Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/s3/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/u3g/@/dev/advansys/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/s3/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/u3g/@/dev/advansys/advansys.c |
/*- * Generic driver for the Advanced Systems Inc. SCSI controllers * Product specific probe and attach routines can be found in: * * i386/isa/adv_isa.c ABP5140, ABP542, ABP5150, ABP842, ABP852 * i386/eisa/adv_eisa.c ABP742, ABP752 * pci/adv_pci.c ABP920, ABP930, ABP930U, ABP930UA, ABP940, ABP940U, * ABP940UA, ABP950, ABP960, ABP960U, ABP960UA, * ABP970, ABP970U * * Copyright (c) 1996-2000 Justin Gibbs. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification, immediately at the beginning of the file. * 2. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /*- * Ported from: * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters * * Copyright (c) 1995-1997 Advanced System Products, Inc. * All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that redistributions of source * code retain the above copyright notice and this comment without * modification. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/dev/advansys/advansys.c 195534 2009-07-10 08:18:08Z scottl $"); #include <sys/param.h> #include <sys/systm.h> #include <sys/malloc.h> #include <sys/kernel.h> #include <sys/lock.h> #include <sys/module.h> #include <sys/mutex.h> #include <machine/bus.h> #include <machine/resource.h> #include <sys/bus.h> #include <sys/rman.h> #include <cam/cam.h> #include <cam/cam_ccb.h> #include <cam/cam_sim.h> #include <cam/cam_xpt_sim.h> #include <cam/cam_debug.h> #include <cam/scsi/scsi_all.h> #include <cam/scsi/scsi_message.h> #include <vm/vm.h> #include <vm/vm_param.h> #include <vm/pmap.h> #include <dev/advansys/advansys.h> static void adv_action(struct cam_sim *sim, union ccb *ccb); static void adv_execute_ccb(void *arg, bus_dma_segment_t *dm_segs, int nsegments, int error); static void adv_poll(struct cam_sim *sim); static void adv_run_doneq(struct adv_softc *adv); static struct adv_ccb_info * adv_alloc_ccb_info(struct adv_softc *adv); static void adv_destroy_ccb_info(struct adv_softc *adv, struct adv_ccb_info *cinfo); static __inline struct adv_ccb_info * adv_get_ccb_info(struct adv_softc *adv); static __inline void adv_free_ccb_info(struct adv_softc *adv, struct adv_ccb_info *cinfo); static __inline void adv_set_state(struct adv_softc *adv, adv_state state); static __inline void adv_clear_state(struct adv_softc *adv, union ccb* ccb); static void adv_clear_state_really(struct adv_softc *adv, union ccb* ccb); static __inline struct adv_ccb_info * adv_get_ccb_info(struct adv_softc *adv) { struct adv_ccb_info *cinfo; int opri; opri = splcam(); if ((cinfo = SLIST_FIRST(&adv->free_ccb_infos)) != NULL) { SLIST_REMOVE_HEAD(&adv->free_ccb_infos, links); } else { cinfo = adv_alloc_ccb_info(adv); } splx(opri); return (cinfo); } static __inline void adv_free_ccb_info(struct adv_softc *adv, struct adv_ccb_info *cinfo) { int opri; opri = splcam(); cinfo->state = ACCB_FREE; SLIST_INSERT_HEAD(&adv->free_ccb_infos, cinfo, links); splx(opri); } static __inline void adv_set_state(struct adv_softc *adv, adv_state state) { if (adv->state == 0) xpt_freeze_simq(adv->sim, /*count*/1); adv->state |= state; } static __inline void adv_clear_state(struct adv_softc *adv, union ccb* ccb) { if (adv->state != 0) adv_clear_state_really(adv, ccb); } static void adv_clear_state_really(struct adv_softc *adv, union ccb* ccb) { if ((adv->state & ADV_BUSDMA_BLOCK_CLEARED) != 0) adv->state &= ~(ADV_BUSDMA_BLOCK_CLEARED|ADV_BUSDMA_BLOCK); if ((adv->state & ADV_RESOURCE_SHORTAGE) != 0) { int openings; openings = adv->max_openings - adv->cur_active - ADV_MIN_FREE_Q; if (openings >= adv->openings_needed) { adv->state &= ~ADV_RESOURCE_SHORTAGE; adv->openings_needed = 0; } } if ((adv->state & ADV_IN_TIMEOUT) != 0) { struct adv_ccb_info *cinfo; cinfo = (struct adv_ccb_info *)ccb->ccb_h.ccb_cinfo_ptr; if ((cinfo->state & ACCB_RECOVERY_CCB) != 0) { struct ccb_hdr *ccb_h; /* * We now traverse our list of pending CCBs * and reinstate their timeouts. */ ccb_h = LIST_FIRST(&adv->pending_ccbs); while (ccb_h != NULL) { ccb_h->timeout_ch = timeout(adv_timeout, (caddr_t)ccb_h, (ccb_h->timeout * hz) / 1000); ccb_h = LIST_NEXT(ccb_h, sim_links.le); } adv->state &= ~ADV_IN_TIMEOUT; printf("%s: No longer in timeout\n", adv_name(adv)); } } if (adv->state == 0) ccb->ccb_h.status |= CAM_RELEASE_SIMQ; } void adv_map(void *arg, bus_dma_segment_t *segs, int nseg, int error) { bus_addr_t* physaddr; physaddr = (bus_addr_t*)arg; *physaddr = segs->ds_addr; } char * adv_name(struct adv_softc *adv) { static char name[10]; snprintf(name, sizeof(name), "adv%d", adv->unit); return (name); } static void adv_action(struct cam_sim *sim, union ccb *ccb) { struct adv_softc *adv; CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("adv_action\n")); adv = (struct adv_softc *)cam_sim_softc(sim); switch (ccb->ccb_h.func_code) { /* Common cases first */ case XPT_SCSI_IO: /* Execute the requested I/O operation */ { struct ccb_hdr *ccb_h; struct ccb_scsiio *csio; struct adv_ccb_info *cinfo; ccb_h = &ccb->ccb_h; csio = &ccb->csio; cinfo = adv_get_ccb_info(adv); if (cinfo == NULL) panic("XXX Handle CCB info error!!!"); ccb_h->ccb_cinfo_ptr = cinfo; cinfo->ccb = ccb; /* Only use S/G if there is a transfer */ if ((ccb_h->flags & CAM_DIR_MASK) != CAM_DIR_NONE) { if ((ccb_h->flags & CAM_SCATTER_VALID) == 0) { /* * We've been given a pointer * to a single buffer */ if ((ccb_h->flags & CAM_DATA_PHYS) == 0) { int s; int error; s = splsoftvm(); error = bus_dmamap_load(adv->buffer_dmat, cinfo->dmamap, csio->data_ptr, csio->dxfer_len, adv_execute_ccb, csio, /*flags*/0); if (error == EINPROGRESS) { /* * So as to maintain ordering, * freeze the controller queue * until our mapping is * returned. */ adv_set_state(adv, ADV_BUSDMA_BLOCK); } splx(s); } else { struct bus_dma_segment seg; /* Pointer to physical buffer */ seg.ds_addr = (bus_addr_t)csio->data_ptr; seg.ds_len = csio->dxfer_len; adv_execute_ccb(csio, &seg, 1, 0); } } else { struct bus_dma_segment *segs; if ((ccb_h->flags & CAM_DATA_PHYS) != 0) panic("adv_setup_data - Physical " "segment pointers unsupported"); if ((ccb_h->flags & CAM_SG_LIST_PHYS) == 0) panic("adv_setup_data - Virtual " "segment addresses unsupported"); /* Just use the segments provided */ segs = (struct bus_dma_segment *)csio->data_ptr; adv_execute_ccb(ccb, segs, csio->sglist_cnt, 0); } } else { adv_execute_ccb(ccb, NULL, 0, 0); } break; } case XPT_RESET_DEV: /* Bus Device Reset the specified SCSI device */ case XPT_TARGET_IO: /* Execute target I/O request */ case XPT_ACCEPT_TARGET_IO: /* Accept Host Target Mode CDB */ case XPT_CONT_TARGET_IO: /* Continue Host Target I/O Connection*/ case XPT_EN_LUN: /* Enable LUN as a target */ case XPT_ABORT: /* Abort the specified CCB */ /* XXX Implement */ ccb->ccb_h.status = CAM_REQ_INVALID; xpt_done(ccb); break; #define IS_CURRENT_SETTINGS(c) (c->type == CTS_TYPE_CURRENT_SETTINGS) #define IS_USER_SETTINGS(c) (c->type == CTS_TYPE_USER_SETTINGS) case XPT_SET_TRAN_SETTINGS: { struct ccb_trans_settings_scsi *scsi; struct ccb_trans_settings_spi *spi; struct ccb_trans_settings *cts; target_bit_vector targ_mask; struct adv_transinfo *tconf; u_int update_type; int s; cts = &ccb->cts; targ_mask = ADV_TID_TO_TARGET_MASK(cts->ccb_h.target_id); update_type = 0; /* * The user must specify which type of settings he wishes * to change. */ if (IS_CURRENT_SETTINGS(cts) && !IS_USER_SETTINGS(cts)) { tconf = &adv->tinfo[cts->ccb_h.target_id].current; update_type |= ADV_TRANS_GOAL; } else if (IS_USER_SETTINGS(cts) && !IS_CURRENT_SETTINGS(cts)) { tconf = &adv->tinfo[cts->ccb_h.target_id].user; update_type |= ADV_TRANS_USER; } else { ccb->ccb_h.status = CAM_REQ_INVALID; break; } s = splcam(); scsi = &cts->proto_specific.scsi; spi = &cts->xport_specific.spi; if ((update_type & ADV_TRANS_GOAL) != 0) { if ((spi->valid & CTS_SPI_VALID_DISC) != 0) { if ((spi->flags & CTS_SPI_FLAGS_DISC_ENB) != 0) adv->disc_enable |= targ_mask; else adv->disc_enable &= ~targ_mask; adv_write_lram_8(adv, ADVV_DISC_ENABLE_B, adv->disc_enable); } if ((scsi->valid & CTS_SCSI_VALID_TQ) != 0) { if ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) adv->cmd_qng_enabled |= targ_mask; else adv->cmd_qng_enabled &= ~targ_mask; } } if ((update_type & ADV_TRANS_USER) != 0) { if ((spi->valid & CTS_SPI_VALID_DISC) != 0) { if ((spi->flags & CTS_SPI_VALID_DISC) != 0) adv->user_disc_enable |= targ_mask; else adv->user_disc_enable &= ~targ_mask; } if ((scsi->valid & CTS_SCSI_VALID_TQ) != 0) { if ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) adv->user_cmd_qng_enabled |= targ_mask; else adv->user_cmd_qng_enabled &= ~targ_mask; } } /* * If the user specifies either the sync rate, or offset, * but not both, the unspecified parameter defaults to its * current value in transfer negotiations. */ if (((spi->valid & CTS_SPI_VALID_SYNC_RATE) != 0) || ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0)) { /* * If the user provided a sync rate but no offset, * use the current offset. */ if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0) spi->sync_offset = tconf->offset; /* * If the user provided an offset but no sync rate, * use the