config root man

Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/s3/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/ulpt/@/dev/ral/

FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64
Upload File :
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/s3/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/ulpt/@/dev/ral/rt2860.c

/*-
 * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr>
 * Copyright (c) 2012 Bernhard Schmidt <bschmidt@FreeBSD.org>
 *
 * Permission to use, copy, modify, and distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 * $OpenBSD: rt2860.c,v 1.65 2010/10/23 14:24:54 damien Exp $
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD: release/9.1.0/sys/dev/ral/rt2860.c 236004 2012-05-25 16:07:39Z bschmidt $");

/*-
 * Ralink Technology RT2860/RT3090/RT3390/RT3562 chipset driver
 * http://www.ralinktech.com/
 */

#include <sys/param.h>
#include <sys/sysctl.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/firmware.h>

#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/rman.h>

#include <net/bpf.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>

#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_radiotap.h>
#include <net80211/ieee80211_regdomain.h>
#include <net80211/ieee80211_ratectl.h>

#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/if_ether.h>

#include <dev/ral/rt2860reg.h>
#include <dev/ral/rt2860var.h>

#define RAL_DEBUG
#ifdef RAL_DEBUG
#define DPRINTF(x)	do { if (sc->sc_debug > 0) printf x; } while (0)
#define DPRINTFN(n, x)	do { if (sc->sc_debug >= (n)) printf x; } while (0)
#else
#define DPRINTF(x)
#define DPRINTFN(n, x)
#endif

static struct ieee80211vap *rt2860_vap_create(struct ieee80211com *,
			    const char [IFNAMSIZ], int, enum ieee80211_opmode,
			    int, const uint8_t [IEEE80211_ADDR_LEN],
			    const uint8_t [IEEE80211_ADDR_LEN]);
static void	rt2860_vap_delete(struct ieee80211vap *);
static void	rt2860_dma_map_addr(void *, bus_dma_segment_t *, int, int);
static int	rt2860_alloc_tx_ring(struct rt2860_softc *,
		    struct rt2860_tx_ring *);
static void	rt2860_reset_tx_ring(struct rt2860_softc *,
		    struct rt2860_tx_ring *);
static void	rt2860_free_tx_ring(struct rt2860_softc *,
		    struct rt2860_tx_ring *);
static int	rt2860_alloc_tx_pool(struct rt2860_softc *);
static void	rt2860_free_tx_pool(struct rt2860_softc *);
static int	rt2860_alloc_rx_ring(struct rt2860_softc *,
		    struct rt2860_rx_ring *);
static void	rt2860_reset_rx_ring(struct rt2860_softc *,
		    struct rt2860_rx_ring *);
static void	rt2860_free_rx_ring(struct rt2860_softc *,
		    struct rt2860_rx_ring *);
static void	rt2860_updatestats(struct rt2860_softc *);
static void	rt2860_newassoc(struct ieee80211_node *, int);
static void	rt2860_node_free(struct ieee80211_node *);
#ifdef IEEE80211_HT
static int	rt2860_ampdu_rx_start(struct ieee80211com *,
		    struct ieee80211_node *, uint8_t);
static void	rt2860_ampdu_rx_stop(struct ieee80211com *,
		    struct ieee80211_node *, uint8_t);
#endif
static int	rt2860_newstate(struct ieee80211vap *, enum ieee80211_state,
		    int);
static uint16_t	rt3090_efuse_read_2(struct rt2860_softc *, uint16_t);
static uint16_t	rt2860_eeprom_read_2(struct rt2860_softc *, uint16_t);
static void	rt2860_intr_coherent(struct rt2860_softc *);
static void	rt2860_drain_stats_fifo(struct rt2860_softc *);
static void	rt2860_tx_intr(struct rt2860_softc *, int);
static void	rt2860_rx_intr(struct rt2860_softc *);
static void	rt2860_tbtt_intr(struct rt2860_softc *);
static void	rt2860_gp_intr(struct rt2860_softc *);
static int	rt2860_tx(struct rt2860_softc *, struct mbuf *,
		    struct ieee80211_node *);
static int	rt2860_raw_xmit(struct ieee80211_node *, struct mbuf *,
		    const struct ieee80211_bpf_params *);
static int	rt2860_tx_raw(struct rt2860_softc *, struct mbuf *,
		    struct ieee80211_node *,
		    const struct ieee80211_bpf_params *params);
static void	rt2860_start(struct ifnet *);
static void	rt2860_start_locked(struct ifnet *);
static void	rt2860_watchdog(void *);
static int	rt2860_ioctl(struct ifnet *, u_long, caddr_t);
static void	rt2860_mcu_bbp_write(struct rt2860_softc *, uint8_t, uint8_t);
static uint8_t	rt2860_mcu_bbp_read(struct rt2860_softc *, uint8_t);
static void	rt2860_rf_write(struct rt2860_softc *, uint8_t, uint32_t);
static uint8_t	rt3090_rf_read(struct rt2860_softc *, uint8_t);
static void	rt3090_rf_write(struct rt2860_softc *, uint8_t, uint8_t);
static int	rt2860_mcu_cmd(struct rt2860_softc *, uint8_t, uint16_t, int);
static void	rt2860_enable_mrr(struct rt2860_softc *);
static void	rt2860_set_txpreamble(struct rt2860_softc *);
static void	rt2860_set_basicrates(struct rt2860_softc *,
		    const struct ieee80211_rateset *);
static void	rt2860_scan_start(struct ieee80211com *);
static void	rt2860_scan_end(struct ieee80211com *);
static void	rt2860_set_channel(struct ieee80211com *);
static void	rt2860_select_chan_group(struct rt2860_softc *, int);
static void	rt2860_set_chan(struct rt2860_softc *, u_int);
static void	rt3090_set_chan(struct rt2860_softc *, u_int);
static int	rt3090_rf_init(struct rt2860_softc *);
static void	rt3090_rf_wakeup(struct rt2860_softc *);
static int	rt3090_filter_calib(struct rt2860_softc *, uint8_t, uint8_t,
		    uint8_t *);
static void	rt3090_rf_setup(struct rt2860_softc *);
static void	rt2860_set_leds(struct rt2860_softc *, uint16_t);
static void	rt2860_set_gp_timer(struct rt2860_softc *, int);
static void	rt2860_set_bssid(struct rt2860_softc *, const uint8_t *);
static void	rt2860_set_macaddr(struct rt2860_softc *, const uint8_t *);
static void	rt2860_update_promisc(struct ifnet *);
static void	rt2860_updateslot(struct ifnet *);
static void	rt2860_updateprot(struct ifnet *);
static int	rt2860_updateedca(struct ieee80211com *);
#ifdef HW_CRYPTO
static int	rt2860_set_key(struct ieee80211com *, struct ieee80211_node *,
		    struct ieee80211_key *);
static void	rt2860_delete_key(struct ieee80211com *,
		    struct ieee80211_node *, struct ieee80211_key *);
#endif
static int8_t	rt2860_rssi2dbm(struct rt2860_softc *, uint8_t, uint8_t);
static const char *rt2860_get_rf(uint8_t);
static int	rt2860_read_eeprom(struct rt2860_softc *,
		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
static int	rt2860_bbp_init(struct rt2860_softc *);
static int	rt2860_txrx_enable(struct rt2860_softc *);
static void	rt2860_init(void *);
static void	rt2860_init_locked(struct rt2860_softc *);
static void	rt2860_stop(void *);
static void	rt2860_stop_locked(struct rt2860_softc *);
static int	rt2860_load_microcode(struct rt2860_softc *);
#ifdef NOT_YET
static void	rt2860_calib(struct rt2860_softc *);
#endif
static void	rt3090_set_rx_antenna(struct rt2860_softc *, int);
static void	rt2860_switch_chan(struct rt2860_softc *,
		    struct ieee80211_channel *);
static int	rt2860_setup_beacon(struct rt2860_softc *,
		    struct ieee80211vap *);
static void	rt2860_enable_tsf_sync(struct rt2860_softc *);

static const struct {
	uint32_t	reg;
	uint32_t	val;
} rt2860_def_mac[] = {
	RT2860_DEF_MAC
};

static const struct {
	uint8_t	reg;
	uint8_t	val;
} rt2860_def_bbp[] = {
	RT2860_DEF_BBP
};

static const struct rfprog {
	uint8_t		chan;
	uint32_t	r1, r2, r3, r4;
} rt2860_rf2850[] = {
	RT2860_RF2850
};

struct {
	uint8_t	n, r, k;
} rt3090_freqs[] = {
	RT3070_RF3052
};

static const struct {
	uint8_t	reg;
	uint8_t	val;
}  rt3090_def_rf[] = {
	RT3070_DEF_RF
};

int
rt2860_attach(device_t dev, int id)
{
	struct rt2860_softc *sc = device_get_softc(dev);
	struct ieee80211com *ic;
	struct ifnet *ifp;
	uint32_t tmp;
	int error, ntries, qid;
	uint8_t bands;
	uint8_t macaddr[IEEE80211_ADDR_LEN];

	sc->sc_dev = dev;
	sc->sc_debug = 0;

	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
	if (ifp == NULL) {
		device_printf(sc->sc_dev, "can not if_alloc()\n");
		return ENOMEM;
	}
	ic = ifp->if_l2com;

	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
	    MTX_DEF | MTX_RECURSE);

	callout_init_mtx(&sc->watchdog_ch, &sc->sc_mtx, 0);

	/* wait for NIC to initialize */
	for (ntries = 0; ntries < 100; ntries++) {
		tmp = RAL_READ(sc, RT2860_ASIC_VER_ID);
		if (tmp != 0 && tmp != 0xffffffff)
			break;
		DELAY(10);
	}
	if (ntries == 100) {
		device_printf(sc->sc_dev,
		    "timeout waiting for NIC to initialize\n");
		error = EIO;
		goto fail1;
	}
	sc->mac_ver = tmp >> 16;
	sc->mac_rev = tmp & 0xffff;

	if (sc->mac_ver != 0x2860 &&
	    (id == 0x0681 || id == 0x0781 || id == 0x1059))
		sc->sc_flags |= RT2860_ADVANCED_PS;

	/* retrieve RF rev. no and various other things from EEPROM */
	rt2860_read_eeprom(sc, macaddr);
	if (bootverbose) {
		device_printf(sc->sc_dev, "MAC/BBP RT%X (rev 0x%04X), "
		    "RF %s (MIMO %dT%dR), address %6D\n",
		    sc->mac_ver, sc->mac_rev, rt2860_get_rf(sc->rf_rev),
		    sc->ntxchains, sc->nrxchains, macaddr, ":");
	}

	/*
	 * Allocate Tx (4 EDCAs + HCCA + Mgt) and Rx rings.
	 */
	for (qid = 0; qid < 6; qid++) {
		if ((error = rt2860_alloc_tx_ring(sc, &sc->txq[qid])) != 0) {
			device_printf(sc->sc_dev,
			    "could not allocate Tx ring %d\n", qid);
			goto fail2;
		}
	}

	if ((error = rt2860_alloc_rx_ring(sc, &sc->rxq)) != 0) {
		device_printf(sc->sc_dev, "could not allocate Rx ring\n");
		goto fail2;
	}

	if ((error = rt2860_alloc_tx_pool(sc)) != 0) {
		device_printf(sc->sc_dev, "could not allocate Tx pool\n");
		goto fail3;
	}

	/* mgmt ring is broken on RT2860C, use EDCA AC VO ring instead */
	sc->mgtqid = (sc->mac_ver == 0x2860 && sc->mac_rev == 0x0100) ?
	    WME_AC_VO : 5;

	ifp->if_softc = sc;
	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
	ifp->if_init = rt2860_init;
	ifp->if_ioctl = rt2860_ioctl;
	ifp->if_start = rt2860_start;
	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
	IFQ_SET_READY(&ifp->if_snd);

	ic->ic_ifp = ifp;
	ic->ic_opmode = IEEE80211_M_STA;
	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */

	/* set device capabilities */
	ic->ic_caps =
		  IEEE80211_C_STA		/* station mode */
		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
		| IEEE80211_C_HOSTAP		/* hostap mode */
		| IEEE80211_C_MONITOR		/* monitor mode */
		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
		| IEEE80211_C_WDS		/* 4-address traffic works */
		| IEEE80211_C_MBSS		/* mesh point link mode */
		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
		| IEEE80211_C_SHSLOT		/* short slot time supported */
		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
#if 0
		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
#endif
		| IEEE80211_C_WME		/* 802.11e */
		;

	bands = 0;
	setbit(&bands, IEEE80211_MODE_11B);
	setbit(&bands, IEEE80211_MODE_11G);
	if (sc->rf_rev == RT2860_RF_2750 || sc->rf_rev == RT2860_RF_2850)
		setbit(&bands, IEEE80211_MODE_11A);
	ieee80211_init_channels(ic, NULL, &bands);

	ieee80211_ifattach(ic, macaddr);

	ic->ic_wme.wme_update = rt2860_updateedca;
	ic->ic_scan_start = rt2860_scan_start;
	ic->ic_scan_end = rt2860_scan_end;
	ic->ic_set_channel = rt2860_set_channel;
	ic->ic_updateslot = rt2860_updateslot;
	ic->ic_update_promisc = rt2860_update_promisc;
	ic->ic_raw_xmit = rt2860_raw_xmit;
	sc->sc_node_free = ic->ic_node_free;
	ic->ic_node_free = rt2860_node_free;
	ic->ic_newassoc = rt2860_newassoc;

	ic->ic_vap_create = rt2860_vap_create;
	ic->ic_vap_delete = rt2860_vap_delete;

	ieee80211_radiotap_attach(ic,
	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
		RT2860_TX_RADIOTAP_PRESENT,
	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
		RT2860_RX_RADIOTAP_PRESENT);

#ifdef RAL_DEBUG
	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
	    "debug", CTLFLAG_RW, &sc->sc_debug, 0, "debug msgs");
#endif
	if (bootverbose)
		ieee80211_announce(ic);

	return 0;

fail3:	rt2860_free_rx_ring(sc, &sc->rxq);
fail2:	while (--qid >= 0)
		rt2860_free_tx_ring(sc, &sc->txq[qid]);
fail1:	mtx_destroy(&sc->sc_mtx);
	if_free(ifp);
	return error;
}

int
rt2860_detach(void *xsc)
{
	struct rt2860_softc *sc = xsc;
	struct ifnet *ifp =  sc->sc_ifp;
	struct ieee80211com *ic = ifp->if_l2com;
	int qid;

	RAL_LOCK(sc);
	rt2860_stop_locked(sc);
	RAL_UNLOCK(sc);

	ieee80211_ifdetach(ic);

	for (qid = 0; qid < 6; qid++)
		rt2860_free_tx_ring(sc, &sc->txq[qid]);
	rt2860_free_rx_ring(sc, &sc->rxq);
	rt2860_free_tx_pool(sc);

	if_free(ifp);

	mtx_destroy(&sc->sc_mtx);

	return 0;
}

void
rt2860_shutdown(void *xsc)
{
	struct rt2860_softc *sc = xsc;

	rt2860_stop(sc);
}

void
rt2860_suspend(void *xsc)
{
	struct rt2860_softc *sc = xsc;

	rt2860_stop(sc);
}

void
rt2860_resume(void *xsc)
{
	struct rt2860_softc *sc = xsc;
	struct ifnet *ifp = sc->sc_ifp;

	if (ifp->if_flags & IFF_UP)
		rt2860_init(sc);
}

static struct ieee80211vap *
rt2860_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
    enum ieee80211_opmode opmode, int flags,
    const uint8_t bssid[IEEE80211_ADDR_LEN],
    const uint8_t mac[IEEE80211_ADDR_LEN])
{
	struct ifnet *ifp = ic->ic_ifp;
	struct rt2860_vap *rvp;
	struct ieee80211vap *vap;

	switch (opmode) {
	case IEEE80211_M_STA:
	case IEEE80211_M_IBSS:
	case IEEE80211_M_AHDEMO:
	case IEEE80211_M_MONITOR:
	case IEEE80211_M_HOSTAP:
	case IEEE80211_M_MBSS:
		/* XXXRP: TBD */
		if (!TAILQ_EMPTY(&ic->ic_vaps)) {
			if_printf(ifp, "only 1 vap supported\n");
			return NULL;
		}
		if (opmode == IEEE80211_M_STA)
			flags |= IEEE80211_CLONE_NOBEACONS;
		break;
	case IEEE80211_M_WDS:
		if (TAILQ_EMPTY(&ic->ic_vaps) ||
		    ic->ic_opmode != IEEE80211_M_HOSTAP) {
			if_printf(ifp, "wds only supported in ap mode\n");
			return NULL;
		}
		/*
		 * Silently remove any request for a unique
		 * bssid; WDS vap's always share the local
		 * mac address.
		 */
		flags &= ~IEEE80211_CLONE_BSSID;
		break;
	default:
		if_printf(ifp, "unknown opmode %d\n", opmode);
		return NULL;
	}
	rvp = malloc(sizeof(struct rt2860_vap), M_80211_VAP, M_NOWAIT | M_ZERO);
	if (rvp == NULL)
		return NULL;
	vap = &rvp->ral_vap;
	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);

	/* override state transition machine */
	rvp->ral_newstate = vap->iv_newstate;
	vap->iv_newstate = rt2860_newstate;
#if 0
	vap->iv_update_beacon = rt2860_beacon_update;
#endif

	/* HW supports up to 255 STAs (0-254) in HostAP and IBSS modes */
	vap->iv_max_aid = min(IEEE80211_AID_MAX, RT2860_WCID_MAX);

	ieee80211_ratectl_init(vap);
	/* complete setup */
	ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
	if (TAILQ_FIRST(&ic->ic_vaps) == vap)
		ic->ic_opmode = opmode;
	return vap;
}

static void
rt2860_vap_delete(struct ieee80211vap *vap)
{
	struct rt2860_vap *rvp = RT2860_VAP(vap);

	ieee80211_ratectl_deinit(vap);
	ieee80211_vap_detach(vap);
	free(rvp, M_80211_VAP);
}

static void
rt2860_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
	if (error != 0)
		return;

	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));

	*(bus_addr_t *)arg = segs[0].ds_addr;
}


static int
rt2860_alloc_tx_ring(struct rt2860_softc *sc, struct rt2860_tx_ring *ring)
{
	int size, error;

	size = RT2860_TX_RING_COUNT * sizeof (struct rt2860_txd);

	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 16, 0,
	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
	    size, 1, size, 0, NULL, NULL, &ring->desc_dmat);
	if (error != 0) {
		device_printf(sc->sc_dev, "could not create desc DMA map\n");
		goto fail;
	}

	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->txd,
	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
	if (error != 0) {
		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
		goto fail;
	}

	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->txd,
	    size, rt2860_dma_map_addr, &ring->paddr, 0);
	if (error != 0) {
		device_printf(sc->sc_dev, "could not load desc DMA map\n");
		goto fail;
	}

	bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);

	return 0;

fail:	rt2860_free_tx_ring(sc, ring);
	return error;
}

void
rt2860_reset_tx_ring(struct rt2860_softc *sc, struct rt2860_tx_ring *ring)
{
	struct rt2860_tx_data *data;
	int i;

	for (i = 0; i < RT2860_TX_RING_COUNT; i++) {
		if ((data = ring->data[i]) == NULL)
			continue;	/* nothing mapped in this slot */

		if (data->m != NULL) {
			bus_dmamap_sync(sc->txwi_dmat, data->map,
			    BUS_DMASYNC_POSTWRITE);
			bus_dmamap_unload(sc->txwi_dmat, data->map);
			m_freem(data->m);
			data->m = NULL;
		}
		if (data->ni != NULL) {
			ieee80211_free_node(data->ni);
			data->ni = NULL;
		}

