Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/s3/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/usie/@/amd64/compile/hs32/modules/usr/src/sys/modules/ipwfw/ipw_monitor/@/amd64/compile/hs32/modules/usr/src/sys/modules/joy/@/dev/xen/blkfront/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/s3/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/usie/@/amd64/compile/hs32/modules/usr/src/sys/modules/ipwfw/ipw_monitor/@/amd64/compile/hs32/modules/usr/src/sys/modules/joy/@/dev/xen/blkfront/blkfront.c |
/* * XenBSD block device driver * * Copyright (c) 2009 Scott Long, Yahoo! * Copyright (c) 2009 Frank Suchomel, Citrix * Copyright (c) 2009 Doug F. Rabson, Citrix * Copyright (c) 2005 Kip Macy * Copyright (c) 2003-2004, Keir Fraser & Steve Hand * Modifications by Mark A. Williamson are (c) Intel Research Cambridge * * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/dev/xen/blkfront/blkfront.c 237873 2012-07-01 05:13:50Z ken $"); #include <sys/param.h> #include <sys/systm.h> #include <sys/malloc.h> #include <sys/kernel.h> #include <vm/vm.h> #include <vm/pmap.h> #include <sys/bio.h> #include <sys/bus.h> #include <sys/conf.h> #include <sys/module.h> #include <sys/sysctl.h> #include <machine/bus.h> #include <sys/rman.h> #include <machine/resource.h> #include <machine/intr_machdep.h> #include <machine/vmparam.h> #include <sys/bus_dma.h> #include <machine/_inttypes.h> #include <machine/xen/xen-os.h> #include <machine/xen/xenvar.h> #include <machine/xen/xenfunc.h> #include <xen/hypervisor.h> #include <xen/xen_intr.h> #include <xen/evtchn.h> #include <xen/gnttab.h> #include <xen/interface/grant_table.h> #include <xen/interface/io/protocols.h> #include <xen/xenbus/xenbusvar.h> #include <geom/geom_disk.h> #include <dev/xen/blkfront/block.h> #include "xenbus_if.h" /* prototypes */ static void xb_free_command(struct xb_command *cm); static void xb_startio(struct xb_softc *sc); static void blkfront_connect(struct xb_softc *); static void blkfront_closing(device_t); static int blkfront_detach(device_t); static int setup_blkring(struct xb_softc *); static void blkif_int(void *); static void blkfront_initialize(struct xb_softc *); static int blkif_completion(struct xb_command *); static void blkif_free(struct xb_softc *); static void blkif_queue_cb(void *, bus_dma_segment_t *, int, int); MALLOC_DEFINE(M_XENBLOCKFRONT, "xbd", "Xen Block Front driver data"); #define GRANT_INVALID_REF 0 /* Control whether runtime update of vbds is enabled. */ #define ENABLE_VBD_UPDATE 0 #if ENABLE_VBD_UPDATE static void vbd_update(void); #endif #define BLKIF_STATE_DISCONNECTED 0 #define BLKIF_STATE_CONNECTED 1 #define BLKIF_STATE_SUSPENDED 2 #ifdef notyet static char *blkif_state_name[] = { [BLKIF_STATE_DISCONNECTED] = "disconnected", [BLKIF_STATE_CONNECTED] = "connected", [BLKIF_STATE_SUSPENDED] = "closed", }; static char * blkif_status_name[] = { [BLKIF_INTERFACE_STATUS_CLOSED] = "closed", [BLKIF_INTERFACE_STATUS_DISCONNECTED] = "disconnected", [BLKIF_INTERFACE_STATUS_CONNECTED] = "connected", [BLKIF_INTERFACE_STATUS_CHANGED] = "changed", }; #endif #if 0 #define DPRINTK(fmt, args...) printf("[XEN] %s:%d: " fmt ".\n", __func__, __LINE__, ##args) #else #define DPRINTK(fmt, args...) #endif static int blkif_open(struct disk *dp); static int blkif_close(struct disk *dp); static int blkif_ioctl(struct disk *dp, u_long cmd, void *addr, int flag, struct thread *td); static int blkif_queue_request(struct xb_softc *sc, struct xb_command *cm); static void xb_strategy(struct bio *bp); // In order to quiesce the device during kernel dumps, outstanding requests to // DOM0 for disk reads/writes need to be accounted for. static int xb_dump(void *, void *, vm_offset_t, off_t, size_t); /* XXX move to xb_vbd.c when VBD update support is added */ #define MAX_VBDS 64 #define XBD_SECTOR_SIZE 512 /* XXX: assume for now */ #define XBD_SECTOR_SHFT 9 /* * Translate Linux major/minor to an appropriate name and unit * number. For HVM guests, this allows us to use the same drive names * with blkfront as the emulated drives, easing