Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/s3/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/usie/@/amd64/compile/hs32/modules/usr/src/sys/modules/ipwfw/ipw_monitor/@/amd64/compile/hs32/modules/usr/src/sys/modules/khelp/h_ertt/@/ofed/drivers/infiniband/ulp/sdp/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/s3/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/usie/@/amd64/compile/hs32/modules/usr/src/sys/modules/ipwfw/ipw_monitor/@/amd64/compile/hs32/modules/usr/src/sys/modules/khelp/h_ertt/@/ofed/drivers/infiniband/ulp/sdp/sdp_main.c |
/*- * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995 * The Regents of the University of California. All rights reserved. * Copyright (c) 2004 The FreeBSD Foundation. All rights reserved. * Copyright (c) 2004-2008 Robert N. M. Watson. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * Excerpts taken from tcp_subr.c, tcp_usrreq.c, uipc_socket.c */ /* * * Copyright (c) 2010 Isilon Systems, Inc. * Copyright (c) 2010 iX Systems, Inc. * Copyright (c) 2010 Panasas, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include <sys/cdefs.h> __FBSDID("$FreeBSD$"); #include "sdp.h" #include <net/if.h> #include <net/route.h> #include <net/vnet.h> uma_zone_t sdp_zone; struct rwlock sdp_lock; LIST_HEAD(, sdp_sock) sdp_list; struct workqueue_struct *rx_comp_wq; RW_SYSINIT(sdplockinit, &sdp_lock, "SDP lock"); #define SDP_LIST_WLOCK() rw_wlock(&sdp_lock) #define SDP_LIST_RLOCK() rw_rlock(&sdp_lock) #define SDP_LIST_WUNLOCK() rw_wunlock(&sdp_lock) #define SDP_LIST_RUNLOCK() rw_runlock(&sdp_lock) #define SDP_LIST_WLOCK_ASSERT() rw_assert(&sdp_lock, RW_WLOCKED) #define SDP_LIST_RLOCK_ASSERT() rw_assert(&sdp_lock, RW_RLOCKED) #define SDP_LIST_LOCK_ASSERT() rw_assert(&sdp_lock, RW_LOCKED) MALLOC_DEFINE(M_SDP, "sdp", "Socket Direct Protocol"); static void sdp_stop_keepalive_timer(struct socket *so); /* * SDP protocol interface to socket abstraction. */ /* * sdp_sendspace and sdp_recvspace are the default send and receive window * sizes, respectively. */ u_long sdp_sendspace = 1024*32; u_long sdp_recvspace = 1024*64; static int sdp_count; /* * Disable async. CMA events for sockets which are being torn down. */ static void sdp_destroy_cma(struct sdp_sock *ssk) { if (ssk->id == NULL) return; rdma_destroy_id(ssk->id); ssk->id = NULL; } static int sdp_pcbbind(struct sdp_sock *ssk, struct sockaddr *nam, struct ucred *cred) { struct sockaddr_in *sin; struct sockaddr_in null; int error; SDP_WLOCK_ASSERT(ssk); if (ssk->lport != 0 || ssk->laddr != INADDR_ANY) return (EINVAL); /* rdma_bind_addr handles bind races. */ SDP_WUNLOCK(ssk); if (ssk->id == NULL) ssk->id = rdma_create_id(sdp_cma_handler, ssk, RDMA_PS_SDP); if (ssk->id == NULL) { SDP_WLOCK(ssk); return (ENOMEM); } if (nam == NULL) { null.sin_family = AF_INET; null.sin_len = sizeof(null); null.sin_addr.s_addr = INADDR_ANY; null.sin_port = 0; bzero(&null.sin_zero, sizeof(null.sin_zero)); nam = (struct sockaddr *)&null; } error = -rdma_bind_addr(ssk->id, nam); SDP_WLOCK(ssk); if (error == 0) { sin = (struct sockaddr_in *)&ssk->id->route.addr.src_addr; ssk->laddr = sin->sin_addr.s_addr; ssk->lport = sin->sin_port; } else sdp_destroy_cma(ssk); return (error); } static void sdp_pcbfree(struct sdp_sock *ssk) { KASSERT(ssk->socket == NULL, ("ssk %p socket still attached", ssk)); sdp_dbg(ssk->socket, "Freeing pcb"); SDP_WLOCK_ASSERT(ssk); ssk->flags |= SDP_DESTROY; SDP_WUNLOCK(ssk); SDP_LIST_WLOCK(); sdp_count--; LIST_REMOVE(ssk, list); SDP_LIST_WUNLOCK(); crfree(ssk->cred); sdp_destroy_cma(ssk); ssk->qp_active = 0; if (ssk->qp) { ib_destroy_qp(ssk->qp); ssk->qp = NULL; } sdp_tx_ring_destroy(ssk); sdp_rx_ring_destroy(ssk); rw_destroy(&ssk->rx_ring.destroyed_lock); uma_zfree(sdp_zone, ssk); rw_destroy(&ssk->lock); } /* * Common routines to return a socket address. */ static struct sockaddr * sdp_sockaddr(in_port_t port, struct in_addr *addr_p) { struct sockaddr_in *sin; sin = malloc(sizeof *sin, M_SONAME, M_WAITOK | M_ZERO); sin->sin_family = AF_INET; sin->sin_len = sizeof(*sin); sin->sin_addr = *addr_p; sin->sin_port = port; return (struct sockaddr *)sin; } static int sdp_getsockaddr(struct socket *so, struct sockaddr **nam) { struct sdp_sock *ssk; struct in_addr addr; in_port_t port; ssk = sdp_sk(so); SDP_RLOCK(ssk); port = ssk->lport; addr.s_addr = ssk->laddr; SDP_RUNLOCK(ssk); *nam = sdp_sockaddr(port, &addr); return 0; } static int sdp_getpeeraddr(struct socket *so, struct sockaddr **nam) { struct sdp_sock *ssk; struct in_addr addr; in_port_t port; ssk = sdp_sk(so); SDP_RLOCK(ssk); port = ssk->fport; addr.s_addr = ssk->faddr; SDP_RUNLOCK(ssk); *nam = sdp_sockaddr(port, &addr); return 0; } static void sdp_pcbnotifyall(struct in_addr faddr, int errno, struct sdp_sock *(*notify)(struct sdp_sock *, int)) { struct sdp_sock *ssk, *ssk_temp; SDP_LIST_WLOCK(); LIST_FOREACH_SAFE(ssk, &sdp_list, list, ssk_temp) { SDP_WLOCK(ssk); if (ssk->faddr != faddr.s_addr || ssk->socket == NULL) { SDP_WUNLOCK(ssk); continue; } if ((ssk->flags & SDP_DESTROY) == 0) if ((*notify)(ssk, errno)) SDP_WUNLOCK(ssk); } SDP_LIST_WUNLOCK(); } #if 0 static void sdp_apply_all(void (*func)(struct sdp_sock *, void *), void *arg) { struct sdp_sock *ssk; SDP_LIST_RLOCK(); LIST_FOREACH(ssk, &sdp_list, list) { SDP_WLOCK(ssk); func(ssk, arg); SDP_WUNLOCK(ssk); } SDP_LIST_RUNLOCK(); } #endif