Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/s3/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/usie/@/amd64/compile/hs32/modules/usr/src/sys/modules/ipwfw/ipw_monitor/@/amd64/compile/hs32/modules/usr/src/sys/modules/netgraph/one2many/@/cddl/contrib/opensolaris/uts/common/fs/zfs/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/s3/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/usie/@/amd64/compile/hs32/modules/usr/src/sys/modules/ipwfw/ipw_monitor/@/amd64/compile/hs32/modules/usr/src/sys/modules/netgraph/one2many/@/cddl/contrib/opensolaris/uts/common/fs/zfs/ddt.c |
/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2009, 2010, Oracle and/or its affiliates. All rights reserved. */ #include <sys/zfs_context.h> #include <sys/spa.h> #include <sys/spa_impl.h> #include <sys/zio.h> #include <sys/ddt.h> #include <sys/zap.h> #include <sys/dmu_tx.h> #include <sys/arc.h> #include <sys/dsl_pool.h> #include <sys/zio_checksum.h> #include <sys/zio_compress.h> #include <sys/dsl_scan.h> /* * Enable/disable prefetching of dedup-ed blocks which are going to be freed. */ int zfs_dedup_prefetch = 1; SYSCTL_DECL(_vfs_zfs); SYSCTL_NODE(_vfs_zfs, OID_AUTO, dedup, CTLFLAG_RW, 0, "ZFS DEDUP"); TUNABLE_INT("vfs.zfs.dedup.prefetch", &zfs_dedup_prefetch); SYSCTL_INT(_vfs_zfs_dedup, OID_AUTO, prefetch, CTLFLAG_RW, &zfs_dedup_prefetch, 0, "Enable/disable prefetching of dedup-ed blocks which are going to be freed"); static const ddt_ops_t *ddt_ops[DDT_TYPES] = { &ddt_zap_ops, }; static const char *ddt_class_name[DDT_CLASSES] = { "ditto", "duplicate", "unique", }; static void ddt_object_create(ddt_t *ddt, enum ddt_type type, enum ddt_class class, dmu_tx_t *tx) { spa_t *spa = ddt->ddt_spa; objset_t *os = ddt->ddt_os; uint64_t *objectp = &ddt->ddt_object[type][class]; boolean_t prehash = zio_checksum_table[ddt->ddt_checksum].ci_dedup; char name[DDT_NAMELEN]; ddt_object_name(ddt, type, class, name); ASSERT(*objectp == 0); VERIFY(ddt_ops[type]->ddt_op_create(os, objectp, tx, prehash) == 0); ASSERT(*objectp != 0); VERIFY(zap_add(os, DMU_POOL_DIRECTORY_OBJECT, name, sizeof (uint64_t), 1, objectp, tx) == 0); VERIFY(zap_add(os, spa->spa_ddt_stat_object, name, sizeof (uint64_t), sizeof (ddt_histogram_t) / sizeof (uint64_t), &ddt->ddt_histogram[type][class], tx) == 0); } static void ddt_object_destroy(ddt_t *ddt, enum ddt_type type, enum ddt_class class, dmu_tx_t *tx) { spa_t *spa = ddt->ddt_spa; objset_t *os = ddt->ddt_os; uint64_t *objectp = &ddt->ddt_object[type][class]; char name[DDT_NAMELEN]; ddt_object_name(ddt, type, class, name); ASSERT(*objectp != 0); ASSERT(ddt_object_count(ddt, type, class) == 0); ASSERT(ddt_histogram_empty(&ddt->ddt_histogram[type][class])); VERIFY(zap_remove(os, DMU_POOL_DIRECTORY_OBJECT, name, tx) == 0); VERIFY(zap_remove(os, spa->spa_ddt_stat_object, name, tx) == 0); VERIFY(ddt_ops[type]->ddt_op_destroy(os, *objectp, tx) == 0); bzero(&ddt->ddt_object_stats[type][class], sizeof (ddt_object_t)); *objectp = 0; } static int ddt_object_load(ddt_t *ddt, enum ddt_type type, enum ddt_class class) { ddt_object_t *ddo = &ddt->ddt_object_stats[type][class]; dmu_object_info_t doi; char name[DDT_NAMELEN]; int error; ddt_object_name(ddt, type, class, name); error = zap_lookup(ddt->ddt_os, DMU_POOL_DIRECTORY_OBJECT, name, sizeof (uint64_t), 1, &ddt->ddt_object[type][class]); if (error) return (error); error = zap_lookup(ddt->ddt_os, ddt->ddt_spa->spa_ddt_stat_object, name, sizeof (uint64_t), sizeof (ddt_histogram_t) / sizeof (uint64_t), &ddt->ddt_histogram[type][class]); /* * Seed the cached statistics. */ VERIFY(ddt_object_info(ddt, type, class, &doi) == 0); ddo->ddo_count = ddt_object_count(ddt, type, class); ddo->ddo_dspace = doi.doi_physical_blocks_512 << 9; ddo->ddo_mspace = doi.doi_fill_count * doi.doi_data_block_size; ASSERT(error == 0); return (error); } static void ddt_object_sync(ddt_t *ddt, enum ddt_type type, enum ddt_class class, dmu_tx_t *tx) { ddt_object_t *ddo = &ddt->ddt_object_stats[type][class]; dmu_object_info_t doi; char name[DDT_NAMELEN]; ddt_object_name(ddt, type, class, name); VERIFY(zap_update(ddt->ddt_os, ddt->ddt_spa->spa_ddt_stat_object, name, sizeof (uint64_t), sizeof (ddt_histogram_t) / sizeof (uint64_t), &ddt->ddt_histogram[type][class], tx) == 0); /* * Cache DDT statistics; this is the only time they'll change. */ VERIFY(ddt_object_info(ddt, type, class, &doi) == 0); ddo->ddo_count = ddt_object_count(ddt, type, class); ddo->ddo_dspace = doi.doi_physical_blocks_512 << 9; ddo->ddo_mspace = doi.doi_fill_count * doi.doi_data_block_size; } static int ddt_object_lookup(ddt_t *ddt, enum ddt_type type, enum ddt_class class, ddt_entry_t *dde) { if (!ddt_object_exists(ddt, type, class)) return (ENOENT); return (ddt_ops[type]->ddt_op_lookup(ddt->ddt_os, ddt->ddt_object[type][class], dde)); } static void ddt_object_prefetch(ddt_t *ddt, enum ddt_type type, enum ddt_class class, ddt_entry_t *dde) { if (!ddt_object_exists(ddt, type, class)) return; ddt_ops[type]->ddt_op_prefetch(ddt->ddt_os, ddt->ddt_object[type][class], dde); } int ddt_object_update(ddt_t *ddt, enum ddt_type type, enum ddt_class class, ddt_entry_t *dde, dmu_tx_t *tx) { ASSERT(ddt_object_exists(ddt, type, class)); return (ddt_ops[type]->ddt_op_update(ddt->ddt_os, ddt->ddt_object[type][class], dde, tx)); } static int ddt_object_remove(ddt_t *ddt, enum ddt_type type, enum ddt_class class, ddt_entry_t *dde, dmu_tx_t *tx) { ASSERT(ddt_object_exists(ddt, type, class)); return (ddt_ops[type]->ddt_op_remove(ddt->ddt_os, ddt->ddt_object[type][class], dde, tx)); } int ddt_object_walk(ddt_t *ddt, enum ddt_type type, enum ddt_class class, uint64_t *walk, ddt_entry_t *dde) { ASSERT(ddt_object_exists(ddt, type, class)); return (ddt_ops[type]->ddt_op_walk(ddt->ddt_os, ddt->ddt_object[type][class], dde, walk)); } uint64_t ddt_object_count(ddt_t *ddt, enum ddt_type type, enum ddt_class class) { ASSERT(ddt_object_exists(ddt, type, class)); return (ddt_ops[type]->ddt_op_count(ddt->ddt_os, ddt->ddt_object[type][class])); } int ddt_object_info(ddt_t *ddt, enum ddt_type type, enum ddt_class class, dmu_object_info_t *doi) { if (!ddt_object_exists(ddt, type, class)) return (ENOENT); return (dmu_object_info(ddt->ddt_os, ddt->ddt_object[type][class], doi)); } boolean_t ddt_object_exists(ddt_t *ddt, enum ddt_type type, enum ddt_class class) { return (!!ddt->ddt_object[type][class]); } void ddt_object_name(ddt_t *ddt, enum ddt_type type, enum ddt_class class, char *name) { (void) sprintf(name, DMU_POOL_DDT, zio_checksum_table[ddt->ddt_checksum].ci_name, ddt_ops[type]->ddt_op_name, ddt_class_name[class]); } void