		SLIST_INSERT_HEAD(&sc->data_pool, data, next);
		ring->data[i] = NULL;
	}

	ring->queued = 0;
	ring->cur = ring->next = 0;
}

void
rt2860_free_tx_ring(struct rt2860_softc *sc, struct rt2860_tx_ring *ring)
{
	struct rt2860_tx_data *data;
	int i;

	if (ring->txd != NULL) {
		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
		    BUS_DMASYNC_POSTWRITE);
		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
		bus_dmamem_free(ring->desc_dmat, ring->txd, ring->desc_map);
	}
	if (ring->desc_dmat != NULL)
		bus_dma_tag_destroy(ring->desc_dmat);

	for (i = 0; i < RT2860_TX_RING_COUNT; i++) {
		if ((data = ring->data[i]) == NULL)
			continue;	/* nothing mapped in this slot */

		if (data->m != NULL) {
			bus_dmamap_sync(sc->txwi_dmat, data->map,
			    BUS_DMASYNC_POSTWRITE);
			bus_dmamap_unload(sc->txwi_dmat, data->map);
			m_freem(data->m);
		}
		if (data->ni != NULL)
			ieee80211_free_node(data->ni);

		SLIST_INSERT_HEAD(&sc->data_pool, data, next);
	}
}

/*
 * Allocate a pool of TX Wireless Information blocks.
 */
int
rt2860_alloc_tx_pool(struct rt2860_softc *sc)
{
	caddr_t vaddr;
	bus_addr_t paddr;
	int i, size, error;

	size = RT2860_TX_POOL_COUNT * RT2860_TXWI_DMASZ;

	/* init data_pool early in case of failure.. */
	SLIST_INIT(&sc->data_pool);

	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
	    size, 1, size, 0, NULL, NULL, &sc->txwi_dmat);
	if (error != 0) {
		device_printf(sc->sc_dev, "could not create txwi DMA tag\n");
		goto fail;
	}

	error = bus_dmamem_alloc(sc->txwi_dmat, (void **)&sc->txwi_vaddr,
	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->txwi_map);
	if (error != 0) {
		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
		goto fail;
	}

	error = bus_dmamap_load(sc->txwi_dmat, sc->txwi_map,
	    sc->txwi_vaddr, size, rt2860_dma_map_addr, &paddr, 0);
	if (error != 0) {
		device_printf(sc->sc_dev, "could not load txwi DMA map\n");
		goto fail;
	}

	bus_dmamap_sync(sc->txwi_dmat, sc->txwi_map, BUS_DMASYNC_PREWRITE);

	vaddr = sc->txwi_vaddr;
	for (i = 0; i < RT2860_TX_POOL_COUNT; i++) {
		struct rt2860_tx_data *data = &sc->data[i];

		error = bus_dmamap_create(sc->txwi_dmat, 0, &data->map);
		if (error != 0) {
			device_printf(sc->sc_dev, "could not create DMA map\n");
			goto fail;
		}
		data->txwi = (struct rt2860_txwi *)vaddr;
		data->paddr = paddr;
		vaddr += RT2860_TXWI_DMASZ;
		paddr += RT2860_TXWI_DMASZ;

		SLIST_INSERT_HEAD(&sc->data_pool, data, next);
	}

	return 0;

fail:	rt2860_free_tx_pool(sc);
	return error;
}

void
rt2860_free_tx_pool(struct rt2860_softc *sc)
{
	if (sc->txwi_vaddr != NULL) {
		bus_dmamap_sync(sc->txwi_dmat, sc->txwi_map,
		    BUS_DMASYNC_POSTWRITE);
		bus_dmamap_unload(sc->txwi_dmat, sc->txwi_map);
		bus_dmamem_free(sc->txwi_dmat, sc->txwi_vaddr, sc->txwi_map);
	}
	if (sc->txwi_dmat != NULL)
		bus_dma_tag_destroy(sc->txwi_dmat);

	while (!SLIST_EMPTY(&sc->data_pool)) {
		struct rt2860_tx_data *data;
		data = SLIST_FIRST(&sc->data_pool);
		bus_dmamap_destroy(sc->txwi_dmat, data->map);
		SLIST_REMOVE_HEAD(&sc->data_pool, next);
	}
}

int
rt2860_alloc_rx_ring(struct rt2860_softc *sc, struct rt2860_rx_ring *ring)
{
	bus_addr_t physaddr;
	int i, size, error;

	size = RT2860_RX_RING_COUNT * sizeof (struct rt2860_rxd);

	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 16, 0,
	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
	    size, 1, size, 0, NULL, NULL, &ring->desc_dmat);
	if (error != 0) {
		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
		goto fail;
	}

	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->rxd,
	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
	if (error != 0) {
		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
		goto fail;
	}

	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->rxd,
	    size, rt2860_dma_map_addr, &ring->paddr, 0);
	if (error != 0) {
		device_printf(sc->sc_dev, "could not load desc DMA map\n");
		goto fail;
	}

	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
	    1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
	if (error != 0) {
		device_printf(sc->sc_dev, "could not create data DMA tag\n");
		goto fail;
	}

	for (i = 0; i < RT2860_RX_RING_COUNT; i++) {
		struct rt2860_rx_data *data = &ring->data[i];
		struct rt2860_rxd *rxd = &ring->rxd[i];

		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
		if (error != 0) {
			device_printf(sc->sc_dev, "could not create DMA map\n");
			goto fail;
		}

		data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
		if (data->m == NULL) {
			device_printf(sc->sc_dev,
			    "could not allocate rx mbuf\n");
			error = ENOMEM;
			goto fail;
		}

		error = bus_dmamap_load(ring->data_dmat, data->map,
		    mtod(data->m, void *), MCLBYTES, rt2860_dma_map_addr,
		    &physaddr, 0);
		if (error != 0) {
			device_printf(sc->sc_dev,
			    "could not load rx buf DMA map");
			goto fail;
		}

		rxd->sdp0 = htole32(physaddr);
		rxd->sdl0 = htole16(MCLBYTES);
	}

	bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);

	return 0;

fail:	rt2860_free_rx_ring(sc, ring);
	return error;
}

void
rt2860_reset_rx_ring(struct rt2860_softc *sc, struct rt2860_rx_ring *ring)
{
	int i;

	for (i = 0; i < RT2860_RX_RING_COUNT; i++)
		ring->rxd[i].sdl0 &= ~htole16(RT2860_RX_DDONE);

	bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);

	ring->cur = 0;
}

void
rt2860_free_rx_ring(struct rt2860_softc *sc, struct rt2860_rx_ring *ring)
{
	int i;

	if (ring->rxd != NULL) {
		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
		    BUS_DMASYNC_POSTWRITE);
		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
		bus_dmamem_free(ring->desc_dmat, ring->rxd, ring->desc_map);
	}
	if (ring->desc_dmat != NULL)
		bus_dma_tag_destroy(ring->desc_dmat);

	for (i = 0; i < RT2860_RX_RING_COUNT; i++) {
		struct rt2860_rx_data *data = &ring->data[i];

		if (data->m != NULL) {
			bus_dmamap_sync(ring->data_dmat, data->map,
			    BUS_DMASYNC_POSTREAD);
			bus_dmamap_unload(ring->data_dmat, data->map);
			m_freem(data->m);
		}
		if (data->map != NULL)
			bus_dmamap_destroy(ring->data_dmat, data->map);
	}
	if (ring->data_dmat != NULL)
		bus_dma_tag_destroy(ring->data_dmat);
}

static void
rt2860_updatestats(struct rt2860_softc *sc)
{
	struct ieee80211com *ic = sc->sc_ifp->if_l2com;

	/*
	 * In IBSS or HostAP modes (when the hardware sends beacons), the
	 * MAC can run into a livelock and start sending CTS-to-self frames
	 * like crazy if protection is enabled.  Fortunately, we can detect
	 * when such a situation occurs and reset the MAC.
	 */
	if (ic->ic_curmode != IEEE80211_M_STA) {
		/* check if we're in a livelock situation.. */
		uint32_t tmp = RAL_READ(sc, RT2860_DEBUG);
		if ((tmp & (1 << 29)) && (tmp & (1 << 7 | 1 << 5))) {
			/* ..and reset MAC/BBP for a while.. */
			DPRINTF(("CTS-to-self livelock detected\n"));
			RAL_WRITE(sc, RT2860_MAC_SYS_CTRL, RT2860_MAC_SRST);
			RAL_BARRIER_WRITE(sc);
			DELAY(1);
			RAL_WRITE(sc, RT2860_MAC_SYS_CTRL,
			    RT2860_MAC_RX_EN | RT2860_MAC_TX_EN);
		}
	}
}

static void
rt2860_newassoc(struct ieee80211_node *ni, int isnew)
{
	struct ieee80211com *ic = ni->ni_ic;
	struct rt2860_softc *sc = ic->ic_ifp->if_softc;
	uint8_t wcid;

	wcid = IEEE80211_AID(ni->ni_associd);
	if (isnew && ni->ni_associd != 0) {
		sc->wcid2ni[wcid] = ni;

		/* init WCID table entry */
		RAL_WRITE_REGION_1(sc, RT2860_WCID_ENTRY(wcid),
		    ni->ni_macaddr, IEEE80211_ADDR_LEN);
	}
	DPRINTF(("new assoc isnew=%d addr=%s WCID=%d\n",
	    isnew, ether_sprintf(ni->ni_macaddr), wcid));
}

static void
rt2860_node_free(struct ieee80211_node *ni)
{
	struct ieee80211com *ic = ni->ni_ic;
	struct rt2860_softc *sc = ic->ic_ifp->if_softc;
	uint8_t wcid;

	if (ni->ni_associd != 0) {
		wcid = IEEE80211_AID(ni->ni_associd);

		/* clear Rx WCID search table entry */
		RAL_SET_REGION_4(sc, RT2860_WCID_ENTRY(wcid), 0, 2);
	}
	sc->sc_node_free(ni);
}

#ifdef IEEE80211_HT
static int
rt2860_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
    uint8_t tid)
{
	struct rt2860_softc *sc = ic->ic_softc;
	uint8_t wcid = ((struct rt2860_node *)ni)->wcid;
	uint32_t tmp;

	/* update BA session mask */
	tmp = RAL_READ(sc, RT2860_WCID_ENTRY(wcid) + 4);
	tmp |= (1 << tid) << 16;
	RAL_WRITE(sc, RT2860_WCID_ENTRY(wcid) + 4, tmp);
	return 0;
}

static void
rt2860_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
    uint8_t tid)
{
	struct rt2860_softc *sc = ic->ic_softc;
	uint8_t wcid = ((struct rt2860_node *)ni)->wcid;
	uint32_t tmp;

	/* update BA session mask */
	tmp = RAL_READ(sc, RT2860_WCID_ENTRY(wcid) + 4);
	tmp &= ~((1 << tid) << 16);
	RAL_WRITE(sc, RT2860_WCID_ENTRY(wcid) + 4, tmp);
}
#endif

int
rt2860_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
{
	struct rt2860_vap *rvp = RT2860_VAP(vap);
	struct ieee80211com *ic = vap->iv_ic;
	struct rt2860_softc *sc = ic->ic_ifp->if_softc;
	uint32_t tmp;
	int error;

	if (vap->iv_state == IEEE80211_S_RUN) {
		/* turn link LED off */
		rt2860_set_leds(sc, RT2860_LED_RADIO);
	}

	if (nstate == IEEE80211_S_INIT && vap->iv_state == IEEE80211_S_RUN) {
		/* abort TSF synchronization */
		tmp = RAL_READ(sc, RT2860_BCN_TIME_CFG);
		RAL_WRITE(sc, RT2860_BCN_TIME_CFG,
		    tmp & ~(RT2860_BCN_TX_EN | RT2860_TSF_TIMER_EN |
		    RT2860_TBTT_TIMER_EN));
	}

	rt2860_set_gp_timer(sc, 0);

	error = rvp->ral_newstate(vap, nstate, arg);
	if (error != 0)
		return (error);

	if (nstate == IEEE80211_S_RUN) {
		struct ieee80211_node *ni = vap->iv_bss;

		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
			rt2860_enable_mrr(sc);
			rt2860_set_txpreamble(sc);
			rt2860_set_basicrates(sc, &ni->ni_rates);
			rt2860_set_bssid(sc, ni->ni_bssid);
		}

		if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
		    vap->iv_opmode == IEEE80211_M_IBSS ||
		    vap->iv_opmode == IEEE80211_M_MBSS) {
			error = rt2860_setup_beacon(sc, vap);
			if (error != 0)
				return error;
		}

		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
			rt2860_enable_tsf_sync(sc);
			rt2860_set_gp_timer(sc, 500);
		}

		/* turn link LED on */
		rt2860_set_leds(sc, RT2860_LED_RADIO |
		    (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan) ?
		     RT2860_LED_LINK_2GHZ : RT2860_LED_LINK_5GHZ));
	}
	return error;
}

/* Read 16-bit from eFUSE ROM (>=RT3071 only.) */
static uint16_t
rt3090_efuse_read_2(struct rt2860_softc *sc, uint16_t addr)
{
	uint32_t tmp;
	uint16_t reg;
	int ntries;

	addr *= 2;
	/*-
	 * Read one 16-byte block into registers EFUSE_DATA[0-3]:
	 * DATA0: F E D C
	 * DATA1: B A 9 8
	 * DATA2: 7 6 5 4
	 * DATA3: 3 2 1 0
	 */
	tmp = RAL_READ(sc, RT3070_EFUSE_CTRL);
	tmp &= ~(RT3070_EFSROM_MODE_MASK | RT3070_EFSROM_AIN_MASK);
	tmp |= (addr & ~0xf) << RT3070_EFSROM_AIN_SHIFT | RT3070_EFSROM_KICK;
	RAL_WRITE(sc, RT3070_EFUSE_CTRL, tmp);
	for (ntries = 0; ntries < 500; ntries++) {
		tmp = RAL_READ(sc, RT3070_EFUSE_CTRL);
		if (!(tmp & RT3070_EFSROM_KICK))
			break;
		DELAY(2);
	}
	if (ntries == 500)
		return 0xffff;

	if ((tmp & RT3070_EFUSE_AOUT_MASK) == RT3070_EFUSE_AOUT_MASK)
		return 0xffff;	/* address not found */

	/* determine to which 32-bit register our 16-bit word belongs */
	reg = RT3070_EFUSE_DATA3 - (addr & 0xc);
	tmp = RAL_READ(sc, reg);

	return (addr & 2) ? tmp >> 16 : tmp & 0xffff;
}

/*
 * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46,
 * 93C66 or 93C86).
 */
static uint16_t
rt2860_eeprom_read_2(struct rt2860_softc *sc, uint16_t addr)
{
	uint32_t tmp;
	uint16_t val;
	int n;

	/* clock C once before the first command */
	RT2860_EEPROM_CTL(sc, 0);

	RT2860_EEPROM_CTL(sc, RT2860_S);
	RT2860_EEPROM_CTL(sc, RT2860_S | RT2860_C);
	RT2860_EEPROM_CTL(sc, RT2860_S);

	/* write start bit (1) */
	RT2860_EEPROM_CTL(sc, RT2860_S | RT2860_D);
	RT2860_EEPROM_CTL(sc, RT2860_S | RT2860_D | RT2860_C);

	/* write READ opcode (10) */
	RT2860_EEPROM_CTL(sc, RT2860_S | RT2860_D);
	RT2860_EEPROM_CTL(sc, RT2860_S | RT2860_D | RT2860_C);
	RT2860_EEPROM_CTL(sc, RT2860_S);
	RT2860_EEPROM_CTL(sc, RT2860_S | RT2860_C);

	/* write address (A5-A0 or A7-A0) */
	n = ((RAL_READ(sc, RT2860_PCI_EECTRL) & 0x30) == 0) ? 5 : 7;
	for (; n >= 0; n--) {
		RT2860_EEPROM_CTL(sc, RT2860_S |
		    (((addr >> n) & 1) << RT2860_SHIFT_D));
		RT2860_EEPROM_CTL(sc, RT2860_S |
		    (((addr >> n) & 1) << RT2860_SHIFT_D) | RT2860_C);
	}

	RT2860_EEPROM_CTL(sc, RT2860_S);

	/* read data Q15-Q0 */
	val = 0;
	for (n = 15; n >= 0; n--) {
		RT2860_EEPROM_CTL(sc, RT2860_S | RT2860_C);
		tmp = RAL_READ(sc, RT2860_PCI_EECTRL);
		val |= ((tmp & RT2860_Q) >> RT2860_SHIFT_Q) << n;
		RT2860_EEPROM_CTL(sc, RT2860_S);
	}

	RT2860_EEPROM_CTL(sc, 0);

	/* clear Chip Select and clock C */
	RT2860_EEPROM_CTL(sc, RT2860_S);
	RT2860_EEPROM_CTL(sc, 0);
	RT2860_EEPROM_CTL(sc, RT2860_C);

	return val;
}

static __inline uint16_t
rt2860_srom_read(struct rt2860_softc *sc, uint8_t addr)
{
	/* either eFUSE ROM or EEPROM */
	return sc->sc_srom_read(sc, addr);
}

static void
rt2860_intr_coherent(struct rt2860_softc *sc)
{
	uint32_t tmp;

	/* DMA finds data coherent event when checking the DDONE bit */

	DPRINTF(("Tx/Rx Coherent interrupt\n"));

	/* restart DMA engine */
	tmp = RAL_READ(sc, RT2860_WPDMA_GLO_CFG);
	tmp &= ~(RT2860_TX_WB_DDONE | RT2860_RX_DMA_EN | RT2860_TX_DMA_EN);
	RAL_WRITE(sc, RT2860_WPDMA_GLO_CFG, tmp);

	(void)rt2860_txrx_enable(sc);
}

static void
rt2860_drain_stats_fifo(struct rt2860_softc *sc)
{
	struct ifnet *ifp = sc->sc_ifp;
	struct ieee80211_node *ni;
	uint32_t stat;
	int retrycnt;
	uint8_t wcid, mcs, pid;

	/* drain Tx status FIFO (maxsize = 16) */
	while ((stat = RAL_READ(sc, RT2860_TX_STAT_FIFO)) & RT2860_TXQ_VLD) {
		DPRINTFN(4, ("tx stat 0x%08x\n", stat));

		wcid = (stat >> RT2860_TXQ_WCID_SHIFT) & 0xff;
		ni = sc->wcid2ni[wcid];

		/* if no ACK was requested, no feedback is available */
		if (!(stat & RT2860_TXQ_ACKREQ) || wcid == 0xff || ni == NULL)
			continue;