static void sdp_output_reset(struct sdp_sock *ssk) { struct rdma_cm_id *id; SDP_WLOCK_ASSERT(ssk); if (ssk->id) { id = ssk->id; ssk->qp_active = 0; SDP_WUNLOCK(ssk); rdma_disconnect(id); SDP_WLOCK(ssk); } ssk->state = TCPS_CLOSED; } /* * Attempt to close a SDP socket, marking it as dropped, and freeing * the socket if we hold the only reference. */ static struct sdp_sock * sdp_closed(struct sdp_sock *ssk) { struct socket *so; SDP_WLOCK_ASSERT(ssk); ssk->flags |= SDP_DROPPED; so = ssk->socket; soisdisconnected(so); if (ssk->flags & SDP_SOCKREF) { KASSERT(so->so_state & SS_PROTOREF, ("sdp_closed: !SS_PROTOREF")); ssk->flags &= ~SDP_SOCKREF; SDP_WUNLOCK(ssk); ACCEPT_LOCK(); SOCK_LOCK(so); so->so_state &= ~SS_PROTOREF; sofree(so); return (NULL); } return (ssk); } /* * Perform timer based shutdowns which can not operate in * callout context. */ static void sdp_shutdown_task(void *data, int pending) { struct sdp_sock *ssk; ssk = data; SDP_WLOCK(ssk); /* * I don't think this can race with another call to pcbfree() * because SDP_TIMEWAIT protects it. SDP_DESTROY may be redundant. */ if (ssk->flags & SDP_DESTROY) panic("sdp_shutdown_task: Racing with pcbfree for ssk %p", ssk); if (ssk->flags & SDP_DISCON) sdp_output_reset(ssk); /* We have to clear this so sdp_detach() will call pcbfree(). */ ssk->flags &= ~(SDP_TIMEWAIT | SDP_DREQWAIT); if ((ssk->flags & SDP_DROPPED) == 0 && sdp_closed(ssk) == NULL) return; if (ssk->socket == NULL) { sdp_pcbfree(ssk); return; } SDP_WUNLOCK(ssk); } /* * 2msl has expired, schedule the shutdown task. */ static void sdp_2msl_timeout(void *data) { struct sdp_sock *ssk; ssk = data; /* Callout canceled. */ if (!callout_active(&ssk->keep2msl)) goto out; callout_deactivate(&ssk->keep2msl); /* Should be impossible, defensive programming. */ if ((ssk->flags & SDP_TIMEWAIT) == 0) goto out; taskqueue_enqueue(taskqueue_thread, &ssk->shutdown_task); out: SDP_WUNLOCK(ssk); return; } /* * Schedule the 2msl wait timer. */ static void sdp_2msl_wait(struct sdp_sock *ssk) { SDP_WLOCK_ASSERT(ssk); ssk->flags |= SDP_TIMEWAIT; ssk->state = TCPS_TIME_WAIT; soisdisconnected(ssk->socket); callout_reset(&ssk->keep2msl, TCPTV_MSL, sdp_2msl_timeout, ssk); } /* * Timed out waiting for the final fin/ack from rdma_disconnect(). */ static void sdp_dreq_timeout(void *data) { struct sdp_sock *ssk; ssk = data; /* Callout canceled. */ if (!callout_active(&ssk->keep2msl)) goto out; /* Callout rescheduled, probably as a different timer. */ if (callout_pending(&ssk->keep2msl)) goto out; callout_deactivate(&ssk->keep2msl); if (ssk->state != TCPS_FIN_WAIT_1 && ssk->state != TCPS_LAST_ACK) goto out; if ((ssk->flags & SDP_DREQWAIT) == 0) goto out; ssk->flags &= ~SDP_DREQWAIT; ssk->flags |= SDP_DISCON; sdp_2msl_wait(ssk); ssk->qp_active = 0; out: SDP_WUNLOCK(ssk); } /* * Received the final fin/ack. Cancel the 2msl. */ void sdp_cancel_dreq_wait_timeout(struct sdp_sock *ssk) { sdp_dbg(ssk->socket, "cancelling dreq wait timeout\n"); ssk->flags &= ~SDP_DREQWAIT; sdp_2msl_wait(ssk); } static int sdp_init_sock(struct socket *sk) { struct sdp_sock *ssk = sdp_sk(sk); sdp_dbg(sk, "%s\n", __func__); callout_init_rw(&ssk->keep2msl, &ssk->lock, CALLOUT_RETURNUNLOCKED); TASK_INIT(&ssk->shutdown_task, 0, sdp_shutdown_task, ssk); #ifdef SDP_ZCOPY INIT_DELAYED_WORK(&ssk->srcavail_cancel_work, srcavail_cancel_timeout); ssk->zcopy_thresh = -1; /* use global sdp_zcopy_thresh */ ssk->tx_ring.rdma_inflight = NULL; #endif atomic_set(&ssk->mseq_ack, 0); sdp_rx_ring_init(ssk); ssk->tx_ring.buffer = NULL; return 0; } /* * Allocate an sdp_sock for the socket and reserve socket buffer space. */ static int sdp_attach(struct socket *so, int proto, struct thread *td) { struct sdp_sock *ssk; int error; ssk = sdp_sk(so); KASSERT(ssk == NULL, ("sdp_attach: ssk already set on so %p", so)); if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) { error = soreserve(so, sdp_sendspace, sdp_recvspace); if (error) return (error); } so->so_rcv.sb_flags |= SB_AUTOSIZE; so->so_snd.sb_flags |= SB_AUTOSIZE; ssk = uma_zalloc(sdp_zone, M_NOWAIT | M_ZERO); if (ssk == NULL) return (ENOBUFS); rw_init(&ssk->lock, "sdpsock"); ssk->socket = so; ssk->cred = crhold(so->so_cred); so->so_pcb = (caddr_t)ssk; sdp_init_sock(so); ssk->flags = 0; ssk->qp_active = 0; ssk->state = TCPS_CLOSED; SDP_LIST_WLOCK(); LIST_INSERT_HEAD(&sdp_list, ssk, list); sdp_count++; SDP_LIST_WUNLOCK(); if ((so->so_options & SO_LINGER) && so->so_linger == 0) so->so_linger = TCP_LINGERTIME; return (0); } /* * Detach SDP from the socket, potentially leaving it around for the * timewait to expire. */ static void sdp_detach(struct socket *so) { struct sdp_sock *ssk; ssk = sdp_sk(so); SDP_WLOCK(ssk); KASSERT(ssk->socket != NULL, ("sdp_detach: socket is NULL")); ssk->socket->so_pcb = NULL; ssk->socket = NULL; if (ssk->flags & (SDP_TIMEWAIT | SDP_DREQWAIT)) SDP_WUNLOCK(ssk); else if (ssk->flags & SDP_DROPPED || ssk->state < TCPS_SYN_SENT) sdp_pcbfree(ssk); else panic("sdp_detach: Unexpected state, ssk %p.