Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/s3/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/usie/@/amd64/compile/hs32/modules/usr/src/sys/modules/ipwfw/ipw_monitor/@/amd64/compile/hs32/modules/usr/src/sys/modules/sis/@/contrib/octeon-sdk/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/s3/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/usie/@/amd64/compile/hs32/modules/usr/src/sys/modules/ipwfw/ipw_monitor/@/amd64/compile/hs32/modules/usr/src/sys/modules/sis/@/contrib/octeon-sdk/cvmx-spi.c |
/***********************license start*************** * Copyright (c) 2003-2010 Cavium Networks (support@cavium.com). All rights * reserved. * * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of Cavium Networks nor the names of * its contributors may be used to endorse or promote products * derived from this software without specific prior written * permission. * This Software, including technical data, may be subject to U.S. export control * laws, including the U.S. Export Administration Act and its associated * regulations, and may be subject to export or import regulations in other * countries. * TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS" * AND WITH ALL FAULTS AND CAVIUM NETWORKS MAKES NO PROMISES, REPRESENTATIONS OR * WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO * THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION OR * DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM * SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE, * MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF * VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR * CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT OF USE OR * PERFORMANCE OF THE SOFTWARE LIES WITH YOU. ***********************license end**************************************/ /** * @file * * Support library for the SPI * * <hr>$Revision: 49448 $<hr> */ #ifdef CVMX_BUILD_FOR_LINUX_KERNEL #include <linux/module.h> #include <asm/octeon/cvmx.h> #include <asm/octeon/cvmx-config.h> #include <asm/octeon/cvmx-spxx-defs.h> #include <asm/octeon/cvmx-stxx-defs.h> #include <asm/octeon/cvmx-srxx-defs.h> #include <asm/octeon/cvmx-pko.h> #include <asm/octeon/cvmx-spi.h> #include <asm/octeon/cvmx-clock.h> #else #include "cvmx.h" #if !defined(__FreeBSD__) || !defined(_KERNEL) #include "cvmx-config.h" #endif #include "cvmx-sysinfo.h" #include "cvmx-pko.h" #include "cvmx-spi.h" #include "cvmx-clock.h" #endif #define INVOKE_CB(function_p, args...) \ do { \ if (function_p) { \ res = function_p(args); \ if (res) \ return res; \ } \ } while (0) #if CVMX_ENABLE_DEBUG_PRINTS static const char *modes[] = {"UNKNOWN", "TX Halfplex", "Rx Halfplex", "Duplex"}; #endif /* Default callbacks, can be overridden * using cvmx_spi_get_callbacks/cvmx_spi_set_callbacks */ static cvmx_spi_callbacks_t cvmx_spi_callbacks = { .reset_cb = cvmx_spi_reset_cb, .calendar_setup_cb = cvmx_spi_calendar_setup_cb, .clock_detect_cb = cvmx_spi_clock_detect_cb, .training_cb = cvmx_spi_training_cb, .calendar_sync_cb = cvmx_spi_calendar_sync_cb, .interface_up_cb = cvmx_spi_interface_up_cb }; /** * Get current SPI4 