Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/s3/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/usie/@/amd64/compile/hs32/modules/usr/src/sys/modules/ipwfw/ipw_monitor/@/amd64/compile/hs32/modules/usr/src/sys/modules/isci/@/dev/sound/pcm/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/s3/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/usie/@/amd64/compile/hs32/modules/usr/src/sys/modules/ipwfw/ipw_monitor/@/amd64/compile/hs32/modules/usr/src/sys/modules/isci/@/dev/sound/pcm/feeder_rate.c |
/*- * Copyright (c) 2005-2009 Ariff Abdullah <ariff@FreeBSD.org> * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * feeder_rate: (Codename: Z Resampler), which means any effort to create * future replacement for this resampler are simply absurd unless * the world decide to add new alphabet after Z. * * FreeBSD bandlimited sinc interpolator, technically based on * "Digital Audio Resampling" by Julius O. Smith III * - http://ccrma.stanford.edu/~jos/resample/ * * The Good: * + all out fixed point integer operations, no soft-float or anything like * that. * + classic polyphase converters with high quality coefficient's polynomial * interpolators. * + fast, faster, or the fastest of its kind. * + compile time configurable. * + etc etc.. * * The Bad: * - The z, z_, and Z_ . Due to mental block (or maybe just 0x7a69), I * couldn't think of anything simpler than that (feeder_rate_xxx is just * too long). Expect possible clashes with other zitizens (any?). */ #ifdef _KERNEL #ifdef HAVE_KERNEL_OPTION_HEADERS #include "opt_snd.h" #endif #include <dev/sound/pcm/sound.h> #include <dev/sound/pcm/pcm.h> #include "feeder_if.h" #define SND_USE_FXDIV #include "snd_fxdiv_gen.h" SND_DECLARE_FILE("$FreeBSD: release/9.1.0/sys/dev/sound/pcm/feeder_rate.c 209193 2010-06-15 07:06:54Z avg $"); #endif #include "feeder_rate_gen.h" #if !defined(_KERNEL) && defined(SND_DIAGNOSTIC) #undef Z_DIAGNOSTIC #define Z_DIAGNOSTIC 1 #elif defined(_KERNEL) #undef Z_DIAGNOSTIC #endif #ifndef Z_QUALITY_DEFAULT #define Z_QUALITY_DEFAULT Z_QUALITY_LINEAR #endif #define Z_RESERVOIR 2048 #define Z_RESERVOIR_MAX 131072 #define Z_SINC_MAX 0x3fffff #define Z_SINC_DOWNMAX 48 /* 384000 / 8000 */ #ifdef _KERNEL #define Z_POLYPHASE_MAX 183040 /* 286 taps, 640 phases */ #else #define Z_POLYPHASE_MAX 1464320 /* 286 taps, 5120 phases */ #endif #define Z_RATE_DEFAULT 48000 #define Z_RATE_MIN FEEDRATE_RATEMIN #define Z_RATE_MAX FEEDRATE_RATEMAX #define Z_ROUNDHZ FEEDRATE_ROUNDHZ #define Z_ROUNDHZ_MIN FEEDRATE_ROUNDHZ_MIN #define Z_ROUNDHZ_MAX FEEDRATE_ROUNDHZ_MAX #define Z_RATE_SRC FEEDRATE_SRC #define Z_RATE_DST FEEDRATE_DST #define Z_RATE_QUALITY FEEDRATE_QUALITY #define Z_RATE_CHANNELS FEEDRATE_CHANNELS #define Z_PARANOID 1 #define Z_MULTIFORMAT 1 #ifdef _KERNEL #undef Z_USE_ALPHADRIFT #define Z_USE_ALPHADRIFT 1 #endif #define Z_FACTOR_MIN 1 #define Z_FACTOR_MAX Z_MASK #define Z_FACTOR_SAFE(v) (!((v) < Z_FACTOR_MIN || (v) > Z_FACTOR_MAX)) struct z_info; typedef void (*z_resampler_t)(struct z_info *, uint8_t *); struct z_info { int32_t rsrc, rdst; /* original source / destination rates */ int32_t src, dst; /* rounded source / destination rates */ int32_t channels; /* total channels */ int32_t bps; /* bytes-per-sample */ int32_t quality; /* resampling quality */ int32_t z_gx, z_gy; /* interpolation / decimation ratio */ int32_t z_alpha; /* output sample time phase / drift */ uint8_t *z_delay; /* FIR delay line / linear buffer */ int32_t *z_coeff; /* FIR coefficients */ int32_t *z_dcoeff; /* FIR coefficients differences */ int32_t *z_pcoeff; /* FIR polyphase coefficients */ int32_t z_scale; /* output scaling */ int32_t z_dx; /* input sample drift increment */ int32_t z_dy; /* output sample drift increment */ #ifdef Z_USE_ALPHADRIFT int32_t z_alphadrift; /* alpha drift rate */ int32_t z_startdrift; /* buffer start position drift rate */ #endif int32_t z_mask; /* delay line full length mask */ int32_t z_size; /* half width of FIR taps */ int32_t z_full; /* full size of delay line */ int32_t z_alloc; /* largest allocated full size of delay line */ int32_t z_start; /* buffer processing start position */ int32_t z_pos; /* current position for the next feed */ #ifdef Z_DIAGNOSTIC uint32_t z_cycle; /* output cycle, purely for statistical */ #endif int32_t z_maxfeed; /* maximum feed to avoid 32bit overflow */ z_resampler_t z_resample; }; int feeder_rate_min = Z_RATE_MIN; int feeder_rate_max = Z_RATE_MAX; int feeder_rate_round = Z_ROUNDHZ; int feeder_rate_quality = Z_QUALITY_DEFAULT; static int feeder_rate_polyphase_max = Z_POLYPHASE_MAX; #ifdef _KERNEL static char feeder_rate_presets[] = FEEDER_RATE_PRESETS; SYSCTL_STRING(_hw_snd, OID_AUTO, feeder_rate_presets, CTLFLAG_RD, &feeder_rate_presets, 0, "compile-time rate presets"); TUNABLE_INT("hw.snd.feeder_rate_min", &feeder_rate_min); TUNABLE_INT("hw.snd.feeder_rate_max", &feeder_rate_max); TUNABLE_INT("hw.snd.feeder_rate_round", &feeder_rate_round); TUNABLE_INT("hw.snd.feeder_rate_quality", &feeder_rate_quality); TUNABLE_INT("hw.snd.feeder_rate_polyphase_max", &feeder_rate_polyphase_max); SYSCTL_INT(_hw_snd, OID_AUTO, feeder_rate_polyphase_max, CTLFLAG_RW, &feeder_rate_polyphase_max, 0, "maximum allowable polyphase entries"); static int sysctl_hw_snd_feeder_rate_min(SYSCTL_HANDLER_ARGS) { int err, val; val = feeder_rate_min; err = sysctl_handle_int(oidp, &val, 0, req); if (err != 0 || req->newptr == NULL || val == feeder_rate_min) return (err); if (!