffer DMA tag.\n"); goto fail; } /* Create DMA tag for TX buffers. */ error = bus_dma_tag_create( sc->vte_cdata.vte_buffer_tag, /* parent */ 1, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ MCLBYTES, /* maxsize */ 1, /* nsegments */ MCLBYTES, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->vte_cdata.vte_tx_tag); if (error != 0) { device_printf(sc->vte_dev, "could not create TX DMA tag.\n"); goto fail; } /* Create DMA tag for RX buffers. */ error = bus_dma_tag_create( sc->vte_cdata.vte_buffer_tag, /* parent */ VTE_RX_BUF_ALIGN, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ MCLBYTES, /* maxsize */ 1, /* nsegments */ MCLBYTES, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->vte_cdata.vte_rx_tag); if (error != 0) { device_printf(sc->vte_dev, "could not create RX DMA tag.\n"); goto fail; } /* Create DMA maps for TX buffers. */ for (i = 0; i < VTE_TX_RING_CNT; i++) { txd = &sc->vte_cdata.vte_txdesc[i]; txd->tx_m = NULL; txd->tx_dmamap = NULL; error = bus_dmamap_create(sc->vte_cdata.vte_tx_tag, 0, &txd->tx_dmamap); if (error != 0) { device_printf(sc->vte_dev, "could not create TX dmamap.\n"); goto fail; } } /* Create DMA maps for RX buffers. */ if ((error = bus_dmamap_create(sc->vte_cdata.vte_rx_tag, 0, &sc->vte_cdata.vte_rx_sparemap)) != 0) { device_printf(sc->vte_dev, "could not create spare RX dmamap.\n"); goto fail; } for (i = 0; i < VTE_RX_RING_CNT; i++) { rxd = &sc->vte_cdata.vte_rxdesc[i]; rxd->rx_m = NULL; rxd->rx_dmamap = NULL; error = bus_dmamap_create(sc->vte_cdata.vte_rx_tag, 0, &rxd->rx_dmamap); if (error != 0) { device_printf(sc->vte_dev, "could not create RX dmamap.\n"); goto fail; } } fail: return (error); } static void vte_dma_free(struct vte_softc *sc) { struct vte_txdesc *txd; struct vte_rxdesc *rxd; int i; /* TX buffers. */ if (sc->vte_cdata.vte_tx_tag != NULL) { for (i = 0; i < VTE_TX_RING_CNT; i++) { txd = &sc->vte_cdata.vte_txdesc[i]; if (txd->tx_dmamap != NULL) { bus_dmamap_destroy(sc->vte_cdata.vte_tx_tag, txd->tx_dmamap); txd->tx_dmamap = NULL; } } bus_dma_tag_destroy(sc->vte_cdata.vte_tx_tag); sc->vte_cdata.vte_tx_tag = NULL; } /* RX buffers */ if (sc->vte_cdata.vte_rx_tag != NULL) { for (i = 0; i < VTE_RX_RING_CNT; i++) { rxd = &sc->vte_cdata.vte_rxdesc[i]; if (rxd->rx_dmamap != NULL) { bus_dmamap_destroy(sc->vte_cdata.vte_rx_tag, rxd->rx_dmamap); rxd->rx_dmamap = NULL; } } if (sc->vte_cdata.vte_rx_sparemap != NULL) { bus_dmamap_destroy(sc->vte_cdata.vte_rx_tag, sc->vte_cdata.vte_rx_sparemap); sc->vte_cdata.vte_rx_sparemap = NULL; } bus_dma_tag_destroy(sc->vte_cdata.vte_rx_tag); sc->vte_cdata.vte_rx_tag = NULL; } /* TX descriptor ring. */ if (sc->vte_cdata.vte_tx_ring_tag != NULL) { if (sc->vte_cdata.vte_tx_ring_map != NULL) bus_dmamap_unload(sc->vte_cdata.vte_tx_ring_tag, sc->vte_cdata.vte_tx_ring_map); if (sc->vte_cdata.vte_tx_ring_map != NULL && sc->vte_cdata.vte_tx_ring != NULL) bus_dmamem_free(sc->vte_cdata.vte_tx_ring_tag, sc->vte_cdata.vte_tx_ring, sc->vte_cdata.vte_tx_ring_map); sc->vte_cdata.vte_tx_ring = NULL; sc->vte_cdata.vte_tx_ring_map = NULL; bus_dma_tag_destroy(sc->vte_cdata.vte_tx_ring_tag); sc->vte_cdata.vte_tx_ring_tag = NULL; } /* RX ring. */ if (sc->vte_cdata.vte_rx_ring_tag != NULL) { if (sc->vte_cdata.vte_rx_ring_map != NULL) bus_dmamap_unload(sc->vte_cdata.vte_rx_ring_tag, sc->vte_cdata.vte_rx_ring_map); if (sc->vte_cdata.vte_rx_ring_map != NULL && sc->vte_cdata.vte_rx_ring != NULL) bus_dmamem_free(sc->vte_cdata.vte_rx_ring_tag, sc->vte_cdata.vte_rx_ring, sc->vte_cdata.vte_rx_ring_map); sc->vte_cdata.vte_rx_ring = NULL; sc->vte_cdata.vte_rx_ring_map = NULL; bus_dma_tag_destroy(sc->vte_cdata.vte_rx_ring_tag); sc->vte_cdata.vte_rx_ring_tag = NULL; } if (sc->vte_cdata.vte_buffer_tag != NULL) { bus_dma_tag_destroy(sc->vte_cdata.vte_buffer_tag); sc->vte_cdata.vte_buffer_tag = NULL; } if (sc->vte_cdata.vte_parent_tag != NULL) { bus_dma_tag_destroy(sc->vte_cdata.vte_parent_tag); sc->vte_cdata.vte_parent_tag = NULL; } } static int vte_shutdown(device_t dev) { return (vte_suspend(dev)); } static int vte_suspend(device_t dev) { struct vte_softc *sc; struct ifnet *ifp; sc = device_get_softc(dev); VTE_LOCK(sc); ifp = sc->vte_ifp; if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) vte_stop(sc); VTE_UNLOCK(sc); return (0); } static int vte_resume(device_t dev) { struct vte_softc *sc; struct ifnet *ifp; sc = device_get_softc(dev); VTE_LOCK(sc); ifp = sc->vte_ifp; if ((ifp->if_flags & IFF_UP) != 0) { ifp->if_drv_flags &= ~IFF_DRV_RUNNING; vte_init_locked(sc); } VTE_UNLOCK(sc); return (0); } static struct vte_txdesc * vte_encap(struct vte_softc *sc, struct mbuf **m_head) { struct vte_txdesc *txd; struct mbuf *m, *n; bus_dma_segment_t txsegs[1]; int copy, error, nsegs, padlen; VTE_LOCK_ASSERT(sc); M_ASSERTPKTHDR((*m_head)); txd = &sc->vte_cdata.vte_txdesc[sc->vte_cdata.vte_tx_prod]; m = *m_head; /* * Controller doesn't auto-pad, so we have to make sure pad * short frames out to the minimum frame length. */ if (m->m_pkthdr.len < VTE_MIN_FRAMELEN) padlen = VTE_MIN_FRAMELEN - m->m_pkthdr.len; else padlen = 0; /* * Controller does not support multi-fragmented TX buffers. * Controller spends most of its TX processing time in * de-fragmenting TX buffers. Either faster CPU or more * advanced controller DMA engine is required to speed up * TX path processing. * To mitigate the de-fragmenting issue, perform deep copy * from fragmented mbuf chains to a pre-allocated mbuf * cluster with extra cost of kernel memory. For frames * that is composed of single TX buffer, the deep copy is * bypassed. */ if (tx_deep_copy != 0) { copy = 0; if (m->m_next != NULL) copy++; if (padlen > 0 && (M_WRITABLE(m) == 0 || padlen > M_TRAILINGSPACE(m))) copy++; if (copy != 0) { /* Avoid expensive m_defrag(9) and do deep copy. */ n = sc->vte_cdata.vte_txmbufs[sc->vte_cdata.vte_tx_prod]; m_copydata(m, 0, m->m_pkthdr.len, mtod(n, char *)); n->m_pkthdr.len = m->m_pkthdr.len; n->m_len = m->m_pkthdr.len; m = n; txd->tx_flags |= VTE_TXMBUF; } if (padlen > 0) { /* Zero out the bytes in the pad area. */ bzero(mtod(m, char *) + m->m_pkthdr.len, padlen); m->m_pkthdr.len += padlen; m->m_len = m->m_pkthdr.len; } } else { if (M_WRITABLE(m) == 0) { if (m->m_next != NULL || padlen > 0) { /* Get a writable copy. */ m = m_dup(*m_head, M_DONTWAIT); /* Release original mbuf chains. */ m_freem(*m_head); if (m == NULL) { *m_head = NULL; return (NULL); } *m_head = m; } } if (m->m_next != NULL) { m = m_defrag(*m_head, M_DONTWAIT); if (m == NULL) { m_freem(*m_head); *m_head = NULL; return (NULL); } *m_head = m; } if (padlen > 0) { if (M_TRAILINGSPACE(m) < padlen) { m = m_defrag(*m_head, M_DONTWAIT); if (m == NULL) { m_freem(*m_head); *m_head = NULL; return (NULL); } *m_head = m; } /* Zero out the bytes in the pad area. */ bzero(mtod(m, char *) + m->m_pkthdr.len, padlen); m->m_pkthdr.len += padlen; m->m_len = m->m_pkthdr.len; } } error = bus_dmamap_load_mbuf_sg(sc->vte_cdata.vte_tx_tag, txd->tx_dmamap, m, txsegs, &nsegs, 0); if (error != 0) { txd->tx_flags &= ~VTE_TXMBUF; return (NULL); } KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); bus_dmamap_sync(sc->vte_cdata.vte_tx_tag, txd->tx_dmamap, BUS_DMASYNC_PREWRITE); txd->tx_desc->dtlen = htole16(VTE_TX_LEN(txsegs[0].ds_len)); txd->tx_desc->dtbp = htole32(txsegs[0].ds_addr); sc->vte_cdata.vte_tx_cnt++; /* Update producer index. */ VTE_DESC_INC(sc->vte_cdata.vte_tx_prod, VTE_TX_RING_CNT); /* Finally hand over ownership to controller. */ txd->tx_desc->dtst = htole16(VTE_DTST_TX_OWN); txd->tx_m = m; return (txd); } static void vte_start(struct ifnet *ifp) { struct vte_softc *sc; sc = ifp->if_softc; VTE_LOCK(sc); vte_start_locked(sc); VTE_UNLOCK(sc); } static void vte_start_locked(struct vte_softc *sc) { struct ifnet *ifp; struct vte_txdesc *txd; struct mbuf *m_head; int enq; ifp = sc->vte_ifp; if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != IFF_DRV_RUNNING || (sc->vte_flags & VTE_FLAG_LINK) == 0) return; for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) { /* Reserve one free TX descriptor. */ if (sc->vte_cdata.vte_tx_cnt >= VTE_TX_RING_CNT - 1) { ifp->if_drv_flags |= IFF_DRV_OACTIVE; break; } IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); if (m_head == NULL) break; /* * Pack the data into the transmit ring. If we * don't have room, set the OACTIVE flag and wait * for the NIC to drain the ring. */ if ((txd = vte_encap(sc, &m_head)) == NULL) { if (m_head != NULL) IFQ_DRV_PREPEND(&ifp->if_snd, m_head); break; } enq++; /* * If there's a BPF listener, bounce a copy of this frame * to him. */ ETHER_BPF_MTAP(ifp, m_head); /* Free consumed TX frame. */ if ((txd->tx_flags & VTE_TXMBUF) != 0) m_freem(m_head); } if (enq > 0) { bus_dmamap_sync(sc->vte_cdata.vte_tx_ring_tag, sc->vte_cdata.vte_tx_ring_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); CSR_WRITE_2(sc, VTE_TX_POLL, TX_POLL_START); sc->vte_watchdog_timer = VTE_TX_TIMEOUT; } } static void vte_watchdog(struct vte_softc *sc) { struct ifnet *ifp; VTE_LOCK_ASSERT(sc); if (sc->vte_watchdog_timer == 0 || --sc->vte_watchdog_timer) return; ifp = sc->vte_ifp; if_printf(sc->vte_ifp, "watchdog timeout -- resetting\n"); ifp->if_oerrors++; ifp->if_drv_flags &= ~IFF_DRV_RUNNING; vte_init_locked(sc); if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) vte_start_locked(sc); } static int vte_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct vte_softc *sc; struct ifreq *ifr; struct mii_data *mii; int error; sc = ifp->if_softc; ifr = (struct ifreq *)data; error = 0; switch (cmd) { case SIOCSIFFLAGS: VTE_LOCK(sc); if ((ifp->if_flags & IFF_UP) != 0) { if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 && ((ifp->if_flags ^ sc->vte_if_flags) & (IFF_PROMISC | IFF_ALLMULTI)) != 0) vte_rxfilter(sc); else vte_init_locked(sc); } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) vte_stop(sc); sc->vte_if_flags = ifp->if_flags; VTE_UNLOCK(sc); break; case SIOCADDMULTI: case SIOCDELMULTI: VTE_LOCK(sc); if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) vte_rxfilter(sc); VTE_UNLOCK(sc); break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: mii = device_get_softc(sc->vte_miibus); error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd); break; default: error = ether_ioctl(ifp, cmd, data); break; } return (error); } static void vte_mac_config(struct vte_softc *sc) { struct mii_data *mii; uint16_t mcr; VTE_LOCK_ASSERT(sc); mii = device_get_softc(sc->vte_miibus); mcr = CSR_READ_2(sc, VTE_MCR0); mcr &= ~(MCR0_FC_ENB | MCR0_FULL_DUPLEX); if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) { mcr |= MCR0_FULL_DUPLEX; #ifdef notyet if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0) mcr |= MCR0_FC_ENB; /* * The data sheet is not clear whether the controller * honors received pause frames or not. The is no * separate control bit for RX pause frame so just * enable MCR0_FC_ENB bit. */ if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0) mcr |= MCR0_FC_ENB; #endif } CSR_WRITE_2(sc, VTE_MCR0, mcr); } static void vte_stats_clear(struct vte_softc *sc) { /* Reading counter registers clears its contents. */ CSR_READ_2(sc, VTE_CNT_RX_DONE); CSR_READ_2(sc, VTE_CNT_MECNT0); CSR_READ_2(sc, VTE_CNT_MECNT1); CSR_READ_2(sc, VTE_CNT_MECNT2); CSR_READ_2(sc, VTE_CNT_MECNT3); CSR_READ_2(sc, VTE_CNT_TX_DONE); CSR_READ_2(sc, VTE_CNT_MECNT4); CSR_READ_2(sc, VTE_CNT_PAUSE); } static void vte_stats_update(struct vte_softc *sc) { struct vte_hw_stats *stat; struct ifnet *ifp; uint16_t value; VTE_LOCK_ASSERT(sc); ifp = sc->vte_ifp; stat = &sc->vte_stats; CSR_READ_2(sc, VTE_MECISR); /* RX