initialization callbacks * * @param callbacks Pointer to the callbacks structure.to fill * * @return Pointer to cvmx_spi_callbacks_t structure. */ void cvmx_spi_get_callbacks(cvmx_spi_callbacks_t * callbacks) { memcpy(callbacks, &cvmx_spi_callbacks, sizeof(cvmx_spi_callbacks)); } /** * Set new SPI4 initialization callbacks * * @param new_callbacks Pointer to an updated callbacks structure. */ void cvmx_spi_set_callbacks(cvmx_spi_callbacks_t * new_callbacks) { memcpy(&cvmx_spi_callbacks, new_callbacks, sizeof(cvmx_spi_callbacks)); } /** * Initialize and start the SPI interface. * * @param interface The identifier of the packet interface to configure and * use as a SPI interface. * @param mode The operating mode for the SPI interface. The interface * can operate as a full duplex (both Tx and Rx data paths * active) or as a halfplex (either the Tx data path is * active or the Rx data path is active, but not both). * @param timeout Timeout to wait for clock synchronization in seconds * @param num_ports Number of SPI ports to configure * * @return Zero on success, negative of failure. */ int cvmx_spi_start_interface(int interface, cvmx_spi_mode_t mode, int timeout, int num_ports) { int res = -1; if (!(OCTEON_IS_MODEL(OCTEON_CN38XX) || OCTEON_IS_MODEL(OCTEON_CN58XX))) return res; // Callback to perform SPI4 reset INVOKE_CB( cvmx_spi_callbacks.reset_cb, interface, mode); // Callback to perform calendar setup INVOKE_CB(cvmx_spi_callbacks.calendar_setup_cb, interface, mode, num_ports); // Callback to perform clock detection INVOKE_CB(cvmx_spi_callbacks.clock_detect_cb, interface, mode, timeout); // Callback to perform SPI4 link training INVOKE_CB(cvmx_spi_callbacks.training_cb, interface, mode, timeout); // Callback to perform calendar sync INVOKE_CB(cvmx_spi_callbacks.calendar_sync_cb, interface, mode, timeout); // Callback to handle interface coming up INVOKE_CB(cvmx_spi_callbacks.interface_up_cb, interface, mode); return res; } /** * This routine restarts the SPI interface after it has lost synchronization * with its correspondent system. * * @param interface The identifier of the packet interface to configure and * use as a SPI interface. * @param mode The operating mode for the SPI interface. The interface * can operate as a full duplex (both Tx and Rx data paths * active) or as a halfplex (either the Tx data path is * active or the Rx data path is active, but not both). * @param timeout Timeout to wait for clock synchronization in seconds * @return Zero on success, negative of failure. */ int cvmx_spi_restart_interface(int interface, cvmx_spi_mode_t mode, int timeout) { int res = -1; if (!(OCTEON_IS_MODEL(OCTEON_CN38XX) || OCTEON_IS_MODEL(OCTEON_CN58XX))) return res; #if CVMX_ENABLE_DEBUG_PRINTS cvmx_dprintf ("SPI%d: Restart %s\n", interface, modes[mode]); #endif // Callback to perform SPI4 reset INVOKE_CB(cvmx_spi_callbacks.reset_cb, interface,mode); // NOTE: Calendar setup is not performed during restart // Refer to cvmx_spi_start_interface() for the full sequence // Callback to perform clock detection INVOKE_CB(cvmx_spi_callbacks.clock_detect_cb, interface, mode, timeout); // Callback