transition slightly. */ static void blkfront_vdevice_to_unit(uint32_t vdevice, int *unit, const char **name) { static struct vdev_info { int major; int shift; int base; const char *name; } info[] = { {3, 6, 0, "ad"}, /* ide0 */ {22, 6, 2, "ad"}, /* ide1 */ {33, 6, 4, "ad"}, /* ide2 */ {34, 6, 6, "ad"}, /* ide3 */ {56, 6, 8, "ad"}, /* ide4 */ {57, 6, 10, "ad"}, /* ide5 */ {88, 6, 12, "ad"}, /* ide6 */ {89, 6, 14, "ad"}, /* ide7 */ {90, 6, 16, "ad"}, /* ide8 */ {91, 6, 18, "ad"}, /* ide9 */ {8, 4, 0, "da"}, /* scsi disk0 */ {65, 4, 16, "da"}, /* scsi disk1 */ {66, 4, 32, "da"}, /* scsi disk2 */ {67, 4, 48, "da"}, /* scsi disk3 */ {68, 4, 64, "da"}, /* scsi disk4 */ {69, 4, 80, "da"}, /* scsi disk5 */ {70, 4, 96, "da"}, /* scsi disk6 */ {71, 4, 112, "da"}, /* scsi disk7 */ {128, 4, 128, "da"}, /* scsi disk8 */ {129, 4, 144, "da"}, /* scsi disk9 */ {130, 4, 160, "da"}, /* scsi disk10 */ {131, 4, 176, "da"}, /* scsi disk11 */ {132, 4, 192, "da"}, /* scsi disk12 */ {133, 4, 208, "da"}, /* scsi disk13 */ {134, 4, 224, "da"}, /* scsi disk14 */ {135, 4, 240, "da"}, /* scsi disk15 */ {202, 4, 0, "xbd"}, /* xbd */ {0, 0, 0, NULL}, }; int major = vdevice >> 8; int minor = vdevice & 0xff; int i; if (vdevice & (1 << 28)) { *unit = (vdevice & ((1 << 28) - 1)) >> 8; *name = "xbd"; return; } for (i = 0; info[i].major; i++) { if (info[i].major == major) { *unit = info[i].base + (minor >> info[i].shift); *name = info[i].name; return; } } *unit = minor >> 4; *name = "xbd"; } int xlvbd_add(struct xb_softc *sc, blkif_sector_t sectors, int vdevice, uint16_t vdisk_info, unsigned long sector_size) { int unit, error = 0; const char *name; blkfront_vdevice_to_unit(vdevice, &unit, &name); sc->xb_unit = unit; if (strcmp(name, "xbd")) device_printf(sc->xb_dev, "attaching as %s%d\n", name, unit); sc->xb_disk = disk_alloc(); sc->xb_disk->d_unit = sc->xb_unit; sc->xb_disk->d_open = blkif_open; sc->xb_disk->d_close = blkif_close; sc->xb_disk->d_ioctl = blkif_ioctl; sc->xb_disk->d_strategy = xb_strategy; sc->xb_disk->d_dump = xb_dump; sc->xb_disk->d_name = name; sc->xb_disk->d_drv1 = sc; sc->xb_disk->d_sectorsize = sector_size; sc->xb_disk->d_mediasize = sectors * sector_size; sc->xb_disk->d_maxsize = sc->max_request_size; sc->xb_disk->d_flags = 0; disk_create(sc->xb_disk, DISK_VERSION); return error; } /************************ end VBD support *****************/ /* * Read/write routine for a buffer. Finds the proper unit, place it on * the sortq and kick the controller. */ static void xb_strategy(struct bio *bp) { struct xb_softc *sc = (struct xb_softc *)bp->bio_disk->d_drv1; /* bogus disk? */ if (sc == NULL) { bp->bio_error = EINVAL; bp->bio_flags |= BIO_ERROR; bp->bio_resid = bp->bio_bcount; biodone(bp); return; } /* * Place it in the queue of disk activities for this disk */ mtx_lock(&sc->xb_io_lock); xb_enqueue_bio(sc, bp); xb_startio(sc); mtx_unlock(&sc->xb_io_lock); return; } static void xb_bio_complete(struct xb_softc *sc, struct xb_command *cm) { struct bio *bp; bp = cm->bp; if ( unlikely(cm->status != BLKIF_RSP_OKAY) ) { disk_err(bp, "disk error" , -1, 0); printf(" status: %x\n", cm->status); bp->bio_flags |= BIO_ERROR; } if (bp->bio_flags & BIO_ERROR) bp->bio_error = EIO; else bp->bio_resid = 0; xb_free_command(cm); biodone(bp); } // Quiesce the disk writes for a dump file before allowing the next buffer. static void xb_quiesce(struct xb_softc *sc) { int mtd; // While there are outstanding requests while (!TAILQ_EMPTY(&sc->cm_busy)) { RING_FINAL_CHECK_FOR_RESPONSES(&sc->ring, mtd); if (mtd) { /* Recieved request completions, update queue. */ blkif_int(sc); } if (!TAILQ_EMPTY(&sc->cm_busy)) { /* * Still pending requests, wait for the disk i/o * to complete. */ HYPERVISOR_yield(); } } } /* Kernel dump function for a paravirtualized disk device */ static void xb_dump_complete(struct xb_command *cm) { xb_enqueue_complete(cm); } static int xb_dump(void *arg, void *virtual, vm_offset_t physical, off_t offset, size_t length) { struct disk *dp = arg; struct xb_softc *sc = (struct xb_softc *) dp->d_drv1; struct xb_command *cm; size_t chunk; int sbp; int rc = 0; if (length <= 0) return (rc); xb_quiesce(sc); /* All quiet on the western front. */ /* * If this lock is held, then this module is failing, and a * successful kernel dump is highly unlikely anyway. */ mtx_lock(&sc->xb_io_lock); /* Split the 64KB block as needed */ for (sbp=0; length > 0; sbp++) { cm = xb_dequeue_free(sc); if (cm == NULL) { mtx_unlock(&sc->xb_io_lock); device_printf(sc->xb_dev, "dump: no more commands?