config root man

Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/s3/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/ulpt/@/crypto/via/

FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64
Upload File :
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/s3/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/ulpt/@/crypto/via/padlock_hash.c

/*-
 * Copyright (c) 2006 Pawel Jakub Dawidek <pjd@FreeBSD.org>
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD: release/9.1.0/sys/crypto/via/padlock_hash.c 231979 2012-02-21 20:56:03Z kib $");

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/malloc.h>
#include <sys/libkern.h>
#include <sys/endian.h>
#include <sys/pcpu.h>
#if defined(__amd64__) || (defined(__i386__) && !defined(PC98))
#include <machine/cpufunc.h>
#include <machine/cputypes.h>
#include <machine/md_var.h>
#include <machine/specialreg.h>
#endif
#include <machine/pcb.h>

#include <opencrypto/cryptodev.h>
#include <opencrypto/cryptosoft.h> /* for hmac_ipad_buffer and hmac_opad_buffer */
#include <opencrypto/xform.h>

#include <crypto/via/padlock.h>

/*
 * Implementation notes.
 *
 * Some VIA CPUs provides SHA1 and SHA256 acceleration.
 * We implement all HMAC algorithms provided by crypto(9) framework, but we do
 * the crypto work in software unless this is HMAC/SHA1 or HMAC/SHA256 and
 * our CPU can accelerate it.
 *
 * Additional CPU instructions, which preform SHA1 and SHA256 are one-shot
 * functions - we have only one chance to give the data, CPU itself will add
 * the padding and calculate hash automatically.
 * This means, it is not possible to implement common init(), update(), final()
 * methods.
 * The way I've choosen is to keep adding data to the buffer on update()
 * (reallocating the buffer if necessary) and call XSHA{1,256} instruction on
 * final().
 */

struct padlock_sha_ctx {
	uint8_t	*psc_buf;
	int	 psc_offset;
	int	 psc_size;
};
CTASSERT(sizeof(struct padlock_sha_ctx) <= sizeof(union authctx));

static void padlock_sha_init(struct padlock_sha_ctx *ctx);
static int padlock_sha_update(struct padlock_sha_ctx *ctx, uint8_t *buf,
    uint16_t bufsize);
static void padlock_sha1_final(uint8_t *hash, struct padlock_sha_ctx *ctx);
static void padlock_sha256_final(uint8_t *hash, struct padlock_sha_ctx *ctx);

static struct auth_hash padlock_hmac_sha1 = {
	CRYPTO_SHA1_HMAC, "HMAC-SHA1",
	20, SHA1_HASH_LEN, SHA1_HMAC_BLOCK_LEN, sizeof(struct padlock_sha_ctx),
        (void (*)(void *))padlock_sha_init,
	(int (*)(void *, uint8_t *, uint16_t))padlock_sha_update,
	(void (*)(uint8_t *, void *))padlock_sha1_final
};

static struct auth_hash padlock_hmac_sha256 = {
	CRYPTO_SHA2_256_HMAC, "HMAC-SHA2-256",
	32, SHA2_256_HASH_LEN, SHA2_256_HMAC_BLOCK_LEN, sizeof(struct padlock_sha_ctx),
        (void (*)(void *))padlock_sha_init,
	(int (*)(void *, uint8_t *, uint16_t))padlock_sha_update,
	(void (*)(uint8_t *, void *))padlock_sha256_final
};

MALLOC_DECLARE(M_PADLOCK);

static __inline void
padlock_output_block(uint32_t *src, uint32_t *dst, size_t count)
{

	while (count-- > 0)
		*dst++ = bswap32(*src++);
}

static void
padlock_do_sha1(const u_char *in, u_char *out, int count)
{
	u_char buf[128+16];	/* PadLock needs at least 128 bytes buffer. */
	u_char *result = PADLOCK_ALIGN(buf);

	((uint32_t *)result)[0] = 0x67452301;
	((uint32_t *)result)[1] = 0xEFCDAB89;
	((uint32_t *)result)[2] = 0x98BADCFE;
	((uint32_t *)result)[3] = 0x10325476;
	((uint32_t *)result)[4] = 0xC3D2E1F0;

#ifdef __GNUCLIKE_ASM
	__asm __volatile(
		".byte  0xf3, 0x0f, 0xa6, 0xc8" /* rep xsha1 */
			: "+S"(in), "+D"(result)
			: "c"(count), "a"(0)
		);
#endif

	padlock_output_block((uint32_t *)result, (uint32_t *)out,
	    SHA1_HASH_LEN / sizeof(uint32_t));
}

static void
padlock_do_sha256(const char *in, char *out, int count)
{
	char buf[128+16];	/* PadLock needs at least 128 bytes buffer. */
	char *result = PADLOCK_ALIGN(buf);