to perform SPI4 link training INVOKE_CB(cvmx_spi_callbacks.training_cb, interface, mode, timeout); // Callback to perform calendar sync INVOKE_CB(cvmx_spi_callbacks.calendar_sync_cb, interface, mode, timeout); // Callback to handle interface coming up INVOKE_CB(cvmx_spi_callbacks.interface_up_cb, interface, mode); return res; } #ifdef CVMX_BUILD_FOR_LINUX_KERNEL EXPORT_SYMBOL(cvmx_spi_restart_interface); #endif /** * Callback to perform SPI4 reset * * @param interface The identifier of the packet interface to configure and * use as a SPI interface. * @param mode The operating mode for the SPI interface. The interface * can operate as a full duplex (both Tx and Rx data paths * active) or as a halfplex (either the Tx data path is * active or the Rx data path is active, but not both). * @return Zero on success, non-zero error code on failure (will cause SPI initialization to abort) */ int cvmx_spi_reset_cb(int interface, cvmx_spi_mode_t mode) { cvmx_spxx_dbg_deskew_ctl_t spxx_dbg_deskew_ctl; cvmx_spxx_clk_ctl_t spxx_clk_ctl; cvmx_spxx_bist_stat_t spxx_bist_stat; cvmx_spxx_int_msk_t spxx_int_msk; cvmx_stxx_int_msk_t stxx_int_msk; cvmx_spxx_trn4_ctl_t spxx_trn4_ctl; int index; uint64_t MS = cvmx_clock_get_rate(CVMX_CLOCK_CORE) / 1000; /* Disable SPI error events while we run BIST */ spxx_int_msk.u64 = cvmx_read_csr(CVMX_SPXX_INT_MSK(interface)); cvmx_write_csr(CVMX_SPXX_INT_MSK(interface), 0); stxx_int_msk.u64 = cvmx_read_csr(CVMX_STXX_INT_MSK(interface)); cvmx_write_csr(CVMX_STXX_INT_MSK(interface), 0); /* Run BIST in the SPI interface */ cvmx_write_csr(CVMX_SRXX_COM_CTL(interface), 0); cvmx_write_csr(CVMX_STXX_COM_CTL(interface), 0); spxx_clk_ctl.u64 = 0; spxx_clk_ctl.s.runbist = 1; cvmx_write_csr(CVMX_SPXX_CLK_CTL(interface), spxx_clk_ctl.u64); cvmx_wait (10 * MS); spxx_bist_stat.u64 = cvmx_read_csr(CVMX_SPXX_BIST_STAT(interface)); if (spxx_bist_stat.s.stat0) cvmx_dprintf("ERROR SPI%d: BIST failed on receive datapath FIFO\n", interface); if (spxx_bist_stat.s.stat1) cvmx_dprintf("ERROR SPI%d: BIST failed on RX calendar table\n", interface); if (spxx_bist_stat.s.stat2) cvmx_dprintf("ERROR SPI%d: BIST failed on TX calendar table\n", interface); /* Clear the calendar table after BIST to fix parity errors */ for (index=0; index<32; index++) { cvmx_srxx_spi4_calx_t srxx_spi4_calx; cvmx_stxx_spi4_calx_t stxx_spi4_calx; srxx_spi4_calx.u64 = 0; srxx_spi4_calx.s.oddpar = 1; cvmx_write_csr(CVMX_SRXX_SPI4_CALX(index, interface), srxx_spi4_calx.u64); stxx_spi4_calx.u64 = 0; stxx_spi4_calx.s.oddpar = 1; cvmx_write_csr(CVMX_STXX_SPI4_CALX(index, interface), stxx_spi4_calx.u64); } /* Re enable reporting of error interrupts */ cvmx_write_csr(CVMX_SPXX_INT_REG(interface), cvmx_read_csr(CVMX_SPXX_INT_REG(interface))); cvmx_write_csr(CVMX_SPXX_INT_MSK(interface), spxx_int_msk.u64); cvmx_write_csr(CVMX_STXX_INT_REG(interface), cvmx_read_csr(CVMX_STXX_INT_REG(interface))); cvmx_write_csr(CVMX_STXX_INT_MSK(interface), stxx_int_msk.u64); // Setup the CLKDLY right in the middle spxx_clk_ctl.u64 = 0; spxx_clk_ctl.s.seetrn = 0; spxx_clk_ctl.s.clkdly = 0x10; spxx_clk_ctl.s.runbist = 