current sync rate. */ if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0) spi->sync_period = tconf->period; adv_period_offset_to_sdtr(adv, &spi->sync_period, &spi->sync_offset, cts->ccb_h.target_id); adv_set_syncrate(adv, /*struct cam_path */NULL, cts->ccb_h.target_id, spi->sync_period, spi->sync_offset, update_type); } splx(s); ccb->ccb_h.status = CAM_REQ_CMP; xpt_done(ccb); break; } case XPT_GET_TRAN_SETTINGS: /* Get default/user set transfer settings for the target */ { struct ccb_trans_settings_scsi *scsi; struct ccb_trans_settings_spi *spi; struct ccb_trans_settings *cts; struct adv_transinfo *tconf; target_bit_vector target_mask; int s; cts = &ccb->cts; target_mask = ADV_TID_TO_TARGET_MASK(cts->ccb_h.target_id); scsi = &cts->proto_specific.scsi; spi = &cts->xport_specific.spi; cts->protocol = PROTO_SCSI; cts->protocol_version = SCSI_REV_2; cts->transport = XPORT_SPI; cts->transport_version = 2; scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB; s = splcam(); if (cts->type == CTS_TYPE_CURRENT_SETTINGS) { tconf = &adv->tinfo[cts->ccb_h.target_id].current; if ((adv->disc_enable & target_mask) != 0) spi->flags |= CTS_SPI_FLAGS_DISC_ENB; if ((adv->cmd_qng_enabled & target_mask) != 0) scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB; } else { tconf = &adv->tinfo[cts->ccb_h.target_id].user; if ((adv->user_disc_enable & target_mask) != 0) spi->flags |= CTS_SPI_FLAGS_DISC_ENB; if ((adv->user_cmd_qng_enabled & target_mask) != 0) scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB; } spi->sync_period = tconf->period; spi->sync_offset = tconf->offset; splx(s); spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT; spi->valid = CTS_SPI_VALID_SYNC_RATE | CTS_SPI_VALID_SYNC_OFFSET | CTS_SPI_VALID_BUS_WIDTH | CTS_SPI_VALID_DISC; scsi->valid = CTS_SCSI_VALID_TQ; ccb->ccb_h.status = CAM_REQ_CMP; xpt_done(ccb); break; } case XPT_CALC_GEOMETRY: { int extended; extended = (adv->control & ADV_CNTL_BIOS_GT_1GB) != 0; cam_calc_geometry(&ccb->ccg, extended); xpt_done(ccb); break; } case XPT_RESET_BUS: /* Reset the specified SCSI bus */ { int s; s = splcam(); adv_stop_execution(adv); adv_reset_bus(adv, /*initiate_reset*/TRUE); adv_start_execution(adv); splx(s); ccb->ccb_h.status = CAM_REQ_CMP; xpt_done(ccb); break; } case XPT_TERM_IO: /* Terminate the I/O process */ /* XXX Implement */ ccb->ccb_h.status = CAM_REQ_INVALID; xpt_done(ccb); break; case XPT_PATH_INQ: /* Path routing inquiry */ { struct ccb_pathinq *cpi = &ccb->cpi; cpi->version_num = 1; /* XXX??? */ cpi->hba_inquiry = PI_SDTR_ABLE|PI_TAG_ABLE; cpi->target_sprt = 0; cpi->hba_misc = 0; cpi->hba_eng_cnt = 0; cpi->max_target = 7; cpi->max_lun = 7; cpi->initiator_id = adv->scsi_id; cpi->bus_id = cam_sim_bus(sim); cpi->base_transfer_speed = 3300; strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); strncpy(cpi->hba_vid, "Advansys", HBA_IDLEN); strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN); cpi->unit_number = cam_sim_unit(sim); cpi->ccb_h.status = CAM_REQ_CMP; cpi->transport = XPORT_SPI; cpi->transport_version = 2; cpi->protocol = PROTO_SCSI; cpi->protocol_version = SCSI_REV_2; xpt_done(ccb); break; } default: ccb->ccb_h.status = CAM_REQ_INVALID; xpt_done(ccb); break; } } /* * Currently, the output of bus_dmammap_load suits our needs just * fine, but should it change, we'd need to do something here. */ #define adv_fixup_dmasegs(adv, dm_segs) (struct adv_sg_entry *)(dm_segs) static void adv_execute_ccb(void *arg, bus_dma_segment_t *dm_segs, int nsegments, int error) { struct ccb_scsiio *csio; struct ccb_hdr *ccb_h; struct cam_sim *sim; struct adv_softc *adv; struct adv_ccb_info *cinfo; struct adv_scsi_q scsiq; struct adv_sg_head sghead; int s; csio = (struct ccb_scsiio *)arg; ccb_h = &csio->ccb_h; sim = xpt_path_sim(ccb_h->path); adv = (struct adv_softc *)cam_sim_softc(sim); cinfo = (struct adv_ccb_info *)csio->ccb_h.ccb_cinfo_ptr; /* * Setup our done routine to release the simq on * the next ccb that completes. */ if ((adv->state & ADV_BUSDMA_BLOCK) != 0) adv->state |= ADV_BUSDMA_BLOCK_CLEARED; if ((ccb_h->flags & CAM_CDB_POINTER) != 0) { if ((ccb_h->flags & CAM_CDB_PHYS) == 0) { /* XXX Need phystovirt!!!! */ /* How about pmap_kenter??? */ scsiq.cdbptr = csio->cdb_io.cdb_ptr; } else { scsiq.cdbptr = csio->cdb_io.cdb_ptr; } } else { scsiq.cdbptr = csio->cdb_io.cdb_bytes; } /* * Build up the request */ scsiq.q1.status = 0; scsiq.q1.q_no = 0; scsiq.q1.cntl = 0; scsiq.q1.sg_queue_cnt = 0; scsiq.q1.target_id = ADV_TID_TO_TARGET_MASK(ccb_h->target_id); scsiq.q1.target_lun = ccb_h->target_lun; scsiq.q1.sense_len = csio->sense_len; scsiq.q1.extra_bytes = 0; scsiq.q2.ccb_index = cinfo - adv->ccb_infos; scsiq.q2.target_ix = ADV_TIDLUN_TO_IX(ccb_h->target_id, ccb_h->target_lun); scsiq.q2.flag = 0; scsiq.q2.cdb_len = csio->cdb_len; if ((ccb_h->flags & CAM_TAG_ACTION_VALID) != 0) scsiq.q2.tag_code = csio->tag_action; else scsiq.q2.tag_code = 0; scsiq.q2.vm_id = 0; if (nsegments != 0) { bus_dmasync_op_t op; scsiq.q1.data_addr = dm_segs->ds_addr; scsiq.q1.data_cnt = dm_segs->ds_len; if (nsegments > 1) { scsiq.q1.cntl |= QC_SG_HEAD; sghead.entry_cnt = sghead.entry_to_copy = nsegments; sghead.res = 0; sghead.sg_list = adv_fixup_dmasegs(adv, dm_segs); scsiq.sg_head = &sghead; } else { scsiq.sg_head = NULL; } if ((ccb_h->flags & CAM_DIR_MASK) == CAM_DIR_IN) op = BUS_DMASYNC_PREREAD; else op = BUS_DMASYNC_PREWRITE; bus_dmamap_sync(adv->buffer_dmat, cinfo->dmamap, op); } else { scsiq.q1.data_addr = 0; scsiq.q1.data_cnt = 0; scsiq.sg_head = NULL; } s = splcam(); /* * Last time we need to check if this SCB needs to * be aborted. */ if (ccb_h->status != CAM_REQ_INPROG) { if (nsegments != 0) bus_dmamap_unload(adv->buffer_dmat, cinfo->dmamap); adv_clear_state(adv, (union ccb *)csio); adv_free_ccb_info(adv, cinfo); xpt_done((union ccb *)csio); splx(s); return; } if (adv_execute_scsi_queue(adv, &scsiq, csio->dxfer_len) != 0) { /* Temporary resource shortage */ adv_set_state(adv, ADV_RESOURCE_SHORTAGE); if (nsegments != 0) bus_dmamap_unload(adv->buffer_dmat, cinfo->dmamap); csio->ccb_h.status = CAM_REQUEUE_REQ; adv_clear_state(adv, (union ccb *)csio); adv_free_ccb_info(adv, cinfo); xpt_done((union ccb *)csio); splx(s); return; } cinfo->state |= ACCB_ACTIVE; ccb_h->status |= CAM_SIM_QUEUED; LIST_INSERT_HEAD(&adv->pending_ccbs, ccb_h, sim_links.le); /* Schedule our timeout */ ccb_h->timeout_ch = timeout(adv_timeout, csio, (ccb_h->timeout * hz)/1000); splx(s); } static struct adv_ccb_info * adv_alloc_ccb_info(struct adv_softc *adv) { int error; struct adv_ccb_info *cinfo; cinfo = &adv->ccb_infos[adv->ccb_infos_allocated]; cinfo->state = ACCB_FREE; error = bus_dmamap_create(adv->buffer_dmat, /*flags*/0, &cinfo->dmamap); if (error != 0) { printf("%s: Unable to allocate CCB info " "dmamap - error %d\n", adv_name(adv), error); return (NULL); } adv->ccb_infos_allocated++; return (cinfo); } static void adv_destroy_ccb_info(struct adv_softc *adv, struct adv_ccb_info *cinfo) { bus_dmamap_destroy(adv->buffer_dmat, cinfo->dmamap); } void adv_timeout(void *arg) { int s; union ccb *ccb; struct adv_softc *adv; struct adv_ccb_info *cinfo; ccb = (union ccb *)arg; adv = (struct adv_softc *)xpt_path_sim(ccb->ccb_h.path)->softc; cinfo = (struct adv_ccb_info *)ccb->ccb_h.ccb_cinfo_ptr; xpt_print_path(ccb->ccb_h.path); printf("Timed out\n"); s = splcam(); /* Have we been taken care of already?? */ if (cinfo == NULL || cinfo->state == ACCB_FREE) { splx(s); return; } adv_stop_execution(adv); if ((cinfo->state & ACCB_ABORT_QUEUED) == 0) { struct ccb_hdr *ccb_h; /* * In order to simplify the recovery process, we ask the XPT * layer to halt the queue of new transactions and we traverse * the list of pending CCBs and remove their timeouts. This * means that the driver attempts to clear only one error * condition at a time. In general, timeouts that occur * close together are related anyway, so there is no benefit * in attempting to handle errors in parrallel. Timeouts will * be reinstated when the recovery process ends. */ adv_set_state(adv, ADV_IN_TIMEOUT); /* This CCB is the CCB representing our recovery actions */ cinfo->state |= ACCB_RECOVERY_CCB|ACCB_ABORT_QUEUED; ccb_h = LIST_FIRST(&adv->pending_ccbs); while (ccb_h != NULL) { untimeout(adv_timeout, ccb_h, ccb_h->timeout_ch); ccb_h = LIST_NEXT(ccb_h, sim_links.le); } /* XXX Should send a BDR */ /* Attempt an abort as our first tact */ xpt_print_path(ccb->ccb_h.path); printf("Attempting abort\n"); adv_abort_ccb(adv, ccb->ccb_h.target_id, ccb->ccb_h.target_lun, ccb, CAM_CMD_TIMEOUT, /*queued_only*/FALSE); ccb->ccb_h.timeout_ch = timeout(adv_timeout, ccb, 2 * hz); } else { /* Our attempt to perform an abort failed, go for a reset */ xpt_print_path(ccb->ccb_h.path); printf("Resetting bus\n"); ccb->ccb_h.status &= ~CAM_STATUS_MASK; ccb->ccb_h.status |= CAM_CMD_TIMEOUT; adv_reset_bus(adv, /*initiate_reset*/TRUE); } adv_start_execution(adv); splx(s); } struct adv_softc * adv_alloc(device_t dev, bus_space_tag_t tag, bus_space_handle_t bsh) { struct adv_softc *adv = device_get_softc(dev); /* * Allocate a storage area for us */ LIST_INIT(&adv->pending_ccbs); SLIST_INIT(&adv->free_ccb_infos); adv->dev = dev; adv->unit = device_get_unit(dev); adv->tag = tag; adv->bsh = bsh; return(adv); } void adv_free(struct adv_softc *adv) { switch (adv->init_level) { case 