stats. */ stat->rx_frames += CSR_READ_2(sc, VTE_CNT_RX_DONE); value = CSR_READ_2(sc, VTE_CNT_MECNT0); stat->rx_bcast_frames += (value >> 8); stat->rx_mcast_frames += (value & 0xFF); value = CSR_READ_2(sc, VTE_CNT_MECNT1); stat->rx_runts += (value >> 8); stat->rx_crcerrs += (value & 0xFF); value = CSR_READ_2(sc, VTE_CNT_MECNT2); stat->rx_long_frames += (value & 0xFF); value = CSR_READ_2(sc, VTE_CNT_MECNT3); stat->rx_fifo_full += (value >> 8); stat->rx_desc_unavail += (value & 0xFF); /* TX stats. */ stat->tx_frames += CSR_READ_2(sc, VTE_CNT_TX_DONE); value = CSR_READ_2(sc, VTE_CNT_MECNT4); stat->tx_underruns += (value >> 8); stat->tx_late_colls += (value & 0xFF); value = CSR_READ_2(sc, VTE_CNT_PAUSE); stat->tx_pause_frames += (value >> 8); stat->rx_pause_frames += (value & 0xFF); /* Update ifp counters. */ ifp->if_opackets = stat->tx_frames; ifp->if_collisions = stat->tx_late_colls; ifp->if_oerrors = stat->tx_late_colls + stat->tx_underruns; ifp->if_ipackets = stat->rx_frames; ifp->if_ierrors = stat->rx_crcerrs + stat->rx_runts + stat->rx_long_frames + stat->rx_fifo_full; } static void vte_intr(void *arg) { struct vte_softc *sc; struct ifnet *ifp; uint16_t status; int n; sc = (struct vte_softc *)arg; VTE_LOCK(sc); ifp = sc->vte_ifp; /* Reading VTE_MISR acknowledges interrupts. */ status = CSR_READ_2(sc, VTE_MISR); if ((status & VTE_INTRS) == 0) { /* Not ours. */ VTE_UNLOCK(sc); return; } /* Disable interrupts. */ CSR_WRITE_2(sc, VTE_MIER, 0); for (n = 8; (status & VTE_INTRS) != 0;) { if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) break; if ((status & (MISR_RX_DONE | MISR_RX_DESC_UNAVAIL | MISR_RX_FIFO_FULL)) != 0) vte_rxeof(sc); if ((status & MISR_TX_DONE) != 0) vte_txeof(sc); if ((status & MISR_EVENT_CNT_OFLOW) != 0) vte_stats_update(sc); if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) vte_start_locked(sc); if (--n > 0) status = CSR_READ_2(sc, VTE_MISR); else break; } if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { /* Re-enable interrupts. */ CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS); } VTE_UNLOCK(sc); } static void vte_txeof(struct vte_softc *sc) { struct ifnet *ifp; struct vte_txdesc *txd; uint16_t status; int cons, prog; VTE_LOCK_ASSERT(sc); ifp = sc->vte_ifp; if (sc->vte_cdata.vte_tx_cnt == 0) return; bus_dmamap_sync(sc->vte_cdata.vte_tx_ring_tag, sc->vte_cdata.vte_tx_ring_map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); cons = sc->vte_cdata.vte_tx_cons; /* * Go through our TX list and free mbufs for those * frames which have been transmitted. */ for (prog = 0; sc->vte_cdata.vte_tx_cnt > 0; prog++) { txd = &sc->vte_cdata.vte_txdesc[cons]; status = le16toh(txd->tx_desc->dtst); if ((status & VTE_DTST_TX_OWN) != 0) break; sc->vte_cdata.vte_tx_cnt--; /* Reclaim transmitted mbufs. */ bus_dmamap_sync(sc->vte_cdata.vte_tx_tag, txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->vte_cdata.vte_tx_tag, txd->tx_dmamap); if ((txd->tx_flags & VTE_TXMBUF) == 0) m_freem(txd->tx_m); txd->tx_flags &= ~VTE_TXMBUF; txd->tx_m = NULL; prog++; VTE_DESC_INC(cons, VTE_TX_RING_CNT); } if (prog > 0) { ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; sc->vte_cdata.vte_tx_cons = cons; /* * Unarm watchdog timer only when there is no pending * frames in TX queue. */ if (sc->vte_cdata.vte_tx_cnt == 0) sc->vte_watchdog_timer = 0; } } static int vte_newbuf(struct vte_softc *sc, struct vte_rxdesc *rxd) { struct mbuf *m; bus_dma_segment_t segs[1]; bus_dmamap_t map; int nsegs; m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); if (m == NULL) return (ENOBUFS); m->m_len = m->m_pkthdr.len = MCLBYTES; m_adj(m, sizeof(uint32_t)); if (bus_dmamap_load_mbuf_sg(sc->vte_cdata.vte_rx_tag, sc->vte_cdata.vte_rx_sparemap, m, segs, &nsegs, 0) != 0) { m_freem(m); return (ENOBUFS); } KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); if (rxd->rx_m != NULL) { bus_dmamap_sync(sc->vte_cdata.vte_rx_tag, rxd->rx_dmamap, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->vte_cdata.vte_rx_tag, rxd->rx_dmamap); } map = rxd->rx_dmamap; rxd->rx_dmamap = sc->vte_cdata.vte_rx_sparemap; sc->vte_cdata.vte_rx_sparemap = map; bus_dmamap_sync(sc->vte_cdata.vte_rx_tag, rxd->rx_dmamap, BUS_DMASYNC_PREREAD); rxd->rx_m = m; rxd->rx_desc->drbp = htole32(segs[0].ds_addr); rxd->rx_desc->drlen = htole16(VTE_RX_LEN(segs[0].ds_len)); rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN); return (0); } /* * It's not supposed to see this controller on strict-alignment * architectures but make it work for completeness. */ #ifndef __NO_STRICT_ALIGNMENT static struct mbuf * vte_fixup_rx(struct ifnet *ifp, struct mbuf *m) { uint16_t *src, *dst; int i; src = mtod(m, uint16_t *); dst = src - 1; for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++) *dst++ = *src++; m->m_data -= ETHER_ALIGN; return (m); } #endif static void vte_rxeof(struct vte_softc *sc) { struct ifnet *ifp; struct vte_rxdesc *rxd; struct mbuf *m; uint16_t status, total_len; int cons, prog; bus_dmamap_sync(sc->vte_cdata.vte_rx_ring_tag, sc->vte_cdata.vte_rx_ring_map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); cons = sc->vte_cdata.vte_rx_cons; ifp = sc->vte_ifp; for (prog = 0; (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0; prog++, VTE_DESC_INC(cons, VTE_RX_RING_CNT)) { rxd = &sc->vte_cdata.vte_rxdesc[cons]; status = le16toh(rxd->rx_desc->drst); if ((status & VTE_DRST_RX_OWN) != 0) break; total_len = VTE_RX_LEN(le16toh(rxd->rx_desc->drlen)); m = rxd->rx_m; if ((status & VTE_DRST_RX_OK) == 0) { /* Discard errored frame. */ rxd->rx_desc->drlen = htole16(MCLBYTES - sizeof(uint32_t)); rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN); continue; } if (vte_newbuf(sc, rxd) != 0) { ifp->if_iqdrops++; rxd->rx_desc->drlen = htole16(MCLBYTES - sizeof(uint32_t)); rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN); continue; } /* * It seems there is no way to strip FCS bytes. */ m->m_pkthdr.len = m->m_len = total_len - ETHER_CRC_LEN; m->m_pkthdr.rcvif = ifp; #ifndef __NO_STRICT_ALIGNMENT vte_fixup_rx(ifp, m); #endif VTE_UNLOCK(sc); (*ifp->if_input)(ifp, m); VTE_LOCK(sc); } if (prog > 0) { /* Update the consumer index. */ sc->vte_cdata.vte_rx_cons = cons; /* * Sync updated RX descriptors such that controller see * modified RX buffer addresses. */ bus_dmamap_sync(sc->vte_cdata.vte_rx_ring_tag, sc->vte_cdata.vte_rx_ring_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); #ifdef notyet /* * Update residue counter. Controller does not * keep track of number of available RX descriptors * such that driver should have to update VTE_MRDCR * to make controller know how many free RX * descriptors were added to controller. This is * a similar mechanism used in VIA velocity * controllers and it indicates controller just * polls OWN bit of current RX descriptor pointer. * A couple of severe issues were seen on sample * board where the controller continuously emits TX * pause frames once RX pause threshold crossed. * Once triggered it never recovered form that * state, I couldn't find a way to make it back to * work at least. This issue effectively * disconnected the system from network. Also, the * controller used 00:00:00:00:00:00 as source * station address of TX pause frame. Probably this * is one of reason why vendor recommends not to * enable flow control on R6040 controller. */ CSR_WRITE_2(sc, VTE_MRDCR, prog | (((VTE_RX_RING_CNT * 2) / 10) << VTE_MRDCR_RX_PAUSE_THRESH_SHIFT)); #endif } } static void vte_tick(void *arg) { struct vte_softc *sc; struct mii_data *mii; sc = (struct vte_softc *)arg; VTE_LOCK_ASSERT(sc); mii = device_get_softc(sc->vte_miibus); mii_tick(mii); vte_stats_update(sc); vte_txeof(sc); vte_watchdog(sc); callout_reset(&sc->vte_tick_ch, hz, vte_tick, sc); } static void vte_reset(struct vte_softc *sc) { uint16_t mcr; int i; mcr = CSR_READ_2(sc, VTE_MCR1); CSR_WRITE_2(sc, VTE_MCR1, mcr | MCR1_MAC_RESET); for (i = VTE_RESET_TIMEOUT; i > 0; i--) { DELAY(10); if ((CSR_READ_2(sc, VTE_MCR1) & MCR1_MAC_RESET) == 0) break; } if (i == 0) device_printf(sc->vte_dev, "reset timeout(0x%04x)!