Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/s3/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/ufm/@/dev/ath/ath_hal/ar5210/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/s3/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/ufm/@/dev/ath/ath_hal/ar5210/ar5210_reset.c |
/* * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting * Copyright (c) 2002-2004 Atheros Communications, Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * * $FreeBSD: release/9.1.0/sys/dev/ath/ath_hal/ar5210/ar5210_reset.c 208643 2010-05-29 16:11:51Z rpaulo $ */ #include "opt_ah.h" #include "ah.h" #include "ah_internal.h" #include "ar5210/ar5210.h" #include "ar5210/ar5210reg.h" #include "ar5210/ar5210phy.h" #include "ah_eeprom_v1.h" typedef struct { uint32_t Offset; uint32_t Value; } REGISTER_VAL; static const REGISTER_VAL ar5k0007_init[] = { #include "ar5210/ar5k_0007.ini" }; /* Default Power Settings for channels outside of EEPROM range */ static const uint8_t ar5k0007_pwrSettings[17] = { /* gain delta pc dac */ /* 54 48 36 24 18 12 9 54 48 36 24 18 12 9 6 ob db */ 9, 9, 0, 0, 0, 0, 0, 2, 2, 6, 6, 6, 6, 6, 6, 2, 2 }; /* * The delay, in usecs, between writing AR_RC with a reset * request and waiting for the chip to settle. If this is * too short then the chip does not come out of sleep state. * Note this value was empirically derived and may be dependent * on the host machine (don't know--the problem was identified * on an IBM 570e laptop; 10us delays worked on other systems). */ #define AR_RC_SETTLE_TIME 20000 static HAL_BOOL ar5210SetResetReg(struct ath_hal *, uint32_t resetMask, u_int delay); static HAL_BOOL ar5210SetChannel(struct ath_hal *, struct ieee80211_channel *); static void ar5210SetOperatingMode(struct ath_hal *, int opmode); /* * Places the device in and out of reset and then places sane * values in the registers based on EEPROM config, initialization * vectors (as determined by the mode), and station configuration * * bChannelChange is used to preserve DMA/PCU registers across * a HW Reset during channel change. */ HAL_BOOL ar5210Reset(struct ath_hal *ah, HAL_OPMODE opmode, struct ieee80211_channel *chan, HAL_BOOL bChannelChange, HAL_STATUS *status) { #define N(a) (sizeof (a) /sizeof (a[0])) #define FAIL(_code) do { ecode = _code; goto bad; } while (0) struct ath_hal_5210 *ahp = AH5210(ah); const HAL_EEPROM_v1 *ee = AH_PRIVATE(ah)->ah_eeprom; HAL_CHANNEL_INTERNAL *ichan; HAL_STATUS ecode; uint32_t ledstate; int i, q; HALDEBUG(ah, HAL_DEBUG_RESET, "%s: opmode %u channel %u/0x%x %s channel\n", __func__, opmode, chan->ic_freq, chan->ic_flags, bChannelChange ? "change" : "same"); if (!IEEE80211_IS_CHAN_5GHZ(chan)) { /* Only 11a mode */ HALDEBUG(ah, HAL_DEBUG_ANY, "%s: channel not 5GHz\n", __func__); FAIL(HAL_EINVAL); } /* * Map public channel to private. */ ichan = ath_hal_checkchannel(ah, chan); if (ichan == AH_NULL) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u/0x%x; no mapping\n", __func__, chan->ic_freq, chan->ic_flags); FAIL(HAL_EINVAL); } switch (opmode) { case HAL_M_STA: case HAL_M_IBSS: case HAL_M_HOSTAP: case HAL_M_MONITOR: break; default: HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid operating mode %u\n", __func__, opmode); FAIL(HAL_EINVAL); break; } ledstate = OS_REG_READ(ah, AR_PCICFG) & (AR_PCICFG_LED_PEND | AR_PCICFG_LED_ACT); if (!ar5210ChipReset(ah, chan)) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__); FAIL(HAL_EIO); } OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr)); OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4)); ar5210SetOperatingMode(ah, opmode); switch (opmode) { case HAL_M_HOSTAP: OS_REG_WRITE(ah, AR_BCR, INIT_BCON_CNTRL_REG); OS_REG_WRITE(ah, AR_PCICFG, AR_PCICFG_LED_ACT | AR_PCICFG_LED_BCTL); break; case HAL_M_IBSS: OS_REG_WRITE(ah, AR_BCR, INIT_BCON_CNTRL_REG | AR_BCR_BCMD); OS_REG_WRITE(ah, AR_PCICFG, AR_PCICFG_CLKRUNEN | AR_PCICFG_LED_PEND | AR_PCICFG_LED_BCTL); break; case HAL_M_STA: OS_REG_WRITE(ah, AR_BCR, INIT_BCON_CNTRL_REG); OS_REG_WRITE(ah, AR_PCICFG, AR_PCICFG_CLKRUNEN | AR_PCICFG_LED_PEND | AR_PCICFG_LED_BCTL); break; case HAL_M_MONITOR: OS_REG_WRITE(ah, AR_BCR, INIT_BCON_CNTRL_REG); OS_REG_WRITE(ah, AR_PCICFG, AR_PCICFG_LED_ACT | AR_PCICFG_LED_BCTL); break; } /* Restore previous led state */ OS_REG_WRITE(ah, AR_PCICFG, OS_REG_READ(ah, AR_PCICFG) | ledstate); OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid)); OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4)); OS_REG_WRITE(ah, AR_TXDP0, 0); OS_REG_WRITE(ah, AR_TXDP1, 0); OS_REG_WRITE(ah, AR_RXDP, 0); /* * Initialize interrupt state. */ (void) OS_REG_READ(ah, AR_ISR); /* cleared on read */ OS_REG_WRITE(ah, AR_IMR, 0); OS_REG_WRITE(ah, AR_IER, AR_IER_DISABLE); ahp->ah_maskReg = 0; (void) OS_REG_READ(ah, AR_BSR); /* cleared on read */ OS_REG_WRITE(ah, AR_TXCFG, AR_DMASIZE_128B); OS_REG_WRITE(ah, AR_RXCFG, AR_DMASIZE_128B); OS_REG_WRITE(ah, AR_TOPS, 8); /* timeout prescale */ OS_REG_WRITE(ah, AR_RXNOFRM, 8); /* RX no frame timeout */ OS_REG_WRITE(ah, AR_RPGTO, 0); /* RX frame gap timeout */ OS_REG_WRITE(ah, AR_TXNOFRM, 0); /* TX no frame timeout */ OS_REG_WRITE(ah, AR_SFR, 0); OS_REG_WRITE(ah, AR_MIBC, 0); /* unfreeze ctrs + clr state */ OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr); OS_REG_WRITE(ah, AR_CFP_DUR, 0); ar5210SetRxFilter(ah, 0); /* nothing for now */ OS_REG_WRITE(ah, AR_MCAST_FIL0, 0); /* multicast filter */ OS_REG_WRITE(ah, AR_MCAST_FIL1, 0); /* XXX was 2 */ OS_REG_WRITE(ah, AR_TX_MASK0, 0); OS_REG_WRITE(ah, AR_TX_MASK1, 0); OS_REG_WRITE(ah, AR_CLR_TMASK, 1); OS_REG_WRITE(ah, AR_TRIG_LEV, 1); /* minimum */ OS_REG_WRITE(ah, AR_DIAG_SW, 0); OS_REG_WRITE(ah, AR_CFP_PERIOD, 0); OS_REG_WRITE(ah, AR_TIMER0, 0); /* next beacon time */ OS_REG_WRITE(ah, AR_TSF_L32, 0); /* local clock */ OS_REG_WRITE(ah, AR_TIMER1, ~0); /* next DMA beacon alert */ OS_REG_WRITE(ah, AR_TIMER2, ~0); /* next SW beacon alert */ OS_REG_WRITE(ah, AR_TIMER3, 1); /* next ATIM window */ /* Write the INI values for PHYreg initialization */ for (i = 0; i < N(ar5k0007_init); i++) { uint32_t reg = ar5k0007_init[i].Offset; /* On channel change, don't reset the PCU registers */ if (!(bChannelChange && (0x8000 <= reg && reg < 0x9000))) OS_REG_WRITE(ah, reg, ar5k0007_init[i].Value); } /* Setup the transmit power values for cards since 0x0[0-2]05 */ if (!ar5210SetTransmitPower(ah, chan)) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: error init'ing transmit power\n", __func__); FAIL(HAL_EIO); } OS_REG_WRITE(ah, AR_PHY(10), (OS_REG_READ(ah, AR_PHY(10)) & 0xFFFF00FF) | (ee->ee_xlnaOn << 8)); OS_REG_WRITE(ah, AR_PHY(13), (ee->ee_xpaOff << 24) | (ee->ee_xpaOff << 16) | (ee->ee_xpaOn << 8) | ee->ee_xpaOn); OS_REG_WRITE(ah, AR_PHY(17), (OS_REG_READ(ah, AR_PHY(17)) & 0xFFFFC07F) | ((ee->ee_antenna >> 1) & 0x3F80)); OS_REG_WRITE(ah, AR_PHY(18), (OS_REG_READ(ah, AR_PHY(18)) & 0xFFFC0FFF) | ((ee->ee_antenna << 10) & 0x3F000)); OS_REG_WRITE(ah, AR_PHY(25), (OS_REG_READ(ah, AR_PHY(25)) & 0xFFF80FFF) | ((ee->ee_thresh62 << 12) & 0x7F000)); OS_REG_WRITE(ah, AR_PHY(68), (OS_REG_READ(ah, AR_PHY(68)) & 0xFFFFFFFC) | (ee->ee_antenna & 0x3)); if (!ar5210SetChannel(ah, chan)) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set channel\n", __func__); FAIL(HAL_EIO); } if (bChannelChange && !IEEE80211_IS_CHAN_DFS(chan)) chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT; /* Activate the PHY */ OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ENABLE); OS_DELAY(1000); /* Wait a bit (1 msec) */ /* calibrate the HW and poll the bit going to 0 for completion */ OS_REG_WRITE(ah, AR_PHY_AGCCTL, OS_REG_READ(ah, AR_PHY_AGCCTL) | AR_PHY_AGC_CAL); (void) ath_hal_wait(ah, AR_PHY_AGCCTL, AR_PHY_AGC_CAL, 0); /* Perform noise floor calibration and set status */ if (!ar5210CalNoiseFloor(ah, ichan)) { chan->ic_state |= IEEE80211_CHANSTATE_CWINT; HALDEBUG(ah, HAL_DEBUG_ANY, "%s: noise floor calibration failed\n", __func__); FAIL(HAL_EIO); } for (q = 0; q < HAL_NUM_TX_QUEUES; q++) ar5210ResetTxQueue(ah, q); if (AH_PRIVATE(ah)->ah_rfkillEnabled) ar5210EnableRfKill(ah); /* * Writing to AR_BEACON will start timers. Hence it should be * the last register to be written. Do not reset tsf, do not * enable beacons at this point, but preserve other values * like beaconInterval. */ OS_REG_WRITE(ah, AR_BEACON, (OS_REG_READ(ah, AR_BEACON) & ~(AR_BEACON_EN | AR_BEACON_RESET_TSF))); /* Restore user-specified slot time and timeouts */ if (ahp->ah_sifstime != (u_int) -1) ar5210SetSifsTime(ah, ahp->ah_sifstime); if (ahp->ah_slottime != (u_int) -1) ar5210SetSlotTime(ah, ahp->ah_slottime); if (ahp->ah_acktimeout != (u_int) -1) ar5210SetAckTimeout(ah, ahp->ah_acktimeout); if (ahp->ah_ctstimeout != (u_int) -1) ar5210SetCTSTimeout(ah, ahp->ah_ctstimeout); if (AH_PRIVATE(ah)->ah_diagreg != 0) OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg); AH_PRIVATE(ah)->ah_opmode = opmode; /* record operating mode */ HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__); return AH_TRUE; bad: if (status != AH_NULL) *status = ecode; return AH_FALSE; #undef FAIL #undef N } static void ar5210SetOperatingMode(struct ath_hal *ah, int opmode) { struct ath_hal_5210 *ahp = AH5210(ah); uint32_t val; val = OS_REG_READ(ah, AR_STA_ID1) & 0xffff; switch (opmode) { case HAL_M_HOSTAP: OS_REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_AP | AR_STA_ID1_NO_PSPOLL | AR_STA_ID1_DESC_ANTENNA | ahp->ah_staId1Defaults); break; case HAL_M_IBSS: OS_REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC | AR_STA_ID1_NO_PSPOLL | AR_STA_ID1_DESC_ANTENNA | ahp->ah_staId1Defaults); break; case HAL_M_STA: OS_REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_NO_PSPOLL | AR_STA_ID1_PWR_SV | ahp->ah_staId1Defaults); break; case HAL_M_MONITOR: OS_REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_NO_PSPOLL | ahp->ah_staId1Defaults); break; } } void ar5210SetPCUConfig(struct ath_hal *ah) { ar5210SetOperatingMode(ah, AH_PRIVATE(ah)->ah_opmode); } /* * Places the PHY and Radio chips into reset. A full reset * must be called to leave this state. The PCI/MAC/PCU are * not placed into reset as we must receive interrupt to * re-enable the hardware. */ HAL_BOOL ar5210PhyDisable(struct ath_hal *ah) { return ar5210SetResetReg(ah, AR_RC_RPHY, 10); } /* * Places all of hardware into reset */ HAL_BOOL ar5210Disable(struct ath_hal *ah) { #define AR_RC_HW (AR_RC_RPCU | AR_RC_RDMA | AR_RC_RPHY | AR_RC_RMAC) if (!ar5210SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) return AH_FALSE; /* * Reset the HW - PCI must be reset after the rest of the * device has been reset */ if (!ar5210SetResetReg(ah, AR_RC_HW, AR_RC_SETTLE_TIME)) return AH_FALSE; OS_DELAY(1000); (void) ar5210SetResetReg(ah, AR_RC_HW | AR_RC_RPCI, AR_RC_SETTLE_TIME); OS_DELAY(2100); /* 8245 @ 96Mhz hangs with 2000us. */ return AH_TRUE; #undef AR_RC_HW } /* * Places the hardware into reset and then pulls it out of reset */ HAL_BOOL ar5210ChipReset(struct ath_hal *ah, struct ieee80211_channel *chan) { #define AR_RC_HW (AR_RC_RPCU | AR_RC_RDMA | AR_RC_RPHY | AR_RC_RMAC) HALDEBUG(ah, HAL_DEBUG_RESET, "%s turbo %s\n", __func__, chan && IEEE80211_IS_CHAN_TURBO(chan) ? "enabled" : "disabled"); if (!ar5210SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) return AH_FALSE; /* Place chip in turbo before reset to cleanly reset clocks */ OS_REG_WRITE(ah, AR_PHY_FRCTL, chan && IEEE80211_IS_CHAN_TURBO(chan) ? AR_PHY_TURBO_MODE : 0); /* * Reset the HW. * PCI must be reset after the rest of the device has been reset. */ if (!ar5210SetResetReg(ah, AR_RC_HW, AR_RC_SETTLE_TIME)) return AH_FALSE; OS_DELAY(1000); if (!ar5210SetResetReg(ah, AR_RC_HW | AR_RC_RPCI, AR_RC_SETTLE_TIME)) return AH_FALSE; OS_DELAY(2100); /* 8245 @ 96Mhz hangs with 2000us. */ /* * Bring out of sleep mode (AGAIN) * * WARNING WARNING WARNING * * There is a problem with the chip where it doesn't always indicate * that it's awake, so initializePowerUp() will fail. */ if (!ar5210SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) return AH_FALSE; /* Clear warm reset reg */ return ar5210SetResetReg(ah, 0, 10); #undef AR_RC_HW } enum { FIRPWR_M = 0x03fc0000, FIRPWR_S = 18, KCOARSEHIGH_M = 0x003f8000, KCOARSEHIGH_S = 15, KCOARSELOW_M = 0x00007f80, KCOARSELOW_S = 7, ADCSAT_ICOUNT_M = 0x0001f800, ADCSAT_ICOUNT_S = 11, ADCSAT_THRESH_M = 0x000007e0, ADCSAT_THRESH_S = 5 }; /* * Recalibrate the lower PHY chips to account for temperature/environment * changes. */ HAL_BOOL ar5210PerCalibrationN(struct ath_hal *ah, struct ieee80211_channel *chan, u_int chainMask, HAL_BOOL longCal, HAL_BOOL *isCalDone) { uint32_t regBeacon; uint32_t reg9858, reg985c, reg9868; HAL_CHANNEL_INTERNAL *ichan; ichan = ath_hal_checkchannel(ah, chan); if (ichan == AH_NULL) return AH_FALSE; /* Disable tx and rx */ OS_REG_WRITE(ah, AR_DIAG_SW, OS_REG_READ(ah, AR_DIAG_SW) | (AR_DIAG_SW_DIS_TX | AR_DIAG_SW_DIS_RX)); /* Disable Beacon Enable */ regBeacon = OS_REG_READ(ah, AR_BEACON); OS_REG_WRITE(ah, AR_BEACON, regBeacon & ~AR_BEACON_EN); /* Delay 4ms to ensure that all tx and rx activity has ceased */ OS_DELAY(4000); /* Disable AGC to radio traffic */ OS_REG_WRITE(ah, 0x9808, OS_REG_READ(ah, 0x9808) | 0x08000000); /* Wait for the AGC traffic to cease. */ OS_DELAY(10); /* Change Channel to relock synth */ if (!ar5210SetChannel(ah, chan)) return AH_FALSE; /* wait for the synthesizer lock to stabilize */ OS_DELAY(1000); /* Re-enable AGC to radio traffic */ OS_REG_WRITE(ah, 0x9808, OS_REG_READ(ah, 0x9808) & (~0x08000000)); /* * Configure the AGC so that it is highly unlikely (if not * impossible) for it to send any gain changes to the analog * chip. We store off the current values so that they can * be rewritten below. Setting the following values: * firpwr = -1 * Kcoursehigh = -1 * Kcourselow = -127 * ADCsat_icount = 2 * ADCsat_thresh = 12 */ reg9858 = OS_REG_READ(ah, 0x9858); reg985c = OS_REG_READ(ah, 0x985c); reg9868 = OS_REG_READ(ah, 0x9868); OS_REG_WRITE(ah, 0x9858, (reg9858 & ~FIRPWR_M) | ((-1 << FIRPWR_S) & FIRPWR_M)); OS_REG_WRITE(ah, 0x985c, (reg985c & ~(KCOARSEHIGH_M | KCOARSELOW_M)) | ((-1 << KCOARSEHIGH_S) & KCOARSEHIGH_M) | ((-127 << KCOARSELOW_S) & KCOARSELOW_M)); OS_REG_WRITE(ah, 0x9868, (reg9868 & ~(ADCSAT_ICOUNT_M | ADCSAT_THRESH_M)) | ((2 << ADCSAT_ICOUNT_S) & ADCSAT_ICOUNT_M) | ((12 << ADCSAT_THRESH_S) & ADCSAT_THRESH_M)); /* Wait for AGC changes to be enacted */ OS_DELAY(20); /* * We disable RF mix/gain stages for the PGA to avoid a * race condition that will occur with receiving a frame * and performing the AGC calibration. This will be * re-enabled at the end of offset cal. We turn off AGC * writes during this write as it will go over the analog bus. */ OS_REG_WRITE(ah, 0x9808, OS_REG_READ(ah, 0x9808) | 0x08000000); OS_DELAY(10); /* wait for the AGC traffic to cease */ OS_REG_WRITE(ah, 0x98D4, 0x21); OS_REG_WRITE(ah, 0x9808, OS_REG_READ(ah, 0x9808) & (~0x08000000)); /* wait to make sure that additional AGC traffic has quiesced */ OS_DELAY(1000); /* AGC calibration (this was added to make the NF threshold check work) */ OS_REG_WRITE(ah, AR_PHY_AGCCTL, OS_REG_READ(ah, AR_PHY_AGCCTL) | AR_PHY_AGC_CAL); if (!ath_hal_wait(ah, AR_PHY_AGCCTL, AR_PHY_AGC_CAL, 0)) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: AGC calibration timeout\n", __func__); } /* Rewrite our AGC values we stored off earlier (return AGC to normal operation) */ OS_REG_WRITE(ah, 0x9858, reg9858); OS_REG_WRITE(ah, 0x985c, reg985c); OS_REG_WRITE(ah, 0x9868, reg9868); /* Perform noise floor and set status */ if (!ar5210CalNoiseFloor(ah, ichan)) { /* * Delay 5ms before retrying the noise floor - * just to make sure. We're in an error * condition here */ HALDEBUG(ah, HAL_DEBUG_NFCAL | HAL_DEBUG_PERCAL, "%s: Performing 2nd Noise Cal\n", __func__); OS_DELAY(5000); if (!ar5210CalNoiseFloor(ah, ichan)) chan->ic_state |= IEEE80211_CHANSTATE_CWINT; } /* Clear tx and rx disable bit */ OS_REG_WRITE(ah, AR_DIAG_SW, OS_REG_READ(ah, AR_DIAG_SW) & ~(AR_DIAG_SW_DIS_TX | AR_DIAG_SW_DIS_RX)); /* Re-enable Beacons */ OS_REG_WRITE(ah, AR_BEACON, regBeacon); *isCalDone = AH_TRUE; return AH_TRUE; } HAL_BOOL ar5210PerCalibration(struct ath_hal *ah, struct ieee80211_channel *chan, HAL_BOOL *isIQdone) { return ar5210PerCalibrationN(ah, chan, 0x1, AH_TRUE, isIQdone); } HAL_BOOL ar5210ResetCalValid(struct ath_hal *ah, const struct ieee80211_channel *chan) { return AH_TRUE; } /* * Writes the given reset bit mask into the reset register */ static HAL_BOOL ar5210SetResetReg(struct ath_hal *ah, uint32_t resetMask, u_int delay) { uint32_t mask = resetMask ? resetMask : ~0; HAL_BOOL rt; OS_REG_WRITE(ah, AR_RC, resetMask); /* need to wait at least 128 clocks when reseting PCI before read */ OS_DELAY(delay); resetMask &= AR_RC_RPCU | AR_RC_RDMA | AR_RC_RPHY | AR_RC_RMAC; mask &= AR_RC_RPCU | AR_RC_RDMA | AR_RC_RPHY | AR_RC_RMAC; rt = ath_hal_wait(ah, AR_RC, mask, resetMask); if ((resetMask & AR_RC_RMAC) == 0) { if (isBigEndian()) { /* * Set CFG, little-endian for register * and descriptor accesses. */ mask = INIT_CONFIG_STATUS | AR_CFG_SWTD | AR_CFG_SWRD | AR_CFG_SWRG; OS_REG_WRITE(ah, AR_CFG, LE_READ_4(&mask)); } else OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS); } return rt; } /* * Returns: the pcdac value */ static uint8_t