Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/s3/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/usie/@/amd64/compile/hs32/modules/usr/src/sys/modules/ipwfw/ipw_monitor/@/amd64/compile/hs32/modules/usr/src/sys/modules/aio/@/ia64/include/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/s3/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/usie/@/amd64/compile/hs32/modules/usr/src/sys/modules/ipwfw/ipw_monitor/@/amd64/compile/hs32/modules/usr/src/sys/modules/aio/@/ia64/include/bus.h |
/*- * Copyright (c) 2009 Marcel Moolenaar * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* $NetBSD: bus.h,v 1.12 1997/10/01 08:25:15 fvdl Exp $ */ /*- * Copyright (c) 1996, 1997 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, * NASA Ames Research Center. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /*- * Copyright (c) 1996 Charles M. Hannum. All rights reserved. * Copyright (c) 1996 Christopher G. Demetriou. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Christopher G. Demetriou * for the NetBSD Project. * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* $FreeBSD: release/9.1.0/sys/ia64/include/bus.h 216143 2010-12-03 07:09:23Z brucec $ */ #ifndef _MACHINE_BUS_H_ #define _MACHINE_BUS_H_ #include <machine/_bus.h> #include <machine/cpufunc.h> /* * I/O port reads with ia32 semantics. */ #define inb bus_space_read_io_1 #define inw bus_space_read_io_2 #define inl bus_space_read_io_4 #define outb bus_space_write_io_1 #define outw bus_space_write_io_2 #define outl bus_space_write_io_4 /* * Values for the ia64 bus space tag, not to be used directly by MI code. */ #define IA64_BUS_SPACE_IO 0 /* space is i/o space */ #define IA64_BUS_SPACE_MEM 1 /* space is mem space */ #define BUS_SPACE_BARRIER_READ 0x01 /* force read barrier */ #define BUS_SPACE_BARRIER_WRITE 0x02 /* force write barrier */ #define BUS_SPACE_MAXSIZE_24BIT 0xFFFFFF #define BUS_SPACE_MAXSIZE_32BIT 0xFFFFFFFF #define BUS_SPACE_MAXSIZE 0xFFFFFFFFFFFFFFFF #define BUS_SPACE_MAXADDR_24BIT 0xFFFFFF #define BUS_SPACE_MAXADDR_32BIT 0xFFFFFFFF #define BUS_SPACE_MAXADDR 0xFFFFFFFFFFFFFFFF #define BUS_SPACE_UNRESTRICTED (~0) /* * Map and unmap a region of device bus space into CPU virtual address space. */ int bus_space_map(bus_space_tag_t, bus_addr_t, bus_size_t, int, bus_space_handle_t *); void bus_space_unmap(bus_space_tag_t, bus_space_handle_t, bus_size_t size); /* * Get a new handle for a subregion of an already-mapped area of bus space. */ static __inline int bus_space_subregion(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t ofs, bus_size_t size __unused, bus_space_handle_t *nbshp) { *nbshp = bsh + ofs; return (0); } /* * Allocate a region of memory that is accessible to devices in bus space. */ int bus_space_alloc(bus_space_tag_t bst, bus_addr_t rstart, bus_addr_t rend, bus_size_t size, bus_size_t align, bus_size_t boundary, int flags, bus_addr_t *addrp, bus_space_handle_t *bshp); /* * Free a region of bus space accessible memory. */ void bus_space_free(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t size); /* * Bus read/write barrier method. */ static __inline void bus_space_barrier(bus_space_tag_t bst __unused, bus_space_handle_t bsh __unused, bus_size_t ofs __unused, bus_size_t size __unused, int flags __unused) { ia64_mf_a(); ia64_mf(); } /* * Read 1 unit of data from bus space described by the tag, handle and ofs * tuple. A unit of data can be 1 byte, 2 bytes, 4 bytes or 8 bytes. The * data is returned. */ uint8_t