	((uint32_t *)result)[0] = 0x6A09E667;
	((uint32_t *)result)[1] = 0xBB67AE85;
	((uint32_t *)result)[2] = 0x3C6EF372;
	((uint32_t *)result)[3] = 0xA54FF53A;
	((uint32_t *)result)[4] = 0x510E527F;
	((uint32_t *)result)[5] = 0x9B05688C;
	((uint32_t *)result)[6] = 0x1F83D9AB;
	((uint32_t *)result)[7] = 0x5BE0CD19;

#ifdef __GNUCLIKE_ASM
	__asm __volatile(
		".byte  0xf3, 0x0f, 0xa6, 0xd0" /* rep xsha256 */
			: "+S"(in), "+D"(result)
			: "c"(count), "a"(0)
		);
#endif

	padlock_output_block((uint32_t *)result, (uint32_t *)out,
	    SHA2_256_HASH_LEN / sizeof(uint32_t));
}

static void
padlock_sha_init(struct padlock_sha_ctx *ctx)
{

	ctx->psc_buf = NULL;
	ctx->psc_offset = 0;
	ctx->psc_size = 0;
}

static int
padlock_sha_update(struct padlock_sha_ctx *ctx, uint8_t *buf, uint16_t bufsize)
{

	if (ctx->psc_size - ctx->psc_offset < bufsize) {
		ctx->psc_size = MAX(ctx->psc_size * 2, ctx->psc_size + bufsize);
		ctx->psc_buf = realloc(ctx->psc_buf, ctx->psc_size, M_PADLOCK,
		    M_NOWAIT);
		if(ctx->psc_buf == NULL)
			return (ENOMEM);
	}
	bcopy(buf, ctx->psc_buf + ctx->psc_offset, bufsize);
	ctx->psc_offset += bufsize;
	return (0);
}

static void
padlock_sha_free(struct padlock_sha_ctx *ctx)
{

	if (ctx->psc_buf != NULL) {
		//bzero(ctx->psc_buf, ctx->psc_size);
		free(ctx->psc_buf, M_PADLOCK);
		ctx->psc_buf = NULL;
		ctx->psc_offset = 0;
		ctx->psc_size = 0;
	}
}

static void
padlock_sha1_final(uint8_t *hash, struct padlock_sha_ctx *ctx)
{

	padlock_do_sha1(ctx->psc_buf, hash, ctx->psc_offset);
	padlock_sha_free(ctx);
}

static void
padlock_sha256_final(uint8_t *hash, struct padlock_sha_ctx *ctx)
{

	padlock_do_sha256(ctx->psc_buf, hash, ctx->psc_offset);
	padlock_sha_free(ctx);
}

static void
padlock_copy_ctx(struct auth_hash *axf, void *sctx, void *dctx)
{

	if ((via_feature_xcrypt & VIA_HAS_SHA) != 0 &&
	    (axf->type == CRYPTO_SHA1_HMAC ||
	     axf->type == CRYPTO_SHA2_256_HMAC)) {
		struct padlock_sha_ctx *spctx = sctx, *dpctx = dctx;

		dpctx->psc_offset = spctx->psc_offset;
		dpctx->psc_size = spctx->psc_size;
		dpctx->psc_buf = malloc(dpctx->psc_size, M_PADLOCK, M_WAITOK);
		bcopy(spctx->psc_buf, dpctx->psc_buf, dpctx->psc_size);
	} else {
		bcopy(sctx, dctx, axf->ctxsize);
	}
}

static void
padlock_free_ctx(struct auth_hash *axf, void *ctx)
{

	if ((via_feature_xcrypt & VIA_HAS_SHA) != 0 &&
	    (axf->type == CRYPTO_SHA1_HMAC ||
	     axf->type == CRYPTO_SHA2_256_HMAC)) {
		padlock_sha_free(ctx);
	}
}

static void
padlock_hash_key_setup(struct padlock_session *ses, caddr_t key, int klen)
{
	struct auth_hash *axf;
	int i;

	klen /= 8;
	axf = ses->ses_axf;

	/*
	 * Try to free contexts before using them, because
	 * padlock_hash_key_setup() can be called twice - once from
	 * padlock_newsession() and again from padlock_process().
	 */
	padlock_free_ctx(axf, ses->ses_ictx);
	padlock_free_ctx(axf, ses->ses_octx);

	for (i = 0; i < klen; i++)
		key[i] ^= HMAC_IPAD_VAL;

	axf->Init(ses->ses_ictx);
	axf->Update(ses->ses_ictx, key, klen);
	axf->Update(ses->ses_ictx, hmac_ipad_buffer, axf->blocksize - klen);

	for (i = 0; i < klen; i++)
		key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);

	axf->Init(ses->ses_octx);
	axf->Update(ses->ses_octx, key, klen);
	axf->Update(ses->ses_octx, hmac_opad_buffer, axf->blocksize - klen);

