Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/s3/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/usie/@/amd64/compile/hs32/modules/usr/src/sys/modules/i2c/controllers/alpm/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/uss820dci/@/dev/sfxge/common/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/s3/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/usie/@/amd64/compile/hs32/modules/usr/src/sys/modules/i2c/controllers/alpm/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/uss820dci/@/dev/sfxge/common/efx_nic.c |
/*- * Copyright 2007-2009 Solarflare Communications Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/dev/sfxge/common/efx_nic.c 228100 2011-11-28 20:28:23Z philip $"); #include "efsys.h" #include "efx.h" #include "efx_types.h" #include "efx_regs.h" #include "efx_impl.h" __checkReturn int efx_family( __in uint16_t venid, __in uint16_t devid, __out efx_family_t *efp) { #if EFSYS_OPT_FALCON if (venid == EFX_PCI_VENID_SFC && devid == EFX_PCI_DEVID_FALCON) { *efp = EFX_FAMILY_FALCON; return (0); } #endif #if EFSYS_OPT_SIENA if (venid == EFX_PCI_VENID_SFC && devid == EFX_PCI_DEVID_BETHPAGE) { *efp = EFX_FAMILY_SIENA; return (0); } if (venid == EFX_PCI_VENID_SFC && devid == EFX_PCI_DEVID_SIENA) { *efp = EFX_FAMILY_SIENA; return (0); } if (venid == EFX_PCI_VENID_SFC && devid == EFX_PCI_DEVID_SIENA_F1_UNINIT) { *efp = EFX_FAMILY_SIENA; return (0); } #endif return (ENOTSUP); } /* * To support clients which aren't provided with any PCI context infer * the hardware family by inspecting the hardware. Obviously the caller * must be damn sure they're really talking to a supported device. */ __checkReturn int efx_infer_family( __in efsys_bar_t *esbp, __out efx_family_t *efp) { efx_family_t family; efx_oword_t oword; unsigned int portnum; int rc; EFSYS_BAR_READO(esbp, FR_AZ_CS_DEBUG_REG_OFST, &oword, B_TRUE); portnum = EFX_OWORD_FIELD(oword, FRF_CZ_CS_PORT_NUM); switch (portnum) { #if EFSYS_OPT_FALCON case 0: family = EFX_FAMILY_FALCON; break; #endif #if EFSYS_OPT_SIENA case 1: case 2: family = EFX_FAMILY_SIENA; break; #endif default: rc = ENOTSUP; goto fail1; } if (efp != NULL) *efp = family; return (0); fail1: EFSYS_PROBE1(fail1, int, rc); return (rc); } /* * The built-in default value device id for port 1 of Siena is 0x0810. * manftest needs to be able to cope with that. */ #define EFX_BIU_MAGIC0 0x01234567 #define EFX_BIU_MAGIC1 0xfedcba98 static __checkReturn int efx_nic_biu_test( __in efx_nic_t *enp) { efx_oword_t oword; int rc; /* * Write magic values to scratch registers 0 and 1, then * verify that the values were written correctly. Interleave * the accesses to ensure that the BIU is not just reading * back the cached value that was last written. */ EFX_POPULATE_OWORD_1(oword, FRF_AZ_DRIVER_DW0, EFX_BIU_MAGIC0); EFX_BAR_TBL_WRITEO(enp, FR_AZ_DRIVER_REG, 0, &oword); EFX_POPULATE_OWORD_1(oword, FRF_AZ_DRIVER_DW0, EFX_BIU_MAGIC1); EFX_BAR_TBL_WRITEO(enp, FR_AZ_DRIVER_REG, 1, &oword); EFX_BAR_TBL_READO(enp, FR_AZ_DRIVER_REG, 0, &oword); if (EFX_OWORD_FIELD(oword, FRF_AZ_DRIVER_DW0) != EFX_BIU_MAGIC0) { rc = EIO; goto fail1; } EFX_BAR_TBL_READO(enp, FR_AZ_DRIVER_REG, 1, &oword); if (EFX_OWORD_FIELD(oword, FRF_AZ_DRIVER_DW0) != EFX_BIU_MAGIC1) { rc = EIO; goto fail2; } /* * Perform the same test, with the values swapped. This * ensures that subsequent tests don't start with the correct * values already written into the scratch registers. */ EFX_POPULATE_OWORD_1(oword, FRF_AZ_DRIVER_DW0, EFX_BIU_MAGIC1); EFX_BAR_TBL_WRITEO(enp, FR_AZ_DRIVER_REG, 0, &oword); EFX_POPULATE_OWORD_1(oword, FRF_AZ_DRIVER_DW0, EFX_BIU_MAGIC0); EFX_BAR_TBL_WRITEO(enp, FR_AZ_DRIVER_REG, 1, &oword); EFX_BAR_TBL_READO(enp, FR_AZ_DRIVER_REG, 0, &oword); if (EFX_OWORD_FIELD(oword, FRF_AZ_DRIVER_DW0) != EFX_BIU_MAGIC1) { rc = EIO; goto fail3; } EFX_BAR_TBL_READO(enp, FR_AZ_DRIVER_REG, 1, &oword); if (EFX_OWORD_FIELD(oword, FRF_AZ_DRIVER_DW0) != EFX_BIU_MAGIC0) { rc = EIO; goto fail4; } return (0); fail4: EFSYS_PROBE(fail4); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, int, rc); return (rc); } #if EFSYS_OPT_FALCON static efx_nic_ops_t __cs __efx_nic_falcon_ops = { falcon_nic_probe, /* eno_probe */ falcon_nic_reset, /* eno_reset */ falcon_nic_init, /* eno_init */ #if EFSYS_OPT_DIAG falcon_sram_test, /* eno_sram_test */ falcon_nic_register_test, /* eno_register_test */ #endif /* EFSYS_OPT_DIAG */ falcon_nic_fini, /* eno_fini */ falcon_nic_unprobe, /* eno_unprobe */ }; #endif /* EFSYS_OPT_FALCON */ #if EFSYS_OPT_SIENA static efx_nic_ops_t __cs __efx_nic_siena_ops = { siena_nic_probe, /* eno_probe */ siena_nic_reset, /* eno_reset */ siena_nic_init, /* eno_init */ #if EFSYS_OPT_DIAG siena_sram_test, /* eno_sram_test */ siena_nic_register_test, /* eno_register_test */ #endif /* EFSYS_OPT_DIAG */ siena_nic_fini, /* eno_fini */ siena_nic_unprobe, /* eno_unprobe */ }; #endif /* EFSYS_OPT_SIENA */ __checkReturn int efx_nic_create( __in efx_family_t family, __in efsys_identifier_t *esip, __in efsys_bar_t *esbp, __in efsys_lock_t *eslp, __deref_out efx_nic_t **enpp) { efx_nic_t *enp; int rc; EFSYS_ASSERT3U(family, >, EFX_FAMILY_INVALID); EFSYS_ASSERT3U(family, <, EFX_FAMILY_NTYPES); /* Allocate a NIC object */ EFSYS_KMEM_ALLOC(esip, sizeof (efx_nic_t), enp); if (enp == NULL) { rc = ENOMEM; goto fail1; } enp->en_magic = EFX_NIC_MAGIC; switch (family) { #if EFSYS_OPT_FALCON case EFX_FAMILY_FALCON: enp->en_enop = (efx_nic_ops_t *)&__efx_nic_falcon_ops; enp->en_features = 0; break; #endif /* EFSYS_OPT_FALCON */ #if EFSYS_OPT_SIENA case EFX_FAMILY_SIENA: enp->en_enop = (efx_nic_ops_t *)&__efx_nic_siena_ops; enp->en_features = EFX_FEATURE_IPV6 | EFX_FEATURE_LFSR_HASH_INSERT | EFX_FEATURE_LINK_EVENTS | EFX_FEATURE_PERIODIC_MAC_STATS | EFX_FEATURE_WOL | EFX_FEATURE_MCDI | EFX_FEATURE_LOOKAHEAD_SPLIT | EFX_FEATURE_MAC_HEADER_FILTERS; break; #endif /* EFSYS_OPT_SIENA */ default: rc = ENOTSUP; goto fail2; } enp->en_family = family; enp->en_esip = esip; enp->en_esbp = esbp; enp->en_eslp = eslp; *enpp = enp; return (0); fail2: EFSYS_PROBE(fail3); enp->en_magic = 0; /* Free the NIC object */ EFSYS_KMEM_FREE(esip, sizeof (efx_nic_t), enp); fail1: EFSYS_PROBE1(fail1, int, rc); return (rc); } __checkReturn int efx_nic_probe( __in efx_nic_t *enp) { efx_nic_ops_t *enop; efx_oword_t oword; int rc; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); #if EFSYS_OPT_MCDI EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI); #endif /* EFSYS_OPT_MCDI */ EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_PROBE)); /* Test BIU */ if ((rc = efx_nic_biu_test(enp)) != 0) goto fail1; /* Clear the region register */ EFX_POPULATE_OWORD_4(oword, FRF_AZ_ADR_REGION0, 0, FRF_AZ_ADR_REGION1, (1 << 16), FRF_AZ_ADR_REGION2, (2 << 16), FRF_AZ_ADR_REGION3, (3 << 16)); EFX_BAR_WRITEO(enp, FR_AZ_ADR_REGION_REG, &oword); enop = enp->en_enop; if ((rc = enop->eno_probe(enp)) != 