\n"); return (EBUSY); } if (gnttab_alloc_grant_references(sc->max_request_segments, &cm->gref_head) != 0) { xb_free_command(cm); mtx_unlock(&sc->xb_io_lock); device_printf(sc->xb_dev, "no more grant allocs?\n"); return (EBUSY); } chunk = length > sc->max_request_size ? sc->max_request_size : length; cm->data = virtual; cm->datalen = chunk; cm->operation = BLKIF_OP_WRITE; cm->sector_number = offset / dp->d_sectorsize; cm->cm_complete = xb_dump_complete; xb_enqueue_ready(cm); length -= chunk; offset += chunk; virtual = (char *) virtual + chunk; } /* Tell DOM0 to do the I/O */ xb_startio(sc); mtx_unlock(&sc->xb_io_lock); /* Poll for the completion. */ xb_quiesce(sc); /* All quite on the eastern front */ /* If there were any errors, bail out... */ while ((cm = xb_dequeue_complete(sc)) != NULL) { if (cm->status != BLKIF_RSP_OKAY) { device_printf(sc->xb_dev, "Dump I/O failed at sector %jd\n", cm->sector_number); rc = EIO; } xb_free_command(cm); } return (rc); } static int blkfront_probe(device_t dev) { if (!strcmp(xenbus_get_type(dev), "vbd")) { device_set_desc(dev, "Virtual Block Device"); device_quiet(dev); return (0); } return (ENXIO); } static void xb_setup_sysctl(struct xb_softc *xb) { struct sysctl_ctx_list *sysctl_ctx = NULL; struct sysctl_oid *sysctl_tree = NULL; sysctl_ctx = device_get_sysctl_ctx(xb->xb_dev); if (sysctl_ctx == NULL) return; sysctl_tree = device_get_sysctl_tree(xb->xb_dev); if (sysctl_tree == NULL) return; SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, "max_requests", CTLFLAG_RD, &xb->max_requests, -1, "maximum outstanding requests (negotiated)"); SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, "max_request_segments", CTLFLAG_RD, &xb->max_request_segments, 0, "maximum number of pages per requests (negotiated)"); SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, "max_request_size", CTLFLAG_RD, &xb->max_request_size, 0, "maximum size in bytes of a request (negotiated)"); SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, "ring_pages", CTLFLAG_RD, &xb->ring_pages, 0, "communication channel pages (negotiated)"); } /* * Setup supplies the backend dir, virtual device. We place an event * channel and shared frame entries. We watch backend to wait if it's * ok. */ static int blkfront_attach(device_t dev) { struct xb_softc *sc; const char *name; uint32_t vdevice; int error; int i; int unit; /* FIXME: Use dynamic device id if this is not set. */ error = xs_scanf(XST_NIL, xenbus_get_node(dev), "virtual-device", NULL, "%" PRIu32, &vdevice); if (error) { xenbus_dev_fatal(dev, error, "reading virtual-device"); device_printf(dev, "Couldn't determine virtual device.\n"); return (error); } blkfront_vdevice_to_unit(vdevice, &unit, &name); if (!strcmp(name, "xbd")) device_set_unit(dev, unit); sc = device_get_softc(dev); mtx_init(&sc->xb_io_lock, "blkfront i/o lock", NULL, MTX_DEF); xb_initq_free(sc); xb_initq_busy(sc); xb_initq_ready(sc); xb_initq_complete(sc); xb_initq_bio(sc); for (i = 0; i < XBF_MAX_RING_PAGES; i++) sc->ring_ref[i] = GRANT_INVALID_REF; sc->xb_dev = dev; sc->vdevice = vdevice; sc->connected = BLKIF_STATE_DISCONNECTED; xb_setup_sysctl(sc); /* Wait for backend device to publish its protocol capabilities. */ xenbus_set_state(dev, XenbusStateInitialising); return (0); } static int blkfront_suspend(device_t dev) { struct xb_softc *sc = device_get_softc(dev); int retval; int saved_state; /* Prevent new requests being issued until we fix things up. */ mtx_lock(&sc->xb_io_lock); saved_state = sc->connected; sc->connected = BLKIF_STATE_SUSPENDED; /* Wait for outstanding I/O to