\n", ssk); } /* * Allocate a local address for the socket. */ static int sdp_bind(struct socket *so, struct sockaddr *nam, struct thread *td) { int error = 0; struct sdp_sock *ssk; struct sockaddr_in *sin; sin = (struct sockaddr_in *)nam; if (nam->sa_len != sizeof (*sin)) return (EINVAL); if (sin->sin_family != AF_INET) return (EINVAL); if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) return (EAFNOSUPPORT); ssk = sdp_sk(so); SDP_WLOCK(ssk); if (ssk->flags & (SDP_TIMEWAIT | SDP_DROPPED)) { error = EINVAL; goto out; } error = sdp_pcbbind(ssk, nam, td->td_ucred); out: SDP_WUNLOCK(ssk); return (error); } /* * Prepare to accept connections. */ static int sdp_listen(struct socket *so, int backlog, struct thread *td) { int error = 0; struct sdp_sock *ssk; ssk = sdp_sk(so); SDP_WLOCK(ssk); if (ssk->flags & (SDP_TIMEWAIT | SDP_DROPPED)) { error = EINVAL; goto out; } if (error == 0 && ssk->lport == 0) error = sdp_pcbbind(ssk, (struct sockaddr *)0, td->td_ucred); SOCK_LOCK(so); if (error == 0) error = solisten_proto_check(so); if (error == 0) { solisten_proto(so, backlog); ssk->state = TCPS_LISTEN; } SOCK_UNLOCK(so); out: SDP_WUNLOCK(ssk); if (error == 0) error = -rdma_listen(ssk->id, backlog); return (error); } /* * Initiate a SDP connection to nam. */ static int sdp_start_connect(struct sdp_sock *ssk, struct sockaddr *nam, struct thread *td) { struct sockaddr_in src; struct socket *so; int error; so = ssk->socket; SDP_WLOCK_ASSERT(ssk); if (ssk->lport == 0) { error = sdp_pcbbind(ssk, (struct sockaddr *)0, td->td_ucred); if (error) return error; } src.sin_family = AF_INET; src.sin_len = sizeof(src); bzero(&src.sin_zero, sizeof(src.sin_zero)); src.sin_port = ssk->lport; src.sin_addr.s_addr = ssk->laddr; soisconnecting(so); SDP_WUNLOCK(ssk); error = -rdma_resolve_addr(ssk->id, (struct sockaddr *)&src, nam, SDP_RESOLVE_TIMEOUT); SDP_WLOCK(ssk); if (error == 0) ssk->state = TCPS_SYN_SENT; return 0; } /* * Initiate SDP connection. */ static int sdp_connect(struct socket *so, struct sockaddr *nam, struct thread *td) { int error = 0; struct sdp_sock *ssk; struct sockaddr_in *sin; sin = (struct sockaddr_in *)nam; if (nam->sa_len != sizeof (*sin)) return (EINVAL); if (sin->sin_family != AF_INET) return (EINVAL); if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) return (EAFNOSUPPORT); if ((error = prison_remote_ip4(td->td_ucred, &sin->sin_addr)) != 0) return (error); ssk = sdp_sk(so); SDP_WLOCK(ssk); if (ssk->flags & (SDP_TIMEWAIT | SDP_DROPPED)) error = EINVAL; else error = sdp_start_connect(ssk, nam, td); SDP_WUNLOCK(ssk); return (error); } /* * Drop a SDP socket, reporting * the specified error. If connection is synchronized, * then send a RST to peer. */ static struct sdp_sock * sdp_drop(struct sdp_sock *ssk, int errno) { struct socket *so; SDP_WLOCK_ASSERT(ssk); so = ssk->socket; if (TCPS_HAVERCVDSYN(ssk->state)) sdp_output_reset(ssk); if (errno == ETIMEDOUT && ssk->softerror) errno = ssk->softerror; so->so_error = errno; return (sdp_closed(ssk)); } /* * User issued close, and wish to trail through shutdown states: * if never received SYN, just forget it. If got a SYN from peer, * but haven't sent FIN, then go to FIN_WAIT_1 state to send peer a FIN. * If already got a FIN from peer, then almost done; go to LAST_ACK * state. In all other cases, have already sent FIN to peer (e.g. * after PRU_SHUTDOWN), and just have to play tedious game waiting * for peer to send FIN or not respond to keep-alives, etc. * We can let the user exit from the close as soon as the FIN is acked. */ static void sdp_usrclosed(struct sdp_sock *ssk) { SDP_WLOCK_ASSERT(ssk); switch (ssk->state) { case TCPS_LISTEN: ssk->state = TCPS_CLOSED; SDP_WUNLOCK(ssk); sdp_destroy_cma(ssk); SDP_WLOCK(ssk); /* FALLTHROUGH */ case TCPS_CLOSED: ssk = sdp_closed(ssk); /* * sdp_closed() should never return NULL here as the socket is * still open. */ KASSERT(ssk != NULL, ("sdp_usrclosed: sdp_closed() returned NULL")); break; case TCPS_SYN_SENT: /* FALLTHROUGH */ case TCPS_SYN_RECEIVED: ssk->flags |= SDP_NEEDFIN; break; case TCPS_ESTABLISHED: ssk->flags |= SDP_NEEDFIN; ssk->state = TCPS_FIN_WAIT_1; break; case TCPS_CLOSE_WAIT: ssk->state = TCPS_LAST_ACK; break; } if (ssk->state >= TCPS_FIN_WAIT_2) { /* Prevent the connection hanging in FIN_WAIT_2 forever. */ if (ssk->state == TCPS_FIN_WAIT_2) sdp_2msl_wait(ssk); else soisdisconnected(ssk->socket); } } static void sdp_output_disconnect(struct sdp_sock *ssk) { SDP_WLOCK_ASSERT(ssk); callout_reset(&ssk->keep2msl, SDP_FIN_WAIT_TIMEOUT, sdp_dreq_timeout, ssk); ssk->flags |= SDP_NEEDFIN | SDP_DREQWAIT; sdp_post_sends(ssk, M_NOWAIT); } /* * Initiate or continue a disconnect. * If embryonic state, just send reset (once). * If in ``let data drain'' option and linger null, just drop. * Otherwise (hard), mark socket disconnecting and drop * current input data; switch states based on user close, and * send segment to peer (with FIN). */ static void sdp_start_disconnect(struct sdp_sock *ssk) { struct socket *so; int unread; so = ssk->socket; SDP_WLOCK_ASSERT(ssk); sdp_stop_keepalive_timer(so); /* * Neither sdp_closed() nor sdp_drop() should return NULL, as the * socket is still open. */ if (ssk->state < TCPS_ESTABLISHED) { ssk = sdp_closed(ssk); KASSERT(ssk != NULL, ("sdp_start_disconnect: sdp_close() returned NULL")); } else if ((so->so_options & SO_LINGER) && so->so_linger == 0) { ssk = sdp_drop(ssk, 0); KASSERT(ssk != NULL, ("sdp_start_disconnect: sdp_drop() returned NULL")); } else { soisdisconnecting(so); unread = so->so_rcv.sb_cc; sbflush(&so->so_rcv); sdp_usrclosed(ssk); if (!