		/* update per-STA AMRR stats */
		if (stat & RT2860_TXQ_OK) {
			/*
			 * Check if there were retries, ie if the Tx success
			 * rate is different from the requested rate.  Note
			 * that it works only because we do not allow rate
			 * fallback from OFDM to CCK.
			 */
			mcs = (stat >> RT2860_TXQ_MCS_SHIFT) & 0x7f;
			pid = (stat >> RT2860_TXQ_PID_SHIFT) & 0xf;
			if (mcs + 1 != pid)
				retrycnt = 1;
			else
				retrycnt = 0;
			ieee80211_ratectl_tx_complete(ni->ni_vap, ni,
			    IEEE80211_RATECTL_TX_SUCCESS, &retrycnt, NULL);
		} else {
			ieee80211_ratectl_tx_complete(ni->ni_vap, ni,
			    IEEE80211_RATECTL_TX_FAILURE, &retrycnt, NULL);
			ifp->if_oerrors++;
		}
	}
}

static void
rt2860_tx_intr(struct rt2860_softc *sc, int qid)
{
	struct ifnet *ifp = sc->sc_ifp;
	struct rt2860_tx_ring *ring = &sc->txq[qid];
	uint32_t hw;

	rt2860_drain_stats_fifo(sc);

	hw = RAL_READ(sc, RT2860_TX_DTX_IDX(qid));
	while (ring->next != hw) {
		struct rt2860_tx_data *data = ring->data[ring->next];

		if (data != NULL) {
			bus_dmamap_sync(sc->txwi_dmat, data->map,
			    BUS_DMASYNC_POSTWRITE);
			bus_dmamap_unload(sc->txwi_dmat, data->map);
			if (data->m->m_flags & M_TXCB) {
				ieee80211_process_callback(data->ni, data->m,
				    0);
			}
			m_freem(data->m);
			ieee80211_free_node(data->ni);
			data->m = NULL;
			data->ni = NULL;

			SLIST_INSERT_HEAD(&sc->data_pool, data, next);
			ring->data[ring->next] = NULL;

			ifp->if_opackets++;
		}
		ring->queued--;
		ring->next = (ring->next + 1) % RT2860_TX_RING_COUNT;
	}

	sc->sc_tx_timer = 0;
	if (ring->queued < RT2860_TX_RING_COUNT)
		sc->qfullmsk &= ~(1 << qid);
	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
	rt2860_start_locked(ifp);
}

/*
 * Return the Rx chain with the highest RSSI for a given frame.
 */
static __inline uint8_t
rt2860_maxrssi_chain(struct rt2860_softc *sc, const struct rt2860_rxwi *rxwi)
{
	uint8_t rxchain = 0;

	if (sc->nrxchains > 1) {
		if (rxwi->rssi[1] > rxwi->rssi[rxchain])
			rxchain = 1;
		if (sc->nrxchains > 2)
			if (rxwi->rssi[2] > rxwi->rssi[rxchain])
				rxchain = 2;
	}
	return rxchain;
}

static void
rt2860_rx_intr(struct rt2860_softc *sc)
{
	struct rt2860_rx_radiotap_header *tap;
	struct ifnet *ifp = sc->sc_ifp;
	struct ieee80211com *ic = ifp->if_l2com;
	struct ieee80211_frame *wh;
	struct ieee80211_node *ni;
	struct mbuf *m, *m1;
	bus_addr_t physaddr;
	uint32_t hw;
	uint16_t phy;
	uint8_t ant;
	int8_t rssi, nf;
	int error;

	hw = RAL_READ(sc, RT2860_FS_DRX_IDX) & 0xfff;
	while (sc->rxq.cur != hw) {
		struct rt2860_rx_data *data = &sc->rxq.data[sc->rxq.cur];
		struct rt2860_rxd *rxd = &sc->rxq.rxd[sc->rxq.cur];
		struct rt2860_rxwi *rxwi;

		bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
		    BUS_DMASYNC_POSTREAD);

		if (__predict_false(!(rxd->sdl0 & htole16(RT2860_RX_DDONE)))) {
			DPRINTF(("RXD DDONE bit not set!\n"));
			break;	/* should not happen */
		}

		if (__predict_false(rxd->flags &
		    htole32(RT2860_RX_CRCERR | RT2860_RX_ICVERR))) {
			ifp->if_ierrors++;
			goto skip;
		}

#ifdef HW_CRYPTO
		if (__predict_false(rxd->flags & htole32(RT2860_RX_MICERR))) {
			/* report MIC failures to net80211 for TKIP */
			ic->ic_stats.is_rx_locmicfail++;
			ieee80211_michael_mic_failure(ic, 0/* XXX */);
			ifp->if_ierrors++;
			goto skip;
		}
#endif

		m1 = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
		if (__predict_false(m1 == NULL)) {
			ifp->if_ierrors++;
			goto skip;
		}

		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
		    BUS_DMASYNC_POSTREAD);
		bus_dmamap_unload(sc->rxq.data_dmat, data->map);

		error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
		    mtod(m1, void *), MCLBYTES, rt2860_dma_map_addr,
		    &physaddr, 0);
		if (__predict_false(error != 0)) {
			m_freem(m1);

			/* try to reload the old mbuf */
			error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
			    mtod(data->m, void *), MCLBYTES,
			    rt2860_dma_map_addr, &physaddr, 0);
			if (__predict_false(error != 0)) {
				panic("%s: could not load old rx mbuf",
				    device_get_name(sc->sc_dev));
			}
			/* physical address may have changed */
			rxd->sdp0 = htole32(physaddr);
			ifp->if_ierrors++;
			goto skip;
		}

		/*
		 * New mbuf successfully loaded, update Rx ring and continue
		 * processing.
		 */
		m = data->m;
		data->m = m1;
		rxd->sdp0 = htole32(physaddr);

		rxwi = mtod(m, struct rt2860_rxwi *);

		/* finalize mbuf */
		m->m_pkthdr.rcvif = ifp;
		m->m_data = (caddr_t)(rxwi + 1);
		m->m_pkthdr.len = m->m_len = le16toh(rxwi->len) & 0xfff;

		wh = mtod(m, struct ieee80211_frame *);
#ifdef HW_CRYPTO
		if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
			/* frame is decrypted by hardware */
			wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
		}
#endif

		/* HW may insert 2 padding bytes after 802.11 header */
		if (rxd->flags & htole32(RT2860_RX_L2PAD)) {
			u_int hdrlen = ieee80211_hdrsize(wh);
			ovbcopy(wh, (caddr_t)wh + 2, hdrlen);
			m->m_data += 2;
			wh = mtod(m, struct ieee80211_frame *);
		}

		ant = rt2860_maxrssi_chain(sc, rxwi);
		rssi = rt2860_rssi2dbm(sc, rxwi->rssi[ant], ant);
		nf = RT2860_NOISE_FLOOR;

		if (ieee80211_radiotap_active(ic)) {
			tap = &sc->sc_rxtap;
			tap->wr_flags = 0;
			tap->wr_antenna = ant;
			tap->wr_antsignal = nf + rssi;
			tap->wr_antnoise = nf;
			/* in case it can't be found below */
			tap->wr_rate = 2;
			phy = le16toh(rxwi->phy);
			switch (phy & RT2860_PHY_MODE) {
			case RT2860_PHY_CCK:
				switch ((phy & RT2860_PHY_MCS) & ~RT2860_PHY_SHPRE) {
				case 0:	tap->wr_rate =   2; break;
				case 1:	tap->wr_rate =   4; break;
				case 2:	tap->wr_rate =  11; break;
				case 3:	tap->wr_rate =  22; break;
				}
				if (phy & RT2860_PHY_SHPRE)
					tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
				break;
			case RT2860_PHY_OFDM:
				switch (phy & RT2860_PHY_MCS) {
				case 0:	tap->wr_rate =  12; break;
				case 1:	tap->wr_rate =  18; break;
				case 2:	tap->wr_rate =  24; break;
				case 3:	tap->wr_rate =  36; break;
				case 4:	tap->wr_rate =  48; break;
				case 5:	tap->wr_rate =  72; break;
				case 6:	tap->wr_rate =  96; break;
				case 7:	tap->wr_rate = 108; break;
				}
				break;
			}
		}

		RAL_UNLOCK(sc);
		wh = mtod(m, struct ieee80211_frame *);

		/* send the frame to the 802.11 layer */
		ni = ieee80211_find_rxnode(ic,
		    (struct ieee80211_frame_min *)wh);
		if (ni != NULL) {
			(void)ieee80211_input(ni, m, rssi - nf, nf);
			ieee80211_free_node(ni);
		} else
			(void)ieee80211_input_all(ic, m, rssi - nf, nf);

		RAL_LOCK(sc);

skip:		rxd->sdl0 &= ~htole16(RT2860_RX_DDONE);

		bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
		    BUS_DMASYNC_PREWRITE);

		sc->rxq.cur = (sc->rxq.cur + 1) % RT2860_RX_RING_COUNT;
	}

	/* tell HW what we have processed */
	RAL_WRITE(sc, RT2860_RX_CALC_IDX,
	    (sc->rxq.cur - 1) % RT2860_RX_RING_COUNT);
}

static void
rt2860_tbtt_intr(struct rt2860_softc *sc)
{
#if 0
	struct ieee80211com *ic = &sc->sc_ic;

#ifndef IEEE80211_STA_ONLY
	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
		/* one less beacon until next DTIM */
		if (ic->ic_dtim_count == 0)
			ic->ic_dtim_count = ic->ic_dtim_period - 1;
		else
			ic->ic_dtim_count--;

		/* update dynamic parts of beacon */
		rt2860_setup_beacon(sc);

		/* flush buffered multicast frames */
		if (ic->ic_dtim_count == 0)
			ieee80211_notify_dtim(ic);
	}
#endif
	/* check if protection mode has changed */
	if ((sc->sc_ic_flags ^ ic->ic_flags) & IEEE80211_F_USEPROT) {
		rt2860_updateprot(ic);
		sc->sc_ic_flags = ic->ic_flags;
	}
#endif
}

static void
rt2860_gp_intr(struct rt2860_softc *sc)
{
	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);

	DPRINTFN(2, ("GP timeout state=%d\n", vap->iv_state));

	if (vap->iv_state == IEEE80211_S_RUN)
		rt2860_updatestats(sc);
}

void
rt2860_intr(void *arg)
{
	struct rt2860_softc *sc = arg;
	uint32_t r;

	RAL_LOCK(sc);

	r = RAL_READ(sc, RT2860_INT_STATUS);
	if (__predict_false(r == 0xffffffff)) {
		RAL_UNLOCK(sc);
		return;	/* device likely went away */
	}
	if (r == 0) {
		RAL_UNLOCK(sc);
		return;	/* not for us */
	}

	/* acknowledge interrupts */
	RAL_WRITE(sc, RT2860_INT_STATUS, r);

	if (r & RT2860_TX_RX_COHERENT)
		rt2860_intr_coherent(sc);

	if (r & RT2860_MAC_INT_2)	/* TX status */
		rt2860_drain_stats_fifo(sc);

	if (r & RT2860_TX_DONE_INT5)
		rt2860_tx_intr(sc, 5);

	if (r & RT2860_RX_DONE_INT)
		rt2860_rx_intr(sc);

	if (r & RT2860_TX_DONE_INT4)
		rt2860_tx_intr(sc, 4);

	if (r & RT2860_TX_DONE_INT3)
		rt2860_tx_intr(sc, 3);

	if (r & RT2860_TX_DONE_INT2)
		rt2860_tx_intr(sc, 2);

	if (r & RT2860_TX_DONE_INT1)
		rt2860_tx_intr(sc, 1);

	if (r & RT2860_TX_DONE_INT0)
		rt2860_tx_intr(sc, 0);

	if (r & RT2860_MAC_INT_0)	/* TBTT */
		rt2860_tbtt_intr(sc);

	if (r & RT2860_MAC_INT_3)	/* Auto wakeup */
		/* TBD wakeup */;

	if (r & RT2860_MAC_INT_4)	/* GP timer */
		rt2860_gp_intr(sc);

	RAL_UNLOCK(sc);
}

static int
rt2860_tx(struct rt2860_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
{
	struct ifnet *ifp = sc->sc_ifp;
	struct ieee80211com *ic = ifp->if_l2com;
	struct ieee80211vap *vap = ni->ni_vap;
	struct rt2860_tx_ring *ring;
	struct rt2860_tx_data *data;
	struct rt2860_txd *txd;
	struct rt2860_txwi *txwi;
	struct ieee80211_frame *wh;
	const struct ieee80211_txparam *tp;
	struct ieee80211_key *k;
	struct mbuf *m1;
	bus_dma_segment_t segs[RT2860_MAX_SCATTER];
	bus_dma_segment_t *seg;
	u_int hdrlen;
	uint16_t qos, dur;
	uint8_t type, qsel, mcs, pid, tid, qid;
	int i, nsegs, ntxds, pad, rate, ridx, error;

	/* the data pool contains at least one element, pick the first */
	data = SLIST_FIRST(&sc->data_pool);

	wh = mtod(m, struct ieee80211_frame *);

	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
		k = ieee80211_crypto_encap(ni, m);
		if (k == NULL) {
			m_freem(m);
			return ENOBUFS;
		}

		/* packet header may have moved, reset our local pointer */
		wh = mtod(m, struct ieee80211_frame *);
	}

	hdrlen = ieee80211_anyhdrsize(wh);
	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;

	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
		rate = tp->mcastrate;
	} else if (m->m_flags & M_EAPOL) {
		rate = tp->mgmtrate;
	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
		rate = tp->ucastrate;
	} else {
		(void) ieee80211_ratectl_rate(ni, NULL, 0);
		rate = ni->ni_txrate;
	}
	rate &= IEEE80211_RATE_VAL;

	qid = M_WME_GETAC(m);
	if (IEEE80211_QOS_HAS_SEQ(wh)) {
		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
		tid = qos & IEEE80211_QOS_TID;
	} else {
		qos = 0;
		tid = 0;
	}
	ring = &sc->txq[qid];
	ridx = ic->ic_rt->rateCodeToIndex[rate];

	/* get MCS code from rate index */
	mcs = rt2860_rates[ridx].mcs;

	/* setup TX Wireless Information */
	txwi = data->txwi;
	txwi->flags = 0;
	/* let HW generate seq numbers for non-QoS frames */
	txwi->xflags = qos ? 0 : RT2860_TX_NSEQ;
	if (type == IEEE80211_FC0_TYPE_DATA)
		txwi->wcid = IEEE80211_AID(ni->ni_associd);
	else
		txwi->wcid = 0xff;
	txwi->len = htole16(m->m_pkthdr.len);
	if (rt2860_rates[ridx].phy == IEEE80211_T_DS) {
		txwi->phy = htole16(RT2860_PHY_CCK);
		if (ridx != RT2860_RIDX_CCK1 &&
		    (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
			mcs |= RT2860_PHY_SHPRE;
	} else
		txwi->phy = htole16(RT2860_PHY_OFDM);
	txwi->phy |= htole16(mcs);

	/*
	 * We store the MCS code into the driver-private PacketID field.
	 * The PacketID is latched into TX_STAT_FIFO when Tx completes so
	 * that we know at which initial rate the frame was transmitted.
	 * We add 1 to the MCS code because setting the PacketID field to
	 * 0 means that we don't want feedback in TX_STAT_FIFO.
	 */
	pid = (mcs + 1) & 0xf;
	txwi->len |= htole16(pid << RT2860_TX_PID_SHIFT);

	/* check if RTS/CTS or CTS-to-self protection is required */
	if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
	    (m->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold ||
	     ((ic->ic_flags & IEEE80211_F_USEPROT) &&
	      rt2860_rates[ridx].phy == IEEE80211_T_OFDM)))
		txwi->txop = RT2860_TX_TXOP_HT;
	else
		txwi->txop = RT2860_TX_TXOP_BACKOFF;

	if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
	    (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
	     IEEE80211_QOS_ACKPOLICY_NOACK)) {
		txwi->xflags |= RT2860_TX_ACK;

		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
			dur = rt2860_rates[ridx].sp_ack_dur;
		else
			dur = rt2860_rates[ridx].lp_ack_dur;
		*(uint16_t *)wh->i_dur = htole16(dur);
	}
	/* ask MAC to insert timestamp into probe responses */
	if ((wh->i_fc[0] &
	     (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
	     (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
	    /* NOTE: beacons do not pass through tx_data() */
		txwi->flags |= RT2860_TX_TS;

	if (ieee80211_radiotap_active_vap(vap)) {
		struct rt2860_tx_radiotap_header *tap = &sc->sc_txtap;

		tap->wt_flags = 0;
		tap->wt_rate = rate;
		if (mcs & RT2860_PHY_SHPRE)
			tap->wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;

		ieee80211_radiotap_tx(vap, m);
	}

	pad = (hdrlen + 3) & ~3;

	/* copy and trim 802.11 header */
	memcpy(txwi + 1, wh, hdrlen);
	m_adj(m, hdrlen);

	error = bus_dmamap_load_mbuf_sg(sc->txwi_dmat, data->map, m, segs,
	    &nsegs, 0);
	if (__predict_false(error != 0 && error != EFBIG)) {
		device_printf(sc->sc_dev, "can't map mbuf (error %d)\n",
		    error);
		m_freem(m);
		return error;
	}
	if (__predict_true(error == 0)) {
		/* determine how many TXDs are required */
		ntxds = 1 + (nsegs / 2);

		if (ring->queued + ntxds >= RT2860_TX_RING_COUNT) {
			/* not enough free TXDs, force mbuf defrag */
			bus_dmamap_unload(sc->txwi_dmat, data->map);
			error = EFBIG;
		}
	}
	if (__predict_false(error != 0)) {
		m1 = m_defrag(m, M_DONTWAIT);
		if (m1 == NULL) {
			device_printf(sc->sc_dev,
			    "could not defragment mbuf\n");
			m_freem(m);
			return ENOBUFS;
		}
		m = m1;

		error = bus_dmamap_load_mbuf_sg(sc->txwi_dmat, data->map, m,
		    segs, &nsegs, 0);
		if (__predict_false(error != 0)) {
			device_printf(sc->sc_dev, "can't map mbuf (error %d)\n",
			    error);
			m_freem(m);
			return error;
		}

		/* determine how many TXDs are now required */
		ntxds = 1 + (nsegs / 2);

		if (ring->queued + ntxds >= RT2860_TX_RING_COUNT) {
			/* this is a hopeless case, drop the mbuf! */
			bus_dmamap_unload(sc->txwi_dmat, data->map);
			m_freem(m);
			return ENOBUFS;
		}
	}

	qsel = (qid < WME_NUM_AC) ? RT2860_TX_QSEL_EDCA : RT2860_TX_QSEL_MGMT;

	/* first segment is TXWI + 802.11 header */
	txd = &ring->txd[ring->cur];
	txd->sdp0 = htole32(data->paddr);
	txd->sdl0 = htole16(sizeof (struct rt2860_txwi) + pad);
	txd->flags = qsel;

	/* setup payload segments */
	seg = &segs[0];
	for (i = nsegs; i >= 2; i -= 2) {
		txd->sdp1 = htole32(seg->ds_addr);
		txd->sdl1 = htole16(seg->ds_len);
		seg++;
		ring->cur = (ring->cur + 1) % RT2860_TX_RING_COUNT;
		/* grab a new Tx descriptor */
		txd = &ring->txd[ring->cur];
		txd->sdp0 = htole32(seg->ds_addr);
		txd->sdl0 = htole16(seg->ds_len);
		txd->flags = qsel;
		seg++;
	}
	/* finalize last segment */
	if (i > 0) {
		txd->sdp1 = htole32(seg->ds_addr);
		txd->sdl1 = htole16(seg->ds_len | RT2860_TX_LS1);
	} else {
		txd->sdl0 |= htole16(RT2860_TX_LS0);
		txd->sdl1 = 0;
	}

	/* remove from the free pool and link it into the SW Tx slot */
	SLIST_REMOVE_HEAD(&sc->data_pool, next);
	data->m = m;
	data->ni = ni;
	ring->data[ring->cur] = data;

	bus_dmamap_sync(sc->txwi_dmat, sc->txwi_map, BUS_DMASYNC_PREWRITE);
	bus_dmamap_sync(sc->txwi_dmat, data->map, BUS_DMASYNC_PREWRITE);
	bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);