drain. */ retval = 0; while (TAILQ_EMPTY(&sc->cm_busy) == 0) { if (msleep(&sc->cm_busy, &sc->xb_io_lock, PRIBIO, "blkf_susp", 30 * hz) == EWOULDBLOCK) { retval = EBUSY; break; } } mtx_unlock(&sc->xb_io_lock); if (retval != 0) sc->connected = saved_state; return (retval); } static int blkfront_resume(device_t dev) { struct xb_softc *sc = device_get_softc(dev); DPRINTK("blkfront_resume: %s\n", xenbus_get_node(dev)); blkif_free(sc); blkfront_initialize(sc); return (0); } static void blkfront_initialize(struct xb_softc *sc) { const char *otherend_path; const char *node_path; uint32_t max_ring_page_order; int error; int i; if (xenbus_get_state(sc->xb_dev) != XenbusStateInitialising) { /* Initialization has already been performed. */ return; } /* * Protocol defaults valid even if negotiation for a * setting fails. */ max_ring_page_order = 0; sc->ring_pages = 1; sc->max_request_segments = BLKIF_MAX_SEGMENTS_PER_HEADER_BLOCK; sc->max_request_size = XBF_SEGS_TO_SIZE(sc->max_request_segments); sc->max_request_blocks = BLKIF_SEGS_TO_BLOCKS(sc->max_request_segments); /* * Protocol negotiation. * * \note xs_gather() returns on the first encountered error, so * we must use independant calls in order to guarantee * we don't miss information in a sparsly populated back-end * tree. * * \note xs_scanf() does not update variables for unmatched * fields. */ otherend_path = xenbus_get_otherend_path(sc->xb_dev); node_path = xenbus_get_node(sc->xb_dev); /* Support both backend schemes for relaying ring page limits. */ (void)xs_scanf(XST_NIL, otherend_path, "max-ring-page-order", NULL, "%" PRIu32, &max_ring_page_order); sc->ring_pages = 1 << max_ring_page_order; (void)xs_scanf(XST_NIL, otherend_path, "max-ring-pages", NULL, "%" PRIu32, &sc->ring_pages); if (sc->ring_pages < 1) sc->ring_pages = 1; sc->max_requests = BLKIF_MAX_RING_REQUESTS(sc->ring_pages * PAGE_SIZE); (void)xs_scanf(XST_NIL, otherend_path, "max-requests", NULL, "%" PRIu32, &sc->max_requests); (void)xs_scanf(XST_NIL, otherend_path, "max-request-segments", NULL, "%" PRIu32, &sc->max_request_segments); (void)xs_scanf(XST_NIL, otherend_path, "max-request-size", NULL, "%" PRIu32, &sc->max_request_size); if (sc->ring_pages > XBF_MAX_RING_PAGES) { device_printf(sc->xb_dev, "Back-end specified ring-pages of " "%u limited to front-end limit of %zu.\n", sc->ring_pages, XBF_MAX_RING_PAGES); sc->ring_pages = XBF_MAX_RING_PAGES; } if (powerof2(sc->ring_pages) == 0) { uint32_t new_page_limit; new_page_limit = 0x01 << (fls(sc->ring_pages) - 1); device_printf(sc->xb_dev, "Back-end specified ring-pages of " "%u is not a power of 2. Limited to %u.\n", sc->ring_pages, new_page_limit); sc->ring_pages = new_page_limit; } if (sc->max_requests > XBF_MAX_REQUESTS) { device_printf(sc->xb_dev, "Back-end specified max_requests of " "%u limited to front-end limit of %u.\n", sc->max_requests, XBF_MAX_REQUESTS); sc->max_requests = XBF_MAX_REQUESTS; } if (sc->max_request_segments > XBF_MAX_SEGMENTS_PER_REQUEST) { device_printf(sc->xb_dev, "Back-end specified " "max_request_segments of %u limited to " "front-end limit of %u.\n", sc->max_request_segments, XBF_MAX_SEGMENTS_PER_REQUEST); sc->max_request_segments = XBF_MAX_SEGMENTS_PER_REQUEST; } if (sc->max_request_size > XBF_MAX_REQUEST_SIZE) { device_printf(sc->xb_dev, "Back-end specified " "max_request_size of %u limited to front-end " "limit of %u.\n", sc->max_request_size, XBF_MAX_REQUEST_SIZE); sc->max_request_size = XBF_MAX_REQUEST_SIZE; } if (sc->max_request_size > XBF_SEGS_TO_SIZE(sc->max_request_segments)) { device_printf(sc->xb_dev, "Back-end specified " "max_request_size of %u limited to front-end " "limit of %u. (Too few segments.)