(ssk->flags & SDP_DROPPED)) { if (unread) sdp_output_reset(ssk); else sdp_output_disconnect(ssk); } } } /* * User initiated disconnect. */ static int sdp_disconnect(struct socket *so) { struct sdp_sock *ssk; int error = 0; ssk = sdp_sk(so); SDP_WLOCK(ssk); if (ssk->flags & (SDP_TIMEWAIT | SDP_DROPPED)) { error = ECONNRESET; goto out; } sdp_start_disconnect(ssk); out: SDP_WUNLOCK(ssk); return (error); } /* * Accept a connection. Essentially all the work is done at higher levels; * just return the address of the peer, storing through addr. * * * XXX This is broken XXX * * The rationale for acquiring the sdp lock here is somewhat complicated, * and is described in detail in the commit log entry for r175612. Acquiring * it delays an accept(2) racing with sonewconn(), which inserts the socket * before the address/port fields are initialized. A better fix would * prevent the socket from being placed in the listen queue until all fields * are fully initialized. */ static int sdp_accept(struct socket *so, struct sockaddr **nam) { struct sdp_sock *ssk = NULL; struct in_addr addr; in_port_t port; int error; if (so->so_state & SS_ISDISCONNECTED) return (ECONNABORTED); port = 0; addr.s_addr = 0; error = 0; ssk = sdp_sk(so); SDP_WLOCK(ssk); if (ssk->flags & (SDP_TIMEWAIT | SDP_DROPPED)) { error = ECONNABORTED; goto out; } port = ssk->fport; addr.s_addr = ssk->faddr; out: SDP_WUNLOCK(ssk); if (error == 0) *nam = sdp_sockaddr(port, &addr); return error; } /* * Mark the connection as being incapable of further output. */ static int sdp_shutdown(struct socket *so) { int error = 0; struct sdp_sock *ssk; ssk = sdp_sk(so); SDP_WLOCK(ssk); if (ssk->flags & (SDP_TIMEWAIT | SDP_DROPPED)) { error = ECONNRESET; goto out; } socantsendmore(so); sdp_usrclosed(ssk); if (!(ssk->flags & SDP_DROPPED)) sdp_output_disconnect(ssk); out: SDP_WUNLOCK(ssk); return (error); } static void sdp_append(struct sdp_sock *ssk, struct sockbuf *sb, struct mbuf *mb, int cnt) { struct mbuf *n; int ncnt; SOCKBUF_LOCK_ASSERT(sb); SBLASTRECORDCHK(sb) KASSERT(mb->m_flags & M_PKTHDR, ("sdp_append: %p Missing packet header.\n", mb)); n = sb->sb_lastrecord; /* * If the queue is empty just set all pointers and proceed. */ if (n == NULL) { sb->sb_lastrecord = sb->sb_mb = sb->sb_sndptr = mb; for (; mb; mb = mb->m_next) { sb->sb_mbtail = mb; sballoc(sb, mb); } return; } /* * Count the number of mbufs in the current tail. */ for (ncnt = 0; n->m_next; n = n->m_next) ncnt++; n = sb->sb_lastrecord; /* * If the two chains can fit in a single sdp packet and * the last record has not been sent yet (WRITABLE) coalesce * them. The lastrecord remains the same but we must strip the * packet header and then let sbcompress do the hard part. */ if (M_WRITABLE(n) && ncnt + cnt < SDP_MAX_SEND_SGES && n->m_pkthdr.len + mb->m_pkthdr.len - SDP_HEAD_SIZE < ssk->xmit_size_goal) { m_adj(mb, SDP_HEAD_SIZE); n->m_pkthdr.len += mb->m_pkthdr.len; n->m_flags |= mb->m_flags & (M_PUSH | M_URG); m_demote(mb, 1); sbcompress(sb, mb, sb->sb_mbtail); return; } /* * Not compressible, just append to the end and adjust counters. */ sb->sb_lastrecord->m_flags |= M_PUSH; sb->sb_lastrecord->m_nextpkt = mb; sb->sb_lastrecord = mb; if (sb->sb_sndptr == NULL) sb->sb_sndptr = mb; for (; mb; mb = mb->m_next) { sb->sb_mbtail = mb; sballoc(sb, mb); } } /* * Do a send by putting data in output queue and updating urgent * marker if URG set. Possibly send more data. Unlike the other * pru_*() routines, the mbuf chains are our responsibility. We * must either enqueue them or free them. The other pru_* routines * generally are caller-frees. * * This comes from sendfile, normal sends will come from sdp_sosend(). */ static int sdp_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, struct mbuf *control, struct thread *td) { struct sdp_sock *ssk; struct mbuf *n; int error; int cnt; error = 0; ssk = sdp_sk(so); KASSERT(m->m_flags & M_PKTHDR, ("sdp_send: %p no packet header", m)); M_PREPEND(m, SDP_HEAD_SIZE, M_WAIT); mtod(m, struct sdp_bsdh *)->mid = SDP_MID_DATA; for (n = m, cnt = 0; n->m_next; n = n->m_next) cnt++; if (cnt > SDP_MAX_SEND_SGES) { n = m_collapse(m, M_WAIT, SDP_MAX_SEND_SGES); if (n == NULL) { m_freem(m); return (EMSGSIZE); } m = n; for (cnt = 0; n->m_next; n = n->m_next) cnt++; } SDP_WLOCK(ssk); if (ssk->flags & (SDP_TIMEWAIT | SDP_DROPPED)) { if (control) m_freem(control); if (m) m_freem(m); error = ECONNRESET; goto out; } if (control) { /* SDP doesn't support control messages. */ if (control->m_len) { m_freem(control); if (m) m_freem(m); error = EINVAL; goto out; } m_freem(control); /* empty control, just free it */ } if (!(flags & PRUS_OOB)) { SOCKBUF_LOCK(&so->so_snd); sdp_append(ssk, &so->so_snd, m, cnt); SOCKBUF_UNLOCK(&so->so_snd); if (nam && ssk->state < TCPS_SYN_SENT) { /* * Do implied connect if not yet connected. */ error = sdp_start_connect(ssk, nam, td); if (error) goto out; } if (flags & PRUS_EOF) { /* * Close the send side of the connection after * the data is sent. */ socantsendmore(so); sdp_usrclosed(ssk); if (!(ssk->flags & SDP_DROPPED)) sdp_output_disconnect(ssk); } else if (!(ssk->flags & SDP_DROPPED) && !