0; spxx_clk_ctl.s.statdrv = 0; spxx_clk_ctl.s.statrcv = 1; /* This should always be on the opposite edge as statdrv */ spxx_clk_ctl.s.sndtrn = 0; spxx_clk_ctl.s.drptrn = 0; spxx_clk_ctl.s.rcvtrn = 0; spxx_clk_ctl.s.srxdlck = 0; cvmx_write_csr(CVMX_SPXX_CLK_CTL(interface), spxx_clk_ctl.u64); cvmx_wait (100 * MS); // Reset SRX0 DLL spxx_clk_ctl.s.srxdlck = 1; cvmx_write_csr(CVMX_SPXX_CLK_CTL(interface), spxx_clk_ctl.u64); // Waiting for Inf0 Spi4 RX DLL to lock cvmx_wait (100 * MS); // Enable dynamic alignment spxx_trn4_ctl.s.trntest = 0; spxx_trn4_ctl.s.jitter = 1; spxx_trn4_ctl.s.clr_boot = 1; spxx_trn4_ctl.s.set_boot = 0; if (OCTEON_IS_MODEL(OCTEON_CN58XX)) spxx_trn4_ctl.s.maxdist = 3; else spxx_trn4_ctl.s.maxdist = 8; spxx_trn4_ctl.s.macro_en = 1; spxx_trn4_ctl.s.mux_en = 1; cvmx_write_csr (CVMX_SPXX_TRN4_CTL(interface), spxx_trn4_ctl.u64); spxx_dbg_deskew_ctl.u64 = 0; cvmx_write_csr (CVMX_SPXX_DBG_DESKEW_CTL(interface), spxx_dbg_deskew_ctl.u64); return 0; } /** * Callback to setup calendar and miscellaneous settings before clock detection * * @param interface The identifier of the packet interface to configure and * use as a SPI interface. * @param mode The operating mode for the SPI interface. The interface * can operate as a full duplex (both Tx and Rx data paths * active) or as a halfplex (either the Tx data path is * active or the Rx data path is active, but not both). * @param num_ports Number of ports to configure on SPI * @return Zero on success, non-zero error code on failure (will cause SPI initialization to abort) */ int cvmx_spi_calendar_setup_cb(int interface, cvmx_spi_mode_t mode, int num_ports) { int port; int index; if (mode & CVMX_SPI_MODE_RX_HALFPLEX) { cvmx_srxx_com_ctl_t srxx_com_ctl; cvmx_srxx_spi4_stat_t srxx_spi4_stat; // SRX0 number of Ports srxx_com_ctl.u64 = 0; srxx_com_ctl.s.prts = num_ports - 1; srxx_com_ctl.s.st_en = 0; srxx_com_ctl.s.inf_en = 0; cvmx_write_csr(CVMX_SRXX_COM_CTL(interface), srxx_com_ctl.u64); // SRX0 Calendar Table. This round robbins through all ports port = 0; index = 0; while (port < num_ports) { cvmx_srxx_spi4_calx_t srxx_spi4_calx; srxx_spi4_calx.u64 = 0; srxx_spi4_calx.s.prt0 = port++; srxx_spi4_calx.s.prt1 = port++; srxx_spi4_calx.s.prt2 = port++; srxx_spi4_calx.s.prt3 = port++; srxx_spi4_calx.s.oddpar = ~(cvmx_dpop(srxx_spi4_calx.u64) & 1); cvmx_write_csr(CVMX_SRXX_SPI4_CALX(index, interface), srxx_spi4_calx.u64); index++; } srxx_spi4_stat.u64 = 0; srxx_spi4_stat.s.len = num_ports; srxx_spi4_stat.s.m = 1; cvmx_write_csr(CVMX_SRXX_SPI4_STAT(interface), srxx_spi4_stat.u64); } if (mode & CVMX_SPI_MODE_TX_HALFPLEX) { cvmx_stxx_arb_ctl_t stxx_arb_ctl; cvmx_gmxx_tx_spi_max_t gmxx_tx_spi_max; cvmx_gmxx_tx_spi_thresh_t gmxx_tx_spi_thresh; cvmx_gmxx_tx_spi_ctl_t gmxx_tx_spi_ctl; cvmx_stxx_spi4_stat_t stxx_spi4_stat; cvmx_stxx_spi4_dat_t stxx_spi4_dat; // STX0 Config stxx_arb_ctl.u64 = 0; stxx_arb_ctl.s.igntpa = 0; stxx_arb_ctl.s.mintrn = 0; cvmx_write_csr(CVMX_STXX_ARB_CTL(interface), stxx_arb_ctl.u64); gmxx_tx_spi_max.u64 = 0; gmxx_tx_spi_max.s.max1 = 8; gmxx_tx_spi_max.s.max2 = 4; gmxx_tx_spi_max.s.slice = 