6: { struct adv_ccb_info *cinfo; while ((cinfo = SLIST_FIRST(&adv->free_ccb_infos)) != NULL) { SLIST_REMOVE_HEAD(&adv->free_ccb_infos, links); adv_destroy_ccb_info(adv, cinfo); } bus_dmamap_unload(adv->sense_dmat, adv->sense_dmamap); } case 5: bus_dmamem_free(adv->sense_dmat, adv->sense_buffers, adv->sense_dmamap); case 4: bus_dma_tag_destroy(adv->sense_dmat); case 3: bus_dma_tag_destroy(adv->buffer_dmat); case 2: bus_dma_tag_destroy(adv->parent_dmat); case 1: if (adv->ccb_infos != NULL) free(adv->ccb_infos, M_DEVBUF); case 0: break; } } int adv_init(struct adv_softc *adv) { struct adv_eeprom_config eeprom_config; int checksum, i; int max_sync; u_int16_t config_lsw; u_int16_t config_msw; adv_lib_init(adv); /* * Stop script execution. */ adv_write_lram_16(adv, ADV_HALTCODE_W, 0x00FE); adv_stop_execution(adv); if (adv_stop_chip(adv) == 0 || adv_is_chip_halted(adv) == 0) { printf("adv%d: Unable to halt adapter. Initialization" "failed\n", adv->unit); return (1); } ADV_OUTW(adv, ADV_REG_PROG_COUNTER, ADV_MCODE_START_ADDR); if (ADV_INW(adv, ADV_REG_PROG_COUNTER) != ADV_MCODE_START_ADDR) { printf("adv%d: Unable to set program counter. Initialization" "failed\n", adv->unit); return (1); } config_msw = ADV_INW(adv, ADV_CONFIG_MSW); config_lsw = ADV_INW(adv, ADV_CONFIG_LSW); if ((config_msw & ADV_CFG_MSW_CLR_MASK) != 0) { config_msw &= ~ADV_CFG_MSW_CLR_MASK; /* * XXX The Linux code flags this as an error, * but what should we report to the user??? * It seems that clearing the config register * makes this error recoverable. */ ADV_OUTW(adv, ADV_CONFIG_MSW, config_msw); } /* Suck in the configuration from the EEProm */ checksum = adv_get_eeprom_config(adv, &eeprom_config); if (ADV_INW(adv, ADV_CHIP_STATUS) & ADV_CSW_AUTO_CONFIG) { /* * XXX The Linux code sets a warning level for this * condition, yet nothing of meaning is printed to * the user. What does this mean??? */ if (adv->chip_version == 3) { if (eeprom_config.cfg_lsw != config_lsw) eeprom_config.cfg_lsw = config_lsw; if (eeprom_config.cfg_msw != config_msw) { eeprom_config.cfg_msw = config_msw; } } } if (checksum == eeprom_config.chksum) { /* Range/Sanity checking */ if (eeprom_config.max_total_qng < ADV_MIN_TOTAL_QNG) { eeprom_config.max_total_qng = ADV_MIN_TOTAL_QNG; } if (eeprom_config.max_total_qng > ADV_MAX_TOTAL_QNG) { eeprom_config.max_total_qng = ADV_MAX_TOTAL_QNG; } if (eeprom_config.max_tag_qng > eeprom_config.max_total_qng) { eeprom_config.max_tag_qng = eeprom_config.max_total_qng; } if (eeprom_config.max_tag_qng < ADV_MIN_TAG_Q_PER_DVC) { eeprom_config.max_tag_qng = ADV_MIN_TAG_Q_PER_DVC; } adv->max_openings = eeprom_config.max_total_qng; adv->user_disc_enable = eeprom_config.disc_enable; adv->user_cmd_qng_enabled = eeprom_config.use_cmd_qng; adv->isa_dma_speed = EEPROM_DMA_SPEED(eeprom_config); adv->scsi_id = EEPROM_SCSIID(eeprom_config) & ADV_MAX_TID; EEPROM_SET_SCSIID(eeprom_config, adv->scsi_id); adv->control = eeprom_config.cntl; for (i = 0; i <= ADV_MAX_TID; i++) { u_int8_t sync_data; if ((eeprom_config.init_sdtr & (0x1 << i)) == 0) sync_data = 0; else sync_data = eeprom_config.sdtr_data[i]; adv_sdtr_to_period_offset(adv, sync_data, &adv->tinfo[i].user.period, &adv->tinfo[i].user.offset, i); } config_lsw = eeprom_config.cfg_lsw; eeprom_config.cfg_msw = config_msw; } else { u_int8_t sync_data; printf("adv%d: Warning EEPROM Checksum mismatch. " "Using default device parameters\n", adv->unit); /* Set reasonable defaults since we can't read the EEPROM */ adv->isa_dma_speed = /*ADV_DEF_ISA_DMA_SPEED*/1; adv->max_openings = ADV_DEF_MAX_TOTAL_QNG; adv->disc_enable = TARGET_BIT_VECTOR_SET; adv->user_disc_enable = TARGET_BIT_VECTOR_SET; adv->cmd_qng_enabled = TARGET_BIT_VECTOR_SET; adv->user_cmd_qng_enabled = TARGET_BIT_VECTOR_SET; adv->scsi_id = 7; adv->control = 0xFFFF; if (adv->chip_version == ADV_CHIP_VER_PCI_ULTRA_3050) /* Default to no Ultra to support the 3030 */ adv->control &= ~ADV_CNTL_SDTR_ENABLE_ULTRA; sync_data = ADV_DEF_SDTR_OFFSET | (ADV_DEF_SDTR_INDEX << 4); for (i = 0; i <= ADV_MAX_TID; i++) { adv_sdtr_to_period_offset(adv, sync_data, &adv->tinfo[i].user.period, &adv->tinfo[i].user.offset, i); } config_lsw |= ADV_CFG_LSW_SCSI_PARITY_ON; } config_msw &= ~ADV_CFG_MSW_CLR_MASK; config_lsw |= ADV_CFG_LSW_HOST_INT_ON; if ((adv->type & (ADV_PCI|ADV_ULTRA)) == (ADV_PCI|ADV_ULTRA) && (adv->control & ADV_CNTL_SDTR_ENABLE_ULTRA) == 0) /* 25ns or 10MHz */ max_sync = 25; else /* Unlimited */ max_sync = 0; for (i = 0; i <= ADV_MAX_TID; i++) { if (adv->tinfo[i].user.period < max_sync) adv->tinfo[i].user.period = max_sync; } if (adv_test_external_lram(adv) == 0) { if ((adv->type & (ADV_PCI|ADV_ULTRA)) == (ADV_PCI|ADV_ULTRA)) { eeprom_config.max_total_qng = ADV_MAX_PCI_ULTRA_INRAM_TOTAL_QNG; eeprom_config.max_tag_qng = ADV_MAX_PCI_ULTRA_INRAM_TAG_QNG; } else { eeprom_config.cfg_msw |= 0x0800; config_msw |= 0x0800; eeprom_config.max_total_qng = ADV_MAX_PCI_INRAM_TOTAL_QNG; eeprom_config.max_tag_qng = ADV_MAX_INRAM_TAG_QNG; } adv->max_openings = eeprom_config.max_total_qng; } ADV_OUTW(adv, ADV_CONFIG_MSW, config_msw); ADV_OUTW(adv, ADV_CONFIG_LSW, config_lsw); #if 0 /* * Don't write the eeprom data back for now. * I'd rather not mess up the user's card. We also don't * fully sanitize the eeprom settings above for the write-back * to be 100% correct. */ if (adv_set_eeprom_config(adv, &eeprom_config) != 0) printf("%s: WARNING! Failure writing to EEPROM.\n", adv_name(adv)); #endif adv_set_chip_scsiid(adv, adv->scsi_id); if (adv_init_lram_and_mcode(adv)) return (1); adv->disc_enable = adv->user_disc_enable; adv_write_lram_8(adv, ADVV_DISC_ENABLE_B, adv->disc_enable); for (i = 0; i <= ADV_MAX_TID; i++) { /* * Start off in async mode. */ adv_set_syncrate(adv, /*struct cam_path */NULL, i, /*period*/0, /*offset*/0, ADV_TRANS_CUR); /* * Enable the use of tagged commands on all targets. * This allows the kernel driver to make up it's own mind * as it sees fit to tag queue instead of having the * firmware try and second guess the tag_code settins. */ adv_write_lram_8(adv, ADVV_MAX_DVC_QNG_BEG + i, adv->max_openings); } adv_write_lram_8(adv, ADVV_USE_TAGGED_QNG_B, TARGET_BIT_VECTOR_SET); adv_write_lram_8(adv, ADVV_CAN_TAGGED_QNG_B, TARGET_BIT_VECTOR_SET); printf("adv%d: AdvanSys %s Host Adapter, SCSI ID %d, queue depth %d\n", adv->unit, (adv->type & ADV_ULTRA) && (max_sync == 0) ? "Ultra SCSI" : "SCSI", adv->scsi_id, adv->max_openings); return (0); } void adv_intr(void *arg) { struct adv_softc *adv; u_int16_t chipstat; u_int16_t saved_ram_addr; u_int8_t ctrl_reg; u_int8_t saved_ctrl_reg; u_int8_t host_flag; adv = (struct adv_softc *)arg; chipstat = ADV_INW(adv, ADV_CHIP_STATUS); /* Is it for us? */ if ((chipstat & (ADV_CSW_INT_PENDING|ADV_CSW_SCSI_RESET_LATCH)) == 0) return; ctrl_reg = ADV_INB(adv, ADV_CHIP_CTRL); saved_ctrl_reg = ctrl_reg & (~(ADV_CC_SCSI_RESET | ADV_CC_CHIP_RESET | ADV_CC_SINGLE_STEP | ADV_CC_DIAG | ADV_CC_TEST)); if ((chipstat & (ADV_CSW_SCSI_RESET_LATCH|ADV_CSW_SCSI_RESET_ACTIVE))) { printf("Detected Bus Reset\n"); adv_reset_bus(adv, /*initiate_reset*/FALSE); return; } if ((chipstat & ADV_CSW_INT_PENDING) != 0) { saved_ram_addr = ADV_INW(adv, ADV_LRAM_ADDR); host_flag = adv_read_lram_8(adv, ADVV_HOST_FLAG_B); adv_write_lram_8(adv, ADVV_HOST_FLAG_B, host_flag | ADV_HOST_FLAG_IN_ISR); adv_ack_interrupt(adv); if ((chipstat & ADV_CSW_HALTED) != 0 && (ctrl_reg & ADV_CC_SINGLE_STEP) != 0) { adv_isr_chip_halted(adv); saved_ctrl_reg &= ~ADV_CC_HALT; } else { adv_run_doneq(adv); } ADV_OUTW(adv, ADV_LRAM_ADDR, saved_ram_addr); #ifdef DIAGNOSTIC if (ADV_INW(adv, ADV_LRAM_ADDR) != saved_ram_addr) panic("adv_intr: Unable to set LRAM addr"); #endif adv_write_lram_8(adv, ADVV_HOST_FLAG_B, host_flag); } ADV_OUTB(adv, ADV_CHIP_CTRL, saved_ctrl_reg); } static void adv_run_doneq(struct adv_softc *adv) { struct adv_q_done_info scsiq; u_int doneq_head; u_int done_qno; doneq_head = adv_read_lram_16(adv, ADVV_DONE_Q_TAIL_W) & 0xFF; done_qno = adv_read_lram_8(adv, ADV_QNO_TO_QADDR(doneq_head) + ADV_SCSIQ_B_FWD); while (done_qno != ADV_QLINK_END) { union ccb* ccb; struct adv_ccb_info *cinfo; u_int done_qaddr; u_int sg_queue_cnt; int aborted; done_qaddr = ADV_QNO_TO_QADDR(done_qno); /* Pull status from this request */ sg_queue_cnt = adv_copy_lram_doneq(adv, done_qaddr, &scsiq, adv->max_dma_count); /* Mark it as free */ adv_write_lram_8(adv, done_qaddr + ADV_SCSIQ_B_STATUS, scsiq.q_status & ~(QS_READY|QS_ABORTED)); /* Process request based on retrieved info */ if ((scsiq.cntl & QC_SG_HEAD) != 0) { u_int i; /* * S/G based request. Free all of the queue * structures that contained S/G information. */ for (i = 0; i < sg_queue_cnt; i++) { done_qno = adv_read_lram_8(adv, done_qaddr + ADV_SCSIQ_B_FWD); #ifdef DIAGNOSTIC if (done_qno == ADV_QLINK_END) { panic("adv_qdone: Corrupted SG " "list encountered"); } #endif done_qaddr = ADV_QNO_TO_QADDR(done_qno); /* Mark SG queue as free */ adv_write_lram_8(adv, done_qaddr + ADV_SCSIQ_B_STATUS, QS_FREE); } } else sg_queue_cnt = 0; #ifdef DIAGNOSTIC if (adv->cur_active < (sg_queue_cnt + 1)) panic("adv_qdone: Attempting to free more " "queues than are active"); #endif adv->cur_active -= sg_queue_cnt + 1; aborted = (scsiq.q_status & QS_ABORTED) != 0; if ((scsiq.q_status != QS_DONE) && (scsiq.q_status & QS_ABORTED) == 0) panic("adv_qdone: completed scsiq with unknown status"); scsiq.remain_bytes += scsiq.extra_bytes; if ((scsiq.d3.done_stat == QD_WITH_ERROR) && (scsiq.d3.host_stat == QHSTA_M_DATA_OVER_RUN)) { if ((scsiq.cntl & (QC_DATA_IN|QC_DATA_OUT)) == 0) { scsiq.d3.done_stat = QD_NO_ERROR; scsiq.d3.host_stat = QHSTA_NO_ERROR; } } cinfo = &adv->ccb_infos[scsiq.d2.ccb_index]; ccb = cinfo->ccb; ccb->csio.resid = scsiq.remain_bytes; adv_done(adv, ccb, scsiq.d3.done_stat, scsiq.d3.host_stat, scsiq.d3.scsi_stat, scsiq.q_no); doneq_head = done_qno; done_qno = adv_read_lram_8(adv, done_qaddr + ADV_SCSIQ_B_FWD); } adv_write_lram_16(adv, ADVV_DONE_Q_TAIL_W, doneq_head); } void adv_done(struct adv_softc *adv, union ccb *ccb, u_int done_stat, u_int host_stat, u_int scsi_status, u_int q_no) { struct adv_ccb_info *cinfo; cinfo = (struct adv_ccb_info *)ccb->ccb_h.ccb_cinfo_ptr; LIST_REMOVE(&ccb->ccb_h, sim_links.le); untimeout(adv_timeout, ccb, ccb->ccb_h.timeout_ch); if ((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE) { bus_dmasync_op_t op; if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) op = BUS_DMASYNC_POSTREAD; else op = BUS_DMASYNC_POSTWRITE; bus_dmamap_sync(adv->buffer_dmat, cinfo->dmamap, op); bus_dmamap_unload(adv->buffer_dmat, cinfo->dmamap); } switch (done_stat) { case QD_NO_ERROR: if (host_stat == QHSTA_NO_ERROR) { ccb->ccb_h.status = CAM_REQ_CMP; break; } xpt_print_path(ccb->ccb_h.path); printf("adv_done - queue done without error, " "but host status non-zero(%x)\n", host_stat); /*FALLTHROUGH*/ case QD_WITH_ERROR: switch (host_stat) { case QHSTA_M_TARGET_STATUS_BUSY: case QHSTA_M_BAD_QUEUE_FULL_OR_BUSY: /* * Assume that if we were a tagged transaction * the target reported queue full. Otherwise, * report busy. The firmware really should just * pass the original status back up to us even * if it thinks the target was in error for * returning this status as no other transactions * from this initiator are in effect, but this * ignores multi-initiator setups and there is * evidence that the firmware gets its per-device * transaction counts screwed up occassionally. */ ccb->ccb_h.status |= CAM_SCSI_STATUS_ERROR; if ((ccb->ccb_h.flags & CAM_TAG_ACTION_VALID) != 0 && host_stat != QHSTA_M_TARGET_STATUS_BUSY) scsi_status = SCSI_STATUS_QUEUE_FULL; else scsi_status = SCSI_STATUS_BUSY; adv_abort_ccb(adv, ccb->ccb_h.target_id, ccb->ccb_h.target_lun, /*ccb*/NULL, CAM_REQUEUE_REQ, /*queued_only*/TRUE); /*FALLTHROUGH*/ case QHSTA_M_NO_AUTO_REQ_SENSE: case QHSTA_NO_ERROR: ccb->csio.scsi_status = scsi_status; switch (scsi_status) { case SCSI_STATUS_CHECK_COND: case SCSI_STATUS_CMD_TERMINATED: ccb->ccb_h.status |= CAM_AUTOSNS_VALID; /* Structure copy */ ccb->csio.sense_data = adv->sense_buffers[q_no - 1]; /* FALLTHROUGH */ case SCSI_STATUS_BUSY: case SCSI_STATUS_RESERV_CONFLICT: case SCSI_STATUS_QUEUE_FULL: case SCSI_STATUS_COND_MET: case SCSI_STATUS_INTERMED: case SCSI_STATUS_INTERMED_COND_MET: ccb->ccb_h.status |= CAM_SCSI_STATUS_ERROR; break; case SCSI_STATUS_OK: ccb->ccb_h.status |= CAM_REQ_CMP; break; } break; case QHSTA_M_SEL_TIMEOUT: ccb->ccb_h.status = CAM_SEL_TIMEOUT; break; case QHSTA_M_DATA_OVER_RUN: ccb->ccb_h.status = CAM_DATA_RUN_ERR; break; case QHSTA_M_UNEXPECTED_BUS_FREE: ccb->ccb_h.status = CAM_UNEXP_BUSFREE; break; case QHSTA_M_BAD_BUS_PHASE_SEQ: ccb->ccb_h.status = CAM_SEQUENCE_FAIL; break; case QHSTA_M_BAD_CMPL_STATUS_IN: /* No command complete after a status message */ ccb->ccb_h.status = CAM_SEQUENCE_FAIL; break; case QHSTA_D_EXE_SCSI_Q_BUSY_TIMEOUT: case QHSTA_M_WTM_TIMEOUT: case QHSTA_M_HUNG_REQ_SCSI_BUS_RESET: /* The SCSI bus hung in a phase */ ccb->ccb_h.status = CAM_SEQUENCE_FAIL; adv_reset_bus(adv, /*initiate_reset*/TRUE); break; case QHSTA_M_AUTO_REQ_SENSE_FAIL: ccb->ccb_h.status = CAM_AUTOSENSE_FAIL; break; case QHSTA_D_QDONE_SG_LIST_CORRUPTED: case QHSTA_D_ASC_DVC_ERROR_CODE_SET: case QHSTA_D_HOST_ABORT_FAILED: case QHSTA_D_EXE_SCSI_Q_FAILED: case QHSTA_D_ASPI_NO_BUF_POOL: case QHSTA_M_BAD_TAG_CODE: case QHSTA_D_LRAM_CMP_ERROR: case QHSTA_M_MICRO_CODE_ERROR_HALT: default: panic("%s: Unhandled Host status error %x", adv_name(adv), host_stat); /* NOTREACHED */ } break; case QD_ABORTED_BY_HOST: /* Don't clobber any, more explicit, error codes we've set */ if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_INPROG) ccb->ccb_h.status = CAM_REQ_ABORTED; break; default: xpt_print_path(ccb->ccb_h.path); printf("adv_done - queue done with unknown status %x:%x\n", done_stat, host_stat); ccb->ccb_h.status = CAM_REQ_CMP_ERR; break; } adv_clear_state(adv, ccb); if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP && (ccb->ccb_h.status & CAM_DEV_QFRZN) == 