(flags & PRUS_MORETOCOME)) sdp_post_sends(ssk, M_NOWAIT); SDP_WUNLOCK(ssk); return (0); } else { SOCKBUF_LOCK(&so->so_snd); if (sbspace(&so->so_snd) < -512) { SOCKBUF_UNLOCK(&so->so_snd); m_freem(m); error = ENOBUFS; goto out; } /* * According to RFC961 (Assigned Protocols), * the urgent pointer points to the last octet * of urgent data. We continue, however, * to consider it to indicate the first octet * of data past the urgent section. * Otherwise, snd_up should be one lower. */ m->m_flags |= M_URG | M_PUSH; sdp_append(ssk, &so->so_snd, m, cnt); SOCKBUF_UNLOCK(&so->so_snd); if (nam && ssk->state < TCPS_SYN_SENT) { /* * Do implied connect if not yet connected. */ error = sdp_start_connect(ssk, nam, td); if (error) goto out; } sdp_post_sends(ssk, M_NOWAIT); SDP_WUNLOCK(ssk); return (0); } out: SDP_WUNLOCK(ssk); return (error); } #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? 0 : SBL_WAIT) /* * Send on a socket. If send must go all at once and message is larger than * send buffering, then hard error. Lock against other senders. If must go * all at once and not enough room now, then inform user that this would * block and do nothing. Otherwise, if nonblocking, send as much as * possible. The data to be sent is described by "uio" if nonzero, otherwise * by the mbuf chain "top" (which must be null if uio is not). Data provided * in mbuf chain must be small enough to send all at once. * * Returns nonzero on error, timeout or signal; callers must check for short * counts if EINTR/ERESTART are returned. Data and control buffers are freed * on return. */ static int sdp_sosend(struct socket *so, struct sockaddr *addr, struct uio *uio, struct mbuf *top, struct mbuf *control, int flags, struct thread *td) { struct sdp_sock *ssk; long space, resid; int atomic; int error; int copy; if (uio != NULL) resid = uio->uio_resid; else resid = top->m_pkthdr.len; atomic = top != NULL; if (control != NULL) { if (control->m_len) { m_freem(control); if (top) m_freem(top); return (EINVAL); } m_freem(control); control = NULL; } /* * In theory resid should be unsigned. However, space must be * signed, as it might be less than 0 if we over-committed, and we * must use a signed comparison of space and resid. On the other * hand, a negative resid causes us to loop sending 0-length * segments to the protocol. * * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM * type sockets since that's an error. */ if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) { error = EINVAL; goto out; } if (td != NULL) td->td_ru.ru_msgsnd++; ssk = sdp_sk(so); error = sblock(&so->so_snd, SBLOCKWAIT(flags)); if (error) goto out; restart: do { SOCKBUF_LOCK(&so->so_snd); if (so->so_snd.sb_state & SBS_CANTSENDMORE) { SOCKBUF_UNLOCK(&so->so_snd); error = EPIPE; goto release; } if (so->so_error) { error = so->so_error; so->so_error = 0; SOCKBUF_UNLOCK(&so->so_snd); goto release; } if ((so->so_state & SS_ISCONNECTED) == 0 && addr == NULL) { SOCKBUF_UNLOCK(&so->so_snd); error = ENOTCONN; goto release; } space = sbspace(&so->so_snd); if (flags & MSG_OOB) space += 1024; if (atomic && resid > ssk->xmit_size_goal - SDP_HEAD_SIZE) { SOCKBUF_UNLOCK(&so->so_snd); error = EMSGSIZE; goto release; } if (space < resid && (atomic || space < so->so_snd.sb_lowat)) { if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) { SOCKBUF_UNLOCK(&so->so_snd); error = EWOULDBLOCK; goto release; } error = sbwait(&so->so_snd); SOCKBUF_UNLOCK(&so->so_snd); if (error) goto release; goto restart; } SOCKBUF_UNLOCK(&so->so_snd); do { if (uio == NULL) { resid = 0; if (flags & MSG_EOR) top->m_flags |= M_EOR; } else { /* * Copy the data from userland into a mbuf * chain. If no data is to be copied in, * a single empty mbuf is returned. */ copy = min(space, ssk->xmit_size_goal - SDP_HEAD_SIZE); top = m_uiotombuf(uio, M_WAITOK, copy, 0, M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0)); if (top == NULL) { /* only possible error */ error = EFAULT; goto release; } space -= resid - uio->uio_resid; resid = uio->uio_resid; } /* * XXX all the SBS_CANTSENDMORE checks previously * done could be out of date after dropping the * socket lock. */ error = sdp_send(so, (flags & MSG_OOB) ? PRUS_OOB : /* * Set EOF on the last send if the user specified * MSG_EOF. */ ((flags & MSG_EOF) && (resid <= 0)) ? PRUS_EOF : /* If there is more to send set PRUS_MORETOCOME. */ (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, top, addr, NULL, td); top = NULL; if (error) goto release; } while (resid && space > 0); } while (resid); release: sbunlock(&so->so_snd); out: if (top != NULL) m_freem(top); return (error); } /* * The part of soreceive() that implements reading non-inline out-of-band * data from a socket. For more complete comments, see soreceive(), from * which this code originated. * * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is * unable to return an mbuf chain to the caller. */ static int soreceive_rcvoob(struct socket *so, struct uio *uio, int flags) { struct protosw *pr = so->so_proto; struct mbuf *m; int error; KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0")); m = m_get(M_WAIT, MT_DATA); error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK); if (error) goto bad; do { error = uiomove(mtod(m, void *), (int) min(uio->uio_resid, m->m_len), uio); m = m_free(m); } while (uio->uio_resid && error == 