	DPRINTFN(4, ("sending frame qid=%d wcid=%d nsegs=%d ridx=%d\n",
	    qid, txwi->wcid, nsegs, ridx));

	ring->cur = (ring->cur + 1) % RT2860_TX_RING_COUNT;
	ring->queued += ntxds;
	if (ring->queued >= RT2860_TX_RING_COUNT)
		sc->qfullmsk |= 1 << qid;

	/* kick Tx */
	RAL_WRITE(sc, RT2860_TX_CTX_IDX(qid), ring->cur);

	return 0;
}

static int
rt2860_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
    const struct ieee80211_bpf_params *params)
{
	struct ieee80211com *ic = ni->ni_ic;
	struct ifnet *ifp = ic->ic_ifp;
	struct rt2860_softc *sc = ifp->if_softc;
	int error;

	RAL_LOCK(sc);

	/* prevent management frames from being sent if we're not ready */
	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
		RAL_UNLOCK(sc);
		m_freem(m);
		ieee80211_free_node(ni);
		return ENETDOWN;
	}
	if (params == NULL) {
		/*
		 * Legacy path; interpret frame contents to decide
		 * precisely how to send the frame.
		 */
		error = rt2860_tx(sc, m, ni);
	} else {
		/*
		 * Caller supplied explicit parameters to use in
		 * sending the frame.
		 */
		error = rt2860_tx_raw(sc, m, ni, params);
	}
	if (error != 0) {
		/* NB: m is reclaimed on tx failure */
		ieee80211_free_node(ni);
		ifp->if_oerrors++;
	}
	sc->sc_tx_timer = 5;
	RAL_UNLOCK(sc);
	return error;
}

static int
rt2860_tx_raw(struct rt2860_softc *sc, struct mbuf *m,
    struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
{
	struct ifnet *ifp = sc->sc_ifp;
	struct ieee80211com *ic = ifp->if_l2com;
	struct ieee80211vap *vap = ni->ni_vap;
	struct rt2860_tx_ring *ring;
	struct rt2860_tx_data *data;
	struct rt2860_txd *txd;
	struct rt2860_txwi *txwi;
	struct ieee80211_frame *wh;
	struct mbuf *m1;
	bus_dma_segment_t segs[RT2860_MAX_SCATTER];
	bus_dma_segment_t *seg;
	u_int hdrlen;
	uint16_t dur;
	uint8_t type, qsel, mcs, pid, tid, qid;
	int i, nsegs, ntxds, pad, rate, ridx, error;

	/* the data pool contains at least one element, pick the first */
	data = SLIST_FIRST(&sc->data_pool);

	wh = mtod(m, struct ieee80211_frame *);
	hdrlen = ieee80211_hdrsize(wh);
	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;

	/* Choose a TX rate index. */
	rate = params->ibp_rate0;
	ridx = ic->ic_rt->rateCodeToIndex[rate];
	if (ridx == (uint8_t)-1) {
		/* XXX fall back to mcast/mgmt rate? */
		m_freem(m);
		return EINVAL;
	}

	qid = params->ibp_pri & 3;
	tid = 0;
	ring = &sc->txq[qid];

	/* get MCS code from rate index */
	mcs = rt2860_rates[ridx].mcs;

	/* setup TX Wireless Information */
	txwi = data->txwi;
	txwi->flags = 0;
	/* let HW generate seq numbers for non-QoS frames */
	txwi->xflags = params->ibp_pri & 3 ? 0 : RT2860_TX_NSEQ;
	txwi->wcid = 0xff;
	txwi->len = htole16(m->m_pkthdr.len);
	if (rt2860_rates[ridx].phy == IEEE80211_T_DS) {
		txwi->phy = htole16(RT2860_PHY_CCK);
		if (ridx != RT2860_RIDX_CCK1 &&
		    (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
			mcs |= RT2860_PHY_SHPRE;
	} else
		txwi->phy = htole16(RT2860_PHY_OFDM);
	txwi->phy |= htole16(mcs);

	/*
	 * We store the MCS code into the driver-private PacketID field.
	 * The PacketID is latched into TX_STAT_FIFO when Tx completes so
	 * that we know at which initial rate the frame was transmitted.
	 * We add 1 to the MCS code because setting the PacketID field to
	 * 0 means that we don't want feedback in TX_STAT_FIFO.
	 */
	pid = (mcs + 1) & 0xf;
	txwi->len |= htole16(pid << RT2860_TX_PID_SHIFT);

	/* check if RTS/CTS or CTS-to-self protection is required */
	if (params->ibp_flags & IEEE80211_BPF_RTS ||
	    params->ibp_flags & IEEE80211_BPF_CTS)
		txwi->txop = RT2860_TX_TXOP_HT;
	else
		txwi->txop = RT2860_TX_TXOP_BACKOFF;
	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0) {
		txwi->xflags |= RT2860_TX_ACK;

		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
			dur = rt2860_rates[ridx].sp_ack_dur;
		else
			dur = rt2860_rates[ridx].lp_ack_dur;
		*(uint16_t *)wh->i_dur = htole16(dur);
	}
	/* ask MAC to insert timestamp into probe responses */
	if ((wh->i_fc[0] &
	     (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
	     (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
	    /* NOTE: beacons do not pass through tx_data() */
		txwi->flags |= RT2860_TX_TS;

	if (ieee80211_radiotap_active_vap(vap)) {
		struct rt2860_tx_radiotap_header *tap = &sc->sc_txtap;

		tap->wt_flags = 0;
		tap->wt_rate = rate;
		if (mcs & RT2860_PHY_SHPRE)
			tap->wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;

		ieee80211_radiotap_tx(vap, m);
	}

	pad = (hdrlen + 3) & ~3;

	/* copy and trim 802.11 header */
	memcpy(txwi + 1, wh, hdrlen);
	m_adj(m, hdrlen);

	error = bus_dmamap_load_mbuf_sg(sc->txwi_dmat, data->map, m, segs,
	    &nsegs, 0);
	if (__predict_false(error != 0 && error != EFBIG)) {
		device_printf(sc->sc_dev, "can't map mbuf (error %d)\n",
		    error);
		m_freem(m);
		return error;
	}
	if (__predict_true(error == 0)) {
		/* determine how many TXDs are required */
		ntxds = 1 + (nsegs / 2);

		if (ring->queued + ntxds >= RT2860_TX_RING_COUNT) {
			/* not enough free TXDs, force mbuf defrag */
			bus_dmamap_unload(sc->txwi_dmat, data->map);
			error = EFBIG;
		}
	}
	if (__predict_false(error != 0)) {
		m1 = m_defrag(m, M_DONTWAIT);
		if (m1 == NULL) {
			device_printf(sc->sc_dev,
			    "could not defragment mbuf\n");
			m_freem(m);
			return ENOBUFS;
		}
		m = m1;

		error = bus_dmamap_load_mbuf_sg(sc->txwi_dmat, data->map, m,
		    segs, &nsegs, 0);
		if (__predict_false(error != 0)) {
			device_printf(sc->sc_dev, "can't map mbuf (error %d)\n",
			    error);
			m_freem(m);
			return error;
		}

		/* determine how many TXDs are now required */
		ntxds = 1 + (nsegs / 2);

		if (ring->queued + ntxds >= RT2860_TX_RING_COUNT) {
			/* this is a hopeless case, drop the mbuf! */
			bus_dmamap_unload(sc->txwi_dmat, data->map);
			m_freem(m);
			return ENOBUFS;
		}
	}

	qsel = (qid < WME_NUM_AC) ? RT2860_TX_QSEL_EDCA : RT2860_TX_QSEL_MGMT;

	/* first segment is TXWI + 802.11 header */
	txd = &ring->txd[ring->cur];
	txd->sdp0 = htole32(data->paddr);
	txd->sdl0 = htole16(sizeof (struct rt2860_txwi) + pad);
	txd->flags = qsel;

	/* setup payload segments */
	seg = &segs[0];
	for (i = nsegs; i >= 2; i -= 2) {
		txd->sdp1 = htole32(seg->ds_addr);
		txd->sdl1 = htole16(seg->ds_len);
		seg++;
		ring->cur = (ring->cur + 1) % RT2860_TX_RING_COUNT;
		/* grab a new Tx descriptor */
		txd = &ring->txd[ring->cur];
		txd->sdp0 = htole32(seg->ds_addr);
		txd->sdl0 = htole16(seg->ds_len);
		txd->flags = qsel;
		seg++;
	}
	/* finalize last segment */
	if (i > 0) {
		txd->sdp1 = htole32(seg->ds_addr);
		txd->sdl1 = htole16(seg->ds_len | RT2860_TX_LS1);
	} else {
		txd->sdl0 |= htole16(RT2860_TX_LS0);
		txd->sdl1 = 0;
	}

	/* remove from the free pool and link it into the SW Tx slot */
	SLIST_REMOVE_HEAD(&sc->data_pool, next);
	data->m = m;
	data->ni = ni;
	ring->data[ring->cur] = data;

	bus_dmamap_sync(sc->txwi_dmat, sc->txwi_map, BUS_DMASYNC_PREWRITE);
	bus_dmamap_sync(sc->txwi_dmat, data->map, BUS_DMASYNC_PREWRITE);
	bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);

	DPRINTFN(4, ("sending frame qid=%d wcid=%d nsegs=%d ridx=%d\n",
	    qid, txwi->wcid, nsegs, ridx));

	ring->cur = (ring->cur + 1) % RT2860_TX_RING_COUNT;
	ring->queued += ntxds;
	if (ring->queued >= RT2860_TX_RING_COUNT)
		sc->qfullmsk |= 1 << qid;

	/* kick Tx */
	RAL_WRITE(sc, RT2860_TX_CTX_IDX(qid), ring->cur);

	return 0;
}

static void
rt2860_start(struct ifnet *ifp)
{
	struct rt2860_softc *sc = ifp->if_softc;

	RAL_LOCK(sc);
	rt2860_start_locked(ifp);
	RAL_UNLOCK(sc);
}

static void
rt2860_start_locked(struct ifnet *ifp)
{
	struct rt2860_softc *sc = ifp->if_softc;
	struct ieee80211_node *ni;
	struct mbuf *m;

	RAL_LOCK_ASSERT(sc);

	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
	    (ifp->if_drv_flags & IFF_DRV_OACTIVE))
		return;

	for (;;) {
		if (SLIST_EMPTY(&sc->data_pool) || sc->qfullmsk != 0) {
			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
			break;
		}
		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
		if (m == NULL)
			break;
		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
		if (rt2860_tx(sc, m, ni) != 0) {
			ieee80211_free_node(ni);
			ifp->if_oerrors++;
			continue;
		}
		sc->sc_tx_timer = 5;
	}
}

static void
rt2860_watchdog(void *arg)
{
	struct rt2860_softc *sc = arg;
	struct ifnet *ifp = sc->sc_ifp;

	RAL_LOCK_ASSERT(sc);

	KASSERT(ifp->if_drv_flags & IFF_DRV_RUNNING, ("not running"));

	if (sc->sc_invalid)		/* card ejected */
		return;

	if (sc->sc_tx_timer > 0 && --sc->sc_tx_timer == 0) {
		if_printf(ifp, "device timeout\n");
		rt2860_stop_locked(sc);
		rt2860_init_locked(sc);
		ifp->if_oerrors++;
		return;
	}
	callout_reset(&sc->watchdog_ch, hz, rt2860_watchdog, sc);
}

static int
rt2860_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
	struct rt2860_softc *sc = ifp->if_softc;
	struct ieee80211com *ic = ifp->if_l2com;
	struct ifreq *ifr = (struct ifreq *)data;
	int error = 0, startall = 0;

	switch (cmd) {
	case SIOCSIFFLAGS:
		RAL_LOCK(sc);
		if (ifp->if_flags & IFF_UP) {
			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
				rt2860_init_locked(sc);
				startall = 1;
			} else
				rt2860_update_promisc(ifp);
		} else {
			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
				rt2860_stop_locked(sc);
		}
		RAL_UNLOCK(sc);
		if (startall)
			ieee80211_start_all(ic);
		break;
	case SIOCGIFMEDIA:
		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
		break;
	case SIOCSIFADDR:
		error = ether_ioctl(ifp, cmd, data);
		break;
	default:
		error = EINVAL;
		break;
	}
	return error;
}

/*
 * Reading and writing from/to the BBP is different from RT2560 and RT2661.
 * We access the BBP through the 8051 microcontroller unit which means that
 * the microcode must be loaded first.
 */
void
rt2860_mcu_bbp_write(struct rt2860_softc *sc, uint8_t reg, uint8_t val)
{
	int ntries;

	for (ntries = 0; ntries < 100; ntries++) {
		if (!(RAL_READ(sc, RT2860_H2M_BBPAGENT) & RT2860_BBP_CSR_KICK))
			break;
		DELAY(1);
	}
	if (ntries == 100) {
		device_printf(sc->sc_dev,
		    "could not write to BBP through MCU\n");
		return;
	}

	RAL_WRITE(sc, RT2860_H2M_BBPAGENT, RT2860_BBP_RW_PARALLEL |
	    RT2860_BBP_CSR_KICK | reg << 8 | val);
	RAL_BARRIER_WRITE(sc);

	rt2860_mcu_cmd(sc, RT2860_MCU_CMD_BBP, 0, 0);
	DELAY(1000);
}

uint8_t
rt2860_mcu_bbp_read(struct rt2860_softc *sc, uint8_t reg)
{
	uint32_t val;
	int ntries;

	for (ntries = 0; ntries < 100; ntries++) {
		if (!(RAL_READ(sc, RT2860_H2M_BBPAGENT) & RT2860_BBP_CSR_KICK))
			break;
		DELAY(1);
	}
	if (ntries == 100) {
		device_printf(sc->sc_dev,
		    "could not read from BBP through MCU\n");
		return 0;
	}

	RAL_WRITE(sc, RT2860_H2M_BBPAGENT, RT2860_BBP_RW_PARALLEL |
	    RT2860_BBP_CSR_KICK | RT2860_BBP_CSR_READ | reg << 8);
	RAL_BARRIER_WRITE(sc);

	rt2860_mcu_cmd(sc, RT2860_MCU_CMD_BBP, 0, 0);
	DELAY(1000);

	for (ntries = 0; ntries < 100; ntries++) {
		val = RAL_READ(sc, RT2860_H2M_BBPAGENT);
		if (!(val & RT2860_BBP_CSR_KICK))
			return val & 0xff;
		DELAY(1);
	}
	device_printf(sc->sc_dev, "could not read from BBP through MCU\n");

	return 0;
}

/*
 * Write to one of the 4 programmable 24-bit RF registers.
 */
static void
rt2860_rf_write(struct rt2860_softc *sc, uint8_t reg, uint32_t val)
{
	uint32_t tmp;
	int ntries;

	for (ntries = 0; ntries < 100; ntries++) {
		if (!(RAL_READ(sc, RT2860_RF_CSR_CFG0) & RT2860_RF_REG_CTRL))
			break;
		DELAY(1);
	}
	if (ntries == 100) {
		device_printf(sc->sc_dev, "could not write to RF\n");
		return;
	}

	/* RF registers are 24-bit on the RT2860 */
	tmp = RT2860_RF_REG_CTRL | 24 << RT2860_RF_REG_WIDTH_SHIFT |
	    (val & 0x3fffff) << 2 | (reg & 3);
	RAL_WRITE(sc, RT2860_RF_CSR_CFG0, tmp);
}

static uint8_t
rt3090_rf_read(struct rt2860_softc *sc, uint8_t reg)
{
	uint32_t tmp;
	int ntries;

	for (ntries = 0; ntries < 100; ntries++) {
		if (!(RAL_READ(sc, RT3070_RF_CSR_CFG) & RT3070_RF_KICK))
			break;
		DELAY(1);
	}
	if (ntries == 100) {
		device_printf(sc->sc_dev, "could not read RF register\n");
		return 0xff;
	}
	tmp = RT3070_RF_KICK | reg << 8;
	RAL_WRITE(sc, RT3070_RF_CSR_CFG, tmp);

	for (ntries = 0; ntries < 100; ntries++) {
		tmp = RAL_READ(sc, RT3070_RF_CSR_CFG);
		if (!(tmp & RT3070_RF_KICK))
			break;
		DELAY(1);
	}
	if (ntries == 100) {
		device_printf(sc->sc_dev, "could not read RF register\n");
		return 0xff;
	}
	return tmp & 0xff;
}

void
rt3090_rf_write(struct rt2860_softc *sc, uint8_t reg, uint8_t val)
{
	uint32_t tmp;
	int ntries;

	for (ntries = 0; ntries < 10; ntries++) {
		if (!(RAL_READ(sc, RT3070_RF_CSR_CFG) & RT3070_RF_KICK))
			break;
		DELAY(10);
	}
	if (ntries == 10) {
		device_printf(sc->sc_dev, "could not write to RF\n");
		return;
	}

	tmp = RT3070_RF_WRITE | RT3070_RF_KICK | reg << 8 | val;
	RAL_WRITE(sc, RT3070_RF_CSR_CFG, tmp);
}

/*
 * Send a command to the 8051 microcontroller unit.
 */
int
rt2860_mcu_cmd(struct rt2860_softc *sc, uint8_t cmd, uint16_t arg, int wait)
{
	int slot, ntries;
	uint32_t tmp;
	uint8_t cid;

	for (ntries = 0; ntries < 100; ntries++) {
		if (!(RAL_READ(sc, RT2860_H2M_MAILBOX) & RT2860_H2M_BUSY))
			break;
		DELAY(2);
	}
	if (ntries == 100)
		return EIO;

	cid = wait ? cmd : RT2860_TOKEN_NO_INTR;
	RAL_WRITE(sc, RT2860_H2M_MAILBOX, RT2860_H2M_BUSY | cid << 16 | arg);
	RAL_BARRIER_WRITE(sc);
	RAL_WRITE(sc, RT2860_HOST_CMD, cmd);

	if (!wait)
		return 0;
	/* wait for the command to complete */
	for (ntries = 0; ntries < 200; ntries++) {
		tmp = RAL_READ(sc, RT2860_H2M_MAILBOX_CID);
		/* find the command slot */
		for (slot = 0; slot < 4; slot++, tmp >>= 8)
			if ((tmp & 0xff) == cid)
				break;
		if (slot < 4)
			break;
		DELAY(100);
	}
	if (ntries == 200) {
		/* clear command and status */
		RAL_WRITE(sc, RT2860_H2M_MAILBOX_STATUS, 0xffffffff);
		RAL_WRITE(sc, RT2860_H2M_MAILBOX_CID, 0xffffffff);
		return ETIMEDOUT;
	}
	/* get command status (1 means success) */
	tmp = RAL_READ(sc, RT2860_H2M_MAILBOX_STATUS);
	tmp = (tmp >> (slot * 8)) & 0xff;
	DPRINTF(("MCU command=0x%02x slot=%d status=0x%02x\n",
	    cmd, slot, tmp));
	/* clear command and status */
	RAL_WRITE(sc, RT2860_H2M_MAILBOX_STATUS, 0xffffffff);
	RAL_WRITE(sc, RT2860_H2M_MAILBOX_CID, 0xffffffff);
	return (tmp == 1) ? 0 : EIO;
}

static void
rt2860_enable_mrr(struct rt2860_softc *sc)
{
#define CCK(mcs)	(mcs)
#define OFDM(mcs)	(1 << 3 | (mcs))
	RAL_WRITE(sc, RT2860_LG_FBK_CFG0,
	    OFDM(6) << 28 |	/* 54->48 */
	    OFDM(5) << 24 |	/* 48->36 */
	    OFDM(4) << 20 |	/* 36->24 */
	    OFDM(3) << 16 |	/* 24->18 */
	    OFDM(2) << 12 |	/* 18->12 */
	    OFDM(1) <<  8 |	/* 12-> 9 */
	    OFDM(0) <<  4 |	/*  9-> 6 */
	    OFDM(0));		/*  6-> 6 */