	for (i = 0; i < klen; i++)
		key[i] ^= HMAC_OPAD_VAL;
}

/*
 * Compute keyed-hash authenticator.
 */
static int
padlock_authcompute(struct padlock_session *ses, struct cryptodesc *crd,
    caddr_t buf, int flags)
{
	u_char hash[HASH_MAX_LEN];
	struct auth_hash *axf;
	union authctx ctx;
	int error;

	axf = ses->ses_axf;

	padlock_copy_ctx(axf, ses->ses_ictx, &ctx);
	error = crypto_apply(flags, buf, crd->crd_skip, crd->crd_len,
	    (int (*)(void *, void *, unsigned int))axf->Update, (caddr_t)&ctx);
	if (error != 0) {
		padlock_free_ctx(axf, &ctx);
		return (error);
	}
	axf->Final(hash, &ctx);

	padlock_copy_ctx(axf, ses->ses_octx, &ctx);
	axf->Update(&ctx, hash, axf->hashsize);
	axf->Final(hash, &ctx);

	/* Inject the authentication data */
	crypto_copyback(flags, buf, crd->crd_inject,
	    ses->ses_mlen == 0 ? axf->hashsize : ses->ses_mlen, hash);
	return (0);
}

int
padlock_hash_setup(struct padlock_session *ses, struct cryptoini *macini)
{

	ses->ses_mlen = macini->cri_mlen;

	/* Find software structure which describes HMAC algorithm. */
	switch (macini->cri_alg) {
	case CRYPTO_NULL_HMAC:
		ses->ses_axf = &auth_hash_null;
		break;
	case CRYPTO_MD5_HMAC:
		ses->ses_axf = &auth_hash_hmac_md5;
		break;
	case CRYPTO_SHA1_HMAC:
		if ((via_feature_xcrypt & VIA_HAS_SHA) != 0)
			ses->ses_axf = &padlock_hmac_sha1;
		else
			ses->ses_axf = &auth_hash_hmac_sha1;
		break;
	case CRYPTO_RIPEMD160_HMAC:
		ses->ses_axf = &auth_hash_hmac_ripemd_160;
		break;
	case CRYPTO_SHA2_256_HMAC:
		if ((via_feature_xcrypt & VIA_HAS_SHA) != 0)
			ses->ses_axf = &padlock_hmac_sha256;
		else
			ses->ses_axf = &auth_hash_hmac_sha2_256;
		break;
	case CRYPTO_SHA2_384_HMAC:
		ses->ses_axf = &auth_hash_hmac_sha2_384;
		break;
	case CRYPTO_SHA2_512_HMAC:
		ses->ses_axf = &auth_hash_hmac_sha2_512;
		break;
	}

	/* Allocate memory for HMAC inner and outer contexts. */
	ses->ses_ictx = malloc(ses->ses_axf->ctxsize, M_PADLOCK,
	    M_ZERO | M_NOWAIT);
	ses->ses_octx = malloc(ses->ses_axf->ctxsize, M_PADLOCK,
	    M_ZERO | M_NOWAIT);
	if (ses->ses_ictx == NULL || ses->ses_octx == NULL)
		return (ENOMEM);

	/* Setup key if given. */
	if (macini->cri_key != NULL) {
		padlock_hash_key_setup(ses, macini->cri_key,
		    macini->cri_klen);
	}
	return (0);
}

int
padlock_hash_process(struct padlock_session *ses, struct cryptodesc *maccrd,
    struct cryptop *crp)
{
	struct thread *td;
	int error, saved_ctx;

	td = curthread;
	if (!is_fpu_kern_thread(0)) {
		error = fpu_kern_enter(td, ses->ses_fpu_ctx, FPU_KERN_NORMAL);
		saved_ctx = 1;
	} else {
		error = 0;
		saved_ctx = 0;
	}
	if (error != 0)
		return (error);
	if ((maccrd->crd_flags & CRD_F_KEY_EXPLICIT) != 0)
		padlock_hash_key_setup(ses, maccrd->crd_key, maccrd->crd_klen);

	error = padlock_authcompute(ses, maccrd, crp->crp_buf, crp->crp_flags);
	if (saved_ctx)
		fpu_kern_leave(td, ses->ses_fpu_ctx);
	return (error);
}

void
padlock_hash_free(struct padlock_session *ses)
{

	if (ses->ses_ictx != NULL) {
		padlock_free_ctx(ses->ses_axf, ses->ses_ictx);
		bzero(ses->ses_ictx, ses->ses_axf->ctxsize);
		free(ses->ses_ictx, M_PADLOCK);
		ses->ses_ictx = NULL;
	}
	if (ses->ses_octx != NULL) {
		padlock_free_ctx(ses->ses_axf, ses->ses_octx);
		bzero(ses->ses_octx, ses->ses_axf->ctxsize);
		free(ses->ses_octx, M_PADLOCK);
		ses->ses_octx = NULL;
	}
}

Man Man