\n", mcr); /* * Follow the guide of vendor recommended way to reset MAC. * Vendor confirms relying on MCR1_MAC_RESET of VTE_MCR1 is * not reliable so manually reset internal state machine. */ CSR_WRITE_2(sc, VTE_MACSM, 0x0002); CSR_WRITE_2(sc, VTE_MACSM, 0); DELAY(5000); } static void vte_init(void *xsc) { struct vte_softc *sc; sc = (struct vte_softc *)xsc; VTE_LOCK(sc); vte_init_locked(sc); VTE_UNLOCK(sc); } static void vte_init_locked(struct vte_softc *sc) { struct ifnet *ifp; bus_addr_t paddr; uint8_t *eaddr; VTE_LOCK_ASSERT(sc); ifp = sc->vte_ifp; if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) return; /* * Cancel any pending I/O. */ vte_stop(sc); /* * Reset the chip to a known state. */ vte_reset(sc); /* Initialize RX descriptors. */ if (vte_init_rx_ring(sc) != 0) { device_printf(sc->vte_dev, "no memory for RX buffers.\n"); vte_stop(sc); return; } if (vte_init_tx_ring(sc) != 0) { device_printf(sc->vte_dev, "no memory for TX buffers.\n"); vte_stop(sc); return; } /* * Reprogram the station address. Controller supports up * to 4 different station addresses so driver programs the * first station address as its own ethernet address and * configure the remaining three addresses as perfect * multicast addresses. */ eaddr = IF_LLADDR(sc->vte_ifp); CSR_WRITE_2(sc, VTE_MID0L, eaddr[1] << 8 | eaddr[0]); CSR_WRITE_2(sc, VTE_MID0M, eaddr[3] << 8 | eaddr[2]); CSR_WRITE_2(sc, VTE_MID0H, eaddr[5] << 8 | eaddr[4]); /* Set TX descriptor base addresses. */ paddr = sc->vte_cdata.vte_tx_ring_paddr; CSR_WRITE_2(sc, VTE_MTDSA1, paddr >> 16); CSR_WRITE_2(sc, VTE_MTDSA0, paddr & 0xFFFF); /* Set RX descriptor base addresses. */ paddr = sc->vte_cdata.vte_rx_ring_paddr; CSR_WRITE_2(sc, VTE_MRDSA1, paddr >> 16); CSR_WRITE_2(sc, VTE_MRDSA0, paddr & 0xFFFF); /* * Initialize RX descriptor residue counter and set RX * pause threshold to 20% of available RX descriptors. * See comments on vte_rxeof() for details on flow control * issues. */ CSR_WRITE_2(sc, VTE_MRDCR, (VTE_RX_RING_CNT & VTE_MRDCR_RESIDUE_MASK) | (((VTE_RX_RING_CNT * 2) / 10) << VTE_MRDCR_RX_PAUSE_THRESH_SHIFT)); /* * Always use maximum frame size that controller can * support. Otherwise received frames that has longer * frame length than vte(4) MTU would be silently dropped * in controller. This would break path-MTU discovery as * sender wouldn't get any responses from receiver. The * RX buffer size should be multiple of 4. * Note, jumbo frames are silently ignored by controller * and even MAC counters do not detect them. */ CSR_WRITE_2(sc, VTE_MRBSR, VTE_RX_BUF_SIZE_MAX); /* Configure FIFO. */ CSR_WRITE_2(sc, VTE_MBCR, MBCR_FIFO_XFER_LENGTH_16 | MBCR_TX_FIFO_THRESH_64 | MBCR_RX_FIFO_THRESH_16 | MBCR_SDRAM_BUS_REQ_TIMER_DEFAULT); /* * Configure TX/RX MACs. Actual resolved duplex and flow * control configuration is done after detecting a valid * link. Note, we don't generate early interrupt here * as well since FreeBSD does not have interrupt latency * problems like Windows. */ CSR_WRITE_2(sc, VTE_MCR0, MCR0_ACCPT_LONG_PKT); /* * We manually keep track of PHY status changes to * configure resolved duplex and flow control since only * duplex configuration can be automatically reflected to * MCR0. */ CSR_WRITE_2(sc, VTE_MCR1, MCR1_PKT_LENGTH_1537 | MCR1_EXCESS_COL_RETRY_16); /* Initialize RX filter. */ vte_rxfilter(sc); /* Disable TX/RX interrupt moderation control. */ CSR_WRITE_2(sc, VTE_MRICR, 0); CSR_WRITE_2(sc, VTE_MTICR, 0); /* Enable MAC event counter interrupts. */ CSR_WRITE_2(sc, VTE_MECIER, VTE_MECIER_INTRS); /* Clear MAC statistics. */ vte_stats_clear(sc); /* Acknowledge all pending interrupts and clear it. */ CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS); CSR_WRITE_2(sc, VTE_MISR, 0); sc->vte_flags &= ~VTE_FLAG_LINK; /* Switch to the current media. */ vte_mediachange_locked(ifp); callout_reset(&sc->vte_tick_ch, hz, vte_tick, sc); ifp->if_drv_flags |= IFF_DRV_RUNNING; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; } static void vte_stop(struct vte_softc *sc) { struct ifnet *ifp; struct vte_txdesc *txd; struct vte_rxdesc *rxd; int i; VTE_LOCK_ASSERT(sc); /* * Mark the interface down and cancel the watchdog timer. */ ifp = sc->vte_ifp; ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); sc->vte_flags &= ~VTE_FLAG_LINK; callout_stop(&sc->vte_tick_ch); sc->vte_watchdog_timer = 0; vte_stats_update(sc); /* Disable interrupts. */ CSR_WRITE_2(sc, VTE_MIER, 0); CSR_WRITE_2(sc, VTE_MECIER, 0); /* Stop RX/TX MACs. */ vte_stop_mac(sc); /* Clear interrupts. */ CSR_READ_2(sc, VTE_MISR); /* * Free TX/RX mbufs still in the queues. */ for (i = 0; i < VTE_RX_RING_CNT; i++) { rxd = &sc->vte_cdata.vte_rxdesc[i]; if (rxd->rx_m != NULL) { bus_dmamap_sync(sc->vte_cdata.vte_rx_tag, rxd->rx_dmamap, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->vte_cdata.vte_rx_tag, rxd->rx_dmamap); m_freem(rxd->rx_m); rxd->rx_m = NULL; } } for (i = 0; i < VTE_TX_RING_CNT; i++) { txd = &sc->vte_cdata.vte_txdesc[i]; if (txd->tx_m != NULL) { bus_dmamap_sync(sc->vte_cdata.vte_tx_tag, txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->vte_cdata.vte_tx_tag, txd->tx_dmamap); if ((txd->tx_flags & VTE_TXMBUF) == 0) m_freem(txd->tx_m); txd->tx_m = NULL; txd->tx_flags &= ~VTE_TXMBUF; } } /* Free TX mbuf pools used for deep copy. */ for (i = 0; i < VTE_TX_RING_CNT; i++) { if (sc->vte_cdata.vte_txmbufs[i] != NULL) { m_freem(sc->vte_cdata.vte_txmbufs[i]); sc->vte_cdata.vte_txmbufs[i] = NULL; } } } static void vte_start_mac(struct vte_softc *sc) { uint16_t mcr; int i; VTE_LOCK_ASSERT(sc); /* Enable RX/TX MACs. */ mcr = CSR_READ_2(sc, VTE_MCR0); if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) != (MCR0_RX_ENB | MCR0_TX_ENB)) { mcr |= MCR0_RX_ENB | MCR0_TX_ENB; CSR_WRITE_2(sc, VTE_MCR0, mcr); for (i = VTE_TIMEOUT; i > 0; i--) { mcr = CSR_READ_2(sc, VTE_MCR0); if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) == (MCR0_RX_ENB | MCR0_TX_ENB)) break; DELAY(10); } if (i == 0) device_printf(sc->vte_dev, "could not enable RX/TX MAC(0x%04x)!\n", mcr); } } static void vte_stop_mac(struct vte_softc *sc) { uint16_t mcr; int i; VTE_LOCK_ASSERT(sc); /* Disable RX/TX MACs. */ mcr = CSR_READ_2(sc, VTE_MCR0); if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) != 0) { mcr &= ~(MCR0_RX_ENB | MCR0_TX_ENB); CSR_WRITE_2(sc, VTE_MCR0, mcr); for (i = VTE_TIMEOUT; i > 0; i--) { mcr = CSR_READ_2(sc, VTE_MCR0); if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) == 0) break; DELAY(10); } if (i == 0) device_printf(sc->vte_dev, "could not disable RX/TX MAC(0x%04x)!\n", mcr); } } static int vte_init_tx_ring(struct vte_softc *sc) { struct vte_tx_desc *desc; struct vte_txdesc *txd; bus_addr_t addr; int i; VTE_LOCK_ASSERT(sc); sc->vte_cdata.vte_tx_prod = 0; sc->vte_cdata.vte_tx_cons = 0; sc->vte_cdata.vte_tx_cnt = 0; /* Pre-allocate TX mbufs for deep copy. */ if (tx_deep_copy != 0) { for (i = 0; i < VTE_TX_RING_CNT; i++) { sc->vte_cdata.vte_txmbufs[i] = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); if (sc->vte_cdata.vte_txmbufs[i] == NULL) return (ENOBUFS); sc->vte_cdata.vte_txmbufs[i]->m_pkthdr.len = MCLBYTES; sc->vte_cdata.vte_txmbufs[i]->m_len = MCLBYTES; } } desc = sc->vte_cdata.vte_tx_ring; bzero(desc, VTE_TX_RING_SZ); for (i = 0; i < VTE_TX_RING_CNT; i++) { txd = &sc->vte_cdata.vte_txdesc[i]; txd->tx_m = NULL; if (i != VTE_TX_RING_CNT - 1) addr = sc->vte_cdata.vte_tx_ring_paddr + sizeof(struct vte_tx_desc) * (i + 1); else addr = sc->vte_cdata.vte_tx_ring_paddr + sizeof(struct vte_tx_desc) * 0; desc = &sc->vte_cdata.vte_tx_ring[i]; desc->dtnp = htole32(addr); txd->tx_desc = desc; } bus_dmamap_sync(sc->vte_cdata.vte_tx_ring_tag, sc->vte_cdata.vte_tx_ring_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); return (0); } static int vte_init_rx_ring(struct vte_softc *sc) { struct vte_rx_desc *desc; struct vte_rxdesc *rxd; bus_addr_t addr; int i; VTE_LOCK_ASSERT(sc); sc->vte_cdata.vte_rx_cons = 0; desc = sc->vte_cdata.vte_rx_ring; bzero(desc, VTE_RX_RING_SZ); for (i = 0; i < VTE_RX_RING_CNT; i++) { rxd = &sc->vte_cdata.vte_rxdesc[i]; rxd->rx_m = NULL; if (i != VTE_RX_RING_CNT - 1) addr = sc->vte_cdata.vte_rx_ring_paddr + sizeof(struct vte_rx_desc) * (i + 1); else addr = sc->vte_cdata.vte_rx_ring_paddr + sizeof(struct vte_rx_desc) * 0; desc = &sc->vte_cdata.vte_rx_ring[i]; desc->drnp = htole32(addr); rxd->rx_desc = desc; if (vte_newbuf(sc, rxd) != 0) return (ENOBUFS); } bus_dmamap_sync(sc->vte_cdata.vte_rx_ring_tag, sc->vte_cdata.vte_rx_ring_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); return (0); } static void vte_rxfilter(struct vte_softc *sc) { struct ifnet *ifp; struct ifmultiaddr *ifma; uint8_t *eaddr; uint32_t crc; uint16_t rxfilt_perf[VTE_RXFILT_PERFECT_CNT][3]; uint16_t mchash[4], mcr; int i, nperf; VTE_LOCK_ASSERT(sc); ifp = sc->vte_ifp; bzero(mchash, sizeof(mchash)); for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) { rxfilt_perf[i][0] = 0xFFFF; rxfilt_perf[i][1] = 0xFFFF; rxfilt_perf[i][2] = 0xFFFF; } mcr = CSR_READ_2(sc, VTE_MCR0); mcr &= ~(MCR0_PROMISC | MCR0_MULTICAST); mcr |= MCR0_BROADCAST_DIS; if ((ifp->if_flags & IFF_BROADCAST) != 0) mcr &= ~MCR0_BROADCAST_DIS; if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) { if ((ifp->if_flags & IFF_PROMISC) != 0) mcr |= MCR0_PROMISC; if ((ifp->if_flags & IFF_ALLMULTI) != 0) mcr |= MCR0_MULTICAST; mchash[0] = 0xFFFF; mchash[1] = 0xFFFF; mchash[2] = 0xFFFF; mchash[3] = 0xFFFF; goto chipit; } nperf = 0; if_maddr_rlock(ifp); TAILQ_FOREACH(ifma, &sc->vte_ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; /* * Program the first 3 multicast groups into * the perfect filter. For all others, use the * hash table. */ if (nperf < VTE_RXFILT_PERFECT_CNT) { eaddr = LLADDR((struct sockaddr_dl *)ifma->ifma_addr); rxfilt_perf[nperf][0] = eaddr[1] << 8 | eaddr[0]; rxfilt_perf[nperf][1] = eaddr[3] << 8 | eaddr[2]; rxfilt_perf[nperf][2] = eaddr[5] << 8 | eaddr[4]; nperf++; continue; } crc = ether_crc32_be(LLADDR((struct sockaddr_dl *) ifma->ifma_addr), ETHER_ADDR_LEN); mchash[crc >> 30] |= 1 << ((crc >> 26) & 0x0F); } if_maddr_runlock(ifp); if (mchash[0] != 0 || mchash[1] != 0 || mchash[2] != 0 || mchash[3] != 0) mcr |= MCR0_MULTICAST; chipit: /* Program multicast hash table. */ CSR_WRITE_2(sc, VTE_MAR0, mchash[0]); CSR_WRITE_2(sc, VTE_MAR1, mchash[1]); CSR_WRITE_2(sc, VTE_MAR2, mchash[2]); CSR_WRITE_2(sc, VTE_MAR3, mchash[3]); /* Program perfect filter table. */ for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) { CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 0, rxfilt_perf[i][0]); CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 2, rxfilt_perf[i][1]); CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 4, rxfilt_perf[i][2]); } CSR_WRITE_2(sc, VTE_MCR0, mcr); CSR_READ_2(sc, VTE_MCR0); } static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high) { int error, value; if (arg1 == NULL) return (EINVAL); value = *(int *)arg1; error = sysctl_handle_int(oidp, &value, 0, req); if (error || req->newptr == NULL) return (error); if (value < low || value > high) return (EINVAL); *(int *)arg1 = value; return (0); } static int sysctl_hw_vte_int_mod(SYSCTL_HANDLER_ARGS) { return (sysctl_int_range(oidp, arg1, arg2, req, VTE_IM_BUNDLE_MIN, VTE_IM_BUNDLE_MAX)); }