bus_space_read_io_1(u_long); uint16_t bus_space_read_io_2(u_long); uint32_t bus_space_read_io_4(u_long); uint64_t bus_space_read_io_8(u_long); static __inline uint8_t bus_space_read_1(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t ofs) { uint8_t val; val = (__predict_false(bst == IA64_BUS_SPACE_IO)) ? bus_space_read_io_1(bsh + ofs) : ia64_ld1((void *)(bsh + ofs)); return (val); } static __inline uint16_t bus_space_read_2(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t ofs) { uint16_t val; val = (__predict_false(bst == IA64_BUS_SPACE_IO)) ? bus_space_read_io_2(bsh + ofs) : ia64_ld2((void *)(bsh + ofs)); return (val); } static __inline uint32_t bus_space_read_4(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t ofs) { uint32_t val; val = (__predict_false(bst == IA64_BUS_SPACE_IO)) ? bus_space_read_io_4(bsh + ofs) : ia64_ld4((void *)(bsh + ofs)); return (val); } static __inline uint64_t bus_space_read_8(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t ofs) { uint64_t val; val = (__predict_false(bst == IA64_BUS_SPACE_IO)) ? bus_space_read_io_8(bsh + ofs) : ia64_ld8((void *)(bsh + ofs)); return (val); } /* * Write 1 unit of data to bus space described by the tag, handle and ofs * tuple. A unit of data can be 1 byte, 2 bytes, 4 bytes or 8 bytes. The * data is passed by value. */ void bus_space_write_io_1(u_long, uint8_t); void bus_space_write_io_2(u_long, uint16_t); void bus_space_write_io_4(u_long, uint32_t); void bus_space_write_io_8(u_long, uint64_t); static __inline void bus_space_write_1(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t ofs, uint8_t val) { if (__predict_false(bst == IA64_BUS_SPACE_IO)) bus_space_write_io_1(bsh + ofs, val); else ia64_st1((void *)(bsh + ofs), val); } static __inline void bus_space_write_2(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t ofs, uint16_t val) { if (__predict_false(bst == IA64_BUS_SPACE_IO)) bus_space_write_io_2(bsh + ofs, val); else ia64_st2((void *)(bsh + ofs), val); } static __inline void bus_space_write_4(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t ofs, uint32_t val) { if (__predict_false(bst == IA64_BUS_SPACE_IO)) bus_space_write_io_4(bsh + ofs, val); else ia64_st4((void *)(bsh + ofs), val); } static __inline void bus_space_write_8(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t ofs, uint64_t val) { if (__predict_false(bst == IA64_BUS_SPACE_IO)) bus_space_write_io_8(bsh + ofs, val); else ia64_st8((void *)(bsh + ofs), val); } /* * Read count units of data from bus space described by the tag, handle and * ofs tuple. A unit of data can be 1 byte, 2 bytes, 4 bytes or 8 bytes. The * data is returned in the buffer passed by reference. */ void bus_space_read_multi_io_1(u_long, uint8_t *, size_t); void bus_space_read_multi_io_2(u_long, uint16_t *, size_t); void bus_space_read_multi_io_4(u_long, uint32_t *, size_t); void bus_space_read_multi_io_8(u_long, uint64_t *, size_t); static __inline void bus_space_read_multi_1(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t ofs, uint8_t *bufp, size_t count) { if (__predict_false(bst == IA64_BUS_SPACE_IO)) bus_space_read_multi_io_1(bsh + ofs, bufp, count); else { while (count-- > 0) *bufp++ = ia64_ld1((void *)(bsh + ofs)); } } static __inline void bus_space_read_multi_2(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t ofs, uint16_t *bufp, size_t count) { if (__predict_false(bst == IA64_BUS_SPACE_IO)) bus_space_read_multi_io_2(bsh + ofs, bufp, count); else { while (count-- > 0) *bufp++ = ia64_ld2((void *)(bsh + ofs)); } } static __inline void bus_space_read_multi_4(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t ofs, uint32_t *bufp, size_t count) { if (__predict_false(bst == IA64_BUS_SPACE_IO)) bus_space_read_multi_io_4(bsh + ofs, bufp, count); else { while (count-- > 0) *bufp++ = ia64_ld4((void *)(bsh + ofs)); } } static __inline void bus_space_read_multi_8(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t ofs, uint64_t *bufp, size_t count) { if (__predict_false(bst == IA64_BUS_SPACE_IO)) bus_space_read_multi_io_8(bsh + ofs, bufp, count); else { while (count-- > 0) *bufp++ = ia64_ld8((void *)(bsh + ofs)); } } /* * Write count units of data to bus space described by the tag, handle and * ofs tuple. A unit of data can be 1 byte, 2 bytes, 4 bytes or 8 bytes. The * data is read from the buffer passed by reference. */ void bus_space_write_multi_io_1(u_long, const uint8_t *, size_t); void bus_space_write_multi_io_2(u_long, const uint16_t *, size_t); void bus_space_write_multi_io_4(u_long, const uint32_t *, size_t); void bus_space_write_multi_io_8(u_long, const uint64_t *, size_t); static __inline void bus_space_write_multi_1(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t ofs, const uint8_t *bufp, size_t count) { if (__predict_false(bst == IA64_BUS_SPACE_IO)) bus_space_write_multi_io_1(bsh + ofs, bufp, count); else { while (count-- > 0) ia64_st1((void *)(bsh + ofs), *bufp++); } } static __inline void bus_space_write_multi_2(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t ofs, const uint16_t *bufp, size_t count) { if (__predict_false(bst == IA64_BUS_SPACE_IO)) bus_space_write_multi_io_2(bsh + ofs, bufp, count); else { while (count-- > 0) ia64_st2((void *)(bsh + ofs), *bufp++); } } static __inline void bus_space_write_multi_4(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t ofs, const uint32_t *bufp, size_t count) { if (__predict_false(bst == IA64_BUS_SPACE_IO)) bus_space_write_multi_io_4(bsh + ofs, bufp, count); else { while (count-- > 0) ia64_st4((void *)(bsh + ofs), *bufp++); } } static __inline void bus_space_write_multi_8(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t ofs, const uint64_t *bufp, size_t count) { if (__predict_false(bst == IA64_BUS_SPACE_IO)) bus_space_write_multi_io_8(bsh + ofs, bufp, count); else { while (count-- > 0) ia64_st8((void *)(bsh + ofs), *bufp++); } } /* * Read count units of data from bus space described by the tag, handle and * ofs tuple. A unit of data can be 1 byte, 2 bytes, 4 bytes or 8 bytes. The * data is written to the buffer passed by reference and read from successive * bus space addresses. Access is unordered. */ void bus_space_read_region_io_1(u_long, uint8_t *, size_t); void bus_space_read_region_io_2(u_long, uint16_t *, size_t); void bus_space_read_region_io_4(u_long, uint32_t *, size_t); void bus_space_read_region_io_8(u_long, uint64_t *, size_t); static __inline void bus_space_read_region_1(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t ofs, uint8_t *bufp, size_t count) { if (__predict_false(bst == IA64_BUS_SPACE_IO)) bus_space_read_region_io_1(bsh + ofs, bufp, count); else { uint8_t *bsp = (void *)(bsh + ofs); while (count-- > 0) *bufp++ = ia64_ld1(bsp++); } } static __inline void bus_space_read_region_2(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t ofs, uint16_t *bufp, size_t count) { if (__predict_false(bst == IA64_BUS_SPACE_IO)) bus_space_read_region_io_2(bsh + ofs, bufp, count); else { uint16_t *bsp = (void *)(bsh + ofs); while (count-- > 0) *bufp++ = ia64_ld2(bsp++); } } static __inline void bus_space_read_region_4(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t ofs, uint32_t *bufp, size_t count) { if (__predict_false(bst == IA64_BUS_SPACE_IO)) bus_space_read_region_io_4(bsh + ofs, bufp, count); else { uint32_t *bsp = (void *)(bsh + ofs); while (count-- > 0) *bufp++ = ia64_ld4(bsp++); } } static __inline void bus_space_read_region_8(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t ofs, uint64_t *bufp, size_t count) { if (__predict_false(bst == IA64_BUS_SPACE_IO)) bus_space_read_region_io_8(bsh + ofs, bufp, count); else { uint64_t *bsp = (void *)(bsh + ofs); while (count-- > 0) *bufp++ = ia64_ld8(bsp++); } } /* * Write count units of data from bus space described by the tag, handle and * ofs tuple. A unit of data can be 1 byte, 2 bytes, 4 bytes or 8 bytes. The * data is read from the buffer passed by reference and written to successive * bus space addresses. Access is unordered. */ void bus_space_write_region_io_1(u_long, const uint8_t *, size_t); void bus_space_write_region_io_2(u_long, const uint16_t *, size_t); void bus_space_write_region_io_4(u_long, const uint32_t *, size_t); void bus_space_write_region_io_8(u_long, const uint64_t *, size_t); static __inline void bus_space_write_region_1(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t ofs, const uint8_t *bufp, size_t count) { if (__predict_false(bst == IA64_BUS_SPACE_IO)) bus_space_write_region_io_1(bsh + ofs, bufp, count); else { uint8_t *bsp = (void *)(bsh + ofs); while (count-- > 0) ia64_st1(bsp++, *bufp++); } } static __inline void bus_space_write_region_2(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t ofs, const uint16_t *bufp, size_t count) { if (__predict_false(bst == IA64_BUS_SPACE_IO)) bus_space_write_region_io_2(bsh + ofs, bufp, count); else { uint16_t *bsp = (void *)(bsh + ofs); while (count-- > 0) ia64_st2(bsp++, *bufp++); } } static __inline void bus_space_write_region_4(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t ofs, const uint32_t *bufp, size_t count) { if (__predict_false(bst == IA64_BUS_SPACE_IO)) bus_space_write_region_io_4(bsh + ofs, bufp, count); else { uint32_t *bsp = (void *)(bsh + ofs); while (count-- > 0) ia64_st4(bsp++, *bufp++); } } static __inline void bus_space_write_region_8(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t ofs, const uint64_t *bufp, size_t count) { if (__predict_false(bst == IA64_BUS_SPACE_IO)) bus_space_write_region_io_8(bsh + ofs, bufp, count); else { uint64_t *bsp = (void *)(bsh + ofs); while (count-- > 0) ia64_st8(bsp++, *bufp++); } } /* * Write count units of data from bus space described by the tag, handle and * ofs tuple. A unit of data can be 1 byte, 2 bytes, 4 bytes or 8 bytes. The * data is passed by value. Writes are unordered. */ static __inline void bus_space_set_multi_1(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t ofs, uint8_t val, size_t count) { while (count-- > 0) bus_space_write_1(bst, bsh, ofs, val); } static __inline void bus_space_set_multi_2(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t ofs, uint16_t val, size_t count) { while (count-- > 0) bus_space_write_2(bst, bsh, ofs, val); } static __inline void bus_space_set_multi_4(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t ofs, uint32_t val, size_t count) { while (count-- > 0) bus_space_write_4(bst, bsh, ofs, val); } static __inline void bus_space_set_multi_8(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t