0; cvmx_write_csr(CVMX_GMXX_TX_SPI_MAX(interface), gmxx_tx_spi_max.u64); gmxx_tx_spi_thresh.u64 = 0; gmxx_tx_spi_thresh.s.thresh = 4; cvmx_write_csr(CVMX_GMXX_TX_SPI_THRESH(interface), gmxx_tx_spi_thresh.u64); gmxx_tx_spi_ctl.u64 = 0; gmxx_tx_spi_ctl.s.tpa_clr = 0; gmxx_tx_spi_ctl.s.cont_pkt = 0; cvmx_write_csr(CVMX_GMXX_TX_SPI_CTL(interface), gmxx_tx_spi_ctl.u64); // STX0 Training Control stxx_spi4_dat.u64 = 0; stxx_spi4_dat.s.alpha = 32; /*Minimum needed by dynamic alignment*/ stxx_spi4_dat.s.max_t = 0xFFFF; /*Minimum interval is 0x20*/ cvmx_write_csr(CVMX_STXX_SPI4_DAT(interface), stxx_spi4_dat.u64); // STX0 Calendar Table. This round robbins through all ports port = 0; index = 0; while (port < num_ports) { cvmx_stxx_spi4_calx_t stxx_spi4_calx; stxx_spi4_calx.u64 = 0; stxx_spi4_calx.s.prt0 = port++; stxx_spi4_calx.s.prt1 = port++; stxx_spi4_calx.s.prt2 = port++; stxx_spi4_calx.s.prt3 = port++; stxx_spi4_calx.s.oddpar = ~(cvmx_dpop(stxx_spi4_calx.u64) & 1); cvmx_write_csr(CVMX_STXX_SPI4_CALX(index, interface), stxx_spi4_calx.u64); index++; } stxx_spi4_stat.u64 = 0; stxx_spi4_stat.s.len = num_ports; stxx_spi4_stat.s.m = 1; cvmx_write_csr(CVMX_STXX_SPI4_STAT(interface), stxx_spi4_stat.u64); } return 0; } /** * Callback to perform clock detection * * @param interface The identifier of the packet interface to configure and * use as a SPI interface. * @param mode The operating mode for the SPI interface. The interface * can operate as a full duplex (both Tx and Rx data paths * active) or as a halfplex (either the Tx data path is * active or the Rx data path is active, but not both). * @param timeout Timeout to wait for clock synchronization in seconds * @return Zero on success, non-zero error code on failure (will cause SPI initialization to abort) */ int cvmx_spi_clock_detect_cb(int interface, cvmx_spi_mode_t mode, int timeout) { int clock_transitions; cvmx_spxx_clk_stat_t stat; uint64_t timeout_time; uint64_t MS = cvmx_clock_get_rate(CVMX_CLOCK_CORE) / 1000; /* Regardless of operating mode, both Tx and Rx clocks must be present for the SPI interface to operate. */ cvmx_dprintf ("SPI%d: Waiting to see TsClk...\n", interface); timeout_time = cvmx_get_cycle() + 1000ull * MS * timeout; /* Require 100 clock transitions in order to avoid any noise in the beginning */ clock_transitions = 100; do { stat.u64 = cvmx_read_csr(CVMX_SPXX_CLK_STAT(interface)); if (stat.s.s4clk0 && stat.s.s4clk1 && clock_transitions) { /* We've seen a clock transition, so decrement the number we still need */ clock_transitions--; cvmx_write_csr(CVMX_SPXX_CLK_STAT(interface), stat.u64); stat.s.s4clk0 = 0; stat.s.s4clk1 = 0; } if (cvmx_get_cycle() > timeout_time) { cvmx_dprintf ("SPI%d: Timeout\n", interface); return -1; } } while (stat.s.s4clk0 == 0 || stat.s.s4clk1 == 0); cvmx_dprintf ("SPI%d: Waiting to see RsClk...