getPcdac(struct ath_hal *ah, const struct tpcMap *pRD, uint8_t dBm) { int32_t i; int useNextEntry = AH_FALSE; uint32_t interp; for (i = AR_TP_SCALING_ENTRIES - 1; i >= 0; i--) { /* Check for exact entry */ if (dBm == AR_I2DBM(i)) { if (pRD->pcdac[i] != 63) return pRD->pcdac[i]; useNextEntry = AH_TRUE; } else if (dBm + 1 == AR_I2DBM(i) && i > 0) { /* Interpolate for between entry with a logish scale */ if (pRD->pcdac[i] != 63 && pRD->pcdac[i-1] != 63) { interp = (350 * (pRD->pcdac[i] - pRD->pcdac[i-1])) + 999; interp = (interp / 1000) + pRD->pcdac[i-1]; return interp; } useNextEntry = AH_TRUE; } else if (useNextEntry == AH_TRUE) { /* Grab the next lowest */ if (pRD->pcdac[i] != 63) return pRD->pcdac[i]; } } /* Return the lowest Entry if we haven't returned */ for (i = 0; i < AR_TP_SCALING_ENTRIES; i++) if (pRD->pcdac[i] != 63) return pRD->pcdac[i]; /* No value to return from table */ #ifdef AH_DEBUG ath_hal_printf(ah, "%s: empty transmit power table?\n", __func__); #endif return 1; } /* * Find or interpolates the gainF value from the table ptr. */ static uint8_t getGainF(struct ath_hal *ah, const struct tpcMap *pRD, uint8_t pcdac, uint8_t *dBm) { uint32_t interp; int low, high, i; low = high = -1; for (i = 0; i < AR_TP_SCALING_ENTRIES; i++) { if(pRD->pcdac[i] == 63) continue; if (pcdac == pRD->pcdac[i]) { *dBm = AR_I2DBM(i); return pRD->gainF[i]; /* Exact Match */ } if (pcdac > pRD->pcdac[i]) low = i; if (pcdac < pRD->pcdac[i]) { high = i; if (low == -1) { *dBm = AR_I2DBM(i); /* PCDAC is lower than lowest setting */ return pRD->gainF[i]; } break; } } if (i >= AR_TP_SCALING_ENTRIES && low == -1) { /* No settings were found */ #ifdef AH_DEBUG ath_hal_printf(ah, "%s: no valid entries in the pcdac table: %d\n", __func__, pcdac); #endif return 63; } if (i >= AR_TP_SCALING_ENTRIES) { /* PCDAC setting was above the max setting in the table */ *dBm = AR_I2DBM(low); return pRD->gainF[low]; } /* Only exact if table has no missing entries */ *dBm = (low + high) + 3; /* * Perform interpolation between low and high values to find gainF * linearly scale the pcdac between low and high */ interp = ((pcdac - pRD->pcdac[low]) * 1000) / (pRD->pcdac[high] - pRD->pcdac[low]); /* * Multiply the scale ratio by the gainF difference * (plus a rnd up factor) */ interp = ((interp * (pRD->gainF[high] - pRD->gainF[low])) + 999) / 1000; /* Add ratioed gain_f to low gain_f value */ return interp + pRD->gainF[low]; } HAL_BOOL ar5210SetTxPowerLimit(struct ath_hal *ah, uint32_t limit) { AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, AR5210_MAX_RATE_POWER); /* XXX flush to h/w */ return AH_TRUE; } /* * Get TXPower values and set them in the radio */ static HAL_BOOL setupPowerSettings(struct ath_hal *ah, const struct ieee80211_channel *chan, uint8_t cp[17]) { uint16_t freq = ath_hal_gethwchannel(ah, chan); const HAL_EEPROM_v1 *ee = AH_PRIVATE(ah)->ah_eeprom; uint8_t gainFRD, gainF36, gainF48, gainF54; uint8_t dBmRD, dBm36, dBm48, dBm54, dontcare; uint32_t rd, group; const struct tpcMap *pRD; /* Set OB/DB Values regardless of channel */ cp[15] = (ee->ee_biasCurrents >> 4) & 0x7; cp[16] = ee->ee_biasCurrents & 0x7; if (freq < 5170 || freq > 5320) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u\n", __func__, freq); return AH_FALSE; } HALASSERT(ee->ee_version >= AR_EEPROM_VER1 && ee->ee_version < AR_EEPROM_VER3); /* Match regulatory domain */ for (rd = 0; rd < AR_REG_DOMAINS_MAX; rd++) if (AH_PRIVATE(ah)->ah_currentRD == ee->ee_regDomain[rd]) break; if (rd == AR_REG_DOMAINS_MAX) { #ifdef AH_DEBUG ath_hal_printf(ah, "%s: no calibrated regulatory domain matches the " "current regularly domain (0x%0x)\n", __func__, AH_PRIVATE(ah)->ah_currentRD); #endif return AH_FALSE; } group = ((freq - 5170) / 10); if (group > 11) { /* Pull 5.29 into the 5.27 group */ group--; } /* Integer divide will set group from 0 to 4 */ group = group / 3; pRD = &ee->ee_tpc[group]; /* Set PC DAC Values */ cp[14] = pRD->regdmn[rd]; cp[9] = AH_MIN(pRD->regdmn[rd], pRD->rate36); cp[8] = AH_MIN(pRD->regdmn[rd], pRD->rate48); cp[7] = AH_MIN(pRD->regdmn[rd], pRD->rate54); /* Find Corresponding gainF values for RD, 36, 48, 54 */ gainFRD = getGainF(ah, pRD, pRD->regdmn[rd], &dBmRD); gainF36 = getGainF(ah, pRD, cp[9], &dBm36); gainF48 = getGainF(ah, pRD, cp[8], &dBm48); gainF54 = getGainF(ah, pRD, cp[7], &dBm54); /* Power Scale if requested */ if (AH_PRIVATE(ah)->ah_tpScale != HAL_TP_SCALE_MAX) { static const uint16_t tpcScaleReductionTable[5] = { 0, 3, 6, 9, AR5210_MAX_RATE_POWER }; uint16_t tpScale; tpScale = tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale]; if (dBmRD < tpScale+3) dBmRD = 3; /* min */ else dBmRD -= tpScale; cp[14] = getPcdac(ah, pRD, dBmRD); gainFRD = getGainF(ah, pRD, cp[14], &dontcare); dBm36 = AH_MIN(dBm36, dBmRD); cp[9] = getPcdac(ah, pRD, dBm36); gainF36 = getGainF(ah, pRD, cp[9], &dontcare); dBm48 = AH_MIN(dBm48, dBmRD); cp[8] = getPcdac(ah, pRD, dBm48); gainF48 = getGainF(ah, pRD, cp[8], &dontcare); dBm54 = AH_MIN(dBm54, dBmRD); cp[7] = getPcdac(ah, pRD, dBm54); gainF54 = getGainF(ah, pRD, cp[7], &dontcare); } /* Record current dBm at rate 6 */ AH_PRIVATE(ah)->ah_maxPowerLevel = 2*dBmRD; cp[13] = cp[12] = cp[11] = cp[10] = cp[14]; /* Set GainF Values */ cp[0] = gainFRD - gainF54; cp[1] = gainFRD - gainF48; cp[2] = gainFRD - gainF36; /* 9, 12, 18, 24 have no gain_delta from 6 */ cp[3] = cp[4] = cp[5] = cp[6] = 0; return AH_TRUE; } /* * Places the device in and out of reset and then places sane * values in the registers based on EEPROM config, initialization * vectors (as determined by the mode), and station configuration */ HAL_BOOL ar5210SetTransmitPower(struct ath_hal *ah, const struct ieee80211_channel *chan) { #define N(a) (sizeof (a) / sizeof (a[0])) static const uint32_t pwr_regs_start[17] = { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0xf0000000, 0xcc000000, 0x00000000, 0x00000000, 0x00000000, 0x0a000000, 0x000000e2, 0x0a000020, 0x01000002, 0x01000018, 0x40000000, 0x00000418 }; uint16_t i; uint8_t cp[sizeof(ar5k0007_pwrSettings)]; uint32_t pwr_regs[17]; OS_MEMCPY(pwr_regs, pwr_regs_start, sizeof(pwr_regs)); OS_MEMCPY(cp, ar5k0007_pwrSettings, sizeof(cp)); /* Check the EEPROM tx power calibration settings */ if (!setupPowerSettings(ah, chan, cp)) { #ifdef AH_DEBUG ath_hal_printf(ah, "%s: unable to setup power settings\n", __func__); #endif return AH_FALSE; } if (cp[15] < 1 || cp[15] > 5) { #ifdef AH_DEBUG ath_hal_printf(ah, "%s: OB out of range (%u)\n", __func__, cp[15]); #endif return AH_FALSE; } if (cp[16] < 1 || cp[16] > 5) { #ifdef AH_DEBUG ath_hal_printf(ah, "%s: DB out of range (%u)\n", __func__, cp[16]); #endif return AH_FALSE; } /* reverse bits of the transmit power array */ for (i = 0; i < 7; i++) cp[i] = ath_hal_reverseBits(cp[i], 5); for (i = 7; i < 15; i++) cp[i] = ath_hal_reverseBits(cp[i], 6); /* merge transmit power values into the