0 && m); bad: if (m != NULL) m_freem(m); return (error); } /* * Optimized version of soreceive() for stream (TCP) sockets. */ static int sdp_sorecv(struct socket *so, struct sockaddr **psa, struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp) { int len = 0, error = 0, flags, oresid; struct sockbuf *sb; struct mbuf *m, *n = NULL; struct sdp_sock *ssk; /* We only do stream sockets. */ if (so->so_type != SOCK_STREAM) return (EINVAL); if (psa != NULL) *psa = NULL; if (controlp != NULL) return (EINVAL); if (flagsp != NULL) flags = *flagsp &~ MSG_EOR; else flags = 0; if (flags & MSG_OOB) return (soreceive_rcvoob(so, uio, flags)); if (mp0 != NULL) *mp0 = NULL; sb = &so->so_rcv; ssk = sdp_sk(so); /* Prevent other readers from entering the socket. */ error = sblock(sb, SBLOCKWAIT(flags)); if (error) goto out; SOCKBUF_LOCK(sb); /* Easy one, no space to copyout anything. */ if (uio->uio_resid == 0) { error = EINVAL; goto out; } oresid = uio->uio_resid; /* We will never ever get anything unless we are connected. */ if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) { /* When disconnecting there may be still some data left. */ if (sb->sb_cc > 0) goto deliver; if (!(so->so_state & SS_ISDISCONNECTED)) error = ENOTCONN; goto out; } /* Socket buffer is empty and we shall not block. */ if (sb->sb_cc == 0 && ((sb->sb_flags & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) { error = EAGAIN; goto out; } restart: SOCKBUF_LOCK_ASSERT(&so->so_rcv); /* Abort if socket has reported problems. */ if (so->so_error) { if (sb->sb_cc > 0) goto deliver; if (oresid > uio->uio_resid) goto out; error = so->so_error; if (!(flags & MSG_PEEK)) so->so_error = 0; goto out; } /* Door is closed. Deliver what is left, if any. */ if (sb->sb_state & SBS_CANTRCVMORE) { if (sb->sb_cc > 0) goto deliver; else goto out; } /* Socket buffer got some data that we shall deliver now. */ if (sb->sb_cc > 0 && !(flags & MSG_WAITALL) && ((sb->sb_flags & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)) || sb->sb_cc >= sb->sb_lowat || sb->sb_cc >= uio->uio_resid || sb->sb_cc >= sb->sb_hiwat) ) { goto deliver; } /* On MSG_WAITALL we must wait until all data or error arrives. */ if ((flags & MSG_WAITALL) && (sb->sb_cc >= uio->uio_resid || sb->sb_cc >= sb->sb_lowat)) goto deliver; /* * Wait and block until (more) data comes in. * NB: Drops the sockbuf lock during wait. */ error = sbwait(sb); if (error) goto out; goto restart; deliver: SOCKBUF_LOCK_ASSERT(&so->so_rcv); KASSERT(sb->sb_cc > 0, ("%s: sockbuf empty", __func__)); KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__)); /* Statistics. */ if (uio->uio_td) uio->uio_td->td_ru.ru_msgrcv++; /* Fill uio until full or current end of socket buffer is reached. */ len = min(uio->uio_resid, sb->sb_cc); if (mp0 != NULL) { /* Dequeue as many mbufs as possible. */ if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) { for (*mp0 = m = sb->sb_mb; m != NULL && m->m_len <= len; m = m->m_next) { len -= m->m_len; uio->uio_resid -= m->m_len; sbfree(sb, m); n = m; } sb->sb_mb = m; if (sb->sb_mb == NULL) SB_EMPTY_FIXUP(sb); n->m_next = NULL; } /* Copy the remainder. */ if (len > 0) { KASSERT(sb->sb_mb != NULL, ("%s: len > 0 && sb->sb_mb empty", __func__)); m = m_copym(sb->sb_mb, 0, len, M_DONTWAIT); if (m == NULL) len = 0; /* Don't flush data from sockbuf. */ else uio->uio_resid -= m->m_len; if (*mp0 != NULL) n->m_next = m; else *mp0 = m; if (*mp0 == NULL) { error = ENOBUFS; goto out; } } } else { /* NB: Must unlock socket buffer as uiomove may sleep. */ SOCKBUF_UNLOCK(sb); error = m_mbuftouio(uio, sb->sb_mb, len); SOCKBUF_LOCK(sb); if (error) goto out; } SBLASTRECORDCHK(sb); SBLASTMBUFCHK(sb); /* * Remove the delivered data from the socket buffer unless we * were only peeking. */ if (!(flags & MSG_PEEK)) { if (len > 0) sbdrop_locked(sb, len); /* Notify protocol that we drained some data. */ SOCKBUF_UNLOCK(sb); SDP_WLOCK(ssk); sdp_do_posts(ssk); SDP_WUNLOCK(ssk); SOCKBUF_LOCK(sb); } /* * For MSG_WAITALL we may have to loop again and wait for * more data to come in. */ if ((flags & MSG_WAITALL) && uio->uio_resid > 0) goto restart; out: SOCKBUF_LOCK_ASSERT(sb); SBLASTRECORDCHK(sb); SBLASTMBUFCHK(sb); SOCKBUF_UNLOCK(sb); sbunlock(sb); return (error); } /* * Abort is used to teardown a connection typically while sitting in * the accept queue. */ void sdp_abort(struct socket *so) { struct sdp_sock *ssk; ssk = sdp_sk(so); SDP_WLOCK(ssk); /* * If we have not yet dropped, do it now. */ if (!(ssk->flags & SDP_TIMEWAIT) && !(ssk->flags & SDP_DROPPED)) sdp_drop(ssk, ECONNABORTED); KASSERT(ssk->flags & SDP_DROPPED, ("sdp_abort: %p not dropped 0x%X", ssk, ssk->flags)); SDP_WUNLOCK(ssk); } /* * Close a SDP socket and initiate a friendly disconnect. */ static void sdp_close(struct socket *so) { struct sdp_sock *ssk; ssk = sdp_sk(so); SDP_WLOCK(ssk); /* * If we have not yet dropped, do it now. */ if (!(ssk->flags & SDP_TIMEWAIT) && !(ssk->flags & SDP_DROPPED)) sdp_start_disconnect(ssk); /* * If we've still not dropped let the socket layer know we're * holding on to the socket and pcb for a while. */ if (!