	RAL_WRITE(sc, RT2860_LG_FBK_CFG1,
	    CCK(2) << 12 |	/* 11->5.5 */
	    CCK(1) <<  8 |	/* 5.5-> 2 */
	    CCK(0) <<  4 |	/*   2-> 1 */
	    CCK(0));		/*   1-> 1 */
#undef OFDM
#undef CCK
}

static void
rt2860_set_txpreamble(struct rt2860_softc *sc)
{
	struct ifnet *ifp = sc->sc_ifp;
	struct ieee80211com *ic = ifp->if_l2com;
	uint32_t tmp;

	tmp = RAL_READ(sc, RT2860_AUTO_RSP_CFG);
	tmp &= ~RT2860_CCK_SHORT_EN;
	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
		tmp |= RT2860_CCK_SHORT_EN;
	RAL_WRITE(sc, RT2860_AUTO_RSP_CFG, tmp);
}

void
rt2860_set_basicrates(struct rt2860_softc *sc,
    const struct ieee80211_rateset *rs)
{
#define RV(r)	((r) & IEEE80211_RATE_VAL)
	struct ifnet *ifp = sc->sc_ifp;
	struct ieee80211com *ic = ifp->if_l2com;
	uint32_t mask = 0;
	uint8_t rate;
	int i;

	for (i = 0; i < rs->rs_nrates; i++) {
		rate = rs->rs_rates[i];

		if (!(rate & IEEE80211_RATE_BASIC))
			continue;

		mask |= 1 << ic->ic_rt->rateCodeToIndex[RV(rate)];
	}

	RAL_WRITE(sc, RT2860_LEGACY_BASIC_RATE, mask);
#undef RV
}

static void
rt2860_scan_start(struct ieee80211com *ic)
{
	struct ifnet *ifp = ic->ic_ifp;
	struct rt2860_softc *sc = ifp->if_softc;
	uint32_t tmp;

	tmp = RAL_READ(sc, RT2860_BCN_TIME_CFG);
	RAL_WRITE(sc, RT2860_BCN_TIME_CFG,
	    tmp & ~(RT2860_BCN_TX_EN | RT2860_TSF_TIMER_EN |
	    RT2860_TBTT_TIMER_EN));
	rt2860_set_gp_timer(sc, 0);
}

static void
rt2860_scan_end(struct ieee80211com *ic)
{
	struct ifnet *ifp = ic->ic_ifp;
	struct rt2860_softc *sc = ifp->if_softc;
	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);

	if (vap->iv_state == IEEE80211_S_RUN) {
		rt2860_enable_tsf_sync(sc);
		rt2860_set_gp_timer(sc, 500);
	}
}

static void
rt2860_set_channel(struct ieee80211com *ic)
{
	struct ifnet *ifp = ic->ic_ifp;
	struct rt2860_softc *sc = ifp->if_softc;

	RAL_LOCK(sc);
	rt2860_switch_chan(sc, ic->ic_curchan);
	RAL_UNLOCK(sc);
}

static void
rt2860_select_chan_group(struct rt2860_softc *sc, int group)
{
	uint32_t tmp;
	uint8_t agc;

	rt2860_mcu_bbp_write(sc, 62, 0x37 - sc->lna[group]);
	rt2860_mcu_bbp_write(sc, 63, 0x37 - sc->lna[group]);
	rt2860_mcu_bbp_write(sc, 64, 0x37 - sc->lna[group]);
	rt2860_mcu_bbp_write(sc, 86, 0x00);

	if (group == 0) {
		if (sc->ext_2ghz_lna) {
			rt2860_mcu_bbp_write(sc, 82, 0x62);
			rt2860_mcu_bbp_write(sc, 75, 0x46);
		} else {
			rt2860_mcu_bbp_write(sc, 82, 0x84);
			rt2860_mcu_bbp_write(sc, 75, 0x50);
		}
	} else {
		if (sc->ext_5ghz_lna) {
			rt2860_mcu_bbp_write(sc, 82, 0xf2);
			rt2860_mcu_bbp_write(sc, 75, 0x46);
		} else {
			rt2860_mcu_bbp_write(sc, 82, 0xf2);
			rt2860_mcu_bbp_write(sc, 75, 0x50);
		}
	}

	tmp = RAL_READ(sc, RT2860_TX_BAND_CFG);
	tmp &= ~(RT2860_5G_BAND_SEL_N | RT2860_5G_BAND_SEL_P);
	tmp |= (group == 0) ? RT2860_5G_BAND_SEL_N : RT2860_5G_BAND_SEL_P;
	RAL_WRITE(sc, RT2860_TX_BAND_CFG, tmp);

	/* enable appropriate Power Amplifiers and Low Noise Amplifiers */
	tmp = RT2860_RFTR_EN | RT2860_TRSW_EN | RT2860_LNA_PE0_EN;
	if (sc->nrxchains > 1)
		tmp |= RT2860_LNA_PE1_EN;
	if (sc->mac_ver == 0x3593 && sc->nrxchains > 2)
		tmp |= RT3593_LNA_PE2_EN;
	if (group == 0) {	/* 2GHz */
		tmp |= RT2860_PA_PE_G0_EN;
		if (sc->ntxchains > 1)
			tmp |= RT2860_PA_PE_G1_EN;
		if (sc->mac_ver == 0x3593 && sc->ntxchains > 2)
			tmp |= RT3593_PA_PE_G2_EN;
	} else {		/* 5GHz */
		tmp |= RT2860_PA_PE_A0_EN;
		if (sc->ntxchains > 1)
			tmp |= RT2860_PA_PE_A1_EN;
		if (sc->mac_ver == 0x3593 && sc->ntxchains > 2)
			tmp |= RT3593_PA_PE_A2_EN;
	}
	RAL_WRITE(sc, RT2860_TX_PIN_CFG, tmp);

	if (sc->mac_ver == 0x3593) {
		tmp = RAL_READ(sc, RT2860_GPIO_CTRL);
		if (sc->sc_flags & RT2860_PCIE) {
			tmp &= ~0x01010000;
			if (group == 0)
				tmp |= 0x00010000;
		} else {
			tmp &= ~0x00008080;
			if (group == 0)
				tmp |= 0x00000080;
		}
		tmp = (tmp & ~0x00001000) | 0x00000010;
		RAL_WRITE(sc, RT2860_GPIO_CTRL, tmp);
	}

	/* set initial AGC value */
	if (group == 0) {	/* 2GHz band */
		if (sc->mac_ver >= 0x3071)
			agc = 0x1c + sc->lna[0] * 2;
		else
			agc = 0x2e + sc->lna[0];
	} else {		/* 5GHz band */
		agc = 0x32 + (sc->lna[group] * 5) / 3;
	}
	rt2860_mcu_bbp_write(sc, 66, agc);

	DELAY(1000);
}

static void
rt2860_set_chan(struct rt2860_softc *sc, u_int chan)
{
	const struct rfprog *rfprog = rt2860_rf2850;
	uint32_t r2, r3, r4;
	int8_t txpow1, txpow2;
	u_int i;

	/* find the settings for this channel (we know it exists) */
	for (i = 0; rfprog[i].chan != chan; i++);

	r2 = rfprog[i].r2;
	if (sc->ntxchains == 1)
		r2 |= 1 << 12;		/* 1T: disable Tx chain 2 */
	if (sc->nrxchains == 1)
		r2 |= 1 << 15 | 1 << 4;	/* 1R: disable Rx chains 2 & 3 */
	else if (sc->nrxchains == 2)
		r2 |= 1 << 4;		/* 2R: disable Rx chain 3 */

	/* use Tx power values from EEPROM */
	txpow1 = sc->txpow1[i];
	txpow2 = sc->txpow2[i];
	if (chan > 14) {
		if (txpow1 >= 0)
			txpow1 = txpow1 << 1 | 1;
		else
			txpow1 = (7 + txpow1) << 1;
		if (txpow2 >= 0)
			txpow2 = txpow2 << 1 | 1;
		else
			txpow2 = (7 + txpow2) << 1;
	}
	r3 = rfprog[i].r3 | txpow1 << 7;
	r4 = rfprog[i].r4 | sc->freq << 13 | txpow2 << 4;

	rt2860_rf_write(sc, RT2860_RF1, rfprog[i].r1);
	rt2860_rf_write(sc, RT2860_RF2, r2);
	rt2860_rf_write(sc, RT2860_RF3, r3);
	rt2860_rf_write(sc, RT2860_RF4, r4);

	DELAY(200);

	rt2860_rf_write(sc, RT2860_RF1, rfprog[i].r1);
	rt2860_rf_write(sc, RT2860_RF2, r2);
	rt2860_rf_write(sc, RT2860_RF3, r3 | 1);
	rt2860_rf_write(sc, RT2860_RF4, r4);

	DELAY(200);

	rt2860_rf_write(sc, RT2860_RF1, rfprog[i].r1);
	rt2860_rf_write(sc, RT2860_RF2, r2);
	rt2860_rf_write(sc, RT2860_RF3, r3);
	rt2860_rf_write(sc, RT2860_RF4, r4);
}

static void
rt3090_set_chan(struct rt2860_softc *sc, u_int chan)
{
	int8_t txpow1, txpow2;
	uint8_t rf;
	int i;

	/* RT3090 is 2GHz only */
	KASSERT(chan >= 1 && chan <= 14, ("chan %d not support", chan));

	/* find the settings for this channel (we know it exists) */
	for (i = 0; rt2860_rf2850[i].chan != chan; i++);

	/* use Tx power values from EEPROM */
	txpow1 = sc->txpow1[i];
	txpow2 = sc->txpow2[i];

	rt3090_rf_write(sc, 2, rt3090_freqs[i].n);
	rf = rt3090_rf_read(sc, 3);
	rf = (rf & ~0x0f) | rt3090_freqs[i].k;
	rt3090_rf_write(sc, 3, rf);
	rf = rt3090_rf_read(sc, 6);
	rf = (rf & ~0x03) | rt3090_freqs[i].r;
	rt3090_rf_write(sc, 6, rf);

	/* set Tx0 power */
	rf = rt3090_rf_read(sc, 12);
	rf = (rf & ~0x1f) | txpow1;
	rt3090_rf_write(sc, 12, rf);

	/* set Tx1 power */
	rf = rt3090_rf_read(sc, 13);
	rf = (rf & ~0x1f) | txpow2;
	rt3090_rf_write(sc, 13, rf);

	rf = rt3090_rf_read(sc, 1);
	rf &= ~0xfc;
	if (sc->ntxchains == 1)
		rf |= RT3070_TX1_PD | RT3070_TX2_PD;
	else if (sc->ntxchains == 2)
		rf |= RT3070_TX2_PD;
	if (sc->nrxchains == 1)
		rf |= RT3070_RX1_PD | RT3070_RX2_PD;
	else if (sc->nrxchains == 2)
		rf |= RT3070_RX2_PD;
	rt3090_rf_write(sc, 1, rf);

	/* set RF offset */
	rf = rt3090_rf_read(sc, 23);
	rf = (rf & ~0x7f) | sc->freq;
	rt3090_rf_write(sc, 23, rf);

	/* program RF filter */
	rf = rt3090_rf_read(sc, 24);	/* Tx */
	rf = (rf & ~0x3f) | sc->rf24_20mhz;
	rt3090_rf_write(sc, 24, rf);
	rf = rt3090_rf_read(sc, 31);	/* Rx */
	rf = (rf & ~0x3f) | sc->rf24_20mhz;
	rt3090_rf_write(sc, 31, rf);

	/* enable RF tuning */
	rf = rt3090_rf_read(sc, 7);
	rt3090_rf_write(sc, 7, rf | RT3070_TUNE);
}

static int
rt3090_rf_init(struct rt2860_softc *sc)
{
#define N(a)	(sizeof (a) / sizeof ((a)[0]))
	uint32_t tmp;
	uint8_t rf, bbp;
	int i;

	rf = rt3090_rf_read(sc, 30);
	/* toggle RF R30 bit 7 */
	rt3090_rf_write(sc, 30, rf | 0x80);
	DELAY(1000);
	rt3090_rf_write(sc, 30, rf & ~0x80);

	tmp = RAL_READ(sc, RT3070_LDO_CFG0);
	tmp &= ~0x1f000000;
	if (sc->patch_dac && sc->mac_rev < 0x0211)
		tmp |= 0x0d000000;	/* 1.35V */
	else
		tmp |= 0x01000000;	/* 1.2V */
	RAL_WRITE(sc, RT3070_LDO_CFG0, tmp);

	/* patch LNA_PE_G1 */
	tmp = RAL_READ(sc, RT3070_GPIO_SWITCH);
	RAL_WRITE(sc, RT3070_GPIO_SWITCH, tmp & ~0x20);

	/* initialize RF registers to default value */
	for (i = 0; i < N(rt3090_def_rf); i++) {
		rt3090_rf_write(sc, rt3090_def_rf[i].reg,
		    rt3090_def_rf[i].val);
	}

	/* select 20MHz bandwidth */
	rt3090_rf_write(sc, 31, 0x14);

	rf = rt3090_rf_read(sc, 6);
	rt3090_rf_write(sc, 6, rf | 0x40);

	if (sc->mac_ver != 0x3593) {
		/* calibrate filter for 20MHz bandwidth */
		sc->rf24_20mhz = 0x1f;	/* default value */
		rt3090_filter_calib(sc, 0x07, 0x16, &sc->rf24_20mhz);

		/* select 40MHz bandwidth */
		bbp = rt2860_mcu_bbp_read(sc, 4);
		rt2860_mcu_bbp_write(sc, 4, (bbp & ~0x08) | 0x10);
		rf = rt3090_rf_read(sc, 31);
		rt3090_rf_write(sc, 31, rf | 0x20);

		/* calibrate filter for 40MHz bandwidth */
		sc->rf24_40mhz = 0x2f;	/* default value */
		rt3090_filter_calib(sc, 0x27, 0x19, &sc->rf24_40mhz);

		/* go back to 20MHz bandwidth */
		bbp = rt2860_mcu_bbp_read(sc, 4);
		rt2860_mcu_bbp_write(sc, 4, bbp & ~0x18);
	}
	if (sc->mac_rev < 0x0211)
		rt3090_rf_write(sc, 27, 0x03);

	tmp = RAL_READ(sc, RT3070_OPT_14);
	RAL_WRITE(sc, RT3070_OPT_14, tmp | 1);

	if (sc->rf_rev == RT3070_RF_3020)
		rt3090_set_rx_antenna(sc, 0);

	bbp = rt2860_mcu_bbp_read(sc, 138);
	if (sc->mac_ver == 0x3593) {
		if (sc->ntxchains == 1)
			bbp |= 0x60;	/* turn off DAC1 and DAC2 */
		else if (sc->ntxchains == 2)
			bbp |= 0x40;	/* turn off DAC2 */
		if (sc->nrxchains == 1)
			bbp &= ~0x06;	/* turn off ADC1 and ADC2 */
		else if (sc->nrxchains == 2)
			bbp &= ~0x04;	/* turn off ADC2 */
	} else {
		if (sc->ntxchains == 1)
			bbp |= 0x20;	/* turn off DAC1 */
		if (sc->nrxchains == 1)
			bbp &= ~0x02;	/* turn off ADC1 */
	}
	rt2860_mcu_bbp_write(sc, 138, bbp);

	rf = rt3090_rf_read(sc, 1);
	rf &= ~(RT3070_RX0_PD | RT3070_TX0_PD);
	rf |= RT3070_RF_BLOCK | RT3070_RX1_PD | RT3070_TX1_PD;
	rt3090_rf_write(sc, 1, rf);

	rf = rt3090_rf_read(sc, 15);
	rt3090_rf_write(sc, 15, rf & ~RT3070_TX_LO2);

	rf = rt3090_rf_read(sc, 17);
	rf &= ~RT3070_TX_LO1;
	if (sc->mac_rev >= 0x0211 && !sc->ext_2ghz_lna)
		rf |= 0x20;	/* fix for long range Rx issue */
	if (sc->txmixgain_2ghz >= 2)
		rf = (rf & ~0x7) | sc->txmixgain_2ghz;
	rt3090_rf_write(sc, 17, rf);

	rf = rt3090_rf_read(sc, 20);
	rt3090_rf_write(sc, 20, rf & ~RT3070_RX_LO1);

	rf = rt3090_rf_read(sc, 21);
	rt3090_rf_write(sc, 21, rf & ~RT3070_RX_LO2);

	return 0;
#undef N
}

void
rt3090_rf_wakeup(struct rt2860_softc *sc)
{
	uint32_t tmp;
	uint8_t rf;

	if (sc->mac_ver == 0x3593) {
		/* enable VCO */
		rf = rt3090_rf_read(sc, 1);
		rt3090_rf_write(sc, 1, rf | RT3593_VCO);

		/* initiate VCO calibration */
		rf = rt3090_rf_read(sc, 3);
		rt3090_rf_write(sc, 3, rf | RT3593_VCOCAL);

		/* enable VCO bias current control */
		rf = rt3090_rf_read(sc, 6);
		rt3090_rf_write(sc, 6, rf | RT3593_VCO_IC);

		/* initiate res calibration */
		rf = rt3090_rf_read(sc, 2);
		rt3090_rf_write(sc, 2, rf | RT3593_RESCAL);

		/* set reference current control to 0.33 mA */
		rf = rt3090_rf_read(sc, 22);
		rf &= ~RT3593_CP_IC_MASK;
		rf |= 1 << RT3593_CP_IC_SHIFT;
		rt3090_rf_write(sc, 22, rf);

		/* enable RX CTB */
		rf = rt3090_rf_read(sc, 46);
		rt3090_rf_write(sc, 46, rf | RT3593_RX_CTB);

		rf = rt3090_rf_read(sc, 20);
		rf &= ~(RT3593_LDO_RF_VC_MASK | RT3593_LDO_PLL_VC_MASK);
		rt3090_rf_write(sc, 20, rf);
	} else {
		/* enable RF block */
		rf = rt3090_rf_read(sc, 1);
		rt3090_rf_write(sc, 1, rf | RT3070_RF_BLOCK);

		/* enable VCO bias current control */
		rf = rt3090_rf_read(sc, 7);
		rt3090_rf_write(sc, 7, rf | 0x30);

		rf = rt3090_rf_read(sc, 9);
		rt3090_rf_write(sc, 9, rf | 0x0e);

		/* enable RX CTB */
		rf = rt3090_rf_read(sc, 21);
		rt3090_rf_write(sc, 21, rf | RT3070_RX_CTB);

		/* fix Tx to Rx IQ glitch by raising RF voltage */
		rf = rt3090_rf_read(sc, 27);
		rf &= ~0x77;
		if (sc->mac_rev < 0x0211)
			rf |= 0x03;
		rt3090_rf_write(sc, 27, rf);
	}
	if (sc->patch_dac && sc->mac_rev < 0x0211) {
		tmp = RAL_READ(sc, RT3070_LDO_CFG0);
		tmp = (tmp & ~0x1f000000) | 0x0d000000;
		RAL_WRITE(sc, RT3070_LDO_CFG0, tmp);
	}
}

int
rt3090_filter_calib(struct rt2860_softc *sc, uint8_t init, uint8_t target,
    uint8_t *val)
{
	uint8_t rf22, rf24;
	uint8_t bbp55_pb, bbp55_sb, delta;
	int ntries;