0) { xpt_freeze_devq(ccb->ccb_h.path, /*count*/1); ccb->ccb_h.status |= CAM_DEV_QFRZN; } adv_free_ccb_info(adv, cinfo); /* * Null this out so that we catch driver bugs that cause a * ccb to be completed twice. */ ccb->ccb_h.ccb_cinfo_ptr = NULL; ccb->ccb_h.status &= ~CAM_SIM_QUEUED; xpt_done(ccb); } /* * Function to poll for command completion when * interrupts are disabled (crash dumps) */ static void adv_poll(struct cam_sim *sim) { adv_intr(cam_sim_softc(sim)); } /* * Attach all the sub-devices we can find */ int adv_attach(adv) struct adv_softc *adv; { struct ccb_setasync csa; struct cam_devq *devq; int max_sg; /* * Allocate an array of ccb mapping structures. We put the * index of the ccb_info structure into the queue representing * a transaction and use it for mapping the queue to the * upper level SCSI transaction it represents. */ adv->ccb_infos = malloc(sizeof(*adv->ccb_infos) * adv->max_openings, M_DEVBUF, M_NOWAIT); if (adv->ccb_infos == NULL) return (ENOMEM); adv->init_level++; /* * Create our DMA tags. These tags define the kinds of device * accessible memory allocations and memory mappings we will * need to perform during normal operation. * * Unless we need to further restrict the allocation, we rely * on the restrictions of the parent dmat, hence the common * use of MAXADDR and MAXSIZE. * * The ASC boards use chains of "queues" (the transactional * resources on the board) to represent long S/G lists. * The first queue represents the command and holds a * single address and data pair. The queues that follow * can each hold ADV_SG_LIST_PER_Q entries. Given the * total number of queues, we can express the largest * transaction we can map. We reserve a few queues for * error recovery. Take those into account as well. * * There is a way to take an interrupt to download the * next batch of S/G entries if there are more than 255 * of them (the counter in the queue structure is a u_int8_t). * We don't use this feature, so limit the S/G list size * accordingly. */ max_sg = (adv->max_openings - ADV_MIN_FREE_Q - 1) * ADV_SG_LIST_PER_Q; if (max_sg > 255) max_sg = 255; /* DMA tag for mapping buffers into device visible space. */ if (bus_dma_tag_create( /* parent */ adv->parent_dmat, /* alignment */ 1, /* boundary */ 0, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ BUS_SPACE_MAXADDR, /* filter */ NULL, /* filterarg */ NULL, /* maxsize */ ADV_MAXPHYS, /* nsegments */ max_sg, /* maxsegsz */ BUS_SPACE_MAXSIZE_32BIT, /* flags */ BUS_DMA_ALLOCNOW, /* lockfunc */ busdma_lock_mutex, /* lockarg */ &Giant, &adv->buffer_dmat) != 0) { return (ENXIO); } adv->init_level++; /* DMA tag for our sense buffers */ if (bus_dma_tag_create( /* parent */ adv->parent_dmat, /* alignment */ 1, /* boundary */ 0, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ BUS_SPACE_MAXADDR, /* filter */ NULL, /* filterarg */ NULL, /* maxsize */ sizeof(struct scsi_sense_data) * adv->max_openings, /* nsegments */ 1, /* maxsegsz */ BUS_SPACE_MAXSIZE_32BIT, /* flags */ 0, /* lockfunc */ busdma_lock_mutex, /* lockarg */ &Giant, &adv->sense_dmat) != 0) { return (ENXIO); } adv->init_level++; /* Allocation for our sense buffers */ if (bus_dmamem_alloc(adv->sense_dmat, (void **)&adv->sense_buffers, BUS_DMA_NOWAIT, &adv->sense_dmamap) != 0) { return (ENOMEM); } adv->init_level++; /* And permanently map them */ bus_dmamap_load(adv->sense_dmat, adv->sense_dmamap, adv->sense_buffers, sizeof(struct scsi_sense_data)*adv->max_openings, adv_map, &adv->sense_physbase, /*flags*/0); adv->init_level++; /* * Fire up the chip */ if (adv_start_chip(adv) != 1) { printf("adv%d: Unable to start on board processor. Aborting.\n", adv->unit); return (ENXIO); } /* * Create the device queue for our SIM. */ devq = cam_simq_alloc(adv->max_openings); if (devq == NULL) return (ENOMEM); /* * Construct our SIM entry. */ adv->sim = cam_sim_alloc(adv_action, adv_poll, "adv", adv, adv->unit, &Giant, 1, adv->max_openings, devq); if (adv->sim == NULL) return (ENOMEM); /* * Register the bus. * * XXX Twin Channel EISA Cards??? */ if (xpt_bus_register(adv->sim, adv->dev, 0) != CAM_SUCCESS) { cam_sim_free(adv->sim, /*free devq*/TRUE); return (ENXIO); } if (xpt_create_path(&adv->path, /*periph*/NULL, cam_sim_path(adv->sim), CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP) { xpt_bus_deregister(cam_sim_path(adv->sim)); cam_sim_free(adv->sim, /*free devq*/TRUE); return (ENXIO); } xpt_setup_ccb(&csa.ccb_h, adv->path, /*priority*/5); csa.ccb_h.func_code = XPT_SASYNC_CB; csa.event_enable = AC_FOUND_DEVICE|AC_LOST_DEVICE; csa.callback = advasync; csa.callback_arg = adv; xpt_action((union ccb *)&csa); return (0); } MODULE_DEPEND(adv, cam, 1, 1, 1);