(ssk->flags & SDP_DROPPED)) { SOCK_LOCK(so); so->so_state |= SS_PROTOREF; SOCK_UNLOCK(so); ssk->flags |= SDP_SOCKREF; } SDP_WUNLOCK(ssk); } /* * User requests out-of-band data. */ static int sdp_rcvoob(struct socket *so, struct mbuf *m, int flags) { int error = 0; struct sdp_sock *ssk; ssk = sdp_sk(so); SDP_WLOCK(ssk); if (!rx_ring_trylock(&ssk->rx_ring)) { SDP_WUNLOCK(ssk); return (ECONNRESET); } if (ssk->flags & (SDP_TIMEWAIT | SDP_DROPPED)) { error = ECONNRESET; goto out; } if ((so->so_oobmark == 0 && (so->so_rcv.sb_state & SBS_RCVATMARK) == 0) || so->so_options & SO_OOBINLINE || ssk->oobflags & SDP_HADOOB) { error = EINVAL; goto out; } if ((ssk->oobflags & SDP_HAVEOOB) == 0) { error = EWOULDBLOCK; goto out; } m->m_len = 1; *mtod(m, caddr_t) = ssk->iobc; if ((flags & MSG_PEEK) == 0) ssk->oobflags ^= (SDP_HAVEOOB | SDP_HADOOB); out: rx_ring_unlock(&ssk->rx_ring); SDP_WUNLOCK(ssk); return (error); } void sdp_urg(struct sdp_sock *ssk, struct mbuf *mb) { struct mbuf *m; struct socket *so; so = ssk->socket; if (so == NULL) return; so->so_oobmark = so->so_rcv.sb_cc + mb->m_pkthdr.len - 1; sohasoutofband(so); ssk->oobflags &= ~(SDP_HAVEOOB | SDP_HADOOB); if (!(so->so_options & SO_OOBINLINE)) { for (m = mb; m->m_next != NULL; m = m->m_next); ssk->iobc = *(mtod(m, char *) + m->m_len - 1); ssk->oobflags |= SDP_HAVEOOB; m->m_len--; mb->m_pkthdr.len--; } } /* * Notify a sdp socket of an asynchronous error. * * Do not wake up user since there currently is no mechanism for * reporting soft errors (yet - a kqueue filter may be added). */ struct sdp_sock * sdp_notify(struct sdp_sock *ssk, int error) { SDP_WLOCK_ASSERT(ssk); if ((ssk->flags & SDP_TIMEWAIT) || (ssk->flags & SDP_DROPPED)) return (ssk); /* * Ignore some errors if we are hooked up. */ if (ssk->state == TCPS_ESTABLISHED && (error == EHOSTUNREACH || error == ENETUNREACH || error == EHOSTDOWN)) return (ssk); ssk->softerror = error; return sdp_drop(ssk, error); } static void sdp_ctlinput(int cmd, struct sockaddr *sa, void *vip) { struct in_addr faddr; faddr = ((struct sockaddr_in *)sa)->sin_addr; if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY) return; sdp_pcbnotifyall(faddr, inetctlerrmap[cmd], sdp_notify); } static int sdp_control(struct socket *so, u_long cmd, caddr_t data, struct ifnet *ifp, struct thread *td) { return (EOPNOTSUPP); } static void sdp_keepalive_timeout(void *data) { struct sdp_sock *ssk; ssk = data; /* Callout canceled. */ if (!callout_active(&ssk->keep2msl)) return; /* Callout rescheduled as a different kind of timer. */ if (callout_pending(&ssk->keep2msl)) goto out; callout_deactivate(&ssk->keep2msl); if (ssk->flags & SDP_DROPPED || (ssk->socket->so_options & SO_KEEPALIVE) == 0) goto out; sdp_post_keepalive(ssk); callout_reset(&ssk->keep2msl, SDP_KEEPALIVE_TIME, sdp_keepalive_timeout, ssk); out: SDP_WUNLOCK(ssk); } void sdp_start_keepalive_timer(struct socket *so) { struct sdp_sock *ssk; ssk = sdp_sk(so); if (!callout_pending(&ssk->keep2msl)) callout_reset(&ssk->keep2msl, SDP_KEEPALIVE_TIME, sdp_keepalive_timeout, ssk); } static void sdp_stop_keepalive_timer(struct socket *so) { struct sdp_sock *ssk; ssk = sdp_sk(so); callout_stop(&ssk->keep2msl); } /* * sdp_ctloutput() must drop the inpcb lock before performing copyin on * socket option arguments. When it re-acquires the lock after the copy, it * has to revalidate that the connection is still valid for the socket * option. */ #define SDP_WLOCK_RECHECK(inp) do { \ SDP_WLOCK(ssk); \ if (ssk->flags & (SDP_TIMEWAIT | SDP_DROPPED)) { \ SDP_WUNLOCK(ssk); \ return (ECONNRESET); \ } \ } while(0) static int sdp_ctloutput(struct socket *so, struct sockopt *sopt) { int error, opt, optval; struct sdp_sock *ssk; error = 0; ssk = sdp_sk(so); if (sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_KEEPALIVE) { SDP_WLOCK(ssk); if (so->so_options & SO_KEEPALIVE) sdp_start_keepalive_timer(so); else sdp_stop_keepalive_timer(so); SDP_WUNLOCK(ssk); } if (sopt->sopt_level != IPPROTO_TCP) return (error); SDP_WLOCK(ssk); if (ssk->flags & (SDP_TIMEWAIT | SDP_DROPPED)) { SDP_WUNLOCK(ssk); return (ECONNRESET); } switch (sopt->sopt_dir) { case SOPT_SET: switch (sopt->sopt_name) { case TCP_NODELAY: SDP_WUNLOCK(ssk); error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) return (error); SDP_WLOCK_RECHECK(ssk); opt = SDP_NODELAY; if (optval) ssk->flags |= opt; else ssk->flags &= ~opt; sdp_do_posts(ssk); SDP_WUNLOCK(ssk); break; default: SDP_WUNLOCK(ssk); error = ENOPROTOOPT; break; } break; case SOPT_GET: switch (sopt->sopt_name) { case TCP_NODELAY: optval = ssk->flags & SDP_NODELAY; SDP_WUNLOCK(ssk); error = sooptcopyout(sopt, &optval, sizeof optval); break; default: SDP_WUNLOCK(ssk); error = ENOPROTOOPT; break; } break; } return (error); } #undef SDP_WLOCK_RECHECK int sdp_mod_count = 0; int sdp_mod_usec = 0; void sdp_set_default_moderation(struct sdp_sock *ssk) { if (sdp_mod_count <= 0 || sdp_mod_usec <= 0) return; ib_modify_cq(ssk->rx_ring.cq, sdp_mod_count, sdp_mod_usec); } static void sdp_dev_add(struct ib_device *device) { struct ib_fmr_pool_param param; struct sdp_device *sdp_dev; sdp_dev = malloc(sizeof(*sdp_dev), M_SDP, M_WAITOK | M_ZERO); sdp_dev->pd = ib_alloc_pd(device); if (IS_ERR(sdp_dev->pd)) goto out_pd; sdp_dev->mr = ib_get_dma_mr(sdp_dev->pd, IB_ACCESS_LOCAL_WRITE); if (IS_ERR(sdp_dev->mr)) goto out_mr; memset(¶m, 0, sizeof param); param.max_pages_per_fmr = SDP_FMR_SIZE; param.page_shift = PAGE_SHIFT; param.access = (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ); param.pool_size = SDP_FMR_POOL_SIZE; param.dirty_watermark = SDP_FMR_DIRTY_SIZE; param.cache = 1; sdp_dev->fmr_pool = ib_create_fmr_pool(sdp_dev->pd, ¶m); if (IS_ERR(sdp_dev->fmr_pool)) goto out_fmr; ib_set_client_data(device, &sdp_client, sdp_dev); return; out_fmr: ib_dereg_mr(sdp_dev->mr); out_mr: ib_dealloc_pd(sdp_dev->pd); out_pd: free(sdp_dev, M_SDP); } static void sdp_dev_rem(struct ib_device *device) { struct sdp_device *sdp_dev; struct sdp_sock *ssk; SDP_LIST_WLOCK(); LIST_FOREACH(ssk, &sdp_list, list) { if (ssk->ib_device != device) continue; SDP_WLOCK(ssk); if ((ssk->flags & SDP_DESTROY) == 0) ssk = sdp_notify(ssk, ECONNRESET); if (ssk) SDP_WUNLOCK(ssk); } SDP_LIST_WUNLOCK(); /* * XXX Do I need to wait between these two? */ sdp_dev = ib_get_client_data(device, &sdp_client); if (!sdp_dev) return; ib_flush_fmr_pool(sdp_dev->fmr_pool); ib_destroy_fmr_pool(sdp_dev->fmr_pool); ib_dereg_mr(sdp_dev->mr); ib_dealloc_pd(sdp_dev->pd); free(sdp_dev, M_SDP); } struct ib_client sdp_client = { .name = "sdp", .add = sdp_dev_add, .remove = sdp_dev_rem }; static int sdp_pcblist(SYSCTL_HANDLER_ARGS) { int error, n, i; struct sdp_sock *ssk; struct xinpgen xig; /* * The process of preparing the TCB list is too time-consuming and * resource-intensive to repeat twice on every request. */ if (req->oldptr == NULL) { n = sdp_count; n += imax(n / 8, 10); req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xtcpcb); return (0); } if (req->newptr != NULL) return (EPERM); /* * OK, now we're committed to doing something. */ SDP_LIST_RLOCK(); n = sdp_count; SDP_LIST_RUNLOCK(); error = sysctl_wire_old_buffer(req, 2 * (sizeof xig) + n * sizeof(struct xtcpcb)); if (error != 0) return (error); xig.xig_len = sizeof xig; xig.xig_count = n; xig.xig_gen = 0; xig.xig_sogen = so_gencnt; error = SYSCTL_OUT(req, &xig, sizeof xig); if (error) return (error); SDP_LIST_RLOCK(); for (ssk = LIST_FIRST(&sdp_list), i = 0; ssk != NULL && i < n; ssk = LIST_NEXT(ssk, list)) { struct xtcpcb xt; SDP_RLOCK(ssk); if (ssk->flags & SDP_TIMEWAIT) { if (ssk->cred != NULL) error = cr_cansee(req->td->td_ucred, ssk->cred); else error = EINVAL; /* Skip this inp. */ } else if (ssk->socket) error = cr_canseesocket(req->td->td_ucred, ssk->socket); else error = EINVAL; if (error) { error = 0; goto next; } bzero(&xt, sizeof(xt)); xt.xt_len = sizeof xt; xt.xt_inp.inp_gencnt = 0; xt.xt_inp.inp_vflag = INP_IPV4; memcpy(&xt.xt_inp.inp_laddr, &ssk->laddr, sizeof(ssk->laddr)); xt.xt_inp.inp_lport = ssk->lport; memcpy(&xt.xt_inp.inp_faddr, &ssk->faddr, sizeof(ssk->faddr)); xt.xt_inp.inp_fport = ssk->fport; xt.xt_tp.t_state = ssk->state; if (ssk->socket != NULL) sotoxsocket(ssk->socket, &xt.xt_socket); else bzero(&xt.xt_socket, sizeof xt.xt_socket); xt.xt_socket.xso_protocol = IPPROTO_TCP; SDP_RUNLOCK(ssk); error = SYSCTL_OUT(req, &xt, sizeof xt); if (error) break; i++; continue; next: SDP_RUNLOCK(ssk); } if (!error) { /* * Give the user an updated idea of our state. * If the generation differs from what we told * her before, she knows that something happened * while we were processing this request, and it * might be necessary to retry. */ xig.xig_gen = 0; xig.xig_sogen = so_gencnt; xig.xig_count = sdp_count; error = SYSCTL_OUT(req, &xig, sizeof xig); } SDP_LIST_RUNLOCK(); return (error); } SYSCTL_NODE(_net_inet, -1, sdp, CTLFLAG_RW, 0, "SDP"); SYSCTL_PROC(_net_inet_sdp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD | CTLTYPE_STRUCT, 0, 0, sdp_pcblist, "S,xtcpcb", "List of active SDP connections"); static void sdp_zone_change(void *tag) { uma_zone_set_max(sdp_zone, maxsockets); } static void sdp_init(void) { LIST_INIT(&sdp_list); sdp_zone = uma_zcreate("sdp_sock", sizeof(struct sdp_sock), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); uma_zone_set_max(sdp_zone, maxsockets); EVENTHANDLER_REGISTER(maxsockets_change, sdp_zone_change, NULL, EVENTHANDLER_PRI_ANY); rx_comp_wq = create_singlethread_workqueue("rx_comp_wq"); ib_register_client(&sdp_client); } extern struct domain sdpdomain; struct pr_usrreqs sdp_usrreqs = { .pru_abort = sdp_abort, .pru_accept = sdp_accept, .pru_attach = sdp_attach, .pru_bind = sdp_bind, .pru_connect = sdp_connect, .pru_control = sdp_control, .pru_detach = sdp_detach, .pru_disconnect = sdp_disconnect, .pru_listen = sdp_listen, .pru_peeraddr = sdp_getpeeraddr, .pru_rcvoob = sdp_rcvoob, .pru_send = sdp_send, .pru_sosend = sdp_sosend, .pru_soreceive = sdp_sorecv, .pru_shutdown = sdp_shutdown, .pru_sockaddr = sdp_getsockaddr, .pru_close = sdp_close, }; struct protosw sdpsw[] = { { .pr_type = SOCK_STREAM, .pr_domain = &sdpdomain, .pr_protocol = IPPROTO_IP, .pr_flags = PR_CONNREQUIRED|PR_IMPLOPCL|PR_WANTRCVD, .pr_ctlinput = sdp_ctlinput, .pr_ctloutput = sdp_ctloutput, .pr_usrreqs = &sdp_usrreqs }, { .pr_type = SOCK_STREAM, .pr_domain = &sdpdomain, .pr_protocol = IPPROTO_TCP, .pr_flags = PR_CONNREQUIRED|PR_IMPLOPCL|PR_WANTRCVD, .pr_ctlinput = sdp_ctlinput, .pr_ctloutput = sdp_ctloutput, .pr_usrreqs = &sdp_usrreqs }, }; struct domain sdpdomain = { .dom_family = AF_INET_SDP, .dom_name = "SDP", .dom_init = sdp_init, .dom_protosw = sdpsw, .dom_protoswNPROTOSW = &sdpsw[sizeof(sdpsw)/sizeof(sdpsw[0])], }; DOMAIN_SET(sdp); int sdp_debug_level = 1; int sdp_data_debug_level = 0;