ddt_bp_fill(const ddt_phys_t *ddp, blkptr_t *bp, uint64_t txg) { ASSERT(txg != 0); for (int d = 0; d < SPA_DVAS_PER_BP; d++) bp->blk_dva[d] = ddp->ddp_dva[d]; BP_SET_BIRTH(bp, txg, ddp->ddp_phys_birth); } void ddt_bp_create(enum zio_checksum checksum, const ddt_key_t *ddk, const ddt_phys_t *ddp, blkptr_t *bp) { BP_ZERO(bp); if (ddp != NULL) ddt_bp_fill(ddp, bp, ddp->ddp_phys_birth); bp->blk_cksum = ddk->ddk_cksum; bp->blk_fill = 1; BP_SET_LSIZE(bp, DDK_GET_LSIZE(ddk)); BP_SET_PSIZE(bp, DDK_GET_PSIZE(ddk)); BP_SET_COMPRESS(bp, DDK_GET_COMPRESS(ddk)); BP_SET_CHECKSUM(bp, checksum); BP_SET_TYPE(bp, DMU_OT_DEDUP); BP_SET_LEVEL(bp, 0); BP_SET_DEDUP(bp, 0); BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); } void ddt_key_fill(ddt_key_t *ddk, const blkptr_t *bp) { ddk->ddk_cksum = bp->blk_cksum; ddk->ddk_prop = 0; DDK_SET_LSIZE(ddk, BP_GET_LSIZE(bp)); DDK_SET_PSIZE(ddk, BP_GET_PSIZE(bp)); DDK_SET_COMPRESS(ddk, BP_GET_COMPRESS(bp)); } void ddt_phys_fill(ddt_phys_t *ddp, const blkptr_t *bp) { ASSERT(ddp->ddp_phys_birth == 0); for (int d = 0; d < SPA_DVAS_PER_BP; d++) ddp->ddp_dva[d] = bp->blk_dva[d]; ddp->ddp_phys_birth = BP_PHYSICAL_BIRTH(bp); } void ddt_phys_clear(ddt_phys_t *ddp) { bzero(ddp, sizeof (*ddp)); } void ddt_phys_addref(ddt_phys_t *ddp) { ddp->ddp_refcnt++; } void ddt_phys_decref(ddt_phys_t *ddp) { ASSERT((int64_t)ddp->ddp_refcnt > 0); ddp->ddp_refcnt--; } void ddt_phys_free(ddt_t *ddt, ddt_key_t *ddk, ddt_phys_t *ddp, uint64_t txg) { blkptr_t blk; ddt_bp_create(ddt->ddt_checksum, ddk, ddp, &blk); ddt_phys_clear(ddp); zio_free(ddt->ddt_spa, txg, &blk); } ddt_phys_t * ddt_phys_select(const ddt_entry_t *dde, const blkptr_t *bp) { ddt_phys_t *ddp = (ddt_phys_t *)dde->dde_phys; for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { if (DVA_EQUAL(BP_IDENTITY(bp), &ddp->ddp_dva[0]) && BP_PHYSICAL_BIRTH(bp) == ddp->ddp_phys_birth) return (ddp); } return (NULL); } uint64_t ddt_phys_total_refcnt(const ddt_entry_t *dde) { uint64_t refcnt = 0; for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) refcnt += dde->dde_phys[p].ddp_refcnt; return (refcnt); } static void ddt_stat_generate(ddt_t *ddt, ddt_entry_t *dde, ddt_stat_t *dds) { spa_t *spa = ddt->ddt_spa; ddt_phys_t *ddp = dde->dde_phys; ddt_key_t *ddk = &dde->dde_key; uint64_t lsize = DDK_GET_LSIZE(ddk); uint64_t psize = DDK_GET_PSIZE(ddk); bzero(dds, sizeof (*dds)); for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { uint64_t dsize = 0; uint64_t refcnt = ddp->ddp_refcnt; if (ddp->ddp_phys_birth == 0) continue; for (int d = 0; d < SPA_DVAS_PER_BP; d++) dsize += dva_get_dsize_sync(spa, &ddp->ddp_dva[d]); dds->dds_blocks += 1; dds->dds_lsize += lsize; dds->dds_psize += psize; dds->dds_dsize += dsize; dds->dds_ref_blocks += refcnt; dds->dds_ref_lsize += lsize * refcnt; dds->dds_ref_psize += psize * refcnt; dds->dds_ref_dsize += dsize * refcnt; } } void ddt_stat_add(ddt_stat_t *dst, const ddt_stat_t *src, uint64_t neg) { const uint64_t *s = (const uint64_t *)src; uint64_t *d = (uint64_t *)dst; uint64_t *d_end = (uint64_t *)(dst + 1); ASSERT(neg == 0 || neg == -1ULL); /* add or subtract */ while (d < d_end) *d++ += (*s++ ^ neg) - neg; } static void ddt_stat_update(ddt_t *ddt, ddt_entry_t *dde, uint64_t neg) { ddt_stat_t dds; ddt_histogram_t *ddh; int bucket; ddt_stat_generate(ddt, dde, &dds); bucket = highbit(dds.dds_ref_blocks) - 1; ASSERT(bucket >= 0); ddh = &ddt->ddt_histogram[dde->dde_type][dde->dde_class]; ddt_stat_add(&ddh->ddh_stat[bucket], &dds, neg); } void ddt_histogram_add(ddt_histogram_t *dst, const ddt_histogram_t *src) { for (int h = 0; h < 64; h++) ddt_stat_add(&dst->ddh_stat[h], &src->ddh_stat[h], 0); } void ddt_histogram_stat(ddt_stat_t *dds, const ddt_histogram_t *ddh) { bzero(dds, sizeof (*dds)); for (int h = 0; h < 64; h++) ddt_stat_add(dds, &ddh->ddh_stat[h], 0); } boolean_t ddt_histogram_empty(const ddt_histogram_t *ddh) { const uint64_t *s = (const uint64_t *)ddh; const uint64_t *s_end = (const uint64_t *)(ddh + 1); while (s < s_end) if (*s++ != 0) return (B_FALSE); return (B_TRUE); } void ddt_get_dedup_object_stats(spa_t *spa, ddt_object_t *ddo_total) { /* Sum the statistics we cached in ddt_object_sync(). */ for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { ddt_t *ddt = spa->spa_ddt[c]; for (enum ddt_type type = 0; type < DDT_TYPES; type++) { for (enum ddt_class class = 0; class < DDT_CLASSES; class++) { ddt_object_t *ddo = &ddt->ddt_object_stats[type][class]; ddo_total->ddo_count += ddo->ddo_count; ddo_total->ddo_dspace += ddo->ddo_dspace; ddo_total->ddo_mspace += ddo->ddo_mspace; } } } /* ... and compute the averages. */ if (ddo_total->ddo_count != 0) { ddo_total->ddo_dspace /= ddo_total->ddo_count; ddo_total->ddo_mspace /= ddo_total->ddo_count; } } void ddt_get_dedup_histogram(spa_t *spa, ddt_histogram_t *ddh) { for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { ddt_t *ddt = spa->spa_ddt[c]; for (enum ddt_type type = 0; type < DDT_TYPES; type++) { for (enum ddt_class class = 0; class < DDT_CLASSES; class++) { ddt_histogram_add(ddh, &ddt->ddt_histogram_cache[type][class]); } } } } void ddt_get_dedup_stats(spa_t *spa, ddt_stat_t *dds_total) { ddt_histogram_t *ddh_total; ddh_total = kmem_zalloc(sizeof (ddt_histogram_t), KM_SLEEP); ddt_get_dedup_histogram(spa, ddh_total); ddt_histogram_stat(dds_total, ddh_total); kmem_free(ddh_total, sizeof (ddt_histogram_t)); } uint64_t ddt_get_dedup_dspace(spa_t *spa) { ddt_stat_t dds_total = { 0 }; ddt_get_dedup_stats(spa, &dds_total); return (dds_total.dds_ref_dsize - dds_total.dds_dsize); } uint64_t ddt_get_pool_dedup_ratio(spa_t *spa) { ddt_stat_t dds_total = { 0 }; ddt_get_dedup_stats(spa, &dds_total); if (dds_total.dds_dsize == 0) return (100); return (dds_total.dds_ref_dsize * 100 / dds_total.dds_dsize); } int ddt_ditto_copies_needed(ddt_t *ddt, ddt_entry_t *dde, ddt_phys_t *ddp_willref) { spa_t *spa = ddt->ddt_spa; uint64_t total_refcnt = 0; uint64_t ditto = spa->spa_dedup_ditto; int total_copies = 0; int desired_copies = 0; for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { ddt_phys_t *ddp = &dde->dde_phys[p]; zio_t *zio = dde->dde_lead_zio[p]; uint64_t refcnt = ddp->ddp_refcnt; /* committed refs */ if (zio != NULL) refcnt += zio->io_parent_count; /* pending refs */ if (ddp == ddp_willref) refcnt++; /* caller's ref */ if (refcnt != 0) { total_refcnt += refcnt; total_copies += p; } } if (ditto == 0 || ditto > UINT32_MAX) ditto = UINT32_MAX; if (total_refcnt >= 1) desired_copies++; if (total_refcnt >= ditto) desired_copies++; if (total_refcnt >= ditto * ditto) desired_copies++; return (MAX(desired_copies, total_copies) - total_copies); } int ddt_ditto_copies_present(ddt_entry_t *dde) { ddt_phys_t *ddp = &dde->dde_phys[DDT_PHYS_DITTO]; dva_t *dva = ddp->ddp_dva; int copies = 0 - DVA_GET_GANG(dva); for (int d = 0; d < SPA_DVAS_PER_BP; d++, dva++) if (DVA_IS_VALID(dva)) copies++; ASSERT(copies >= 0 && copies < SPA_DVAS_PER_BP); return (copies); } size_t ddt_compress(void *src, uchar_t *dst, size_t s_len, size_t d_len) { uchar_t *version = dst++; int cpfunc = ZIO_COMPRESS_ZLE; zio_compress_info_t *ci = &zio_compress_table[cpfunc]; size_t c_len; ASSERT(d_len >= s_len + 1); /* no compression plus version byte */ c_len = ci->ci_compress(src, dst, s_len, d_len - 1, ci->ci_level); if (c_len == s_len) { cpfunc = ZIO_COMPRESS_OFF; bcopy(src, dst, s_len); } *version = (ZFS_HOST_BYTEORDER & DDT_COMPRESS_BYTEORDER_MASK) | cpfunc; return (c_len + 1); } void ddt_decompress(uchar_t *src, void *dst, size_t s_len, size_t d_len) { uchar_t version = *src++; int cpfunc = version & DDT_COMPRESS_FUNCTION_MASK; zio_compress_info_t *ci = &zio_compress_table[cpfunc]; if (ci->ci_decompress != NULL) (void) ci->ci_decompress(src, dst, s_len, d_len, ci->ci_level); else bcopy(src, dst, d_len); if ((version ^ ZFS_HOST_BYTEORDER) & DDT_COMPRESS_BYTEORDER_MASK) byteswap_uint64_array(dst, d_len); } ddt_t * ddt_select_by_checksum(spa_t *spa, enum zio_checksum c) { return (spa->spa_ddt[c]); } ddt_t * ddt_select(spa_t *spa, const blkptr_t *bp) { return (spa->spa_ddt[BP_GET_CHECKSUM(bp)]); } void ddt_enter(ddt_t *ddt) { mutex_enter(&ddt->ddt_lock); } void ddt_exit(ddt_t *ddt) { mutex_exit(&ddt->ddt_lock); } static ddt_entry_t * ddt_alloc(const ddt_key_t *ddk) { ddt_entry_t *dde; dde = kmem_zalloc(sizeof (ddt_entry_t), KM_SLEEP); cv_init(&dde->dde_cv, NULL, CV_DEFAULT, NULL); dde->dde_key = *ddk; return (dde); } static void ddt_free(ddt_entry_t *dde) { ASSERT(!dde->dde_loading); for (int p = 0; p < DDT_PHYS_TYPES; p++) ASSERT(dde->dde_lead_zio[p] == NULL); if (dde->dde_repair_data != NULL) zio_buf_free(dde->dde_repair_data, DDK_GET_PSIZE(&dde->dde_key)); cv_destroy(&dde->dde_cv); kmem_free(dde, sizeof (*dde)); } void ddt_remove(ddt_t *ddt, ddt_entry_t *dde) { ASSERT(MUTEX_HELD(&ddt->ddt_lock)); avl_remove(&ddt->ddt_tree, dde); ddt_free(dde); } ddt_entry_t * ddt_lookup(ddt_t *ddt, const blkptr_t *bp, boolean_t add) { ddt_entry_t *dde, dde_search; enum ddt_type type; enum ddt_class class; avl_index_t where; int error; ASSERT(MUTEX_HELD(&ddt->ddt_lock)); ddt_key_fill(&dde_search.dde_key, bp); dde = avl_find(&ddt->ddt_tree, &dde_search, &where); if (dde == NULL) { if (!add) return (NULL); dde = ddt_alloc(&dde_search.dde_key); avl_insert(&ddt->ddt_tree, dde, where); } while (dde->dde_loading) cv_wait(&dde->dde_cv, &ddt->ddt_lock); if (dde->dde_loaded) return (dde); dde->dde_loading = B_TRUE; ddt_exit(ddt); error = ENOENT; for (type = 0; type < DDT_TYPES; type++) { for (class = 0; class < DDT_CLASSES; class++) { error = ddt_object_lookup(ddt, type, class, dde); if (error != ENOENT) break; } if (error != ENOENT) break; } ASSERT(error == 0 || error == ENOENT); ddt_enter(ddt); ASSERT(dde->dde_loaded == B_FALSE); ASSERT(dde->dde_loading == B_TRUE); dde->dde_type = type; /* will be DDT_TYPES if no entry found */ dde->dde_class = class; /* will be DDT_CLASSES if no entry found */ dde->dde_loaded = B_TRUE; dde->dde_loading = B_FALSE; if (error == 0) ddt_stat_update(ddt, dde, -1ULL); cv_broadcast(&dde->dde_cv); return (dde); } void ddt_prefetch(spa_t *spa, const blkptr_t *bp) { ddt_t *ddt; ddt_entry_t dde; if (!zfs_dedup_prefetch || bp == NULL || !BP_GET_DEDUP(bp)) return; /* * We only remove the DDT once all tables are empty and only * prefetch dedup blocks when there are entries in the DDT. * Thus no locking is required as the DDT can't disappear on us. */ ddt = ddt_select(spa, bp); ddt_key_fill(&dde.dde_key, bp); for (enum ddt_type type = 0; type < DDT_TYPES; type++) { for (enum ddt_class class = 0; class < DDT_CLASSES; class++) { ddt_object_prefetch(ddt, type, class, &dde); } } } int ddt_entry_compare(const void *x1, const void *x2) { const ddt_entry_t *dde1 = x1; const ddt_entry_t *dde2 = x2; const uint64_t *u1 = (const uint64_t *)&dde1->dde_key; const uint64_t *u2 = (const uint64_t *)&dde2->dde_key; for (int i = 0; i < DDT_KEY_WORDS; i++) { if (u1[i] < u2[i]) return (-1); if (u1[i] > u2[i]) return (1); } return (0); } static ddt_t * ddt_table_alloc(spa_t *spa, enum zio_checksum c) { ddt_t *ddt; ddt = kmem_zalloc(sizeof (*ddt), KM_SLEEP); mutex_init(&ddt->ddt_lock, NULL, MUTEX_DEFAULT, NULL); avl_create(&ddt->ddt_tree, ddt_entry_compare, sizeof (ddt_entry_t), offsetof(ddt_entry_t, dde_node)); avl_create(&ddt->ddt_repair_tree, ddt_entry_compare, sizeof (ddt_entry_t), offsetof(ddt_entry_t, dde_node)); ddt->ddt_checksum = c; ddt->ddt_spa = spa; ddt->ddt_os = spa->spa_meta_objset; return (ddt); } static void ddt_table_free(ddt_t *ddt) { ASSERT(avl_numnodes(&ddt->ddt_tree) == 0); ASSERT(avl_numnodes(&ddt->ddt_repair_tree) == 0); avl_destroy(&ddt->ddt_tree); avl_destroy(&ddt->ddt_repair_tree); mutex_destroy(&ddt->ddt_lock); kmem_free(ddt, sizeof (*ddt)); } void ddt_create(spa_t *spa) { spa->spa_dedup_checksum = ZIO_DEDUPCHECKSUM; for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) spa->spa_ddt[c] = ddt_table_alloc(spa, c); } int ddt_load(spa_t *spa) { int error; ddt_create(spa); error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DDT_STATS, sizeof (uint64_t), 1, &spa->spa_ddt_stat_object); if (error) return (error == ENOENT ? 0 : error); for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { ddt_t *ddt = spa->spa_ddt[c]; for (enum ddt_type type = 0; type < DDT_TYPES; type++) { for (enum ddt_class class = 0; class < DDT_CLASSES; class++) { error = ddt_object_load(ddt, type, class); if (error != 0 && error != ENOENT) return (error); } } /* * Seed the cached histograms. */ bcopy(ddt->ddt_histogram, &ddt->ddt_histogram_cache, sizeof (ddt->ddt_histogram)); } return (0); } void ddt_unload(spa_t *spa) { for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { if (spa->spa_ddt[c]) { ddt_table_free(spa->spa_ddt[c]); spa->spa_ddt[c] = NULL; } } } boolean_t ddt_class_contains(spa_t *spa, enum ddt_class max_class, const blkptr_t *bp) { ddt_t *ddt; ddt_entry_t dde; if (!BP_GET_DEDUP(bp)) return (B_FALSE); if (max_class == DDT_CLASS_UNIQUE) return (B_TRUE); ddt = spa->spa_ddt[BP_GET_CHECKSUM(bp)]; ddt_key_fill(&dde.dde_key, bp); for (enum ddt_type type = 0; type < DDT_TYPES; type++) for (enum ddt_class class = 0; class <= max_class; class++) if (ddt_object_lookup(ddt, type, class, &dde) == 0) return (B_TRUE); return (B_FALSE); } ddt_entry_t * ddt_repair_start(ddt_t *ddt, const blkptr_t *bp) { ddt_key_t ddk; ddt_entry_t *dde; ddt_key_fill(&ddk, bp); dde = ddt_alloc(&ddk); for (enum ddt_type type = 0; type < DDT_TYPES; type++) { for (enum ddt_class class = 0; class < DDT_CLASSES; class++) { /* * We can only do repair if there are multiple copies * of the block. For anything in the UNIQUE class, * there's definitely only one copy, so don't even try. */ if (class != DDT_CLASS_UNIQUE && ddt_object_lookup(ddt, type, class, dde) == 0) return (dde); } } bzero(dde->dde_phys, sizeof (dde->dde_phys)); return (dde); } void ddt_repair_done(ddt_t *ddt, ddt_entry_t *dde) { avl_index_t where; ddt_enter(ddt); if (dde->dde_repair_data != NULL && spa_writeable(ddt->ddt_spa) && avl_find(&ddt->ddt_repair_tree, dde, &where) == NULL) avl_insert(&ddt->ddt_repair_tree, dde, where); else ddt_free(dde); ddt_exit(ddt); } static void ddt_repair_entry_done(zio_t *zio) { ddt_entry_t *rdde = zio->io_private; ddt_free(rdde); } static void ddt_repair_entry(ddt_t *ddt, ddt_entry_t *dde, ddt_entry_t *rdde, zio_t *rio) { ddt_phys_t *ddp = dde->dde_phys; ddt_phys_t *rddp = rdde->dde_phys; ddt_key_t *ddk = &dde->dde_key; ddt_key_t *rddk = &rdde->dde_key; zio_t *zio; blkptr_t blk; zio = zio_null(rio, rio->io_spa, NULL, ddt_repair_entry_done, rdde, rio->io_flags); for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++, rddp++) { if (ddp->ddp_phys_birth == 0 || ddp->ddp_phys_birth != rddp->ddp_phys_birth || bcmp(ddp->ddp_dva, rddp->ddp_dva, sizeof (ddp->ddp_dva))) continue; ddt_bp_create(ddt->ddt_checksum, ddk, ddp, &blk); zio_nowait(zio_rewrite(zio, zio->io_spa, 0, &blk, rdde->dde_repair_data, DDK_GET_PSIZE(rddk), NULL, NULL, ZIO_PRIORITY_SYNC_WRITE, ZIO_DDT_CHILD_FLAGS(zio), NULL)); } zio_nowait(zio); } static void ddt_repair_table(ddt_t *ddt, zio_t *rio) { spa_t *spa = ddt->ddt_spa; ddt_entry_t *dde, *rdde_next, *rdde; avl_tree_t *t = &ddt->ddt_repair_tree; blkptr_t blk; if (spa_sync_pass(spa) > 1) return; ddt_enter(ddt); for (rdde = avl_first(t); rdde != NULL; rdde = rdde_next) { rdde_next = AVL_NEXT(t, rdde); avl_remove(&ddt->ddt_repair_tree, rdde); ddt_exit(ddt); ddt_bp_create(ddt->ddt_checksum, &rdde->dde_key, NULL, &blk); dde = ddt_repair_start(ddt, &blk); ddt_repair_entry(ddt, dde, rdde, rio); ddt_repair_done(ddt, dde); ddt_enter(ddt); } ddt_exit(ddt); } static void ddt_sync_entry(ddt_t *ddt, ddt_entry_t *dde, dmu_tx_t *tx, uint64_t txg) { dsl_pool_t *dp = ddt->ddt_spa->spa_dsl_pool; ddt_phys_t *ddp = dde->dde_phys; ddt_key_t *ddk = &dde->dde_key; enum ddt_type otype = dde->dde_type; enum ddt_type ntype = DDT_TYPE_CURRENT; enum ddt_class oclass = dde->dde_class; enum ddt_class nclass; uint64_t total_refcnt = 0; ASSERT(dde->dde_loaded); ASSERT(!dde->dde_loading); for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { ASSERT(dde->dde_lead_zio[p] == NULL); ASSERT((int64_t)ddp->ddp_refcnt >= 0); if (ddp->ddp_phys_birth == 0) { ASSERT(ddp->ddp_refcnt == 0); continue; } if (p == DDT_PHYS_DITTO) { if (ddt_ditto_copies_needed(ddt, dde, NULL) == 