\n", sc->max_request_size, XBF_SEGS_TO_SIZE(sc->max_request_segments)); sc->max_request_size = XBF_SEGS_TO_SIZE(sc->max_request_segments); } sc->max_request_blocks = BLKIF_SEGS_TO_BLOCKS(sc->max_request_segments); /* Allocate datastructures based on negotiated values. */ error = bus_dma_tag_create(bus_get_dma_tag(sc->xb_dev), /* parent */ 512, PAGE_SIZE, /* algnmnt, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ sc->max_request_size, sc->max_request_segments, PAGE_SIZE, /* maxsegsize */ BUS_DMA_ALLOCNOW, /* flags */ busdma_lock_mutex, /* lockfunc */ &sc->xb_io_lock, /* lockarg */ &sc->xb_io_dmat); if (error != 0) { xenbus_dev_fatal(sc->xb_dev, error, "Cannot allocate parent DMA tag\n"); return; } /* Per-transaction data allocation. */ sc->shadow = malloc(sizeof(*sc->shadow) * sc->max_requests, M_XENBLOCKFRONT, M_NOWAIT|M_ZERO); if (sc->shadow == NULL) { bus_dma_tag_destroy(sc->xb_io_dmat); xenbus_dev_fatal(sc->xb_dev, error, "Cannot allocate request structures\n"); return; } for (i = 0; i < sc->max_requests; i++) { struct xb_command *cm; cm = &sc->shadow[i]; cm->sg_refs = malloc(sizeof(grant_ref_t) * sc->max_request_segments, M_XENBLOCKFRONT, M_NOWAIT); if (cm->sg_refs == NULL) break; cm->id = i; cm->cm_sc = sc; if (bus_dmamap_create(sc->xb_io_dmat, 0, &cm->map) != 0) break; xb_free_command(cm); } if (setup_blkring(sc) != 0) return; /* Support both backend schemes for relaying ring page limits. */ if (sc->ring_pages > 1) { error = xs_printf(XST_NIL, node_path, "num-ring-pages","%u", sc->ring_pages); if (error) { xenbus_dev_fatal(sc->xb_dev, error, "writing %s/num-ring-pages", node_path); return; } error = xs_printf(XST_NIL, node_path, "ring-page-order", "%u", fls(sc->ring_pages) - 1); if (error) { xenbus_dev_fatal(sc->xb_dev, error, "writing %s/ring-page-order", node_path); return; } } error = xs_printf(XST_NIL, node_path, "max-requests","%u", sc->max_requests); if (error) { xenbus_dev_fatal(sc->xb_dev, error, "writing %s/max-requests", node_path); return; } error = xs_printf(XST_NIL, node_path, "max-request-segments","%u", sc->max_request_segments); if (error) { xenbus_dev_fatal(sc->xb_dev, error, "writing %s/max-request-segments", node_path); return; } error = xs_printf(XST_NIL, node_path, "max-request-size","%u", sc->max_request_size); if (error) { xenbus_dev_fatal(sc->xb_dev, error, "writing %s/max-request-size", node_path); return; } error = xs_printf(XST_NIL, node_path, "event-channel", "%u", irq_to_evtchn_port(sc->irq)); if (error) { xenbus_dev_fatal(sc->xb_dev, error, "writing %s/event-channel", node_path); return; } error = xs_printf(XST_NIL, node_path, "protocol", "%s", XEN_IO_PROTO_ABI_NATIVE); if (error) { xenbus_dev_fatal(sc->xb_dev, error, "writing %s/protocol", node_path); return; } xenbus_set_state(sc->xb_dev, XenbusStateInitialised); } static int setup_blkring(struct xb_softc *sc) { blkif_sring_t *sring; uintptr_t sring_page_addr; int error; int i; sring = malloc(sc->ring_pages * PAGE_SIZE, M_XENBLOCKFRONT, M_NOWAIT|M_ZERO); if (sring == NULL) { xenbus_dev_fatal(sc->xb_dev, ENOMEM, "allocating shared ring"); return (ENOMEM); } SHARED_RING_INIT(sring); FRONT_RING_INIT(&sc->ring, sring, sc->ring_pages * PAGE_SIZE); for (i = 0, sring_page_addr = (uintptr_t)sring; i < sc->ring_pages; i++, sring_page_addr += PAGE_SIZE) { error = xenbus_grant_ring(sc->xb_dev, (vtomach(sring_page_addr) >> PAGE_SHIFT), &sc->ring_ref[i]); if (error) { xenbus_dev_fatal(sc->xb_dev, error, "granting ring_ref(%d)", i); return (error); } } if (sc->ring_pages == 1) { error = xs_printf(XST_NIL, xenbus_get_node(sc->xb_dev), "ring-ref", "%u", sc->ring_ref[0]); if (error) { xenbus_dev_fatal(sc->xb_dev, error, "writing %s/ring-ref", xenbus_get_node(sc->xb_dev)); return (error); } } else { for (i = 0; i < sc->ring_pages; i++) { char ring_ref_name[]= "ring_refXX"; snprintf(ring_ref_name, sizeof(ring_ref_name), "ring-ref%u", i); error = xs_printf(XST_NIL, xenbus_get_node(sc->xb_dev), ring_ref_name, "%u", sc->ring_ref[i]); if (error) { xenbus_dev_fatal(sc->xb_dev, error, "writing %s/%s", xenbus_get_node(sc->xb_dev), ring_ref_name); return (error); } } } error = bind_listening_port_to_irqhandler( xenbus_get_otherend_id(sc->xb_dev), "xbd", (driver_intr_t *)blkif_int, sc, INTR_TYPE_BIO | INTR_MPSAFE, &sc->irq); if (error) { xenbus_dev_fatal(sc->xb_dev, error, "bind_evtchn_to_irqhandler failed"); return (error); } return (0); } /** * Callback received when the backend's state changes. */ static void blkfront_backend_changed(device_t dev, XenbusState backend_state) { struct xb_softc *sc = device_get_softc(dev); DPRINTK("backend_state=%d\n", backend_state); switch (backend_state) { case XenbusStateUnknown: case XenbusStateInitialising: case XenbusStateReconfigured: case XenbusStateReconfiguring: case XenbusStateClosed: break; case XenbusStateInitWait: case XenbusStateInitialised: blkfront_initialize(sc); break; case XenbusStateConnected: blkfront_initialize(sc); blkfront_connect(sc); break; case XenbusStateClosing: if (sc->users > 0) xenbus_dev_error(dev, -EBUSY, "Device in use; refusing to close"); else blkfront_closing(dev); break; } } /* ** Invoked when the backend is finally 'ready' (and has published ** the details about the physical device - #sectors, size, etc). */ static void blkfront_connect(struct xb_softc *sc) { device_t dev = sc->xb_dev; unsigned long sectors, sector_size; unsigned int binfo; int err, feature_barrier; if( (sc->connected == BLKIF_STATE_CONNECTED) || (sc->connected == BLKIF_STATE_SUSPENDED) ) return; DPRINTK("blkfront.c:connect:%s.\n", xenbus_get_otherend_path(dev)); err = xs_gather(XST_NIL, xenbus_get_otherend_path(dev), "sectors", "%lu", §ors, "info", "%u", &binfo, "sector-size", "%lu", §or_size, NULL); if (err) { xenbus_dev_fatal(dev, err, "reading backend fields at %s", xenbus_get_otherend_path(dev)); return; } err = xs_gather(XST_NIL, xenbus_get_otherend_path(dev), "feature-barrier", "%lu", &feature_barrier, NULL); if (!err || feature_barrier) sc->xb_flags |= XB_BARRIER; if (sc->xb_disk == NULL) { device_printf(dev, "%juMB <%s> at %s", (uintmax_t) sectors / (1048576 / sector_size), device_get_desc(dev), xenbus_get_node(dev)); bus_print_child_footer(device_get_parent(dev), dev); xlvbd_add(sc, sectors, sc->vdevice, binfo, sector_size); } (void)xenbus_set_state(dev, XenbusStateConnected); /* Kick pending requests. */ mtx_lock(&sc->xb_io_lock); sc->connected = BLKIF_STATE_CONNECTED; xb_startio(sc); sc->xb_flags |= XB_READY; mtx_unlock(&sc->xb_io_lock); } /** * Handle the change of state of the backend to Closing. We must delete our * device-layer structures now, to ensure that writes are flushed through to * the backend. Once this is done, we can switch to Closed in * acknowledgement. */ static void blkfront_closing(device_t dev) { struct xb_softc *sc = device_get_softc(dev); xenbus_set_state(dev, XenbusStateClosing); DPRINTK("blkfront_closing: %s removed\n", xenbus_get_node(dev)); if (sc->xb_disk != NULL) { disk_destroy(sc->xb_disk); sc->xb_disk = NULL; } xenbus_set_state(dev, XenbusStateClosed); } static int blkfront_detach(device_t dev) { struct xb_softc *sc = device_get_softc(dev); DPRINTK("blkfront_remove: %s removed\n", xenbus_get_node(dev)); blkif_free(sc); mtx_destroy(&sc->xb_io_lock); return 0; } static inline void flush_requests(struct xb_softc *sc) { int notify; RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&sc->ring, notify); if (notify) notify_remote_via_irq(sc->irq); } static void blkif_restart_queue_callback(void *arg) { struct xb_softc *sc = arg; mtx_lock(&sc->xb_io_lock); xb_startio(sc); mtx_unlock(&sc->xb_io_lock); } static int blkif_open(struct disk *dp) { struct xb_softc *sc = (struct xb_softc *)dp->d_drv1; if (sc == NULL) { printf("xb%d: not found", sc->xb_unit); return (ENXIO); } sc->xb_flags |= XB_OPEN; sc->users++; return (0); } static int blkif_close(struct disk *dp) { struct xb_softc *sc = (struct xb_softc *)dp->d_drv1; if (sc == NULL) return (ENXIO); sc->xb_flags &= ~XB_OPEN; if (--(sc->users) == 0) { /* * Check whether we have been instructed to close. We will * have ignored this request initially, as the device was * still mounted. */ if (xenbus_get_otherend_state(sc->xb_dev) == XenbusStateClosing) blkfront_closing(sc->xb_dev); } return (0); } static int blkif_ioctl(struct disk *dp, u_long cmd, void *addr, int flag, struct thread *td) { struct xb_softc *sc = (struct xb_softc *)dp->d_drv1; if (sc == NULL) return (ENXIO); return (ENOTTY); } static void xb_free_command(struct xb_command *cm) { KASSERT((cm->cm_flags & XB_ON_XBQ_MASK) == 0, ("Freeing command that is still on a queue\n")); cm->cm_flags = 0; cm->bp = NULL; cm->cm_complete = NULL; xb_enqueue_free(cm); } /* * blkif_queue_request * * request block io * * id: for guest use only. * operation: BLKIF_OP_{READ,WRITE,PROBE} * buffer: buffer to read/write into. this should be a * virtual address in the guest os. */ static struct xb_command * xb_bio_command(struct xb_softc *sc) { struct xb_command *cm; struct bio *bp; if (unlikely(sc->connected != BLKIF_STATE_CONNECTED)) return (NULL); bp = xb_dequeue_bio(sc); if (bp == NULL) return (NULL); if ((cm = xb_dequeue_free(sc)) == NULL) { xb_requeue_bio(sc, bp); return (NULL); } if (gnttab_alloc_grant_references(sc->max_request_segments, &cm->gref_head) != 0) { gnttab_request_free_callback(&sc->callback, blkif_restart_queue_callback, sc, sc->max_request_segments); xb_requeue_bio(sc, bp); xb_enqueue_free(cm); sc->xb_flags |= XB_FROZEN; return (NULL); } cm->bp = bp; cm->data = bp->bio_data; cm->datalen = bp->bio_bcount; cm->operation = (bp->bio_cmd == BIO_READ) ? BLKIF_OP_READ : BLKIF_OP_WRITE; cm->sector_number = (blkif_sector_t)bp->bio_pblkno; return (cm); } static int blkif_queue_request(struct xb_softc *sc, struct xb_command *cm) { int error; error = bus_dmamap_load(sc->xb_io_dmat, cm->map, cm->data, cm->datalen, blkif_queue_cb, cm, 0); if (error == EINPROGRESS) { printf("EINPROGRESS\n"); sc->xb_flags |= XB_FROZEN; cm->cm_flags |= XB_CMD_FROZEN; return (0); } return (error); } static void blkif_queue_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) { struct xb_softc *sc; struct xb_command *cm; blkif_request_t *ring_req; struct blkif_request_segment *sg; struct blkif_request_segment *last_block_sg; grant_ref_t *sg_ref; vm_paddr_t buffer_ma; uint64_t fsect, lsect; int ref; int op; int block_segs; cm = arg; sc = cm->cm_sc; //printf("%s: Start\n", __func__); if (error) { printf("error %d in blkif_queue_cb\n", error); cm->bp->bio_error = EIO; biodone(cm->bp); xb_free_command(cm); return; } /* Fill out a communications ring structure. */ ring_req = RING_GET_REQUEST(&sc->ring, sc->ring.req_prod_pvt); sc->ring.req_prod_pvt++; ring_req->id = cm->id; ring_req->operation = cm->operation; ring_req->sector_number = cm->sector_number; ring_req->handle = (blkif_vdev_t)(uintptr_t)sc->xb_disk; ring_req->nr_segments = nsegs; cm->nseg = nsegs; block_segs = MIN(nsegs, BLKIF_MAX_SEGMENTS_PER_HEADER_BLOCK); sg = ring_req->seg; last_block_sg = sg + block_segs; sg_ref = cm->sg_refs; while (1) { while (sg < last_block_sg) { buffer_ma = segs->ds_addr; fsect = (buffer_ma & PAGE_MASK) >> XBD_SECTOR_SHFT; lsect = fsect + (segs->ds_len >> XBD_SECTOR_SHFT) - 1; KASSERT(lsect <= 7, ("XEN disk driver data cannot " "cross a page boundary")); /* install a grant reference. */ ref = gnttab_claim_grant_reference(&cm->gref_head); /* * GNTTAB_LIST_END == 0xffffffff, but it is private * to gnttab.c. */ KASSERT(ref != ~0, ("grant_reference failed")); gnttab_grant_foreign_access_ref( ref, xenbus_get_otherend_id(sc->xb_dev), buffer_ma >> PAGE_SHIFT, ring_req->operation == BLKIF_OP_WRITE); *sg_ref = ref; *sg = (struct blkif_request_segment) { .gref = ref, .first_sect = fsect, .last_sect = lsect }; sg++; sg_ref++; segs++; nsegs--; } block_segs = MIN(nsegs, BLKIF_MAX_SEGMENTS_PER_SEGMENT_BLOCK); if (block_segs == 0) break; sg = BLKRING_GET_SEG_BLOCK(&sc->ring, sc->ring.req_prod_pvt); sc->ring.req_prod_pvt++; last_block_sg = sg + block_segs; } if (cm->operation == BLKIF_OP_READ) op = BUS_DMASYNC_PREREAD; else if (cm->operation == BLKIF_OP_WRITE) op = BUS_DMASYNC_PREWRITE; else op = 0; bus_dmamap_sync(sc->xb_io_dmat, cm->map, op); gnttab_free_grant_references(cm->gref_head); xb_enqueue_busy(cm); /* * This flag means that we're probably executing in the busdma swi * instead of in the startio context, so an explicit flush is needed. */ if (cm->cm_flags & XB_CMD_FROZEN) flush_requests(sc); //printf("%s: Done\n", __func__); return; } /* * Dequeue buffers and place them in the shared communication ring. * Return when no more requests