register - quite gross */ pwr_regs[0] |= ((cp[1] << 5) & 0xE0) | (cp[0] & 0x1F); pwr_regs[1] |= ((cp[3] << 7) & 0x80) | ((cp[2] << 2) & 0x7C) | ((cp[1] >> 3) & 0x03); pwr_regs[2] |= ((cp[4] << 4) & 0xF0) | ((cp[3] >> 1) & 0x0F); pwr_regs[3] |= ((cp[6] << 6) & 0xC0) | ((cp[5] << 1) & 0x3E) | ((cp[4] >> 4) & 0x01); pwr_regs[4] |= ((cp[7] << 3) & 0xF8) | ((cp[6] >> 2) & 0x07); pwr_regs[5] |= ((cp[9] << 7) & 0x80) | ((cp[8] << 1) & 0x7E) | ((cp[7] >> 5) & 0x01); pwr_regs[6] |= ((cp[10] << 5) & 0xE0) | ((cp[9] >> 1) & 0x1F); pwr_regs[7] |= ((cp[11] << 3) & 0xF8) | ((cp[10] >> 3) & 0x07); pwr_regs[8] |= ((cp[12] << 1) & 0x7E) | ((cp[11] >> 5) & 0x01); pwr_regs[9] |= ((cp[13] << 5) & 0xE0); pwr_regs[10] |= ((cp[14] << 3) & 0xF8) | ((cp[13] >> 3) & 0x07); pwr_regs[11] |= ((cp[14] >> 5) & 0x01); /* Set OB */ pwr_regs[8] |= (ath_hal_reverseBits(cp[15], 3) << 7) & 0x80; pwr_regs[9] |= (ath_hal_reverseBits(cp[15], 3) >> 1) & 0x03; /* Set DB */ pwr_regs[9] |= (ath_hal_reverseBits(cp[16], 3) << 2) & 0x1C; /* Write the registers */ for (i = 0; i < N(pwr_regs)-1; i++) OS_REG_WRITE(ah, 0x0000989c, pwr_regs[i]); /* last write is a flush */ OS_REG_WRITE(ah, 0x000098d4, pwr_regs[i]); return AH_TRUE; #undef N } /* * Takes the MHz channel value and sets the Channel value * * ASSUMES: Writes enabled to analog bus before AGC is active * or by disabling the AGC. */ static HAL_BOOL ar5210SetChannel(struct ath_hal *ah, struct ieee80211_channel *chan) { uint16_t freq = ath_hal_gethwchannel(ah, chan); uint32_t data; /* Set the Channel */ data = ath_hal_reverseBits((freq - 5120)/10, 5); data = (data << 1) | 0x41; OS_REG_WRITE(ah, AR_PHY(0x27), data); OS_REG_WRITE(ah, AR_PHY(0x30), 0); AH_PRIVATE(ah)->ah_curchan = chan; return AH_TRUE; } int16_t ar5210GetNoiseFloor(struct ath_hal *ah) { int16_t nf; nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff; if (nf & 0x100) nf = 0 - ((nf ^ 0x1ff) + 1); return nf; } #define NORMAL_NF_THRESH (-72) /* * Peform the noisefloor calibration and check for * any constant channel interference * * Returns: TRUE for a successful noise floor calibration; else FALSE */ HAL_BOOL ar5210CalNoiseFloor(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *ichan) { int32_t nf, nfLoops; /* Calibrate the noise floor */ OS_REG_WRITE(ah, AR_PHY_AGCCTL, OS_REG_READ(ah, AR_PHY_AGCCTL) | AR_PHY_AGC_NF); /* Do not read noise floor until it has done the first update */ if (!ath_hal_wait(ah, AR_PHY_AGCCTL, AR_PHY_AGC_NF, 0)) { #ifdef ATH_HAL_DEBUG ath_hal_printf(ah, " -PHY NF Reg state: 0x%x\n", OS_REG_READ(ah, AR_PHY_AGCCTL)); ath_hal_printf(ah, " -MAC Reset Reg state: 0x%x\n", OS_REG_READ(ah, AR_RC)); ath_hal_printf(ah, " -PHY Active Reg state: 0x%x\n", OS_REG_READ(ah, AR_PHY_ACTIVE)); #endif /* ATH_HAL_DEBUG */ return AH_FALSE; } nf = 0; /* Keep checking until the floor is below the threshold or the nf is done */ for (nfLoops = 0; ((nfLoops < 21) && (nf > NORMAL_NF_THRESH)); nfLoops++) { OS_DELAY(1000); /* Sleep for 1 ms */ nf = ar5210GetNoiseFloor(ah); } if (nf > NORMAL_NF_THRESH) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: Bad noise cal %d\n", __func__, nf); ichan->rawNoiseFloor = 0; return AH_FALSE; } ichan->rawNoiseFloor = nf; return AH_TRUE; } /* * Adjust NF based on statistical values for 5GHz frequencies. */ int16_t ar5210GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c) { return 0; } HAL_RFGAIN ar5210GetRfgain(struct ath_hal *ah) { return HAL_RFGAIN_INACTIVE; }