0) ddt_phys_free(ddt, ddk, ddp, txg); continue; } if (ddp->ddp_refcnt == 0) ddt_phys_free(ddt, ddk, ddp, txg); total_refcnt += ddp->ddp_refcnt; } if (dde->dde_phys[DDT_PHYS_DITTO].ddp_phys_birth != 0) nclass = DDT_CLASS_DITTO; else if (total_refcnt > 1) nclass = DDT_CLASS_DUPLICATE; else nclass = DDT_CLASS_UNIQUE; if (otype != DDT_TYPES && (otype != ntype || oclass != nclass || total_refcnt == 0)) { VERIFY(ddt_object_remove(ddt, otype, oclass, dde, tx) == 0); ASSERT(ddt_object_lookup(ddt, otype, oclass, dde) == ENOENT); } if (total_refcnt != 0) { dde->dde_type = ntype; dde->dde_class = nclass; ddt_stat_update(ddt, dde, 0); if (!ddt_object_exists(ddt, ntype, nclass)) ddt_object_create(ddt, ntype, nclass, tx); VERIFY(ddt_object_update(ddt, ntype, nclass, dde, tx) == 0); /* * If the class changes, the order that we scan this bp * changes. If it decreases, we could miss it, so * scan it right now. (This covers both class changing * while we are doing ddt_walk(), and when we are * traversing.) */ if (nclass < oclass) { dsl_scan_ddt_entry(dp->dp_scan, ddt->ddt_checksum, dde, tx); } } } static void ddt_sync_table(ddt_t *ddt, dmu_tx_t *tx, uint64_t txg) { spa_t *spa = ddt->ddt_spa; ddt_entry_t *dde; void *cookie = NULL; if (avl_numnodes(&ddt->ddt_tree) == 0) return; ASSERT(spa->spa_uberblock.ub_version >= SPA_VERSION_DEDUP); if (spa->spa_ddt_stat_object == 0) { spa->spa_ddt_stat_object = zap_create(ddt->ddt_os, DMU_OT_DDT_STATS, DMU_OT_NONE, 0, tx); VERIFY(zap_add(ddt->ddt_os, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DDT_STATS, sizeof (uint64_t), 1, &spa->spa_ddt_stat_object, tx) == 0); } while ((dde = avl_destroy_nodes(&ddt->ddt_tree, &cookie)) != NULL) { ddt_sync_entry(ddt, dde, tx, txg); ddt_free(dde); } for (enum ddt_type type = 0; type < DDT_TYPES; type++) { uint64_t count = 0; for (enum ddt_class class = 0; class < DDT_CLASSES; class++) { if (ddt_object_exists(ddt, type, class)) { ddt_object_sync(ddt, type, class, tx); count += ddt_object_count(ddt, type, class); } } for (enum ddt_class class = 0; class < DDT_CLASSES; class++) { if (count == 0 && ddt_object_exists(ddt, type, class)) ddt_object_destroy(ddt, type, class, tx); } } bcopy(ddt->ddt_histogram, &ddt->ddt_histogram_cache, sizeof (ddt->ddt_histogram)); } void ddt_sync(spa_t *spa, uint64_t txg) { dmu_tx_t *tx; zio_t *rio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); ASSERT(spa_syncing_txg(spa) == txg); tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { ddt_t *ddt = spa->spa_ddt[c]; if (ddt == NULL) continue; ddt_sync_table(ddt, tx, txg); ddt_repair_table(ddt, rio); } (void) zio_wait(rio); dmu_tx_commit(tx); } int ddt_walk(spa_t *spa, ddt_bookmark_t *ddb, ddt_entry_t *dde) { do { do { do { ddt_t *ddt = spa->spa_ddt[ddb->ddb_checksum]; int error = ENOENT; if (ddt_object_exists(ddt, ddb->ddb_type, ddb->ddb_class)) { error = ddt_object_walk(ddt, ddb->ddb_type, ddb->ddb_class, &ddb->ddb_cursor, dde); } dde->dde_type = ddb->ddb_type; dde->dde_class = ddb->ddb_class; if (error == 0) return (0); if (error != ENOENT) return (error); ddb->ddb_cursor = 0; } while (++ddb->ddb_checksum < ZIO_CHECKSUM_FUNCTIONS); ddb->ddb_checksum = 0; } while (++ddb->ddb_type < DDT_TYPES); ddb->ddb_type = 0; } while (++ddb->ddb_class < DDT_CLASSES); return (ENOENT); }