\n", interface); timeout_time = cvmx_get_cycle() + 1000ull * MS * timeout; /* Require 100 clock transitions in order to avoid any noise in the beginning */ clock_transitions = 100; do { stat.u64 = cvmx_read_csr (CVMX_SPXX_CLK_STAT(interface)); if (stat.s.d4clk0 && stat.s.d4clk1 && clock_transitions) { /* We've seen a clock transition, so decrement the number we still need */ clock_transitions--; cvmx_write_csr(CVMX_SPXX_CLK_STAT(interface), stat.u64); stat.s.d4clk0 = 0; stat.s.d4clk1 = 0; } if (cvmx_get_cycle() > timeout_time) { cvmx_dprintf ("SPI%d: Timeout\n", interface); return -1; } } while (stat.s.d4clk0 == 0 || stat.s.d4clk1 == 0); return 0; } /** * Callback to perform link training * * @param interface The identifier of the packet interface to configure and * use as a SPI interface. * @param mode The operating mode for the SPI interface. The interface * can operate as a full duplex (both Tx and Rx data paths * active) or as a halfplex (either the Tx data path is * active or the Rx data path is active, but not both). * @param timeout Timeout to wait for link to be trained (in seconds) * @return Zero on success, non-zero error code on failure (will cause SPI initialization to abort) */ int cvmx_spi_training_cb(int interface, cvmx_spi_mode_t mode, int timeout) { cvmx_spxx_trn4_ctl_t spxx_trn4_ctl; cvmx_spxx_clk_stat_t stat; uint64_t MS = cvmx_clock_get_rate(CVMX_CLOCK_CORE) / 1000; uint64_t timeout_time = cvmx_get_cycle() + 1000ull * MS * timeout; int rx_training_needed; // SRX0 & STX0 Inf0 Links are configured - begin training cvmx_spxx_clk_ctl_t spxx_clk_ctl; spxx_clk_ctl.u64 = 0; spxx_clk_ctl.s.seetrn = 0; spxx_clk_ctl.s.clkdly = 0x10; spxx_clk_ctl.s.runbist = 0; spxx_clk_ctl.s.statdrv = 0; spxx_clk_ctl.s.statrcv = 1; /* This should always be on the opposite edge as statdrv */ spxx_clk_ctl.s.sndtrn = 1; spxx_clk_ctl.s.drptrn = 1; spxx_clk_ctl.s.rcvtrn = 1; spxx_clk_ctl.s.srxdlck = 1; cvmx_write_csr(CVMX_SPXX_CLK_CTL(interface), spxx_clk_ctl.u64); cvmx_wait (1000 * MS); // SRX0 clear the boot bit spxx_trn4_ctl.u64 = cvmx_read_csr(CVMX_SPXX_TRN4_CTL(interface)); spxx_trn4_ctl.s.clr_boot = 1; cvmx_write_csr (CVMX_SPXX_TRN4_CTL(interface), spxx_trn4_ctl.u64); // Wait for the training sequence to complete cvmx_dprintf ("SPI%d: Waiting for training\n", interface); cvmx_wait (1000 * MS); #if !defined(OCTEON_VENDOR_LANNER) timeout_time = cvmx_get_cycle() + 1000ull * MS * 600; /* Wait a really long time here */ #else timeout_time = cvmx_get_cycle() + 1000ull * MS * 10; #endif /* The HRM says we must wait for 34 + 16 * MAXDIST training sequences. We'll be pessimistic and wait for a lot more */ rx_training_needed = 500; do { stat.u64 = cvmx_read_csr (CVMX_SPXX_CLK_STAT(interface)); if (stat.s.srxtrn && rx_training_needed) { rx_training_needed--; cvmx_write_csr(CVMX_SPXX_CLK_STAT(interface), stat.u64); stat.s.srxtrn = 0; } if (cvmx_get_cycle() > timeout_time) { cvmx_dprintf ("SPI%d: Timeout\n", interface); return -1; } } while (stat.s.srxtrn == 0); return 0; } /** * Callback to perform calendar data synchronization * * @param interface The identifier of the packet interface to configure and * use as a SPI interface. * @param mode The operating mode for the SPI interface. The interface * can operate as a full duplex (both Tx and Rx data paths * active) or as a halfplex (either the Tx data path is * active or the Rx data path is active, but not both). * @param timeout Timeout to