(Z_FACTOR_SAFE(val) && val < feeder_rate_max)) return (EINVAL); feeder_rate_min = val; return (0); } SYSCTL_PROC(_hw_snd, OID_AUTO, feeder_rate_min, CTLTYPE_INT | CTLFLAG_RW, 0, sizeof(int), sysctl_hw_snd_feeder_rate_min, "I", "minimum allowable rate"); static int sysctl_hw_snd_feeder_rate_max(SYSCTL_HANDLER_ARGS) { int err, val; val = feeder_rate_max; err = sysctl_handle_int(oidp, &val, 0, req); if (err != 0 || req->newptr == NULL || val == feeder_rate_max) return (err); if (!(Z_FACTOR_SAFE(val) && val > feeder_rate_min)) return (EINVAL); feeder_rate_max = val; return (0); } SYSCTL_PROC(_hw_snd, OID_AUTO, feeder_rate_max, CTLTYPE_INT | CTLFLAG_RW, 0, sizeof(int), sysctl_hw_snd_feeder_rate_max, "I", "maximum allowable rate"); static int sysctl_hw_snd_feeder_rate_round(SYSCTL_HANDLER_ARGS) { int err, val; val = feeder_rate_round; err = sysctl_handle_int(oidp, &val, 0, req); if (err != 0 || req->newptr == NULL || val == feeder_rate_round) return (err); if (val < Z_ROUNDHZ_MIN || val > Z_ROUNDHZ_MAX) return (EINVAL); feeder_rate_round = val - (val % Z_ROUNDHZ); return (0); } SYSCTL_PROC(_hw_snd, OID_AUTO, feeder_rate_round, CTLTYPE_INT | CTLFLAG_RW, 0, sizeof(int), sysctl_hw_snd_feeder_rate_round, "I", "sample rate converter rounding threshold"); static int sysctl_hw_snd_feeder_rate_quality(SYSCTL_HANDLER_ARGS) { struct snddev_info *d; struct pcm_channel *c; struct pcm_feeder *f; int i, err, val; val = feeder_rate_quality; err = sysctl_handle_int(oidp, &val, 0, req); if (err != 0 || req->newptr == NULL || val == feeder_rate_quality) return (err); if (val < Z_QUALITY_MIN || val > Z_QUALITY_MAX) return (EINVAL); feeder_rate_quality = val; /* * Traverse all available channels on each device and try to * set resampler quality if and only if it is exist as * part of feeder chains and the channel is idle. */ for (i = 0; pcm_devclass != NULL && i < devclass_get_maxunit(pcm_devclass); i++) { d = devclass_get_softc(pcm_devclass, i); if (!PCM_REGISTERED(d)) continue; PCM_LOCK(d); PCM_WAIT(d); PCM_ACQUIRE(d); CHN_FOREACH(c, d, channels.pcm) { CHN_LOCK(c); f = chn_findfeeder(c, FEEDER_RATE); if (f == NULL || f->data == NULL || CHN_STARTED(c)) { CHN_UNLOCK(c); continue; } (void)FEEDER_SET(f, FEEDRATE_QUALITY, val); CHN_UNLOCK(c); } PCM_RELEASE(d); PCM_UNLOCK(d); } return (0); } SYSCTL_PROC(_hw_snd, OID_AUTO, feeder_rate_quality, CTLTYPE_INT | CTLFLAG_RW, 0, sizeof(int), sysctl_hw_snd_feeder_rate_quality, "I", "sample rate converter quality ("__XSTRING(Z_QUALITY_MIN)"=low .. " __XSTRING(Z_QUALITY_MAX)"=high)"); #endif /* _KERNEL */ /* * Resampler type. */ #define Z_IS_ZOH(i) ((i)->quality == Z_QUALITY_ZOH) #define Z_IS_LINEAR(i) ((i)->quality == Z_QUALITY_LINEAR) #define Z_IS_SINC(i) ((i)->quality > Z_QUALITY_LINEAR) /* * Macroses for accurate sample time drift calculations. * * gy2gx : given the amount of output, return the _exact_ required amount of * input. * gx2gy : given the amount of input, return the _maximum_ amount of output * that will be generated. * drift : given the amount of input and output, return the elapsed * sample-time. */ #define _Z_GCAST(x) ((uint64_t)(x)) #if defined(__GNUCLIKE_ASM) && defined(__i386__) /* * This is where i386 being beaten to a pulp. Fortunately this function is * rarely being called and if it is, it will decide the best (hopefully) * fastest way to do the division. If we can ensure that everything is dword * aligned, letting the compiler to call udivdi3 to do the division can be * faster compared to this. * * amd64 is the clear winner here, no question about it. */ static __inline uint32_t Z_DIV(uint64_t v, uint32_t d) { uint32_t hi, lo, quo, rem; hi = v >> 32; lo = v & 0xffffffff; /* * As much as we can, try to avoid long division like a plague. */ if (hi == 0) quo = lo / d; else __asm("divl %2" : "=a" (quo), "=d" (rem) : "r" (d), "0" (lo), "1" (hi)); return (quo); } #else #define Z_DIV(x, y) ((x) / (y)) #endif #define _Z_GY2GX(i, a, v) \ Z_DIV(((_Z_GCAST((i)->z_gx) * (v)) + ((i)->z_gy - (a) - 1)), \ (i)->z_gy) #define _Z_GX2GY(i, a, v) \ Z_DIV(((_Z_GCAST((i)->z_gy) * (v)) + (a)), (i)->z_gx) #define _Z_DRIFT(i, x, y) \ ((_Z_GCAST((i)->z_gy) * (x)) - (_Z_GCAST((i)->z_gx) * (y))) #define z_gy2gx(i, v) _Z_GY2GX(i, (i)->z_alpha, v) #define z_gx2gy(i, v) _Z_GX2GY(i, (i)->z_alpha, v) #define z_drift(i, x, y) _Z_DRIFT(i, x, y) /* * Macroses for SINC coefficients table manipulations.. whatever. */ #define Z_SINC_COEFF_IDX(i) ((i)->quality - Z_QUALITY_LINEAR - 1) #define Z_SINC_LEN(i) \ ((int32_t)(((uint64_t)z_coeff_tab[Z_SINC_COEFF_IDX(i)].len << \ Z_SHIFT) / (i)->z_dy)) #define Z_SINC_BASE_LEN(i) \ ((z_coeff_tab[Z_SINC_COEFF_IDX(i)].len - 1) >> (Z_DRIFT_SHIFT - 1)) /* * Macroses for linear delay buffer operations. Alignment is not * really necessary since we're not using true circular buffer, but it * will help us guard against possible trespasser. To be honest, * the linear block operations does not need guarding at all due to * accurate drifting! */ #define z_align(i, v) ((v) & (i)->z_mask) #define z_next(i, o, v) z_align(i, (o) + (v)) #define z_prev(i, o, v) z_align(i, (o) - (v)) #define z_fetched(i) (z_align(i, (i)->z_pos - (i)->z_start) - 1) #define z_free(i) ((i)->z_full - (i)->z_pos) /* * Macroses for Bla Bla .. :) */ #define z_copy(src, dst, sz) (void)memcpy(dst, src, sz) #define z_feed(...) FEEDER_FEED(__VA_ARGS__) static __inline uint32_t z_min(uint32_t x, uint32_t y) { return ((x < y) ? x : y); } static int32_t z_gcd(int32_t x, int32_t y) { int32_t w; while (y != 0) { w = x % y; x = y; y = w; } return (x); } static int32_t z_roundpow2(int32_t v) { int32_t i; i = 1; /* * Let it overflow at will.. */ while (i > 0 && i < v) i <<= 1; return (i); } /* * Zero Order Hold, the worst of the worst, an insult against quality, * but super fast. */ static void z_feed_zoh(struct z_info *info, uint8_t *dst) { #if 0 z_copy(info->z_delay + (info->z_start * info->channels * info->bps), dst, info->channels * info->bps); #else uint32_t cnt; uint8_t *src; cnt = info->channels * info->bps; src = info->z_delay + (info->z_start * cnt); /* * This is a bit faster than doing bcopy() since we're dealing * with possible unaligned samples. */ do { *dst++ = *src++; } while (--cnt != 0); #endif } /* * Linear Interpolation. This at least sounds better (perceptually) and fast, * but without any proper filtering which means aliasing still exist and * could become worst with a right sample. Interpolation centered within * Z_LINEAR_ONE between the present and previous sample and everything is * done with simple 32bit scaling arithmetic. */ #define Z_DECLARE_LINEAR(SIGN, BIT, ENDIAN) \ static void \ z_feed_linear_##SIGN##BIT##ENDIAN(struct z_info *info, uint8_t *dst) \ { \ int32_t z; \ intpcm_t x, y; \ uint32_t ch; \ uint8_t *sx, *sy; \ \ z = ((uint32_t)info->z_alpha * info->z_dx) >> Z_LINEAR_UNSHIFT; \ \ sx = info->z_delay + (info->z_start * info->channels * \ PCM_##BIT##_BPS); \ sy = sx - (info->channels * PCM_##BIT##_BPS); \ \ ch = info->channels; \ \ do { \ x = _PCM_READ_##SIGN##BIT##_##ENDIAN(sx); \ y = _PCM_READ_##SIGN##BIT##_##ENDIAN(sy); \ x = Z_LINEAR_INTERPOLATE_##BIT(z, x, y); \ _PCM_WRITE_##SIGN##BIT##_##ENDIAN(dst, x); \ sx += PCM_##BIT##_BPS; \ sy += PCM_##BIT##_BPS; \ dst += PCM_##BIT##_BPS; \ } while (--ch != 0); \ } /* * Userland clipping diagnostic check, not enabled in kernel compilation. * While doing sinc interpolation, unrealistic samples like full scale sine * wav will clip, but for other things this will not make any noise at all. * Everybody should learn how to normalized perceived loudness of their own * music/sounds/samples (hint: ReplayGain). */ #ifdef Z_DIAGNOSTIC #define Z_CLIP_CHECK(v, BIT) do { \ if ((v) > PCM_S##BIT##_MAX) { \ fprintf(stderr, "Overflow: v=%jd, max=%jd\n", \ (intmax_t)(v), (intmax_t)PCM_S##BIT##_MAX); \ } else if ((v) < PCM_S##BIT##_MIN) { \ fprintf(stderr, "Underflow: v=%jd, min=%jd\n", \ (intmax_t)(v), (intmax_t)PCM_S##BIT##_MIN); \ } \ } while (0) #else #define Z_CLIP_CHECK(...) #endif #define Z_CLAMP(v, BIT) \ (((v) > PCM_S##BIT##_MAX) ? PCM_S##BIT##_MAX : \ (((v) < PCM_S##BIT##_MIN) ? PCM_S##BIT##_MIN : (v))) /* * Sine Cardinal (SINC) Interpolation. Scaling is done in 64 bit, so * there's no point to hold the plate any longer. All samples will be * shifted to a full 32 bit, scaled and restored during write for * maximum dynamic range (only for downsampling). */ #define _Z_SINC_ACCUMULATE(SIGN, BIT, ENDIAN, adv) \ c += z >> Z_SHIFT; \ z &= Z_MASK; \ coeff = Z_COEFF_INTERPOLATE(z, z_coeff[c], z_dcoeff[c]); \ x = _PCM_READ_##SIGN##BIT##_##ENDIAN(p); \ v += Z_NORM_##BIT((intpcm64_t)x * coeff); \ z += info->z_dy; \ p adv##= info->channels * PCM_##BIT##_BPS /* * XXX GCC4 optimization is such a !@#$%, need manual unrolling. */ #if defined(__GNUC__) && __GNUC__ >= 4 #define Z_SINC_ACCUMULATE(...) do { \ _Z_SINC_ACCUMULATE(__VA_ARGS__); \ _Z_SINC_ACCUMULATE(__VA_ARGS__); \ } while (0) #define Z_SINC_ACCUMULATE_DECR 2 #else #define Z_SINC_ACCUMULATE(...) do { \ _Z_SINC_ACCUMULATE(__VA_ARGS__); \ } while (0) #define Z_SINC_ACCUMULATE_DECR 1 #endif #define Z_DECLARE_SINC(SIGN, BIT, ENDIAN) \ static void \ z_feed_sinc_##SIGN##BIT##ENDIAN(struct z_info *info, uint8_t *dst) \ { \ intpcm64_t v; \ intpcm_t x; \ uint8_t *p; \ int32_t coeff, z, *z_coeff, *z_dcoeff; \ uint32_t c, center, ch, i; \ \ z_coeff = info->z_coeff; \ z_dcoeff = info->z_dcoeff; \ center = z_prev(info, info->z_start, info->z_size); \ ch = info->channels * PCM_##BIT##_BPS; \ dst += ch; \ \ do { \ dst -= PCM_##BIT##_BPS; \ ch -= PCM_##BIT##_BPS; \ v = 0; \ z = info->z_alpha * info->z_dx; \ c = 0; \ p = info->z_delay + (z_next(info, center, 1) * \ info->channels * PCM_##BIT##_BPS) + ch; \ for (i = info->z_size; i != 0; i -= Z_SINC_ACCUMULATE_DECR) \ Z_SINC_ACCUMULATE(SIGN, BIT, ENDIAN, +); \ z = info->z_dy - (info->z_alpha * info->z_dx); \ c = 0; \ p = info->z_delay + (center * info->channels * \ PCM_##BIT##_BPS) + ch; \ for (i = info->z_size; i != 0; i -= Z_SINC_ACCUMULATE_DECR) \ Z_SINC_ACCUMULATE(SIGN, BIT, ENDIAN, -); \ if (info->z_scale != Z_ONE) \ v = Z_SCALE_##BIT(v, info->z_scale); \ else \ v >>= Z_COEFF_SHIFT - Z_GUARD_BIT_##BIT; \ Z_CLIP_CHECK(v, BIT); \ _PCM_WRITE_##SIGN##BIT##_##ENDIAN(dst, Z_CLAMP(v, BIT)); \ } while (ch != 0); \ } #define Z_DECLARE_SINC_POLYPHASE(SIGN, BIT, ENDIAN) \ static void \ z_feed_sinc_polyphase_##SIGN##BIT##ENDIAN(struct z_info *info, uint8_t *dst) \ { \ intpcm64_t v; \ intpcm_t x; \ uint8_t *p; \ int32_t ch, i, start, *z_pcoeff; \ \ ch = info->channels * PCM_##BIT##_BPS; \ dst += ch; \ start = z_prev(info, info->z_start, (info->z_size << 1) - 1) * ch; \ \ do { \ dst -= PCM_##BIT##_BPS; \ ch -= PCM_##BIT##_BPS; \ v = 0; \ p = info->z_delay + start + ch; \ z_pcoeff = info->z_pcoeff + \ ((info->z_alpha * info->z_size) << 1); \ for (i = info->z_size; i != 0; i--) { \ x = _PCM_READ_##SIGN##BIT##_##ENDIAN(p); \ v += Z_NORM_##BIT((intpcm64_t)x * *z_pcoeff); \ z_pcoeff++; \ p += info->channels * PCM_##BIT##_BPS; \ x = _PCM_READ_##SIGN##BIT##_##ENDIAN(p); \ v += Z_NORM_##BIT((intpcm64_t)x * *z_pcoeff); \ z_pcoeff++; \ p += info->channels * PCM_##BIT##_BPS; \ } \ if (info->z_scale != Z_ONE) \ v = Z_SCALE_##BIT(v, info->z_scale); \ else \ v >>= Z_COEFF_SHIFT - Z_GUARD_BIT_##BIT; \ Z_CLIP_CHECK(v, BIT); \ _PCM_WRITE_##SIGN##BIT##_##ENDIAN(dst, Z_CLAMP(v, BIT)); \ } while (ch != 0); \ } #define Z_DECLARE(SIGN, BIT, ENDIAN) \ Z_DECLARE_LINEAR(SIGN, BIT, ENDIAN) \ Z_DECLARE_SINC(SIGN, BIT, ENDIAN) \ Z_DECLARE_SINC_POLYPHASE(SIGN, BIT, ENDIAN) #if BYTE_ORDER == LITTLE_ENDIAN || defined(SND_FEEDER_MULTIFORMAT) Z_DECLARE(S, 