	/* program filter */
	rf24 = rt3090_rf_read(sc, 24);
	rf24 = (rf24 & 0xc0) | init;	/* initial filter value */
	rt3090_rf_write(sc, 24, rf24);

	/* enable baseband loopback mode */
	rf22 = rt3090_rf_read(sc, 22);
	rt3090_rf_write(sc, 22, rf22 | RT3070_BB_LOOPBACK);

	/* set power and frequency of passband test tone */
	rt2860_mcu_bbp_write(sc, 24, 0x00);
	for (ntries = 0; ntries < 100; ntries++) {
		/* transmit test tone */
		rt2860_mcu_bbp_write(sc, 25, 0x90);
		DELAY(1000);
		/* read received power */
		bbp55_pb = rt2860_mcu_bbp_read(sc, 55);
		if (bbp55_pb != 0)
			break;
	}
	if (ntries == 100)
		return ETIMEDOUT;

	/* set power and frequency of stopband test tone */
	rt2860_mcu_bbp_write(sc, 24, 0x06);
	for (ntries = 0; ntries < 100; ntries++) {
		/* transmit test tone */
		rt2860_mcu_bbp_write(sc, 25, 0x90);
		DELAY(1000);
		/* read received power */
		bbp55_sb = rt2860_mcu_bbp_read(sc, 55);

		delta = bbp55_pb - bbp55_sb;
		if (delta > target)
			break;

		/* reprogram filter */
		rf24++;
		rt3090_rf_write(sc, 24, rf24);
	}
	if (ntries < 100) {
		if (rf24 != init)
			rf24--;	/* backtrack */
		*val = rf24;
		rt3090_rf_write(sc, 24, rf24);
	}

	/* restore initial state */
	rt2860_mcu_bbp_write(sc, 24, 0x00);

	/* disable baseband loopback mode */
	rf22 = rt3090_rf_read(sc, 22);
	rt3090_rf_write(sc, 22, rf22 & ~RT3070_BB_LOOPBACK);

	return 0;
}

static void
rt3090_rf_setup(struct rt2860_softc *sc)
{
	uint8_t bbp;
	int i;

	if (sc->mac_rev >= 0x0211) {
		/* enable DC filter */
		rt2860_mcu_bbp_write(sc, 103, 0xc0);

		/* improve power consumption */
		bbp = rt2860_mcu_bbp_read(sc, 31);
		rt2860_mcu_bbp_write(sc, 31, bbp & ~0x03);
	}

	RAL_WRITE(sc, RT2860_TX_SW_CFG1, 0);
	if (sc->mac_rev < 0x0211) {
		RAL_WRITE(sc, RT2860_TX_SW_CFG2,
		    sc->patch_dac ? 0x2c : 0x0f);
	} else
		RAL_WRITE(sc, RT2860_TX_SW_CFG2, 0);

	/* initialize RF registers from ROM */
	for (i = 0; i < 10; i++) {
		if (sc->rf[i].reg == 0 || sc->rf[i].reg == 0xff)
			continue;
		rt3090_rf_write(sc, sc->rf[i].reg, sc->rf[i].val);
	}
}

static void
rt2860_set_leds(struct rt2860_softc *sc, uint16_t which)
{
	rt2860_mcu_cmd(sc, RT2860_MCU_CMD_LEDS,
	    which | (sc->leds & 0x7f), 0);
}

/*
 * Hardware has a general-purpose programmable timer interrupt that can
 * periodically raise MAC_INT_4.
 */
static void
rt2860_set_gp_timer(struct rt2860_softc *sc, int ms)
{
	uint32_t tmp;

	/* disable GP timer before reprogramming it */
	tmp = RAL_READ(sc, RT2860_INT_TIMER_EN);
	RAL_WRITE(sc, RT2860_INT_TIMER_EN, tmp & ~RT2860_GP_TIMER_EN);

	if (ms == 0)
		return;

	tmp = RAL_READ(sc, RT2860_INT_TIMER_CFG);
	ms *= 16;	/* Unit: 64us */
	tmp = (tmp & 0xffff) | ms << RT2860_GP_TIMER_SHIFT;
	RAL_WRITE(sc, RT2860_INT_TIMER_CFG, tmp);

	/* enable GP timer */
	tmp = RAL_READ(sc, RT2860_INT_TIMER_EN);
	RAL_WRITE(sc, RT2860_INT_TIMER_EN, tmp | RT2860_GP_TIMER_EN);
}

static void
rt2860_set_bssid(struct rt2860_softc *sc, const uint8_t *bssid)
{
	RAL_WRITE(sc, RT2860_MAC_BSSID_DW0,
	    bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24);
	RAL_WRITE(sc, RT2860_MAC_BSSID_DW1,
	    bssid[4] | bssid[5] << 8);
}

static void
rt2860_set_macaddr(struct rt2860_softc *sc, const uint8_t *addr)
{
	RAL_WRITE(sc, RT2860_MAC_ADDR_DW0,
	    addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24);
	RAL_WRITE(sc, RT2860_MAC_ADDR_DW1,
	    addr[4] | addr[5] << 8 | 0xff << 16);
}

static void
rt2860_updateslot(struct ifnet *ifp)
{
	struct rt2860_softc *sc = ifp->if_softc;
	struct ieee80211com *ic = ifp->if_l2com;
	uint32_t tmp;

	tmp = RAL_READ(sc, RT2860_BKOFF_SLOT_CFG);
	tmp &= ~0xff;
	tmp |= (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
	RAL_WRITE(sc, RT2860_BKOFF_SLOT_CFG, tmp);
}

static void
rt2860_updateprot(struct ifnet *ifp)
{
	struct rt2860_softc *sc = ifp->if_softc;
	struct ieee80211com *ic = ifp->if_l2com;
	uint32_t tmp;

	tmp = RT2860_RTSTH_EN | RT2860_PROT_NAV_SHORT | RT2860_TXOP_ALLOW_ALL;
	/* setup protection frame rate (MCS code) */
	tmp |= IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ?
	    rt2860_rates[RT2860_RIDX_OFDM6].mcs :
	    rt2860_rates[RT2860_RIDX_CCK11].mcs;

	/* CCK frames don't require protection */
	RAL_WRITE(sc, RT2860_CCK_PROT_CFG, tmp);

	if (ic->ic_flags & IEEE80211_F_USEPROT) {
		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
			tmp |= RT2860_PROT_CTRL_RTS_CTS;
		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
			tmp |= RT2860_PROT_CTRL_CTS;
	}
	RAL_WRITE(sc, RT2860_OFDM_PROT_CFG, tmp);
}

static void
rt2860_update_promisc(struct ifnet *ifp)
{
	struct rt2860_softc *sc = ifp->if_softc;
	uint32_t tmp;

	tmp = RAL_READ(sc, RT2860_RX_FILTR_CFG);
	tmp &= ~RT2860_DROP_NOT_MYBSS;
	if (!(ifp->if_flags & IFF_PROMISC))
		tmp |= RT2860_DROP_NOT_MYBSS;
	RAL_WRITE(sc, RT2860_RX_FILTR_CFG, tmp);
}

static int
rt2860_updateedca(struct ieee80211com *ic)
{
	struct rt2860_softc *sc = ic->ic_ifp->if_softc;
	const struct wmeParams *wmep;
	int aci;

	wmep = ic->ic_wme.wme_chanParams.cap_wmeParams;

	/* update MAC TX configuration registers */
	for (aci = 0; aci < WME_NUM_AC; aci++) {
		RAL_WRITE(sc, RT2860_EDCA_AC_CFG(aci),
		    wmep[aci].wmep_logcwmax << 16 |
		    wmep[aci].wmep_logcwmin << 12 |
		    wmep[aci].wmep_aifsn  <<  8 |
		    wmep[aci].wmep_txopLimit);
	}

	/* update SCH/DMA registers too */
	RAL_WRITE(sc, RT2860_WMM_AIFSN_CFG,
	    wmep[WME_AC_VO].wmep_aifsn  << 12 |
	    wmep[WME_AC_VI].wmep_aifsn  <<  8 |
	    wmep[WME_AC_BK].wmep_aifsn  <<  4 |
	    wmep[WME_AC_BE].wmep_aifsn);
	RAL_WRITE(sc, RT2860_WMM_CWMIN_CFG,
	    wmep[WME_AC_VO].wmep_logcwmin << 12 |
	    wmep[WME_AC_VI].wmep_logcwmin <<  8 |
	    wmep[WME_AC_BK].wmep_logcwmin <<  4 |
	    wmep[WME_AC_BE].wmep_logcwmin);
	RAL_WRITE(sc, RT2860_WMM_CWMAX_CFG,
	    wmep[WME_AC_VO].wmep_logcwmax << 12 |
	    wmep[WME_AC_VI].wmep_logcwmax <<  8 |
	    wmep[WME_AC_BK].wmep_logcwmax <<  4 |
	    wmep[WME_AC_BE].wmep_logcwmax);
	RAL_WRITE(sc, RT2860_WMM_TXOP0_CFG,
	    wmep[WME_AC_BK].wmep_txopLimit << 16 |
	    wmep[WME_AC_BE].wmep_txopLimit);
	RAL_WRITE(sc, RT2860_WMM_TXOP1_CFG,
	    wmep[WME_AC_VO].wmep_txopLimit << 16 |
	    wmep[WME_AC_VI].wmep_txopLimit);

	return 0;
}

#ifdef HW_CRYPTO
static int
rt2860_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
    struct ieee80211_key *k)
{
	struct rt2860_softc *sc = ic->ic_softc;
	bus_size_t base;
	uint32_t attr;
	uint8_t mode, wcid, iv[8];

	/* defer setting of WEP keys until interface is brought up */
	if ((ic->ic_if.if_flags & (IFF_UP | IFF_RUNNING)) !=
	    (IFF_UP | IFF_RUNNING))
		return 0;

	/* map net80211 cipher to RT2860 security mode */
	switch (k->k_cipher) {
	case IEEE80211_CIPHER_WEP40:
		mode = RT2860_MODE_WEP40;
		break;
	case IEEE80211_CIPHER_WEP104:
		mode = RT2860_MODE_WEP104;
		break;
	case IEEE80211_CIPHER_TKIP:
		mode = RT2860_MODE_TKIP;
		break;
	case IEEE80211_CIPHER_CCMP:
		mode = RT2860_MODE_AES_CCMP;
		break;
	default:
		return EINVAL;
	}

	if (k->k_flags & IEEE80211_KEY_GROUP) {
		wcid = 0;	/* NB: update WCID0 for group keys */
		base = RT2860_SKEY(0, k->k_id);
	} else {
		wcid = ((struct rt2860_node *)ni)->wcid;
		base = RT2860_PKEY(wcid);
	}

	if (k->k_cipher == IEEE80211_CIPHER_TKIP) {
		RAL_WRITE_REGION_1(sc, base, k->k_key, 16);
#ifndef IEEE80211_STA_ONLY
		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
			RAL_WRITE_REGION_1(sc, base + 16, &k->k_key[16], 8);
			RAL_WRITE_REGION_1(sc, base + 24, &k->k_key[24], 8);
		} else
#endif
		{
			RAL_WRITE_REGION_1(sc, base + 16, &k->k_key[24], 8);
			RAL_WRITE_REGION_1(sc, base + 24, &k->k_key[16], 8);
		}
	} else
		RAL_WRITE_REGION_1(sc, base, k->k_key, k->k_len);

	if (!(k->k_flags & IEEE80211_KEY_GROUP) ||
	    (k->k_flags & IEEE80211_KEY_TX)) {
		/* set initial packet number in IV+EIV */
		if (k->k_cipher == IEEE80211_CIPHER_WEP40 ||
		    k->k_cipher == IEEE80211_CIPHER_WEP104) {
			uint32_t val = arc4random();
			/* skip weak IVs from Fluhrer/Mantin/Shamir */
			if (val >= 0x03ff00 && (val & 0xf8ff00) == 0x00ff00)
				val += 0x000100;
			iv[0] = val;
			iv[1] = val >> 8;
			iv[2] = val >> 16;
			iv[3] = k->k_id << 6;
			iv[4] = iv[5] = iv[6] = iv[7] = 0;
		} else {
			if (k->k_cipher == IEEE80211_CIPHER_TKIP) {
				iv[0] = k->k_tsc >> 8;
				iv[1] = (iv[0] | 0x20) & 0x7f;
				iv[2] = k->k_tsc;
			} else /* CCMP */ {
				iv[0] = k->k_tsc;
				iv[1] = k->k_tsc >> 8;
				iv[2] = 0;
			}
			iv[3] = k->k_id << 6 | IEEE80211_WEP_EXTIV;
			iv[4] = k->k_tsc >> 16;
			iv[5] = k->k_tsc >> 24;
			iv[6] = k->k_tsc >> 32;
			iv[7] = k->k_tsc >> 40;
		}
		RAL_WRITE_REGION_1(sc, RT2860_IVEIV(wcid), iv, 8);
	}

	if (k->k_flags & IEEE80211_KEY_GROUP) {
		/* install group key */
		attr = RAL_READ(sc, RT2860_SKEY_MODE_0_7);
		attr &= ~(0xf << (k->k_id * 4));
		attr |= mode << (k->k_id * 4);
		RAL_WRITE(sc, RT2860_SKEY_MODE_0_7, attr);
	} else {
		/* install pairwise key */
		attr = RAL_READ(sc, RT2860_WCID_ATTR(wcid));
		attr = (attr & ~0xf) | (mode << 1) | RT2860_RX_PKEY_EN;
		RAL_WRITE(sc, RT2860_WCID_ATTR(wcid), attr);
	}
	return 0;
}

static void
rt2860_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
    struct ieee80211_key *k)
{
	struct rt2860_softc *sc = ic->ic_softc;
	uint32_t attr;
	uint8_t wcid;

	if (k->k_flags & IEEE80211_KEY_GROUP) {
		/* remove group key */
		attr = RAL_READ(sc, RT2860_SKEY_MODE_0_7);
		attr &= ~(0xf << (k->k_id * 4));
		RAL_WRITE(sc, RT2860_SKEY_MODE_0_7, attr);

	} else {
		/* remove pairwise key */
		wcid = ((struct rt2860_node *)ni)->wcid;
		attr = RAL_READ(sc, RT2860_WCID_ATTR(wcid));
		attr &= ~0xf;
		RAL_WRITE(sc, RT2860_WCID_ATTR(wcid), attr);
	}
}
#endif

static int8_t
rt2860_rssi2dbm(struct rt2860_softc *sc, uint8_t rssi, uint8_t rxchain)
{
	struct ifnet *ifp = sc->sc_ifp;
	struct ieee80211com *ic = ifp->if_l2com;
	struct ieee80211_channel *c = ic->ic_curchan;
	int delta;

	if (IEEE80211_IS_CHAN_5GHZ(c)) {
		u_int chan = ieee80211_chan2ieee(ic, c);
		delta = sc->rssi_5ghz[rxchain];

		/* determine channel group */
		if (chan <= 64)
			delta -= sc->lna[1];
		else if (chan <= 128)
			delta -= sc->lna[2];
		else
			delta -= sc->lna[3];
	} else
		delta = sc->rssi_2ghz[rxchain] - sc->lna[0];

	return -12 - delta - rssi;
}

/*
 * Add `delta' (signed) to each 4-bit sub-word of a 32-bit word.
 * Used to adjust per-rate Tx power registers.
 */
static __inline uint32_t
b4inc(uint32_t b32, int8_t delta)
{
	int8_t i, b4;

	for (i = 0; i < 8; i++) {
		b4 = b32 & 0xf;
		b4 += delta;
		if (b4 < 0)
			b4 = 0;
		else if (b4 > 0xf)
			b4 = 0xf;
		b32 = b32 >> 4 | b4 << 28;
	}
	return b32;
}

static const char *
rt2860_get_rf(uint8_t rev)
{
	switch (rev) {
	case RT2860_RF_2820:	return "RT2820";
	case RT2860_RF_2850:	return "RT2850";
	case RT2860_RF_2720:	return "RT2720";
	case RT2860_RF_2750:	return "RT2750";
	case RT3070_RF_3020:	return "RT3020";
	case RT3070_RF_2020:	return "RT2020";
	case RT3070_RF_3021:	return "RT3021";
	case RT3070_RF_3022:	return "RT3022";
	case RT3070_RF_3052:	return "RT3052";
	case RT3070_RF_3320:	return "RT3320";
	case RT3070_RF_3053:	return "RT3053";
	default:		return "unknown";
	}
}

static int
rt2860_read_eeprom(struct rt2860_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
{
	int8_t delta_2ghz, delta_5ghz;
	uint32_t tmp;
	uint16_t val;
	int ridx, ant, i;

	/* check whether the ROM is eFUSE ROM or EEPROM */
	sc->sc_srom_read = rt2860_eeprom_read_2;
	if (sc->mac_ver >= 0x3071) {
		tmp = RAL_READ(sc, RT3070_EFUSE_CTRL);
		DPRINTF(("EFUSE_CTRL=0x%08x\n", tmp));
		if (tmp & RT3070_SEL_EFUSE)
			sc->sc_srom_read = rt3090_efuse_read_2;
	}

	/* read EEPROM version */
	val = rt2860_srom_read(sc, RT2860_EEPROM_VERSION);
	DPRINTF(("EEPROM rev=%d, FAE=%d\n", val & 0xff, val >> 8));

	/* read MAC address */
	val = rt2860_srom_read(sc, RT2860_EEPROM_MAC01);
	macaddr[0] = val & 0xff;
	macaddr[1] = val >> 8;
	val = rt2860_srom_read(sc, RT2860_EEPROM_MAC23);
	macaddr[2] = val & 0xff;
	macaddr[3] = val >> 8;
	val = rt2860_srom_read(sc, RT2860_EEPROM_MAC45);
	macaddr[4] = val & 0xff;
	macaddr[5] = val >> 8;

	/* read country code */
	val = rt2860_srom_read(sc, RT2860_EEPROM_COUNTRY);
	DPRINTF(("EEPROM region code=0x%04x\n", val));

	/* read vendor BBP settings */
	for (i = 0; i < 8; i++) {
		val = rt2860_srom_read(sc, RT2860_EEPROM_BBP_BASE + i);
		sc->bbp[i].val = val & 0xff;
		sc->bbp[i].reg = val >> 8;
		DPRINTF(("BBP%d=0x%02x\n", sc->bbp[i].reg, sc->bbp[i].val));
	}
	if (sc->mac_ver >= 0x3071) {
		/* read vendor RF settings */
		for (i = 0; i < 10; i++) {
			val = rt2860_srom_read(sc, RT3071_EEPROM_RF_BASE + i);
			sc->rf[i].val = val & 0xff;
			sc->rf[i].reg = val >> 8;
			DPRINTF(("RF%d=0x%02x\n", sc->rf[i].reg,
			    sc->rf[i].val));
		}
	}