0) goto fail2; if ((rc = efx_phy_probe(enp)) != 0) goto fail3; enp->en_mod_flags |= EFX_MOD_PROBE; return (0); fail3: EFSYS_PROBE(fail3); enop->eno_unprobe(enp); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, int, rc); return (rc); } #if EFSYS_OPT_PCIE_TUNE __checkReturn int efx_nic_pcie_tune( __in efx_nic_t *enp, unsigned int nlanes) { EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE); EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_NIC)); #if EFSYS_OPT_FALCON if (enp->en_family == EFX_FAMILY_FALCON) return (falcon_nic_pcie_tune(enp, nlanes)); #endif return (ENOTSUP); } __checkReturn int efx_nic_pcie_extended_sync( __in efx_nic_t *enp) { EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE); EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_NIC)); #if EFSYS_OPT_SIENA if (enp->en_family == EFX_FAMILY_SIENA) return (siena_nic_pcie_extended_sync(enp)); #endif return (ENOTSUP); } #endif /* EFSYS_OPT_PCIE_TUNE */ __checkReturn int efx_nic_init( __in efx_nic_t *enp) { efx_nic_ops_t *enop = enp->en_enop; int rc; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE); if (enp->en_mod_flags & EFX_MOD_NIC) { rc = EINVAL; goto fail1; } if ((rc = enop->eno_init(enp)) != 0) goto fail2; enp->en_mod_flags |= EFX_MOD_NIC; return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, int, rc); return (rc); } void efx_nic_fini( __in efx_nic_t *enp) { efx_nic_ops_t *enop = enp->en_enop; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT(enp->en_mod_flags & EFX_MOD_PROBE); EFSYS_ASSERT(enp->en_mod_flags & EFX_MOD_NIC); EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_INTR)); EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_EV)); EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_RX)); EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_TX)); enop->eno_fini(enp); enp->en_mod_flags &= ~EFX_MOD_NIC; } void efx_nic_unprobe( __in efx_nic_t *enp) { efx_nic_ops_t *enop = enp->en_enop; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); #if EFSYS_OPT_MCDI EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI); #endif /* EFSYS_OPT_MCDI */ EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE); EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_NIC)); EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_INTR)); EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_EV)); EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_RX)); EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_TX)); efx_phy_unprobe(enp); enop->eno_unprobe(enp); enp->en_mod_flags &= ~EFX_MOD_PROBE; } void efx_nic_destroy( __in efx_nic_t *enp) { efsys_identifier_t *esip = enp->en_esip; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, ==, 0); enp->en_family = 0; enp->en_esip = NULL; enp->en_esbp = NULL; enp->en_eslp = NULL; enp->en_enop = NULL; enp->en_magic = 0; /* Free the NIC object */ EFSYS_KMEM_FREE(esip, sizeof (efx_nic_t), enp); } __checkReturn int efx_nic_reset( __in efx_nic_t *enp) { efx_nic_ops_t *enop = enp->en_enop; unsigned int mod_flags; int rc; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT(enp->en_mod_flags & EFX_MOD_PROBE); /* * All modules except the MCDI, PROBE, NVRAM, VPD, MON (which we * do not reset here) must have been shut down or never initialized. * * A rule of thumb here is: If the controller or MC reboots, is *any* * state lost. If it's lost and needs reapplying, then the module * *must* not be initialised during the reset. */ mod_flags = enp->en_mod_flags; mod_flags &= ~(EFX_MOD_MCDI | EFX_MOD_PROBE | EFX_MOD_NVRAM | EFX_MOD_VPD | EFX_MOD_MON); EFSYS_ASSERT3U(mod_flags, ==, 0); if (mod_flags != 0) { rc = EINVAL; goto fail1; } if ((rc = enop->eno_reset(enp)) != 0) goto fail2; enp->en_reset_flags |= EFX_RESET_MAC; return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, int, rc); return (rc); } const efx_nic_cfg_t * efx_nic_cfg_get( __in efx_nic_t *enp) { EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); return (&(enp->en_nic_cfg)); } #if EFSYS_OPT_DIAG __checkReturn int efx_nic_register_test( __in efx_nic_t *enp) { efx_nic_ops_t *enop = enp->en_enop; int rc; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE); EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_NIC)); if ((rc = enop->eno_register_test(enp)) != 0) goto fail1; return (0); fail1: EFSYS_PROBE1(fail1, int, rc); return (rc); } __checkReturn int efx_nic_test_registers( __in efx_nic_t *enp, __in efx_register_set_t *rsp, __in size_t count) { unsigned int bit; efx_oword_t original; efx_oword_t reg; efx_oword_t buf; int rc; while (count > 0) { /* This function is only suitable for registers */ EFSYS_ASSERT(rsp->rows == 1); /* bit sweep on and off */ EFSYS_BAR_READO(enp->en_esbp, rsp->address, &original, B_TRUE); for (bit = 0; bit < 128; bit++) { /* Is this bit in the mask? */ if (~(rsp->mask.eo_u32[bit >> 5]) & (1 << bit)) continue; /* Test this bit can be set in isolation */ reg = original; EFX_AND_OWORD(reg, rsp->mask); EFX_SET_OWORD_BIT(reg, bit); EFSYS_BAR_WRITEO(enp->en_esbp, rsp->address, ®, B_TRUE); EFSYS_BAR_READO(enp->en_esbp, rsp->address, &buf, B_TRUE); EFX_AND_OWORD(buf, rsp->mask); if (memcmp(®, &buf, sizeof (reg))) { rc = EIO; goto fail1; } /* Test this bit can be cleared in isolation */ EFX_OR_OWORD(reg, rsp->mask); EFX_CLEAR_OWORD_BIT(reg, bit); EFSYS_BAR_WRITEO(enp->en_esbp, rsp->address, ®, B_TRUE); EFSYS_BAR_READO(enp->en_esbp, rsp->address, &buf, B_TRUE); EFX_AND_OWORD(buf, rsp->mask); if (memcmp(®, &buf, sizeof (reg))) { rc = EIO; goto fail2; } } /* Restore the old value */ EFSYS_BAR_WRITEO(enp->en_esbp, rsp->address, &original, B_TRUE); --count; ++rsp; } return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, int, rc); /* Restore the old value */ EFSYS_BAR_WRITEO(enp->en_esbp, rsp->address, &original, B_TRUE); return (rc); } __checkReturn int efx_nic_test_tables( __in efx_nic_t *enp, __in efx_register_set_t *rsp, __in efx_pattern_type_t pattern, __in size_t count) { efx_sram_pattern_fn_t func; unsigned int index; unsigned int address; efx_oword_t reg; efx_oword_t buf; int rc; EFSYS_ASSERT(pattern < EFX_PATTERN_NTYPES); func = __efx_sram_pattern_fns[pattern]; while (count > 0) { /* Write */ address = rsp->address; for (index = 0; index < rsp->rows; ++index) { func(2 * index + 0, B_FALSE, ®.eo_qword[0]); func(2 * index + 1, B_FALSE, ®.eo_qword[1]); EFX_AND_OWORD(reg, rsp->mask); EFSYS_BAR_WRITEO(enp->en_esbp, address, ®, B_TRUE); address += rsp->step; } /* Read */ address = rsp->address; for (index = 0; index < rsp->rows; ++index) { func(2 * index + 0, B_FALSE, ®.eo_qword[0]); func(2 * index + 1, B_FALSE, ®.eo_qword[1]); EFX_AND_OWORD(reg, rsp->mask); EFSYS_BAR_READO(enp->en_esbp, address, &buf, B_TRUE); if (memcmp(®, &buf, sizeof (reg))) { rc = EIO; goto fail1; } address += rsp->step; } ++rsp; --count; } return (0); fail1: EFSYS_PROBE1(fail1, int, rc); return (rc); } #endif /* EFSYS_OPT_DIAG */