16, LE) Z_DECLARE(S, 32, LE) #endif #if BYTE_ORDER == BIG_ENDIAN || defined(SND_FEEDER_MULTIFORMAT) Z_DECLARE(S, 16, BE) Z_DECLARE(S, 32, BE) #endif #ifdef SND_FEEDER_MULTIFORMAT Z_DECLARE(S, 8, NE) Z_DECLARE(S, 24, LE) Z_DECLARE(S, 24, BE) Z_DECLARE(U, 8, NE) Z_DECLARE(U, 16, LE) Z_DECLARE(U, 24, LE) Z_DECLARE(U, 32, LE) Z_DECLARE(U, 16, BE) Z_DECLARE(U, 24, BE) Z_DECLARE(U, 32, BE) #endif enum { Z_RESAMPLER_ZOH, Z_RESAMPLER_LINEAR, Z_RESAMPLER_SINC, Z_RESAMPLER_SINC_POLYPHASE, Z_RESAMPLER_LAST }; #define Z_RESAMPLER_IDX(i) \ (Z_IS_SINC(i) ? Z_RESAMPLER_SINC : (i)->quality) #define Z_RESAMPLER_ENTRY(SIGN, BIT, ENDIAN) \ { \ AFMT_##SIGN##BIT##_##ENDIAN, \ { \ [Z_RESAMPLER_ZOH] = z_feed_zoh, \ [Z_RESAMPLER_LINEAR] = z_feed_linear_##SIGN##BIT##ENDIAN, \ [Z_RESAMPLER_SINC] = z_feed_sinc_##SIGN##BIT##ENDIAN, \ [Z_RESAMPLER_SINC_POLYPHASE] = \ z_feed_sinc_polyphase_##SIGN##BIT##ENDIAN \ } \ } static const struct { uint32_t format; z_resampler_t resampler[Z_RESAMPLER_LAST]; } z_resampler_tab[] = { #if BYTE_ORDER == LITTLE_ENDIAN || defined(SND_FEEDER_MULTIFORMAT) Z_RESAMPLER_ENTRY(S, 16, LE), Z_RESAMPLER_ENTRY(S, 32, LE), #endif #if BYTE_ORDER == BIG_ENDIAN || defined(SND_FEEDER_MULTIFORMAT) Z_RESAMPLER_ENTRY(S, 16, BE), Z_RESAMPLER_ENTRY(S, 32, BE), #endif #ifdef SND_FEEDER_MULTIFORMAT Z_RESAMPLER_ENTRY(S, 8, NE), Z_RESAMPLER_ENTRY(S, 24, LE), Z_RESAMPLER_ENTRY(S, 24, BE), Z_RESAMPLER_ENTRY(U, 8, NE), Z_RESAMPLER_ENTRY(U, 16, LE), Z_RESAMPLER_ENTRY(U, 24, LE), Z_RESAMPLER_ENTRY(U, 32, LE), Z_RESAMPLER_ENTRY(U, 16, BE), Z_RESAMPLER_ENTRY(U, 24, BE), Z_RESAMPLER_ENTRY(U, 32, BE), #endif }; #define Z_RESAMPLER_TAB_SIZE \ ((int32_t)(sizeof(z_resampler_tab) / sizeof(z_resampler_tab[0]))) static void z_resampler_reset(struct z_info *info) { info->src = info->rsrc - (info->rsrc % ((feeder_rate_round > 0 && info->rsrc > feeder_rate_round) ? feeder_rate_round : 1)); info->dst = info->rdst - (info->rdst % ((feeder_rate_round > 0 && info->rdst > feeder_rate_round) ? feeder_rate_round : 1)); info->z_gx = 1; info->z_gy = 1; info->z_alpha = 0; info->z_resample = NULL; info->z_size = 1; info->z_coeff = NULL; info->z_dcoeff = NULL; if (info->z_pcoeff != NULL) { free(info->z_pcoeff, M_DEVBUF); info->z_pcoeff = NULL; } info->z_scale = Z_ONE; info->z_dx = Z_FULL_ONE; info->z_dy = Z_FULL_ONE; #ifdef Z_DIAGNOSTIC info->z_cycle = 0; #endif if (info->quality < Z_QUALITY_MIN) info->quality = Z_QUALITY_MIN; else if (info->quality > Z_QUALITY_MAX) info->quality = Z_QUALITY_MAX; } #ifdef Z_PARANOID static int32_t z_resampler_sinc_len(struct z_info *info) { int32_t c, z, len, lmax; if (!Z_IS_SINC(info)) return (1); /* * A rather careful (or useless) way to calculate filter length. * Z_SINC_LEN() itself is accurate enough to do its job. Extra * sanity checking is not going to hurt though.. */ c = 0; z = info->z_dy; len = 0; lmax = z_coeff_tab[Z_SINC_COEFF_IDX(info)].len; do { c += z >> Z_SHIFT; z &= Z_MASK; z += info->z_dy; } while (c < lmax && ++len > 0); if (len != Z_SINC_LEN(info)) { #ifdef _KERNEL printf("%s(): sinc l=%d != Z_SINC_LEN=%d\n", __func__, len, Z_SINC_LEN(info)); #else fprintf(stderr, "%s(): sinc l=%d != Z_SINC_LEN=%d\n", __func__, len, Z_SINC_LEN(info)); return (-1); #endif } return (len); } #else #define z_resampler_sinc_len(i) (Z_IS_SINC(i) ? Z_SINC_LEN(i) : 1) #endif #define Z_POLYPHASE_COEFF_SHIFT 0 /* * Pick suitable polynomial interpolators based on filter oversampled ratio * (2 ^ Z_DRIFT_SHIFT). */ #if !(defined(Z_COEFF_INTERP_ZOH) || defined(Z_COEFF_INTERP_LINEAR) || \ defined(Z_COEFF_INTERP_QUADRATIC) || defined(Z_COEFF_INTERP_HERMITE) || \ defined(Z_COEFF_INTER_BSPLINE) || defined(Z_COEFF_INTERP_OPT32X) || \ defined(Z_COEFF_INTERP_OPT16X) || defined(Z_COEFF_INTERP_OPT8X) || \ defined(Z_COEFF_INTERP_OPT4X) || defined(Z_COEFF_INTERP_OPT2X)) #if Z_DRIFT_SHIFT >= 6 #define Z_COEFF_INTERP_BSPLINE 1 #elif Z_DRIFT_SHIFT >= 5 #define Z_COEFF_INTERP_OPT32X 1 #elif Z_DRIFT_SHIFT == 4 #define Z_COEFF_INTERP_OPT16X 1 #elif Z_DRIFT_SHIFT == 3 #define Z_COEFF_INTERP_OPT8X 1 #elif Z_DRIFT_SHIFT == 2 #define Z_COEFF_INTERP_OPT4X 1 #elif Z_DRIFT_SHIFT == 1 #define Z_COEFF_INTERP_OPT2X 1 #else #error "Z_DRIFT_SHIFT screwed!" #endif #endif /* * In classic polyphase mode, the actual coefficients for each phases need to * be calculated based on default prototype filters. For highly oversampled * filter, linear or quadradatic interpolator should be enough. Anything less * than that require 'special' interpolators to reduce interpolation errors. * * "Polynomial Interpolators for High-Quality Resampling of Oversampled Audio" * by Olli Niemitalo * - http://www.student.oulu.fi/~oniemita/dsp/deip.pdf * */ static int32_t z_coeff_interpolate(int32_t z, int32_t *z_coeff) { int32_t coeff; #if defined(Z_COEFF_INTERP_ZOH) /* 1-point, 0th-order (Zero Order Hold) */ z = z; coeff = z_coeff[0]; #elif defined(Z_COEFF_INTERP_LINEAR) int32_t zl0, zl1; /* 2-point, 1st-order Linear */ zl0 = z_coeff[0]; zl1 = z_coeff[1] - z_coeff[0]; coeff = Z_RSHIFT((int64_t)zl1 * z, Z_SHIFT) + zl0; #elif defined(Z_COEFF_INTERP_QUADRATIC) int32_t zq0, zq1, zq2; /* 3-point, 2nd-order Quadratic */ zq0 = z_coeff[0]; zq1 = z_coeff[1] - z_coeff[-1]; zq2 = z_coeff[1] + z_coeff[-1] - (z_coeff[0] << 1); coeff = Z_RSHIFT((Z_RSHIFT((int64_t)zq2 * z, Z_SHIFT) + zq1) * z, Z_SHIFT + 1) + zq0; #elif defined(Z_COEFF_INTERP_HERMITE) int32_t zh0, zh1, zh2, zh3; /* 4-point, 3rd-order Hermite */ zh0 = z_coeff[0]; zh1 = z_coeff[1] - z_coeff[-1]; zh2 = (z_coeff[-1] << 1) - (z_coeff[0] * 5) + (z_coeff[1] << 2) - z_coeff[2]; zh3 = z_coeff[2] - z_coeff[-1] + ((z_coeff[0] - z_coeff[1]) * 3); coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((int64_t)zh3 * z, Z_SHIFT) + zh2) * z, Z_SHIFT) + zh1) * z, Z_SHIFT + 1) + zh0; #elif defined(Z_COEFF_INTERP_BSPLINE) int32_t zb0, zb1, zb2, zb3; /* 4-point, 3rd-order B-Spline */ zb0 = Z_RSHIFT(0x15555555LL * (((int64_t)z_coeff[0] << 2) + z_coeff[-1] + z_coeff[1]), 30); zb1 = z_coeff[1] - z_coeff[-1]; zb2 = z_coeff[-1] + z_coeff[1] - (z_coeff[0] << 1); zb3 = Z_RSHIFT(0x15555555LL * (((z_coeff[0] - z_coeff[1]) * 3) + z_coeff[2] - z_coeff[-1]), 30); coeff = (Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((int64_t)zb3 * z, Z_SHIFT) + zb2) * z, Z_SHIFT) + zb1) * z, Z_SHIFT) + zb0 + 1) >> 1; #elif defined(Z_COEFF_INTERP_OPT32X) int32_t zoz, zoe1, zoe2, zoe3, zoo1, zoo2, zoo3; int32_t zoc0, zoc1, zoc2, zoc3, zoc4, zoc5; /* 6-point, 5th-order Optimal 32x */ zoz = z - (Z_ONE >> 1); zoe1 = z_coeff[1] + z_coeff[0]; zoe2 = z_coeff[2] + z_coeff[-1]; zoe3 = z_coeff[3] + z_coeff[-2]; zoo1 = z_coeff[1] - z_coeff[0]; zoo2 = z_coeff[2] - z_coeff[-1]; zoo3 = z_coeff[3] - z_coeff[-2]; zoc0 = Z_RSHIFT((0x1ac2260dLL * zoe1) + (0x0526cdcaLL * zoe2) + (0x00170c29LL * zoe3), 30); zoc1 = Z_RSHIFT((0x14f8a49aLL * zoo1) + (0x0d6d1109LL * zoo2) + (0x008cd4dcLL * zoo3), 30); zoc2 = Z_RSHIFT((-0x0d3e94a4LL * zoe1) + (0x0bddded4LL * zoe2) + (0x0160b5d0LL * zoe3), 30); zoc3 = Z_RSHIFT((-0x0de10cc4LL * zoo1) + (0x019b2a7dLL * zoo2) + (0x01cfe914LL * zoo3), 30); zoc4 = Z_RSHIFT((0x02aa12d7LL * zoe1) + (-0x03ff1bb3LL * zoe2) + (0x015508ddLL * zoe3), 30); zoc5 = Z_RSHIFT((0x051d29e5LL * zoo1) + (-0x028e7647LL * zoo2) + (0x0082d81aLL * zoo3), 30); coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT( (int64_t)zoc5 * zoz, Z_SHIFT) + zoc4) * zoz, Z_SHIFT) + zoc3) * zoz, Z_SHIFT) + zoc2) * zoz, Z_SHIFT) + zoc1) * zoz, Z_SHIFT) + zoc0; #elif defined(Z_COEFF_INTERP_OPT16X) int32_t zoz, zoe1, zoe2, zoe3, zoo1, zoo2, zoo3; int32_t zoc0, zoc1, zoc2, zoc3, zoc4, zoc5; /* 6-point, 5th-order Optimal 16x */ zoz = z - (Z_ONE >> 1); zoe1 = z_coeff[1] + z_coeff[0]; zoe2 = z_coeff[2] + z_coeff[-1]; zoe3 = z_coeff[3] + z_coeff[-2]; zoo1 = z_coeff[1] - z_coeff[0]; zoo2 = z_coeff[2] - z_coeff[-1]; zoo3 = z_coeff[3] - z_coeff[-2]; zoc0 = Z_RSHIFT((0x1ac2260dLL * zoe1) + (0x0526cdcaLL * zoe2) + (0x00170c29LL * zoe3), 30); zoc1 = Z_RSHIFT((0x14f8a49aLL * zoo1) + (0x0d6d1109LL * zoo2) + (0x008cd4dcLL * zoo3), 30); zoc2 = Z_RSHIFT((-0x0d3e94a4LL * zoe1) + (0x0bddded4LL * zoe2) + (0x0160b5d0LL * zoe3), 30); zoc3 = Z_RSHIFT((-0x0de10cc4LL * zoo1) + (0x019b2a7dLL * zoo2) + (0x01cfe914LL * zoo3), 30); zoc4 = Z_RSHIFT((0x02aa12d7LL * zoe1) + (-0x03ff1bb3LL * zoe2) + (0x015508ddLL * zoe3), 30); zoc5 = Z_RSHIFT((0x051d29e5LL * zoo1) + (-0x028e7647LL * zoo2) + (0x0082d81aLL * zoo3), 30); coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT( (int64_t)zoc5 * zoz, Z_SHIFT) + zoc4) * zoz, Z_SHIFT) + zoc3) * zoz, Z_SHIFT) + zoc2) * zoz, Z_SHIFT) + zoc1) * zoz, Z_SHIFT) + zoc0; #elif defined(Z_COEFF_INTERP_OPT8X) int32_t zoz, zoe1, zoe2, zoe3, zoo1, zoo2, zoo3; int32_t zoc0, zoc1, zoc2, zoc3, zoc4, zoc5; /* 6-point, 5th-order Optimal 8x */ zoz = z - (Z_ONE >> 1); zoe1 = z_coeff[1] + z_coeff[0]; zoe2 = z_coeff[2] + z_coeff[-1]; zoe3 = z_coeff[3] + z_coeff[-2]; zoo1 = z_coeff[1] - z_coeff[0]; zoo2 = z_coeff[2] - z_coeff[-1]; zoo3 = z_coeff[3] - z_coeff[-2]; zoc0 = Z_RSHIFT((0x1aa9b47dLL * zoe1) + (0x053d9944LL * zoe2) + (0x0018b23fLL * zoe3), 30); zoc1 = Z_RSHIFT((0x14a104d1LL * zoo1) + (0x0d7d2504LL * zoo2) + (0x0094b599LL * zoo3), 30); zoc2 = Z_RSHIFT((-0x0d22530bLL * zoe1) + (0x0bb37a2cLL * zoe2) + (0x016ed8e0LL * zoe3), 30); zoc3 = Z_RSHIFT((-0x0d744b1cLL * zoo1) + (0x01649591LL * zoo2) + (0x01dae93aLL * zoo3), 30); zoc4 = Z_RSHIFT((0x02a7ee1bLL * zoe1) + (-0x03fbdb24LL * zoe2) + (0x0153ed07LL * zoe3), 30); zoc5 = Z_RSHIFT((0x04cf9b6cLL * zoo1) + (-0x0266b378LL * zoo2) + (0x007a7c26LL * zoo3), 30); coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT( (int64_t)zoc5 * zoz, Z_SHIFT) + zoc4) * zoz, Z_SHIFT) + zoc3) * zoz, Z_SHIFT) + zoc2) * zoz, Z_SHIFT) + zoc1) * zoz, Z_SHIFT) + zoc0; #elif defined(Z_COEFF_INTERP_OPT4X) int32_t zoz, zoe1, zoe2, zoe3, zoo1, zoo2, zoo3; int32_t zoc0, zoc1, zoc2, zoc3, zoc4, zoc5; /* 6-point, 5th-order Optimal 4x */ zoz = z - (Z_ONE >> 1); zoe1 = z_coeff[1] + z_coeff[0]; zoe2 = z_coeff[2] + z_coeff[-1]; zoe3 = z_coeff[3] + z_coeff[-2]; zoo1 = z_coeff[1] - z_coeff[0]; zoo2 = z_coeff[2] - z_coeff[-1]; zoo3 = z_coeff[3] - z_coeff[-2]; zoc0 = Z_RSHIFT((0x1a8eda43LL * zoe1) + (0x0556ee38LL * zoe2) + (0x001a3784LL * zoe3), 30); zoc1 = Z_RSHIFT((0x143d863eLL * zoo1) + (0x0d910e36LL * zoo2) + (0x009ca889LL * zoo3), 30); zoc2 = Z_RSHIFT((-0x0d026821LL * zoe1) + (0x0b837773LL * zoe2) + (0x017ef0c6LL * zoe3), 30); zoc3 = Z_RSHIFT((-0x0cef1502LL * zoo1) + (0x01207a8eLL * zoo2) + (0x01e936dbLL * zoo3), 30); zoc4 = Z_RSHIFT((0x029fe643LL * zoe1) + (-0x03ef3fc8LL * zoe2) + (0x014f5923LL * zoe3), 30); zoc5 = Z_RSHIFT((0x043a9d08LL * zoo1) + (-0x02154febLL * zoo2) + (0x00670dbdLL * zoo3), 30); coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT( (int64_t)zoc5 * zoz, Z_SHIFT) + zoc4) * zoz, Z_SHIFT) + zoc3) * zoz, Z_SHIFT) + zoc2) * zoz, Z_SHIFT) + zoc1) * zoz, Z_SHIFT) + zoc0; #elif defined(Z_COEFF_INTERP_OPT2X) int32_t zoz, zoe1, zoe2, zoe3, zoo1, zoo2, zoo3; int32_t zoc0, zoc1, zoc2, zoc3, zoc4, zoc5; /* 6-point, 5th-order Optimal 2x */ zoz = z - (Z_ONE >> 1); zoe1 = z_coeff[1] + z_coeff[0]; zoe2 = z_coeff[2] + z_coeff[-1]; zoe3 = z_coeff[3] + z_coeff[-2]; zoo1 = z_coeff[1] - z_coeff[0]; zoo2 = z_coeff[2] - z_coeff[-1]; zoo3 = z_coeff[3] - z_coeff[-2]; zoc0 = Z_RSHIFT((0x19edb6fdLL * zoe1) + (0x05ebd062LL * zoe2) + (0x00267881LL * zoe3), 30); zoc1 = Z_RSHIFT((0x1223af76LL * zoo1) + (0x0de3dd6bLL * zoo2) + (0x00d683cdLL * zoo3), 30); zoc2 = Z_RSHIFT((-0x0c3ee068LL * zoe1) + (0x0a5c3769LL * zoe2) + (0x01e2aceaLL * zoe3), 30); zoc3 = Z_RSHIFT((-0x0a8ab614LL * zoo1) + (-0x0019522eLL * zoo2) + (0x022cefc7LL * zoo3), 30); zoc4 = Z_RSHIFT((0x0276187dLL * zoe1) + (-0x03a801e8LL * zoe2) + (0x0131d935LL * zoe3), 30); zoc5 = Z_RSHIFT((0x02c373f5LL * zoo1) + (-0x01275f83LL * zoo2) + (0x0018ee79LL * zoo3), 30); coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT( (int64_t)zoc5 * zoz, Z_SHIFT) + zoc4) * zoz, Z_SHIFT) + zoc3) * zoz, Z_SHIFT) + zoc2) * zoz, Z_SHIFT) + zoc1) * zoz, Z_SHIFT) + zoc0; #else #error "Interpolation type screwed!" #endif #if Z_POLYPHASE_COEFF_SHIFT > 0 coeff = Z_RSHIFT(coeff, Z_POLYPHASE_COEFF_SHIFT); #endif return (coeff); } static int z_resampler_build_polyphase(struct z_info *info) { int32_t alpha, c, i, z, idx; /* Let this be here first. */ if (info->z_pcoeff != NULL) { free(info->z_pcoeff, M_DEVBUF); info->z_pcoeff = NULL; } if (feeder_rate_polyphase_max < 1) return (ENOTSUP); if (((int64_t)info->z_size * info->z_gy * 2) > feeder_rate_polyphase_max) { #ifndef _KERNEL fprintf(stderr, "Polyphase entries exceed: [%d/%d] %jd > %d\n", info->z_gx, info->z_gy, (intmax_t)info->z_size * info->z_gy * 2, feeder_rate_polyphase_max); #endif return (E2BIG); } info->z_pcoeff = malloc(sizeof(int32_t) * info->z_size * info->z_gy * 2, M_DEVBUF, M_NOWAIT | M_ZERO); if (info->z_pcoeff == NULL) return (ENOMEM); for (alpha = 0; alpha < info->z_gy; alpha++) { z = alpha * info->z_dx; c = 0; for (i = info->z_size; i != 0; i--) { c += z >> Z_SHIFT; z &= Z_MASK; idx = (alpha * info->z_size * 2) + (info->z_size * 2) - i; info->z_pcoeff[idx] = z_coeff_interpolate(z, info->z_coeff + c); z += info->z_dy; } z = info->z_dy - (alpha * info->z_dx); c = 0; for (i = info->z_size; i != 0; i--) { c += z >> Z_SHIFT; z &= Z_MASK; idx = (alpha * info->z_size * 2) + i - 1; info->z_pcoeff[idx] = z_coeff_interpolate(z, info->z_coeff + c); z += info->z_dy; } } #ifndef _KERNEL fprintf(stderr, "Polyphase: [%d/%d] %d entries\n", info->z_gx, info->z_gy, info->z_size * info->z_gy * 2); #endif return (0); } static int z_resampler_setup(struct pcm_feeder *f) { struct z_info *info; int64_t gy2gx_max, gx2gy_max; uint32_t format; int32_t align, i, z_scale; int adaptive; info = f->data; z_resampler_reset(info); if (info->src == info->dst) return (0); /* Shrink by greatest common divisor. */ i = z_gcd(info->src, info->dst); info->z_gx = info->src / i; info->z_gy = info->dst / i; /* Too big, or too small. Bail out. */ if (!(Z_FACTOR_SAFE(info->z_gx) && Z_FACTOR_SAFE(info->z_gy))) return (EINVAL); format = f->desc->in; adaptive = 0; z_scale = 0; /* * Setup everything: filter length, conversion factor, etc. */ if (Z_IS_SINC(info)) { /* * Downsampling, or upsampling scaling factor. As long as the * factor can be represented by a fraction of 1 << Z_SHIFT, * we're pretty much in business. Scaling is not needed for * upsampling, so we just slap Z_ONE there. */ if (info->z_gx > info->z_gy) /* * If the downsampling ratio is beyond sanity, * enable semi-adaptive mode. Although handling * extreme ratio is possible, the result of the * conversion is just pointless, unworthy, * nonsensical noises, etc. */ if ((info->z_gx / info->z_gy) > Z_SINC_DOWNMAX) z_scale = Z_ONE / Z_SINC_DOWNMAX; else z_scale = ((uint64_t)info->z_gy << Z_SHIFT) / info->z_gx; else z_scale = Z_ONE; /* * This is actually impossible, unless anything above * overflow. */ if (z_scale < 1) return (E2BIG); /* * Calculate sample time/coefficients index drift. It is * a constant for upsampling, but downsampling require * heavy duty filtering with possible too long filters. * If anything goes wrong, revisit again and enable * adaptive mode. */ z_setup_adaptive_sinc: if (info->z_pcoeff != NULL) { free(info->z_pcoeff, M_DEVBUF); info->z_pcoeff = NULL; } if (adaptive == 0) { info->z_dy = z_scale << Z_DRIFT_SHIFT; if (info->z_dy < 1) return (E2BIG); info->z_scale = z_scale; } else { info->z_dy = Z_FULL_ONE; info->z_scale = Z_ONE; } #if 0 #define Z_SCALE_DIV 10000 #define Z_SCALE_LIMIT(s, v) \ ((((uint64_t)(s) * (v)) + (Z_SCALE_DIV >> 1)) / Z_SCALE_DIV) info->z_scale = Z_SCALE_LIMIT(info->z_scale, 9780); #endif /* Smallest drift increment. */ info->z_dx = info->z_dy / info->z_gy; /* * Overflow or underflow. Try adaptive, let it continue and * retry. */ if (info->z_dx < 1) { if (adaptive == 0) { adaptive = 1; goto z_setup_adaptive_sinc; } return (E2BIG); } /* * Round back output drift. */ info->z_dy = info->z_dx * info->z_gy; for (i = 0; i < Z_COEFF_TAB_SIZE; i++) { if (Z_SINC_COEFF_IDX(info) != i) continue; /* * Calculate required filter length and guard * against possible abusive result. Note that * this represents only 1/2 of the entire filter * length. */ info->z_size = z_resampler_sinc_len(info); /* * Multiple of 2 rounding, for better accumulator * performance. */ info->z_size &= ~1; if (info->z_size < 2 || info->z_size > Z_SINC_MAX) { if (adaptive == 0) { adaptive = 1; goto z_setup_adaptive_sinc; } return (E2BIG); } info->z_coeff = z_coeff_tab[i].coeff + Z_COEFF_OFFSET; info->z_dcoeff = z_coeff_tab[i].dcoeff; break; } if (info->z_coeff == NULL || info->z_dcoeff == NULL) return (EINVAL); } else if (Z_IS_LINEAR(info)) { /* * Don't put much effort if we're doing linear interpolation. * Just center the interpolation distance within Z_LINEAR_ONE, * and be happy about it. */ info->z_dx = Z_LINEAR_FULL_ONE / info->z_gy; } /* * We're safe for now, lets continue.. Look for our resampler * depending on configured format and quality. */ for (i = 0; i < Z_RESAMPLER_TAB_SIZE; i++) { int ridx; if (AFMT_ENCODING(format) != z_resampler_tab[i].format) continue; if (Z_IS_SINC(info) && adaptive == 0 && z_resampler_build_polyphase(info) == 0) ridx = Z_RESAMPLER_SINC_POLYPHASE; else ridx = Z_RESAMPLER_IDX(info); info->z_resample = z_resampler_tab[i].resampler[ridx]; break; } if (info->z_resample == NULL) return (EINVAL); info->bps = AFMT_BPS(format); align = info->channels * info->bps; /* * Calculate largest value that can be fed into z_gy2gx() and * z_gx2gy() without causing (signed) 32bit overflow. z_gy2gx() will * be called early during feeding process to determine how much input * samples that is required to generate requested output, while * z_gx2gy() will be called just before samples filtering / * accumulation process based on available samples that has been * calculated using z_gx2gy(). * * Now that is damn confusing, I guess ;-) . */ gy2gx_max = (((uint64_t)info->z_gy * INT32_MAX) - info->z_gy + 1) / info->z_gx; if ((gy2gx_max * align) > SND_FXDIV_MAX) gy2gx_max = SND_FXDIV_MAX / align; if (gy2gx_max < 1) return (E2BIG); gx2gy_max = (((uint64_t)info->z_gx * INT32_MAX) - info->z_gy) / info->z_gy; if (gx2gy_max > INT32_MAX) gx2gy_max = INT32_MAX; if (gx2gy_max < 1) return (E2BIG); /* * Ensure that z_gy2gx() at its largest possible calculated value * (alpha = 0) will not cause overflow further late during z_gx2gy() * stage. */ if (z_gy2gx(info, gy2gx_max) > _Z_GCAST(gx2gy_max)) return (E2BIG); info->z_maxfeed = gy2gx_max * align; #ifdef Z_USE_ALPHADRIFT info->z_startdrift = z_gy2gx(info, 1); info->z_alphadrift = z_drift(info, info->z_startdrift, 1); #endif i = z_gy2gx(info, 1); info->z_full = z_roundpow2((info->z_size << 1) + i); /* * Too big to be true, and overflowing left and right like mad .. */ if ((info->z_full * align) < 1) { if (adaptive == 0 && Z_IS_SINC(info)) { adaptive = 1; goto z_setup_adaptive_sinc; } return (E2BIG); } /* * Increase full buffer size if its too small to reduce cyclic * buffer shifting in main conversion/feeder loop. */ while (info->z_full < Z_RESERVOIR_MAX && (info->z_full - (info->z_size << 1)) < Z_RESERVOIR) info->z_full <<= 1; /* Initialize buffer position. */ info->z_mask = info->z_full - 1; info->z_start = z_prev(info, info->z_size << 1, 1); info->z_pos = z_next(info, info->z_start, 1); /* * Allocate or reuse delay line buffer, whichever makes sense. */ i = info->z_full * align; if (i < 1) return (E2BIG); if (info->z_delay == NULL || info->z_alloc < i || i <= (info->z_alloc >> 1)) { if (info->z_delay != NULL) free(info->z_delay, M_DEVBUF); info->z_delay = malloc(i, M_DEVBUF, M_NOWAIT | M_ZERO); if (info->z_delay == NULL) return (ENOMEM); info->z_alloc = i; } /* * Zero out head of buffer to avoid pops and clicks. */ memset(info->z_delay, sndbuf_zerodata(f->desc->out), info->z_pos * align); #ifdef Z_DIAGNOSTIC /* * XXX Debuging mess !@#$%^ */ #define dumpz(x) fprintf(stderr, "\t%12s = %10u : %-11d\n", \ "z_"__STRING(x), (uint32_t)info->z_##x, \ (int32_t)info->z_##x) fprintf(stderr, "\n%s():\n", __func__); fprintf(stderr, "\tchannels=%d, bps=%d, format=0x%08x, quality=%d\n", info->channels, info->bps, format, info->quality); fprintf(stderr, "\t%d (%d) -> %d (%d), ", info->src, info->rsrc, info->dst, info->rdst); fprintf(stderr, "[%d/%d]\n", info->z_gx, info->z_gy); fprintf(stderr, "\tminreq=%d, ", z_gy2gx(info, 1)); if (adaptive != 0) z_scale = Z_ONE; fprintf(stderr, "factor=0x%08x/0x%08x (%f)\n", z_scale, Z_ONE, (double)z_scale / Z_ONE); fprintf(stderr, "\tbase_length=%d, ", Z_SINC_BASE_LEN(info)); fprintf(stderr, "adaptive=%s\n", (adaptive != 0) ? "YES" : "NO"); dumpz(size); dumpz(alloc); if (info->z_alloc < 1024) fprintf(stderr, "\t%15s%10d Bytes\n", "", info->z_alloc); else if (info->z_alloc < (1024 << 10)) fprintf(stderr, "\t%15s%10d KBytes\n", "", info->z_alloc >> 10); else if (info->z_alloc < (1024 << 20)) fprintf(stderr, "\t%15s%10d MBytes\n", "", info->z_alloc >> 20); else fprintf(stderr, "\t%15s%10d GBytes\n", "", info->z_alloc >> 30); fprintf(stderr, "\t%12s %10d (min output samples)\n", "", (int32_t)z_gx2gy(info, info->z_full - (info->z_size << 1))); fprintf(stderr, "\t%12s %10d (min allocated output samples)\n", "", (int32_t)z_gx2gy(info, (info->z_alloc / align) - (info->z_size << 1))); fprintf(stderr, "\t%12s = %10d\n", "z_gy2gx()", (int32_t)z_gy2gx(info, 1)); fprintf(stderr, "\t%12s = %10d -> z_gy2gx() -> %d\n", "Max", (int32_t)gy2gx_max, (int32_t)z_gy2gx(info, gy2gx_max)); fprintf(stderr, "\t%12s = %10d\n", "z_gx2gy()", (int32_t)z_gx2gy(info, 1)); fprintf(stderr, "\t%12s = %10d -> z_gx2gy() -> %d\n", "Max", (int32_t)gx2gy_max, (int32_t)z_gx2gy(info, gx2gy_max)); dumpz(maxfeed); dumpz(full); dumpz(start); dumpz(pos); dumpz(scale); fprintf(stderr, "\t%12s %10f\n", "", (double)info->z_scale / Z_ONE); dumpz(dx); fprintf(stderr, "\t%12s %10f\n", "", (double)info->z_dx / info->z_dy); dumpz(dy); fprintf(stderr, "\t%12s %10d (drift step)\n", "", info->z_dy >> Z_SHIFT); fprintf(stderr, "\t%12s %10d (scaling differences)\n", "", (z_scale << Z_DRIFT_SHIFT) - info->z_dy); fprintf(stderr, "\t%12s = %u bytes\n", "intpcm32_t", sizeof(intpcm32_t)); fprintf(stderr, "\t%12s = 0x%08x, smallest=%.16lf\n", "Z_ONE", Z_ONE, (double)1.0 / (double)Z_ONE); #endif return (0); } static int z_resampler_set(struct pcm_feeder *f, int what, int32_t value) { struct z_info *info; int32_t oquality; info = f->data; switch (what) { case Z_RATE_SRC: if (value < feeder_rate_min || value > feeder_rate_max) return (E2BIG); if (value == info->rsrc) return (0); info->rsrc = value; break; case Z_RATE_DST: if (value < feeder_rate_min || value > feeder_rate_max) return (E2BIG); if (value == info->rdst) return (0); info->rdst = value; break; case Z_RATE_QUALITY: if (value < Z_QUALITY_MIN || value > Z_QUALITY_MAX) return (EINVAL); if (value == info->quality) return (0); /* * If we failed to set the requested quality, restore * the old one. We cannot afford leaving it broken since * passive feeder chains like vchans never reinitialize * itself. */ oquality = info->quality; info->quality = value; if (z_resampler_setup(f) == 0) return (0); info->quality = oquality; break; case Z_RATE_CHANNELS: if (value < SND_CHN_MIN || value > SND_CHN_MAX) return (EINVAL); if (value == info->channels) return (0); info->channels = value; break; default: return (EINVAL); break; } return (z_resampler_setup(f)); } static int z_resampler_get(struct pcm_feeder *f, int what) { struct z_info *info; info = f->data; switch (what) { case Z_RATE_SRC: return (info->rsrc); break; case Z_RATE_DST: return (info->rdst); break; case Z_RATE_QUALITY: return (info->quality); break; case Z_RATE_CHANNELS: return (info->channels); break; default: break; } return (-1); } static int z_resampler_init(struct pcm_feeder *f) { struct z_info *info; int ret; if (f->desc->in != f->desc->out) return (EINVAL); info = malloc(sizeof(*info), M_DEVBUF, M_NOWAIT | M_ZERO); if (info == NULL) return (ENOMEM); info->rsrc = Z_RATE_DEFAULT; info->rdst = Z_RATE_DEFAULT; info->quality = feeder_rate_quality; info->channels = AFMT_CHANNEL(f->desc->in); f->data = info; ret = z_resampler_setup(f); if (ret != 0) { if (info->z_pcoeff != NULL) free(info->z_pcoeff, M_DEVBUF); if (info->z_delay != NULL) free(info->z_delay, M_DEVBUF); free(info, M_DEVBUF); f->data = NULL; } return (ret); } static int z_resampler_free(struct pcm_feeder *f) { struct z_info *info; info = f->data; if (info != NULL) { if (info->z_pcoeff != NULL) free(info->z_pcoeff, M_DEVBUF); if (info->z_delay != NULL) free(info->z_delay, M_DEVBUF); free(info, M_DEVBUF); } f->data = NULL; return (0); } static uint32_t z_resampler_feed_internal(struct pcm_feeder *f, struct pcm_channel *c, uint8_t *b, uint32_t count, void *source) { struct z_info *info; int32_t alphadrift, startdrift, reqout, ocount, reqin, align; int32_t fetch, fetched, start, cp; uint8_t *dst; info = f->data; if (info->z_resample == NULL) return (z_feed(f->source, c, b, count, source)); /* * Calculate sample size alignment and amount of sample output. * We will do everything in sample domain, but at the end we * will jump back to byte domain. */ align = info->channels * info->bps; ocount = SND_FXDIV(count, align); if (ocount == 0) return (0); /* * Calculate amount of input samples that is needed to generate * exact amount of output. */ reqin = z_gy2gx(info, ocount) - z_fetched(info); #ifdef Z_USE_ALPHADRIFT startdrift = info->z_startdrift; alphadrift = info->z_alphadrift; #else startdrift = _Z_GY2GX(info, 0, 1); alphadrift = z_drift(info, startdrift, 1); #endif dst = b; do { if (reqin != 0) { fetch = z_min(z_free(info), reqin); if (fetch == 0) { /* * No more free spaces, so wind enough * samples back to the head of delay line * in byte domain. */ fetched = z_fetched(info); start = z_prev(info, info->z_start, (info->z_size << 1) - 1); cp = (info->z_size << 1) + fetched; z_copy(info->z_delay + (start * align), info->z_delay, cp * align); info->z_start = z_prev(info, info->z_size << 1, 1); info->z_pos = z_next(info, info->z_start, fetched + 1); fetch = z_min(z_free(info), reqin); #ifdef Z_DIAGNOSTIC if (1) { static uint32_t kk = 0; fprintf(stderr, "Buffer Move: " "start=%d fetched=%d cp=%d " "cycle=%u [%u]\r", start, fetched, cp, info->z_cycle, ++kk); } info->z_cycle = 0; #endif } if (fetch != 0) { /* * Fetch in byte domain and jump back * to sample domain. */ fetched = SND_FXDIV(z_feed(f->source, c, info->z_delay + (info->z_pos * align), fetch * align, source), align); /* * Prepare to convert fetched buffer, * or mark us done if we cannot fulfill * the request. */ reqin -= fetched; info->z_pos += fetched; if (fetched != fetch) reqin = 0; } } reqout = z_min(z_gx2gy(info, z_fetched(info)), ocount); if (reqout != 0) { ocount -= reqout; /* * Drift.. drift.. drift.. * * Notice that there are 2 methods of doing the drift * operations: The former is much cleaner (in a sense * of mathematical readings of my eyes), but slower * due to integer division in z_gy2gx(). Nevertheless, * both should give the same exact accurate drifting * results, so the later is favourable. */ do { info->z_resample(info, dst); #if 0 startdrift = z_gy2gx(info, 1); alphadrift = z_drift(info, startdrift, 1); info->z_start += startdrift; info->z_alpha += alphadrift; #else info->z_alpha += alphadrift; if (info->z_alpha < info->z_gy) info->z_start += startdrift; else { info->z_start += startdrift - 1; info->z_alpha -= info->z_gy; } #endif dst += align; #ifdef Z_DIAGNOSTIC info->z_cycle++; #endif } while (--reqout != 0); } } while (reqin != 0 && ocount != 0); /* * Back to byte domain.. */ return (dst - b); } static int z_resampler_feed(struct pcm_feeder *f, struct pcm_channel *c, uint8_t *b, uint32_t count, void *source) { uint32_t feed, maxfeed, left; /* * Split count to smaller chunks to avoid possible 32bit overflow. */ maxfeed = ((struct z_info *)(f->data))->z_maxfeed; left = count; do { feed = z_resampler_feed_internal(f, c, b, z_min(maxfeed, left), source); b += feed; left -= feed; } while (left != 0 && feed != 0); return (count - left); } static struct pcm_feederdesc feeder_rate_desc[] = { { FEEDER_RATE, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0 }, }; static kobj_method_t feeder_rate_methods[] = { KOBJMETHOD(feeder_init, z_resampler_init), KOBJMETHOD(feeder_free, z_resampler_free), KOBJMETHOD(feeder_set, z_resampler_set), KOBJMETHOD(feeder_get, z_resampler_get), KOBJMETHOD(feeder_feed, z_resampler_feed), KOBJMETHOD_END }; FEEDER_DECLARE(feeder_rate, NULL);