	/* read RF frequency offset from EEPROM */
	val = rt2860_srom_read(sc, RT2860_EEPROM_FREQ_LEDS);
	sc->freq = ((val & 0xff) != 0xff) ? val & 0xff : 0;
	DPRINTF(("EEPROM freq offset %d\n", sc->freq & 0xff));
	if ((val >> 8) != 0xff) {
		/* read LEDs operating mode */
		sc->leds = val >> 8;
		sc->led[0] = rt2860_srom_read(sc, RT2860_EEPROM_LED1);
		sc->led[1] = rt2860_srom_read(sc, RT2860_EEPROM_LED2);
		sc->led[2] = rt2860_srom_read(sc, RT2860_EEPROM_LED3);
	} else {
		/* broken EEPROM, use default settings */
		sc->leds = 0x01;
		sc->led[0] = 0x5555;
		sc->led[1] = 0x2221;
		sc->led[2] = 0xa9f8;
	}
	DPRINTF(("EEPROM LED mode=0x%02x, LEDs=0x%04x/0x%04x/0x%04x\n",
	    sc->leds, sc->led[0], sc->led[1], sc->led[2]));

	/* read RF information */
	val = rt2860_srom_read(sc, RT2860_EEPROM_ANTENNA);
	if (val == 0xffff) {
		DPRINTF(("invalid EEPROM antenna info, using default\n"));
		if (sc->mac_ver == 0x3593) {
			/* default to RF3053 3T3R */
			sc->rf_rev = RT3070_RF_3053;
			sc->ntxchains = 3;
			sc->nrxchains = 3;
		} else if (sc->mac_ver >= 0x3071) {
			/* default to RF3020 1T1R */
			sc->rf_rev = RT3070_RF_3020;
			sc->ntxchains = 1;
			sc->nrxchains = 1;
		} else {
			/* default to RF2820 1T2R */
			sc->rf_rev = RT2860_RF_2820;
			sc->ntxchains = 1;
			sc->nrxchains = 2;
		}
	} else {
		sc->rf_rev = (val >> 8) & 0xf;
		sc->ntxchains = (val >> 4) & 0xf;
		sc->nrxchains = val & 0xf;
	}
	DPRINTF(("EEPROM RF rev=0x%02x chains=%dT%dR\n",
	    sc->rf_rev, sc->ntxchains, sc->nrxchains));

	/* check if RF supports automatic Tx access gain control */
	val = rt2860_srom_read(sc, RT2860_EEPROM_CONFIG);
	DPRINTF(("EEPROM CFG 0x%04x\n", val));
	/* check if driver should patch the DAC issue */
	if ((val >> 8) != 0xff)
		sc->patch_dac = (val >> 15) & 1;
	if ((val & 0xff) != 0xff) {
		sc->ext_5ghz_lna = (val >> 3) & 1;
		sc->ext_2ghz_lna = (val >> 2) & 1;
		/* check if RF supports automatic Tx access gain control */
		sc->calib_2ghz = sc->calib_5ghz = 0; /* XXX (val >> 1) & 1 */;
		/* check if we have a hardware radio switch */
		sc->rfswitch = val & 1;
	}
	if (sc->sc_flags & RT2860_ADVANCED_PS) {
		/* read PCIe power save level */
		val = rt2860_srom_read(sc, RT2860_EEPROM_PCIE_PSLEVEL);
		if ((val & 0xff) != 0xff) {
			sc->pslevel = val & 0x3;
			val = rt2860_srom_read(sc, RT2860_EEPROM_REV);
			if ((val & 0xff80) != 0x9280)
				sc->pslevel = MIN(sc->pslevel, 1);
			DPRINTF(("EEPROM PCIe PS Level=%d\n", sc->pslevel));
		}
	}

	/* read power settings for 2GHz channels */
	for (i = 0; i < 14; i += 2) {
		val = rt2860_srom_read(sc,
		    RT2860_EEPROM_PWR2GHZ_BASE1 + i / 2);
		sc->txpow1[i + 0] = (int8_t)(val & 0xff);
		sc->txpow1[i + 1] = (int8_t)(val >> 8);

		val = rt2860_srom_read(sc,
		    RT2860_EEPROM_PWR2GHZ_BASE2 + i / 2);
		sc->txpow2[i + 0] = (int8_t)(val & 0xff);
		sc->txpow2[i + 1] = (int8_t)(val >> 8);
	}
	/* fix broken Tx power entries */
	for (i = 0; i < 14; i++) {
		if (sc->txpow1[i] < 0 || sc->txpow1[i] > 31)
			sc->txpow1[i] = 5;
		if (sc->txpow2[i] < 0 || sc->txpow2[i] > 31)
			sc->txpow2[i] = 5;
		DPRINTF(("chan %d: power1=%d, power2=%d\n",
		    rt2860_rf2850[i].chan, sc->txpow1[i], sc->txpow2[i]));
	}
	/* read power settings for 5GHz channels */
	for (i = 0; i < 40; i += 2) {
		val = rt2860_srom_read(sc,
		    RT2860_EEPROM_PWR5GHZ_BASE1 + i / 2);
		sc->txpow1[i + 14] = (int8_t)(val & 0xff);
		sc->txpow1[i + 15] = (int8_t)(val >> 8);

		val = rt2860_srom_read(sc,
		    RT2860_EEPROM_PWR5GHZ_BASE2 + i / 2);
		sc->txpow2[i + 14] = (int8_t)(val & 0xff);
		sc->txpow2[i + 15] = (int8_t)(val >> 8);
	}
	/* fix broken Tx power entries */
	for (i = 0; i < 40; i++) {
		if (sc->txpow1[14 + i] < -7 || sc->txpow1[14 + i] > 15)
			sc->txpow1[14 + i] = 5;
		if (sc->txpow2[14 + i] < -7 || sc->txpow2[14 + i] > 15)
			sc->txpow2[14 + i] = 5;
		DPRINTF(("chan %d: power1=%d, power2=%d\n",
		    rt2860_rf2850[14 + i].chan, sc->txpow1[14 + i],
		    sc->txpow2[14 + i]));
	}

	/* read Tx power compensation for each Tx rate */
	val = rt2860_srom_read(sc, RT2860_EEPROM_DELTAPWR);
	delta_2ghz = delta_5ghz = 0;
	if ((val & 0xff) != 0xff && (val & 0x80)) {
		delta_2ghz = val & 0xf;
		if (!(val & 0x40))	/* negative number */
			delta_2ghz = -delta_2ghz;
	}
	val >>= 8;
	if ((val & 0xff) != 0xff && (val & 0x80)) {
		delta_5ghz = val & 0xf;
		if (!(val & 0x40))	/* negative number */
			delta_5ghz = -delta_5ghz;
	}
	DPRINTF(("power compensation=%d (2GHz), %d (5GHz)\n",
	    delta_2ghz, delta_5ghz));

	for (ridx = 0; ridx < 5; ridx++) {
		uint32_t reg;

		val = rt2860_srom_read(sc, RT2860_EEPROM_RPWR + ridx * 2);
		reg = val;
		val = rt2860_srom_read(sc, RT2860_EEPROM_RPWR + ridx * 2 + 1);
		reg |= (uint32_t)val << 16;

		sc->txpow20mhz[ridx] = reg;
		sc->txpow40mhz_2ghz[ridx] = b4inc(reg, delta_2ghz);
		sc->txpow40mhz_5ghz[ridx] = b4inc(reg, delta_5ghz);

		DPRINTF(("ridx %d: power 20MHz=0x%08x, 40MHz/2GHz=0x%08x, "
		    "40MHz/5GHz=0x%08x\n", ridx, sc->txpow20mhz[ridx],
		    sc->txpow40mhz_2ghz[ridx], sc->txpow40mhz_5ghz[ridx]));
	}

	/* read factory-calibrated samples for temperature compensation */
	val = rt2860_srom_read(sc, RT2860_EEPROM_TSSI1_2GHZ);
	sc->tssi_2ghz[0] = val & 0xff;	/* [-4] */
	sc->tssi_2ghz[1] = val >> 8;	/* [-3] */
	val = rt2860_srom_read(sc, RT2860_EEPROM_TSSI2_2GHZ);
	sc->tssi_2ghz[2] = val & 0xff;	/* [-2] */
	sc->tssi_2ghz[3] = val >> 8;	/* [-1] */
	val = rt2860_srom_read(sc, RT2860_EEPROM_TSSI3_2GHZ);
	sc->tssi_2ghz[4] = val & 0xff;	/* [+0] */
	sc->tssi_2ghz[5] = val >> 8;	/* [+1] */
	val = rt2860_srom_read(sc, RT2860_EEPROM_TSSI4_2GHZ);
	sc->tssi_2ghz[6] = val & 0xff;	/* [+2] */
	sc->tssi_2ghz[7] = val >> 8;	/* [+3] */
	val = rt2860_srom_read(sc, RT2860_EEPROM_TSSI5_2GHZ);
	sc->tssi_2ghz[8] = val & 0xff;	/* [+4] */
	sc->step_2ghz = val >> 8;
	DPRINTF(("TSSI 2GHz: 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x "
	    "0x%02x 0x%02x step=%d\n", sc->tssi_2ghz[0], sc->tssi_2ghz[1],
	    sc->tssi_2ghz[2], sc->tssi_2ghz[3], sc->tssi_2ghz[4],
	    sc->tssi_2ghz[5], sc->tssi_2ghz[6], sc->tssi_2ghz[7],
	    sc->tssi_2ghz[8], sc->step_2ghz));
	/* check that ref value is correct, otherwise disable calibration */
	if (sc->tssi_2ghz[4] == 0xff)
		sc->calib_2ghz = 0;

	val = rt2860_srom_read(sc, RT2860_EEPROM_TSSI1_5GHZ);
	sc->tssi_5ghz[0] = val & 0xff;	/* [-4] */
	sc->tssi_5ghz[1] = val >> 8;	/* [-3] */
	val = rt2860_srom_read(sc, RT2860_EEPROM_TSSI2_5GHZ);
	sc->tssi_5ghz[2] = val & 0xff;	/* [-2] */
	sc->tssi_5ghz[3] = val >> 8;	/* [-1] */
	val = rt2860_srom_read(sc, RT2860_EEPROM_TSSI3_5GHZ);
	sc->tssi_5ghz[4] = val & 0xff;	/* [+0] */
	sc->tssi_5ghz[5] = val >> 8;	/* [+1] */
	val = rt2860_srom_read(sc, RT2860_EEPROM_TSSI4_5GHZ);
	sc->tssi_5ghz[6] = val & 0xff;	/* [+2] */
	sc->tssi_5ghz[7] = val >> 8;	/* [+3] */
	val = rt2860_srom_read(sc, RT2860_EEPROM_TSSI5_5GHZ);
	sc->tssi_5ghz[8] = val & 0xff;	/* [+4] */
	sc->step_5ghz = val >> 8;
	DPRINTF(("TSSI 5GHz: 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x "
	    "0x%02x 0x%02x step=%d\n", sc->tssi_5ghz[0], sc->tssi_5ghz[1],
	    sc->tssi_5ghz[2], sc->tssi_5ghz[3], sc->tssi_5ghz[4],
	    sc->tssi_5ghz[5], sc->tssi_5ghz[6], sc->tssi_5ghz[7],
	    sc->tssi_5ghz[8], sc->step_5ghz));
	/* check that ref value is correct, otherwise disable calibration */
	if (sc->tssi_5ghz[4] == 0xff)
		sc->calib_5ghz = 0;

	/* read RSSI offsets and LNA gains from EEPROM */
	val = rt2860_srom_read(sc, RT2860_EEPROM_RSSI1_2GHZ);
	sc->rssi_2ghz[0] = val & 0xff;	/* Ant A */
	sc->rssi_2ghz[1] = val >> 8;	/* Ant B */
	val = rt2860_srom_read(sc, RT2860_EEPROM_RSSI2_2GHZ);
	if (sc->mac_ver >= 0x3071) {
		/*
		 * On RT3090 chips (limited to 2 Rx chains), this ROM
		 * field contains the Tx mixer gain for the 2GHz band.
		 */
		if ((val & 0xff) != 0xff)
			sc->txmixgain_2ghz = val & 0x7;
		DPRINTF(("tx mixer gain=%u (2GHz)\n", sc->txmixgain_2ghz));
	} else
		sc->rssi_2ghz[2] = val & 0xff;	/* Ant C */
	sc->lna[2] = val >> 8;		/* channel group 2 */

	val = rt2860_srom_read(sc, RT2860_EEPROM_RSSI1_5GHZ);
	sc->rssi_5ghz[0] = val & 0xff;	/* Ant A */
	sc->rssi_5ghz[1] = val >> 8;	/* Ant B */
	val = rt2860_srom_read(sc, RT2860_EEPROM_RSSI2_5GHZ);
	sc->rssi_5ghz[2] = val & 0xff;	/* Ant C */
	sc->lna[3] = val >> 8;		/* channel group 3 */

	val = rt2860_srom_read(sc, RT2860_EEPROM_LNA);
	if (sc->mac_ver >= 0x3071)
		sc->lna[0] = RT3090_DEF_LNA;
	else				/* channel group 0 */
		sc->lna[0] = val & 0xff;
	sc->lna[1] = val >> 8;		/* channel group 1 */

	/* fix broken 5GHz LNA entries */
	if (sc->lna[2] == 0 || sc->lna[2] == 0xff) {
		DPRINTF(("invalid LNA for channel group %d\n", 2));
		sc->lna[2] = sc->lna[1];
	}
	if (sc->lna[3] == 0 || sc->lna[3] == 0xff) {
		DPRINTF(("invalid LNA for channel group %d\n", 3));
		sc->lna[3] = sc->lna[1];
	}

	/* fix broken RSSI offset entries */
	for (ant = 0; ant < 3; ant++) {
		if (sc->rssi_2ghz[ant] < -10 || sc->rssi_2ghz[ant] > 10) {
			DPRINTF(("invalid RSSI%d offset: %d (2GHz)\n",
			    ant + 1, sc->rssi_2ghz[ant]));
			sc->rssi_2ghz[ant] = 0;
		}
		if (sc->rssi_5ghz[ant] < -10 || sc->rssi_5ghz[ant] > 10) {
			DPRINTF(("invalid RSSI%d offset: %d (5GHz)\n",
			    ant + 1, sc->rssi_5ghz[ant]));
			sc->rssi_5ghz[ant] = 0;
		}
	}

	return 0;
}

int
rt2860_bbp_init(struct rt2860_softc *sc)
{
#define N(a)	(sizeof (a) / sizeof ((a)[0]))
	int i, ntries;

	/* wait for BBP to wake up */
	for (ntries = 0; ntries < 20; ntries++) {
		uint8_t bbp0 = rt2860_mcu_bbp_read(sc, 0);
		if (bbp0 != 0 && bbp0 != 0xff)
			break;
	}
	if (ntries == 20) {
		device_printf(sc->sc_dev,
		    "timeout waiting for BBP to wake up\n");
		return ETIMEDOUT;
	}

	/* initialize BBP registers to default values */
	for (i = 0; i < N(rt2860_def_bbp); i++) {
		rt2860_mcu_bbp_write(sc, rt2860_def_bbp[i].reg,
		    rt2860_def_bbp[i].val);
	}

	/* fix BBP84 for RT2860E */
	if (sc->mac_ver == 0x2860 && sc->mac_rev != 0x0101)
		rt2860_mcu_bbp_write(sc, 84, 0x19);

	if (sc->mac_ver >= 0x3071) {
		rt2860_mcu_bbp_write(sc, 79, 0x13);
		rt2860_mcu_bbp_write(sc, 80, 0x05);
		rt2860_mcu_bbp_write(sc, 81, 0x33);
	} else if (sc->mac_ver == 0x2860 && sc->mac_rev == 0x0100) {
		rt2860_mcu_bbp_write(sc, 69, 0x16);
		rt2860_mcu_bbp_write(sc, 73, 0x12);
	}

	return 0;
#undef N
}

static int
rt2860_txrx_enable(struct rt2860_softc *sc)
{
	struct ifnet *ifp = sc->sc_ifp;
	struct ieee80211com *ic = ifp->if_l2com;
	uint32_t tmp;
	int ntries;

	/* enable Tx/Rx DMA engine */
	RAL_WRITE(sc, RT2860_MAC_SYS_CTRL, RT2860_MAC_TX_EN);
	RAL_BARRIER_READ_WRITE(sc);
	for (ntries = 0; ntries < 200; ntries++) {
		tmp = RAL_READ(sc, RT2860_WPDMA_GLO_CFG);
		if ((tmp & (RT2860_TX_DMA_BUSY | RT2860_RX_DMA_BUSY)) == 0)
			break;
		DELAY(1000);
	}
	if (ntries == 200) {
		device_printf(sc->sc_dev, "timeout waiting for DMA engine\n");
		return ETIMEDOUT;
	}

	DELAY(50);

	tmp |= RT2860_RX_DMA_EN | RT2860_TX_DMA_EN |
	    RT2860_WPDMA_BT_SIZE64 << RT2860_WPDMA_BT_SIZE_SHIFT;
	RAL_WRITE(sc, RT2860_WPDMA_GLO_CFG, tmp);

	/* set Rx filter */
	tmp = RT2860_DROP_CRC_ERR | RT2860_DROP_PHY_ERR;
	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
		tmp |= RT2860_DROP_UC_NOME | RT2860_DROP_DUPL |
		    RT2860_DROP_CTS | RT2860_DROP_BA | RT2860_DROP_ACK |
		    RT2860_DROP_VER_ERR | RT2860_DROP_CTRL_RSV |
		    RT2860_DROP_CFACK | RT2860_DROP_CFEND;
		if (ic->ic_opmode == IEEE80211_M_STA)
			tmp |= RT2860_DROP_RTS | RT2860_DROP_PSPOLL;
	}
	RAL_WRITE(sc, RT2860_RX_FILTR_CFG, tmp);

	RAL_WRITE(sc, RT2860_MAC_SYS_CTRL,
	    RT2860_MAC_RX_EN | RT2860_MAC_TX_EN);

	return 0;
}

static void
rt2860_init(void *arg)
{
	struct rt2860_softc *sc = arg;
	struct ifnet *ifp = sc->sc_ifp;
	struct ieee80211com *ic = ifp->if_l2com;

	RAL_LOCK(sc);
	rt2860_init_locked(sc);
	RAL_UNLOCK(sc);

	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
		ieee80211_start_all(ic);
}

static void
rt2860_init_locked(struct rt2860_softc *sc)
{
#define N(a)	(sizeof (a) / sizeof ((a)[0]))
	struct ifnet *ifp = sc->sc_ifp;
	struct ieee80211com *ic = ifp->if_l2com;
	uint32_t tmp;
	uint8_t bbp1, bbp3;
	int i, qid, ridx, ntries, error;

	RAL_LOCK_ASSERT(sc);

	if (sc->rfswitch) {
		/* hardware has a radio switch on GPIO pin 2 */
		if (!(RAL_READ(sc, RT2860_GPIO_CTRL) & (1 << 2))) {
			device_printf(sc->sc_dev,
			    "radio is disabled by hardware switch\n");
#ifdef notyet
			rt2860_stop_locked(sc);
			return;
#endif
		}
	}
	RAL_WRITE(sc, RT2860_PWR_PIN_CFG, RT2860_IO_RA_PE);

	/* disable DMA */
	tmp = RAL_READ(sc, RT2860_WPDMA_GLO_CFG);
	tmp &= 0xff0;
	RAL_WRITE(sc, RT2860_WPDMA_GLO_CFG, tmp);

	/* PBF hardware reset */
	RAL_WRITE(sc, RT2860_SYS_CTRL, 0xe1f);
	RAL_BARRIER_WRITE(sc);
	RAL_WRITE(sc, RT2860_SYS_CTRL, 0xe00);

	if ((error = rt2860_load_microcode(sc)) != 0) {
		device_printf(sc->sc_dev, "could not load 8051 microcode\n");
		rt2860_stop_locked(sc);
		return;
	}

	rt2860_set_macaddr(sc, IF_LLADDR(ifp));