ofs, uint64_t val, size_t count) { while (count-- > 0) bus_space_write_8(bst, bsh, ofs, val); } /* * Write count units of data from bus space described by the tag, handle and * ofs tuple. A unit of data can be 1 byte, 2 bytes, 4 bytes or 8 bytes. The * data is passed by value and written to successive bus space addresses. * Writes are unordered. */ void bus_space_set_region_io_1(u_long, uint8_t, size_t); void bus_space_set_region_io_2(u_long, uint16_t, size_t); void bus_space_set_region_io_4(u_long, uint32_t, size_t); void bus_space_set_region_io_8(u_long, uint64_t, size_t); static __inline void bus_space_set_region_1(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t ofs, uint8_t val, size_t count) { if (__predict_false(bst == IA64_BUS_SPACE_IO)) bus_space_set_region_io_1(bsh + ofs, val, count); else { uint8_t *bsp = (void *)(bsh + ofs); while (count-- > 0) ia64_st1(bsp++, val); } } static __inline void bus_space_set_region_2(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t ofs, uint16_t val, size_t count) { if (__predict_false(bst == IA64_BUS_SPACE_IO)) bus_space_set_region_io_2(bsh + ofs, val, count); else { uint16_t *bsp = (void *)(bsh + ofs); while (count-- > 0) ia64_st2(bsp++, val); } } static __inline void bus_space_set_region_4(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t ofs, uint32_t val, size_t count) { if (__predict_false(bst == IA64_BUS_SPACE_IO)) bus_space_set_region_io_4(bsh + ofs, val, count); else { uint32_t *bsp = (void *)(bsh + ofs); while (count-- > 0) ia64_st4(bsp++, val); } } static __inline void bus_space_set_region_8(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t ofs, uint64_t val, size_t count) { if (__predict_false(bst == IA64_BUS_SPACE_IO)) bus_space_set_region_io_4(bsh + ofs, val, count); else { uint64_t *bsp = (void *)(bsh + ofs); while (count-- > 0) ia64_st8(bsp++, val); } } /* * Copy count units of data from bus space described by the tag and the first * handle and ofs pair to bus space described by the tag and the second handle * and ofs pair. A unit of data can be 1 byte, 2 bytes, 4 bytes or 8 bytes. * The data is read from successive bus space addresses and also written to * successive bus space addresses. Both reads and writes are unordered. */ void bus_space_copy_region_io_1(u_long, u_long, size_t); void bus_space_copy_region_io_2(u_long, u_long, size_t); void bus_space_copy_region_io_4(u_long, u_long, size_t); void bus_space_copy_region_io_8(u_long, u_long, size_t); static __inline void bus_space_copy_region_1(bus_space_tag_t bst, bus_space_handle_t sbsh, bus_size_t sofs, bus_space_handle_t dbsh, bus_size_t dofs, size_t count) { uint8_t *dst, *src; if (__predict_false(bst == IA64_BUS_SPACE_IO)) { bus_space_copy_region_io_1(sbsh + sofs, dbsh + dofs, count); return; } src = (void *)(sbsh + sofs); dst = (void *)(dbsh + dofs); if (src < dst) { src += count - 1; dst += count - 1; while (count-- > 0) ia64_st1(dst--, ia64_ld1(src--)); } else { while (count-- > 0) ia64_st1(dst++, ia64_ld1(src++)); } } static __inline void bus_space_copy_region_2(bus_space_tag_t bst, bus_space_handle_t sbsh, bus_size_t sofs, bus_space_handle_t dbsh, bus_size_t dofs, size_t count) { uint16_t *dst, *src; if (__predict_false(bst == IA64_BUS_SPACE_IO)) { bus_space_copy_region_io_2(sbsh + sofs, dbsh + dofs, count); return; } src = (void *)(sbsh + sofs); dst = (void *)(dbsh + dofs); if (src < dst) { src += count - 1; dst += count - 1; while (count-- > 0) ia64_st2(dst--, ia64_ld2(src--)); } else { while (count-- > 0) ia64_st2(dst++, ia64_ld2(src++)); } } static __inline void bus_space_copy_region_4(bus_space_tag_t bst, bus_space_handle_t sbsh, bus_size_t sofs, bus_space_handle_t dbsh, bus_size_t dofs, size_t count) { uint32_t *dst, *src; if (__predict_false(bst == IA64_BUS_SPACE_IO)) { bus_space_copy_region_io_4(sbsh + sofs, dbsh + dofs, count); return; } src = (void *)(sbsh + sofs); dst = (void *)(dbsh + dofs); if (src < dst) { src += count - 1; dst += count - 1; while (count-- > 0) ia64_st4(dst--, ia64_ld4(src--)); } else { while (count-- > 0) ia64_st4(dst++, ia64_ld4(src++)); } } static __inline void bus_space_copy_region_8(bus_space_tag_t bst, bus_space_handle_t sbsh, bus_size_t sofs, bus_space_handle_t dbsh, bus_size_t dofs, size_t count) { uint64_t *dst, *src; if (__predict_false(bst == IA64_BUS_SPACE_IO)) { bus_space_copy_region_io_8(sbsh + sofs, dbsh + dofs, count); return; } src = (void *)(sbsh + sofs); dst = (void *)(dbsh + dofs); if (src < dst) { src += count - 1; dst += count - 1; while (count-- > 0) ia64_st8(dst--, ia64_ld8(src--)); } else { while (count-- > 0) ia64_st8(dst++, ia64_ld8(src++)); } } /* * Stream accesses are the same as normal accesses on ia64; there are no * supported bus systems with an endianess different from the host one. */ #define bus_space_read_stream_1 bus_space_read_1 #define bus_space_read_stream_2 bus_space_read_2 #define bus_space_read_stream_4 bus_space_read_4 #define bus_space_read_stream_8 bus_space_read_8 #define bus_space_write_stream_1 bus_space_write_1 #define bus_space_write_stream_2 bus_space_write_2 #define bus_space_write_stream_4 bus_space_write_4 #define bus_space_write_stream_8 bus_space_write_8 #define bus_space_read_multi_stream_1 bus_space_read_multi_1 #define bus_space_read_multi_stream_2 bus_space_read_multi_2 #define bus_space_read_multi_stream_4 bus_space_read_multi_4 #define bus_space_read_multi_stream_8 bus_space_read_multi_8 #define bus_space_write_multi_stream_1 bus_space_write_multi_1 #define bus_space_write_multi_stream_2 bus_space_write_multi_2 #define bus_space_write_multi_stream_4 bus_space_write_multi_4 #define bus_space_write_multi_stream_8 bus_space_write_multi_8 #define bus_space_read_region_stream_1 bus_space_read_region_1 #define bus_space_read_region_stream_2 bus_space_read_region_2 #define bus_space_read_region_stream_4 bus_space_read_region_4 #define bus_space_read_region_stream_8 bus_space_read_region_8 #define bus_space_write_region_stream_1 bus_space_write_region_1 #define bus_space_write_region_stream_2 bus_space_write_region_2 #define bus_space_write_region_stream_4 bus_space_write_region_4 #define bus_space_write_region_stream_8 bus_space_write_region_8 #define bus_space_set_multi_stream_1 bus_space_set_multi_1 #define bus_space_set_multi_stream_2 bus_space_set_multi_2 #define bus_space_set_multi_stream_4 bus_space_set_multi_4 #define bus_space_set_multi_stream_8 bus_space_set_multi_8 #define bus_space_set_region_stream_1 bus_space_set_region_1 #define bus_space_set_region_stream_2 bus_space_set_region_2 #define bus_space_set_region_stream_4 bus_space_set_region_4 #define bus_space_set_region_stream_8 bus_space_set_region_8 #define bus_space_copy_region_stream_1 bus_space_copy_region_1 #define bus_space_copy_region_stream_2 bus_space_copy_region_2 #define bus_space_copy_region_stream_4 bus_space_copy_region_4 #define bus_space_copy_region_stream_8 bus_space_copy_region_8 #include <machine/bus_dma.h> #endif /* _MACHINE_BUS_H_ */