Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/s3/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/usie/@/amd64/compile/hs32/modules/usr/src/sys/modules/i2c/controllers/alpm/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/umoscom/@/dev/cxgb/ulp/tom/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/s3/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/usie/@/amd64/compile/hs32/modules/usr/src/sys/modules/i2c/controllers/alpm/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/umoscom/@/dev/cxgb/ulp/tom/cxgb_l2t.c |
/*- * Copyright (c) 2012 Chelsio Communications, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/dev/cxgb/ulp/tom/cxgb_l2t.c 237920 2012-07-01 12:00:36Z np $"); #include "opt_inet.h" #ifdef TCP_OFFLOAD #include <sys/param.h> #include <sys/systm.h> #include <sys/kernel.h> #include <sys/module.h> #include <sys/bus.h> #include <sys/socket.h> #include <net/if.h> #include <net/ethernet.h> #include <net/if_vlan_var.h> #include <netinet/in.h> #include <netinet/toecore.h> #include "cxgb_include.h" #include "ulp/tom/cxgb_tom.h" #include "ulp/tom/cxgb_l2t.h" #define VLAN_NONE 0xfff #define SA(x) ((struct sockaddr *)(x)) #define SIN(x) ((struct sockaddr_in *)(x)) #define SINADDR(x) (SIN(x)->sin_addr.s_addr) /* * Module locking notes: There is a RW lock protecting the L2 table as a * whole plus a mutex per L2T entry. Entry lookups and allocations happen * under the protection of the table lock, individual entry changes happen * while holding that entry's mutex. The table lock nests outside the * entry locks. Allocations of new entries take the table lock as writers so * no other lookups can happen while allocating new entries. Entry updates * take the table lock as readers so multiple entries can be updated in * parallel. An L2T entry can be dropped by decrementing its reference count * and therefore can happen in parallel with entry allocation but no entry * can change state or increment its ref count during allocation as both of * these perform lookups. * * When acquiring multiple locks, the order is llentry -> L2 table -> L2 entry. */ static inline unsigned int arp_hash(u32 key, int ifindex, const struct l2t_data *d) { return jhash_2words(key, ifindex, 0) & (d->nentries - 1); } /* * Set up an L2T entry and send any packets waiting in the arp queue. Must be * called with the entry locked. */ static int setup_l2e_send_pending(struct adapter *sc, struct l2t_entry *e) { struct mbuf *m; struct cpl_l2t_write_req *req; struct port_info *pi = &sc->port[e->smt_idx]; /* smt_idx is port_id */ mtx_assert(&e->lock, MA_OWNED); m = M_GETHDR_OFLD(pi->first_qset, CPL_PRIORITY_CONTROL, req); if (m == NULL) { log(LOG_ERR, "%s: no mbuf, can't setup L2 entry at index %d\n", __func__, e->idx); return (ENOMEM); } req->wr.wrh_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD)); OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ, e->idx)); req->params = htonl(V_L2T_W_IDX(e->idx) | V_L2T_W_IFF(e->smt_idx) | V_L2T_W_VLAN(e->vlan & EVL_VLID_MASK) | V_L2T_W_PRIO(EVL_PRIOFTAG(e->vlan))); memcpy(req->dst_mac, e->dmac, sizeof(req->dst_mac)); t3_offload_tx(sc, m); /* * XXX: We used pi->first_qset to send the L2T_WRITE_REQ. If any mbuf * on the arpq is going out via another queue set associated with the * port then it has a bad race with the L2T_WRITE_REQ. Ideally we * should wait till the reply to the write before draining the arpq. */ while (e->arpq_head) { m = e->arpq_head; e->arpq_head = m->m_next; m->m_next = NULL; t3_offload_tx(sc, m); } e->arpq_tail = NULL; return (0); } /* * Add a packet to the an L2T entry's queue of packets awaiting resolution. * Must be called with the entry's lock held. */ static inline void arpq_enqueue(struct l2t_entry *e, struct mbuf *m) { mtx_assert(&e->lock, MA_OWNED); m->m_next = NULL; if (e->arpq_head) e->arpq_tail->m_next = m; else e->arpq_head = m; e->arpq_tail = m; } static void resolution_failed_mbuf(struct mbuf *m) { log(LOG_ERR, "%s: leaked mbuf %p, CPL at %p", __func__, m, mtod(m, void *)); } static void resolution_failed(struct l2t_entry *e) { struct mbuf *m; mtx_assert(&e->lock, MA_OWNED); while (e->arpq_head) { m = e->arpq_head; e->arpq_head = m->m_next; m->m_next = NULL; resolution_failed_mbuf(m); } e->arpq_tail = NULL; } static void update_entry(struct adapter *sc, struct l2t_entry *e, uint8_t *lladdr, uint16_t vtag) { mtx_assert(&e->lock, MA_OWNED); /* * The entry may be in active use (e->refcount > 0) or not. We update * it even when it's not as this simplifies the case where we decide to * reuse the entry later. */ if (lladdr == NULL && (e->state == L2T_STATE_RESOLVING || e->state == L2T_STATE_FAILED)) { /* * Never got a valid L2 address for this one. Just mark it as * failed instead of removing it from the hash (for which we'd * need to wlock the table). */ e->state = L2T_STATE_FAILED; resolution_failed(e); return; } else if (lladdr == NULL) { /* Valid or already-stale entry was deleted (or expired) */ KASSERT(e->state == L2T_STATE_VALID || e->state == L2T_STATE_STALE, ("%s: lladdr NULL, state %d", __func__, e->state)); e->state = L2T_STATE_STALE; } else { if (e->state == L2T_STATE_RESOLVING || e->state == L2T_STATE_FAILED || memcmp(e->dmac, lladdr, ETHER_ADDR_LEN)) { /* unresolved -> resolved; or dmac changed */ memcpy(e->dmac, lladdr, ETHER_ADDR_LEN); e->vlan = vtag; setup_l2e_send_pending(sc, e); } e->state = L2T_STATE_VALID; } } static int resolve_entry(struct adapter *sc, struct l2t_entry *e) { struct tom_data *td = sc->tom_softc; struct toedev *tod = &td->tod; struct sockaddr_in sin = {0}; uint8_t dmac[ETHER_ADDR_LEN]; uint16_t vtag = EVL_VLID_MASK; int rc; sin.sin_family = AF_INET; sin.sin_len = sizeof(struct sockaddr_in); SINADDR(&sin) = e->addr; rc = toe_l2_resolve(tod, e->ifp, SA(&sin), dmac, &vtag); if (rc == EWOULDBLOCK) return (rc); mtx_lock(&e->lock); update_entry(sc, e, rc == 0 ? dmac : NULL, vtag); mtx_unlock(&e->lock); return (rc); } int t3_l2t_send_slow(struct adapter *sc, struct mbuf *m, struct l2t_entry *e) { again: switch (e->state) { case L2T_STATE_STALE: /* entry is stale, kick off revalidation */ if (resolve_entry(sc, e) != EWOULDBLOCK) goto again; /* entry updated, re-examine state */ /* Fall through */ case L2T_STATE_VALID: /* fast-path, send the packet on */ return (t3_offload_tx(sc, m)); case L2T_STATE_RESOLVING: mtx_lock(&e->lock); if (e->state != L2T_STATE_RESOLVING) { mtx_unlock(&e->lock); goto again; } arpq_enqueue(e, m); mtx_unlock(&e->lock); if (resolve_entry(sc, e) == EWOULDBLOCK) break; mtx_lock(&e->lock); if (e->state == L2T_STATE_VALID && e->arpq_head) setup_l2e_send_pending(sc, e); if (e->state == L2T_STATE_FAILED) resolution_failed(e); mtx_unlock(&e->lock); break; case L2T_STATE_FAILED: resolution_failed_mbuf(m); return (EHOSTUNREACH); } return (0); } /* * Allocate a free L2T entry. Must be called with l2t_data.lock held. */ static struct l2t_entry * alloc_l2e(struct l2t_data *d) { struct l2t_entry *end, *e, **p; rw_assert(&d->lock, RA_WLOCKED); if (!atomic_load_acq_int(&d->nfree)) return (NULL); /* there's definitely a free entry */ for (e = d->rover, end = &d->l2tab[d->nentries]; e != end; ++e) { if (atomic_load_acq_int(&e->refcnt) == 0) goto found; } for (e = &d->l2tab[1]; atomic_load_acq_int(&e->refcnt); ++e) continue; found: d->rover = e + 1; atomic_add_int(&d->nfree, -1); /* * The entry we found may be an inactive entry that is * presently in the hash table. We need to remove it. */ if (e->state != L2T_STATE_UNUSED) { int hash = arp_hash(e->addr, e->ifp->if_index, d); for (p = &d->l2tab[hash].first; *p; p = &(*p)->next) { if (*p == e) { *p = e->next; break; } } e->state = L2T_STATE_UNUSED; } return (e); } struct l2t_entry * t3_l2t_get(struct port_info *pi, struct ifnet *ifp, struct sockaddr *sa) { struct tom_data *td = pi->adapter->tom_softc; struct l2t_entry *e; struct l2t_data *d = td->l2t; uint32_t addr = SINADDR(sa); int hash = arp_hash(addr, ifp->if_index, d); unsigned int smt_idx = pi->port_id; rw_wlock(&d->lock); for (e = d->l2tab[hash].first; e; e = e->next) { if (e->addr == addr && e->ifp == ifp && e->smt_idx == smt_idx) { l2t_hold(d, e); goto done; } } /* Need to allocate a new entry */ e = alloc_l2e(d); if (e) { mtx_lock(&e->lock); /* avoid race with t3_l2t_free */ e->next = d->l2tab[hash].first; d->l2tab[hash].first = e; e->state = L2T_STATE_RESOLVING; e->addr = addr; e->ifp = ifp; e->smt_idx = smt_idx; atomic_store_rel_int(&e->refcnt, 1); KASSERT(ifp->if_vlantrunk == NULL, ("TOE+VLAN unimplemented.")); e->vlan = VLAN_NONE; mtx_unlock(&e->lock); } done: rw_wunlock(&d->lock); return (e); } void t3_l2_update(struct toedev *tod, struct ifnet *ifp, struct sockaddr *sa, uint8_t *lladdr, uint16_t vtag) { struct tom_data *td = t3_tomdata(tod); struct adapter *sc = tod->tod_softc; struct l2t_entry *e; struct l2t_data *d = td->l2t; u32 addr = *(u32 *) &SIN(sa)->sin_addr; int hash = arp_hash(addr, ifp->if_index, d); rw_rlock(&d->lock); for (e = d->l2tab[hash].first; e; e = e->next) if (e->addr == addr && e->ifp == ifp) { mtx_lock(&e->lock); goto found; } rw_runlock(&d->lock); /* * This is of no interest to us. We've never had an offloaded * connection to this destination, and we aren't attempting one right * now. */ return; found: rw_runlock(&d->lock); KASSERT(e->state != L2T_STATE_UNUSED, ("%s: unused entry in the hash.", __func__)); update_entry(sc, e, lladdr, vtag); mtx_unlock(&e->lock); } struct l2t_data * t3_init_l2t(unsigned int l2t_capacity) { struct l2t_data *d; int i, size = sizeof(*d) + l2t_capacity * sizeof(struct l2t_entry); d = malloc(size, M_CXGB, M_NOWAIT | M_ZERO); if (!d) return (NULL); d->nentries = l2t_capacity; d->rover = &d->l2tab[1]; /* entry 0 is not used */ atomic_store_rel_int(&d->nfree, l2t_capacity - 1); rw_init(&d->lock, "L2T"); for (i = 0; i < l2t_capacity; ++i) { d->l2tab[i].idx = i; d->l2tab[i].state = L2T_STATE_UNUSED; mtx_init(&d->l2tab[i].lock, "L2T_E", NULL, MTX_DEF); atomic_store_rel_int(&d->l2tab[i].refcnt, 0); } return (d); } void t3_free_l2t(struct l2t_data *d) { int i; rw_destroy(&d->lock); for (i = 0; i < d->nentries; ++i) mtx_destroy(&d->l2tab[i].lock); free(d, M_CXGB); } static int do_l2t_write_rpl(struct sge_qset *qs, struct rsp_desc *r, struct mbuf *m) { struct cpl_l2t_write_rpl *rpl = mtod(m, void *); if (rpl->status != CPL_ERR_NONE) log(LOG_ERR, "Unexpected L2T_WRITE_RPL status %u for entry %u\n", rpl->status, GET_TID(rpl)); m_freem(m); return (0); } void t3_init_l2t_cpl_handlers(struct adapter *sc) { t3_register_cpl_handler(sc, CPL_L2T_WRITE_RPL, do_l2t_write_rpl); } #endif