	/* init Tx power for all Tx rates (from EEPROM) */
	for (ridx = 0; ridx < 5; ridx++) {
		if (sc->txpow20mhz[ridx] == 0xffffffff)
			continue;
		RAL_WRITE(sc, RT2860_TX_PWR_CFG(ridx), sc->txpow20mhz[ridx]);
	}

	for (ntries = 0; ntries < 100; ntries++) {
		tmp = RAL_READ(sc, RT2860_WPDMA_GLO_CFG);
		if ((tmp & (RT2860_TX_DMA_BUSY | RT2860_RX_DMA_BUSY)) == 0)
			break;
		DELAY(1000);
	}
	if (ntries == 100) {
		device_printf(sc->sc_dev, "timeout waiting for DMA engine\n");
		rt2860_stop_locked(sc);
		return;
	}
	tmp &= 0xff0;
	RAL_WRITE(sc, RT2860_WPDMA_GLO_CFG, tmp);

	/* reset Rx ring and all 6 Tx rings */
	RAL_WRITE(sc, RT2860_WPDMA_RST_IDX, 0x1003f);

	/* PBF hardware reset */
	RAL_WRITE(sc, RT2860_SYS_CTRL, 0xe1f);
	RAL_BARRIER_WRITE(sc);
	RAL_WRITE(sc, RT2860_SYS_CTRL, 0xe00);

	RAL_WRITE(sc, RT2860_PWR_PIN_CFG, RT2860_IO_RA_PE | RT2860_IO_RF_PE);

	RAL_WRITE(sc, RT2860_MAC_SYS_CTRL, RT2860_BBP_HRST | RT2860_MAC_SRST);
	RAL_BARRIER_WRITE(sc);
	RAL_WRITE(sc, RT2860_MAC_SYS_CTRL, 0);

	for (i = 0; i < N(rt2860_def_mac); i++)
		RAL_WRITE(sc, rt2860_def_mac[i].reg, rt2860_def_mac[i].val);
	if (sc->mac_ver >= 0x3071) {
		/* set delay of PA_PE assertion to 1us (unit of 0.25us) */
		RAL_WRITE(sc, RT2860_TX_SW_CFG0,
		    4 << RT2860_DLY_PAPE_EN_SHIFT);
	}

	if (!(RAL_READ(sc, RT2860_PCI_CFG) & RT2860_PCI_CFG_PCI)) {
		sc->sc_flags |= RT2860_PCIE;
		/* PCIe has different clock cycle count than PCI */
		tmp = RAL_READ(sc, RT2860_US_CYC_CNT);
		tmp = (tmp & ~0xff) | 0x7d;
		RAL_WRITE(sc, RT2860_US_CYC_CNT, tmp);
	}

	/* wait while MAC is busy */
	for (ntries = 0; ntries < 100; ntries++) {
		if (!(RAL_READ(sc, RT2860_MAC_STATUS_REG) &
		    (RT2860_RX_STATUS_BUSY | RT2860_TX_STATUS_BUSY)))
			break;
		DELAY(1000);
	}
	if (ntries == 100) {
		device_printf(sc->sc_dev, "timeout waiting for MAC\n");
		rt2860_stop_locked(sc);
		return;
	}

	/* clear Host to MCU mailbox */
	RAL_WRITE(sc, RT2860_H2M_BBPAGENT, 0);
	RAL_WRITE(sc, RT2860_H2M_MAILBOX, 0);

	rt2860_mcu_cmd(sc, RT2860_MCU_CMD_RFRESET, 0, 0);
	DELAY(1000);

	if ((error = rt2860_bbp_init(sc)) != 0) {
		rt2860_stop_locked(sc);
		return;
	}

	/* clear RX WCID search table */
	RAL_SET_REGION_4(sc, RT2860_WCID_ENTRY(0), 0, 512);
	/* clear pairwise key table */
	RAL_SET_REGION_4(sc, RT2860_PKEY(0), 0, 2048);
	/* clear IV/EIV table */
	RAL_SET_REGION_4(sc, RT2860_IVEIV(0), 0, 512);
	/* clear WCID attribute table */
	RAL_SET_REGION_4(sc, RT2860_WCID_ATTR(0), 0, 256);
	/* clear shared key table */
	RAL_SET_REGION_4(sc, RT2860_SKEY(0, 0), 0, 8 * 32);
	/* clear shared key mode */
	RAL_SET_REGION_4(sc, RT2860_SKEY_MODE_0_7, 0, 4);

	/* init Tx rings (4 EDCAs + HCCA + Mgt) */
	for (qid = 0; qid < 6; qid++) {
		RAL_WRITE(sc, RT2860_TX_BASE_PTR(qid), sc->txq[qid].paddr);
		RAL_WRITE(sc, RT2860_TX_MAX_CNT(qid), RT2860_TX_RING_COUNT);
		RAL_WRITE(sc, RT2860_TX_CTX_IDX(qid), 0);
	}

	/* init Rx ring */
	RAL_WRITE(sc, RT2860_RX_BASE_PTR, sc->rxq.paddr);
	RAL_WRITE(sc, RT2860_RX_MAX_CNT, RT2860_RX_RING_COUNT);
	RAL_WRITE(sc, RT2860_RX_CALC_IDX, RT2860_RX_RING_COUNT - 1);

	/* setup maximum buffer sizes */
	RAL_WRITE(sc, RT2860_MAX_LEN_CFG, 1 << 12 |
	    (MCLBYTES - sizeof (struct rt2860_rxwi) - 2));

	for (ntries = 0; ntries < 100; ntries++) {
		tmp = RAL_READ(sc, RT2860_WPDMA_GLO_CFG);
		if ((tmp & (RT2860_TX_DMA_BUSY | RT2860_RX_DMA_BUSY)) == 0)
			break;
		DELAY(1000);
	}
	if (ntries == 100) {
		device_printf(sc->sc_dev, "timeout waiting for DMA engine\n");
		rt2860_stop_locked(sc);
		return;
	}
	tmp &= 0xff0;
	RAL_WRITE(sc, RT2860_WPDMA_GLO_CFG, tmp);

	/* disable interrupts mitigation */
	RAL_WRITE(sc, RT2860_DELAY_INT_CFG, 0);

	/* write vendor-specific BBP values (from EEPROM) */
	for (i = 0; i < 8; i++) {
		if (sc->bbp[i].reg == 0 || sc->bbp[i].reg == 0xff)
			continue;
		rt2860_mcu_bbp_write(sc, sc->bbp[i].reg, sc->bbp[i].val);
	}

	/* select Main antenna for 1T1R devices */
	if (sc->rf_rev == RT3070_RF_2020 ||
	    sc->rf_rev == RT3070_RF_3020 ||
	    sc->rf_rev == RT3070_RF_3320)
		rt3090_set_rx_antenna(sc, 0);

	/* send LEDs operating mode to microcontroller */
	rt2860_mcu_cmd(sc, RT2860_MCU_CMD_LED1, sc->led[0], 0);
	rt2860_mcu_cmd(sc, RT2860_MCU_CMD_LED2, sc->led[1], 0);
	rt2860_mcu_cmd(sc, RT2860_MCU_CMD_LED3, sc->led[2], 0);

	if (sc->mac_ver >= 0x3071)
		rt3090_rf_init(sc);

	rt2860_mcu_cmd(sc, RT2860_MCU_CMD_SLEEP, 0x02ff, 1);
	rt2860_mcu_cmd(sc, RT2860_MCU_CMD_WAKEUP, 0, 1);

	if (sc->mac_ver >= 0x3071)
		rt3090_rf_wakeup(sc);

	/* disable non-existing Rx chains */
	bbp3 = rt2860_mcu_bbp_read(sc, 3);
	bbp3 &= ~(1 << 3 | 1 << 4);
	if (sc->nrxchains == 2)
		bbp3 |= 1 << 3;
	else if (sc->nrxchains == 3)
		bbp3 |= 1 << 4;
	rt2860_mcu_bbp_write(sc, 3, bbp3);

	/* disable non-existing Tx chains */
	bbp1 = rt2860_mcu_bbp_read(sc, 1);
	if (sc->ntxchains == 1)
		bbp1 = (bbp1 & ~(1 << 3 | 1 << 4));
	else if (sc->mac_ver == 0x3593 && sc->ntxchains == 2)
		bbp1 = (bbp1 & ~(1 << 4)) | 1 << 3;
	else if (sc->mac_ver == 0x3593 && sc->ntxchains == 3)
		bbp1 = (bbp1 & ~(1 << 3)) | 1 << 4;
	rt2860_mcu_bbp_write(sc, 1, bbp1);

	if (sc->mac_ver >= 0x3071)
		rt3090_rf_setup(sc);

	/* select default channel */
	rt2860_switch_chan(sc, ic->ic_curchan);

	/* reset RF from MCU */
	rt2860_mcu_cmd(sc, RT2860_MCU_CMD_RFRESET, 0, 0);

	/* set RTS threshold */
	tmp = RAL_READ(sc, RT2860_TX_RTS_CFG);
	tmp &= ~0xffff00;
	tmp |= IEEE80211_RTS_DEFAULT << 8;
	RAL_WRITE(sc, RT2860_TX_RTS_CFG, tmp);

	/* setup initial protection mode */
	rt2860_updateprot(ifp);

	/* turn radio LED on */
	rt2860_set_leds(sc, RT2860_LED_RADIO);

	/* enable Tx/Rx DMA engine */
	if ((error = rt2860_txrx_enable(sc)) != 0) {
		rt2860_stop_locked(sc);
		return;
	}

	/* clear pending interrupts */
	RAL_WRITE(sc, RT2860_INT_STATUS, 0xffffffff);
	/* enable interrupts */
	RAL_WRITE(sc, RT2860_INT_MASK, 0x3fffc);

	if (sc->sc_flags & RT2860_ADVANCED_PS)
		rt2860_mcu_cmd(sc, RT2860_MCU_CMD_PSLEVEL, sc->pslevel, 0);

	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
	ifp->if_drv_flags |= IFF_DRV_RUNNING;

	callout_reset(&sc->watchdog_ch, hz, rt2860_watchdog, sc);
#undef N
}

static void
rt2860_stop(void *arg)
{
	struct rt2860_softc *sc = arg;

	RAL_LOCK(sc);
	rt2860_stop_locked(sc);
	RAL_UNLOCK(sc);
}

static void
rt2860_stop_locked(struct rt2860_softc *sc)
{
	struct ifnet *ifp = sc->sc_ifp;
	uint32_t tmp;
	int qid;

	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
		rt2860_set_leds(sc, 0);	/* turn all LEDs off */

	callout_stop(&sc->watchdog_ch);
	sc->sc_tx_timer = 0;
	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);

	/* disable interrupts */
	RAL_WRITE(sc, RT2860_INT_MASK, 0);

	/* disable GP timer */
	rt2860_set_gp_timer(sc, 0);

	/* disable Rx */
	tmp = RAL_READ(sc, RT2860_MAC_SYS_CTRL);
	tmp &= ~(RT2860_MAC_RX_EN | RT2860_MAC_TX_EN);
	RAL_WRITE(sc, RT2860_MAC_SYS_CTRL, tmp);

	/* reset adapter */
	RAL_WRITE(sc, RT2860_MAC_SYS_CTRL, RT2860_BBP_HRST | RT2860_MAC_SRST);
	RAL_BARRIER_WRITE(sc);
	RAL_WRITE(sc, RT2860_MAC_SYS_CTRL, 0);

	/* reset Tx and Rx rings (and reclaim TXWIs) */
	sc->qfullmsk = 0;
	for (qid = 0; qid < 6; qid++)
		rt2860_reset_tx_ring(sc, &sc->txq[qid]);
	rt2860_reset_rx_ring(sc, &sc->rxq);
}

int
rt2860_load_microcode(struct rt2860_softc *sc)
{
	const struct firmware *fp;
	int ntries, error;

	RAL_LOCK_ASSERT(sc);

	RAL_UNLOCK(sc);
	fp = firmware_get("rt2860fw");
	RAL_LOCK(sc);
	if (fp == NULL) {
		device_printf(sc->sc_dev,
		    "unable to receive rt2860fw firmware image\n");
		return EINVAL;
	}

	/* set "host program ram write selection" bit */
	RAL_WRITE(sc, RT2860_SYS_CTRL, RT2860_HST_PM_SEL);
	/* write microcode image */
	RAL_WRITE_REGION_1(sc, RT2860_FW_BASE, fp->data, fp->datasize);
	/* kick microcontroller unit */
	RAL_WRITE(sc, RT2860_SYS_CTRL, 0);
	RAL_BARRIER_WRITE(sc);
	RAL_WRITE(sc, RT2860_SYS_CTRL, RT2860_MCU_RESET);

	RAL_WRITE(sc, RT2860_H2M_BBPAGENT, 0);
	RAL_WRITE(sc, RT2860_H2M_MAILBOX, 0);

	/* wait until microcontroller is ready */
	RAL_BARRIER_READ_WRITE(sc);
	for (ntries = 0; ntries < 1000; ntries++) {
		if (RAL_READ(sc, RT2860_SYS_CTRL) & RT2860_MCU_READY)
			break;
		DELAY(1000);
	}
	if (ntries == 1000) {
		device_printf(sc->sc_dev,
		    "timeout waiting for MCU to initialize\n");
		error = ETIMEDOUT;
	} else
		error = 0;

	firmware_put(fp, FIRMWARE_UNLOAD);
	return error;
}

/*
 * This function is called periodically to adjust Tx power based on
 * temperature variation.
 */
#ifdef NOT_YET
static void
rt2860_calib(struct rt2860_softc *sc)
{
	struct ieee80211com *ic = &sc->sc_ic;
	const uint8_t *tssi;
	uint8_t step, bbp49;
	int8_t ridx, d;

	/* read current temperature */
	bbp49 = rt2860_mcu_bbp_read(sc, 49);

	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_bss->ni_chan)) {
		tssi = &sc->tssi_2ghz[4];
		step = sc->step_2ghz;
	} else {
		tssi = &sc->tssi_5ghz[4];
		step = sc->step_5ghz;
	}

	if (bbp49 < tssi[0]) {		/* lower than reference */
		/* use higher Tx power than default */
		for (d = 0; d > -4 && bbp49 <= tssi[d - 1]; d--);
	} else if (bbp49 > tssi[0]) {	/* greater than reference */
		/* use lower Tx power than default */
		for (d = 0; d < +4 && bbp49 >= tssi[d + 1]; d++);
	} else {
		/* use default Tx power */
		d = 0;
	}
	d *= step;

	DPRINTF(("BBP49=0x%02x, adjusting Tx power by %d\n", bbp49, d));

	/* write adjusted Tx power values for each Tx rate */
	for (ridx = 0; ridx < 5; ridx++) {
		if (sc->txpow20mhz[ridx] == 0xffffffff)
			continue;
		RAL_WRITE(sc, RT2860_TX_PWR_CFG(ridx),
		    b4inc(sc->txpow20mhz[ridx], d));
	}
}
#endif

static void
rt3090_set_rx_antenna(struct rt2860_softc *sc, int aux)
{
	uint32_t tmp;

	if (aux) {
		tmp = RAL_READ(sc, RT2860_PCI_EECTRL);
		RAL_WRITE(sc, RT2860_PCI_EECTRL, tmp & ~RT2860_C);
		tmp = RAL_READ(sc, RT2860_GPIO_CTRL);
		RAL_WRITE(sc, RT2860_GPIO_CTRL, (tmp & ~0x0808) | 0x08);
	} else {
		tmp = RAL_READ(sc, RT2860_PCI_EECTRL);
		RAL_WRITE(sc, RT2860_PCI_EECTRL, tmp | RT2860_C);
		tmp = RAL_READ(sc, RT2860_GPIO_CTRL);
		RAL_WRITE(sc, RT2860_GPIO_CTRL, tmp & ~0x0808);
	}
}

static void
rt2860_switch_chan(struct rt2860_softc *sc, struct ieee80211_channel *c)
{
	struct ifnet *ifp = sc->sc_ifp;
	struct ieee80211com *ic = ifp->if_l2com;
	u_int chan, group;

	chan = ieee80211_chan2ieee(ic, c);
	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
		return;

	if (sc->mac_ver >= 0x3071)
		rt3090_set_chan(sc, chan);
	else
		rt2860_set_chan(sc, chan);

	/* determine channel group */
	if (chan <= 14)
		group = 0;
	else if (chan <= 64)
		group = 1;
	else if (chan <= 128)
		group = 2;
	else
		group = 3;

	/* XXX necessary only when group has changed! */
	rt2860_select_chan_group(sc, group);

	DELAY(1000);
}

static int
rt2860_setup_beacon(struct rt2860_softc *sc, struct ieee80211vap *vap)
{
	struct ieee80211com *ic = vap->iv_ic;
	struct ieee80211_beacon_offsets bo;
	struct rt2860_txwi txwi;
	struct mbuf *m;
	int ridx;

	if ((m = ieee80211_beacon_alloc(vap->iv_bss, &bo)) == NULL)
		return ENOBUFS;

	memset(&txwi, 0, sizeof txwi);
	txwi.wcid = 0xff;
	txwi.len = htole16(m->m_pkthdr.len);
	/* send beacons at the lowest available rate */
	ridx = IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan) ?
	    RT2860_RIDX_OFDM6 : RT2860_RIDX_CCK1;
	txwi.phy = htole16(rt2860_rates[ridx].mcs);
	if (rt2860_rates[ridx].phy == IEEE80211_T_OFDM)
		txwi.phy |= htole16(RT2860_PHY_OFDM);
	txwi.txop = RT2860_TX_TXOP_HT;
	txwi.flags = RT2860_TX_TS;
	txwi.xflags = RT2860_TX_NSEQ;

	RAL_WRITE_REGION_1(sc, RT2860_BCN_BASE(0),
	    (uint8_t *)&txwi, sizeof txwi);
	RAL_WRITE_REGION_1(sc, RT2860_BCN_BASE(0) + sizeof txwi,
	    mtod(m, uint8_t *), m->m_pkthdr.len);

	m_freem(m);

	return 0;
}

static void
rt2860_enable_tsf_sync(struct rt2860_softc *sc)
{
	struct ifnet *ifp = sc->sc_ifp;
	struct ieee80211com *ic = ifp->if_l2com;
	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
	uint32_t tmp;

	tmp = RAL_READ(sc, RT2860_BCN_TIME_CFG);

	tmp &= ~0x1fffff;
	tmp |= vap->iv_bss->ni_intval * 16;
	tmp |= RT2860_TSF_TIMER_EN | RT2860_TBTT_TIMER_EN;
	if (vap->iv_opmode == IEEE80211_M_STA) {
		/*
		 * Local TSF is always updated with remote TSF on beacon
		 * reception.
		 */
		tmp |= 1 << RT2860_TSF_SYNC_MODE_SHIFT;
	}
	else if (vap->iv_opmode == IEEE80211_M_IBSS ||
	    vap->iv_opmode == IEEE80211_M_MBSS) {
		tmp |= RT2860_BCN_TX_EN;
		/*
		 * Local TSF is updated with remote TSF on beacon reception
		 * only if the remote TSF is greater than local TSF.
		 */
		tmp |= 2 << RT2860_TSF_SYNC_MODE_SHIFT;
	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
		tmp |= RT2860_BCN_TX_EN;
		/* SYNC with nobody */
		tmp |= 3 << RT2860_TSF_SYNC_MODE_SHIFT;
	}

	RAL_WRITE(sc, RT2860_BCN_TIME_CFG, tmp);
}

Man Man