wait for calendar data in seconds * @return Zero on success, non-zero error code on failure (will cause SPI initialization to abort) */ int cvmx_spi_calendar_sync_cb(int interface, cvmx_spi_mode_t mode, int timeout) { uint64_t MS = cvmx_clock_get_rate(CVMX_CLOCK_CORE) / 1000; if (mode & CVMX_SPI_MODE_RX_HALFPLEX) { // SRX0 interface should be good, send calendar data cvmx_srxx_com_ctl_t srxx_com_ctl; cvmx_dprintf ("SPI%d: Rx is synchronized, start sending calendar data\n", interface); srxx_com_ctl.u64 = cvmx_read_csr(CVMX_SRXX_COM_CTL(interface)); srxx_com_ctl.s.inf_en = 1; srxx_com_ctl.s.st_en = 1; cvmx_write_csr (CVMX_SRXX_COM_CTL(interface), srxx_com_ctl.u64); } if (mode & CVMX_SPI_MODE_TX_HALFPLEX) { // STX0 has achieved sync // The corespondant board should be sending calendar data // Enable the STX0 STAT receiver. cvmx_spxx_clk_stat_t stat; uint64_t timeout_time; cvmx_stxx_com_ctl_t stxx_com_ctl; stxx_com_ctl.u64 = 0; stxx_com_ctl.s.st_en = 1; cvmx_write_csr (CVMX_STXX_COM_CTL(interface), stxx_com_ctl.u64); // Waiting for calendar sync on STX0 STAT cvmx_dprintf ("SPI%d: Waiting to sync on STX[%d] STAT\n", interface, interface); timeout_time = cvmx_get_cycle() + 1000ull * MS * timeout; // SPX0_CLK_STAT - SPX0_CLK_STAT[STXCAL] should be 1 (bit10) do { stat.u64 = cvmx_read_csr (CVMX_SPXX_CLK_STAT (interface)); if (cvmx_get_cycle() > timeout_time) { cvmx_dprintf ("SPI%d: Timeout\n", interface); return -1; } } while (stat.s.stxcal == 0); } return 0; } /** * Callback to handle interface up * * @param interface The identifier of the packet interface to configure and * use as a SPI interface. * @param mode The operating mode for the SPI interface. The interface * can operate as a full duplex (both Tx and Rx data paths * active) or as a halfplex (either the Tx data path is * active or the Rx data path is active, but not both). * @return Zero on success, non-zero error code on failure (will cause SPI initialization to abort) */ int cvmx_spi_interface_up_cb(int interface, cvmx_spi_mode_t mode) { cvmx_gmxx_rxx_frm_min_t gmxx_rxx_frm_min; cvmx_gmxx_rxx_frm_max_t gmxx_rxx_frm_max; cvmx_gmxx_rxx_jabber_t gmxx_rxx_jabber; if (mode & CVMX_SPI_MODE_RX_HALFPLEX) { cvmx_srxx_com_ctl_t srxx_com_ctl; srxx_com_ctl.u64 = cvmx_read_csr(CVMX_SRXX_COM_CTL(interface)); srxx_com_ctl.s.inf_en = 1; cvmx_write_csr (CVMX_SRXX_COM_CTL(interface), srxx_com_ctl.u64); cvmx_dprintf ("SPI%d: Rx is now up\n", interface); } if (mode & CVMX_SPI_MODE_TX_HALFPLEX) { cvmx_stxx_com_ctl_t stxx_com_ctl; stxx_com_ctl.u64 = cvmx_read_csr(CVMX_STXX_COM_CTL(interface)); stxx_com_ctl.s.inf_en = 1; cvmx_write_csr (CVMX_STXX_COM_CTL(interface), stxx_com_ctl.u64); cvmx_dprintf ("SPI%d: Tx is now up\n", interface); } gmxx_rxx_frm_min.u64 = 0; gmxx_rxx_frm_min.s.len = 64; cvmx_write_csr(CVMX_GMXX_RXX_FRM_MIN(0,interface), gmxx_rxx_frm_min.u64); gmxx_rxx_frm_max.u64 = 0; gmxx_rxx_frm_max.s.len = 64*1024 - 4; cvmx_write_csr(CVMX_GMXX_RXX_FRM_MAX(0,interface), gmxx_rxx_frm_max.u64); gmxx_rxx_jabber.u64 = 0; gmxx_rxx_jabber.s.cnt = 64*1024 - 4; cvmx_write_csr(CVMX_GMXX_RXX_JABBER(0,interface), gmxx_rxx_jabber.u64); return 0; }