can be accepted or all buffers have * been queued. * * Signal XEN once the ring has been filled out. */ static void xb_startio(struct xb_softc *sc) { struct xb_command *cm; int error, queued = 0; mtx_assert(&sc->xb_io_lock, MA_OWNED); if (sc->connected != BLKIF_STATE_CONNECTED) return; while (RING_FREE_REQUESTS(&sc->ring) >= sc->max_request_blocks) { if (sc->xb_flags & XB_FROZEN) break; cm = xb_dequeue_ready(sc); if (cm == NULL) cm = xb_bio_command(sc); if (cm == NULL) break; if ((error = blkif_queue_request(sc, cm)) != 0) { printf("blkif_queue_request returned %d\n", error); break; } queued++; } if (queued != 0) flush_requests(sc); } static void blkif_int(void *xsc) { struct xb_softc *sc = xsc; struct xb_command *cm; blkif_response_t *bret; RING_IDX i, rp; int op; mtx_lock(&sc->xb_io_lock); if (unlikely(sc->connected == BLKIF_STATE_DISCONNECTED)) { mtx_unlock(&sc->xb_io_lock); return; } again: rp = sc->ring.sring->rsp_prod; rmb(); /* Ensure we see queued responses up to 'rp'. */ for (i = sc->ring.rsp_cons; i != rp;) { bret = RING_GET_RESPONSE(&sc->ring, i); cm = &sc->shadow[bret->id]; xb_remove_busy(cm); i += blkif_completion(cm); if (cm->operation == BLKIF_OP_READ) op = BUS_DMASYNC_POSTREAD; else if (cm->operation == BLKIF_OP_WRITE) op = BUS_DMASYNC_POSTWRITE; else op = 0; bus_dmamap_sync(sc->xb_io_dmat, cm->map, op); bus_dmamap_unload(sc->xb_io_dmat, cm->map); /* * If commands are completing then resources are probably * being freed as well. It's a cheap assumption even when * wrong. */ sc->xb_flags &= ~XB_FROZEN; /* * Directly call the i/o complete routine to save an * an indirection in the common case. */ cm->status = bret->status; if (cm->bp) xb_bio_complete(sc, cm); else if (cm->cm_complete) (cm->cm_complete)(cm); else xb_free_command(cm); } sc->ring.rsp_cons = i; if (i != sc->ring.req_prod_pvt) { int more_to_do; RING_FINAL_CHECK_FOR_RESPONSES(&sc->ring, more_to_do); if (more_to_do) goto again; } else { sc->ring.sring->rsp_event = i + 1; } xb_startio(sc); if (unlikely(sc->connected == BLKIF_STATE_SUSPENDED)) wakeup(&sc->cm_busy); mtx_unlock(&sc->xb_io_lock); } static void blkif_free(struct xb_softc *sc) { uint8_t *sring_page_ptr; int i; /* Prevent new requests being issued until we fix things up. */ mtx_lock(&sc->xb_io_lock); sc->connected = BLKIF_STATE_DISCONNECTED; mtx_unlock(&sc->xb_io_lock); /* Free resources associated with old device channel. */ if (sc->ring.sring != NULL) { sring_page_ptr = (uint8_t *)sc->ring.sring; for (i = 0; i < sc->ring_pages; i++) { if (sc->ring_ref[i] != GRANT_INVALID_REF) { gnttab_end_foreign_access_ref(sc->ring_ref[i]); sc->ring_ref[i] = GRANT_INVALID_REF; } sring_page_ptr += PAGE_SIZE; } free(sc->ring.sring, M_XENBLOCKFRONT); sc->ring.sring = NULL; } if (sc->shadow) { for (i = 0; i < sc->max_requests; i++) { struct xb_command *cm; cm = &sc->shadow[i]; if (cm->sg_refs != NULL) { free(cm->sg_refs, M_XENBLOCKFRONT); cm->sg_refs = NULL; } bus_dmamap_destroy(sc->xb_io_dmat, cm->map); } free(sc->shadow, M_XENBLOCKFRONT); sc->shadow = NULL; bus_dma_tag_destroy(sc->xb_io_dmat); xb_initq_free(sc); xb_initq_ready(sc); xb_initq_complete(sc); } if (sc->irq) { unbind_from_irqhandler(sc->irq); sc->irq = 0; } } static int blkif_completion(struct xb_command *s) { //printf("%s: Req %p(%d)\n", __func__, s, s->nseg); gnttab_end_foreign_access_references(s->nseg, s->sg_refs); return (BLKIF_SEGS_TO_BLOCKS(s->nseg)); } /* ** Driver registration ** */ static device_method_t blkfront_methods[] = { /* Device interface */ DEVMETHOD(device_probe, blkfront_probe), DEVMETHOD(device_attach, blkfront_attach), DEVMETHOD(device_detach, blkfront_detach), DEVMETHOD(device_shutdown, bus_generic_shutdown), DEVMETHOD(device_suspend, blkfront_suspend), DEVMETHOD(device_resume, blkfront_resume), /* Xenbus interface */ DEVMETHOD(xenbus_otherend_changed, blkfront_backend_changed), { 0, 0 } }; static driver_t blkfront_driver = { "xbd", blkfront_methods, sizeof(struct xb_softc), }; devclass_t blkfront_devclass; DRIVER_MODULE(xbd, xenbusb_front, blkfront_driver, blkfront_devclass, 0, 0);