Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/s3/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/usie/@/amd64/compile/hs32/modules/usr/src/sys/modules/ipwfw/ipw_monitor/@/amd64/compile/hs32/modules/usr/src/sys/modules/sk/@/dev/drm2/i915/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/s3/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/usie/@/amd64/compile/hs32/modules/usr/src/sys/modules/ipwfw/ipw_monitor/@/amd64/compile/hs32/modules/usr/src/sys/modules/sk/@/dev/drm2/i915/i915_debug.c |
/* * Copyright © 2008 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Eric Anholt <eric@anholt.net> * Keith Packard <keithp@keithp.com> * */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/dev/drm2/i915/i915_debug.c 235783 2012-05-22 11:07:44Z kib $"); #include <dev/drm2/drmP.h> #include <dev/drm2/drm.h> #include <dev/drm2/i915/i915_drm.h> #include <dev/drm2/i915/i915_drv.h> #include <dev/drm2/i915/intel_drv.h> #include <dev/drm2/i915/intel_ringbuffer.h> #include <sys/sysctl.h> enum { ACTIVE_LIST, FLUSHING_LIST, INACTIVE_LIST, PINNED_LIST, DEFERRED_FREE_LIST, }; static const char * yesno(int v) { return (v ? "yes" : "no"); } static int i915_capabilities(struct drm_device *dev, struct sbuf *m, void *data) { const struct intel_device_info *info = INTEL_INFO(dev); sbuf_printf(m, "gen: %d\n", info->gen); if (HAS_PCH_SPLIT(dev)) sbuf_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev)); #define B(x) sbuf_printf(m, #x ": %s\n", yesno(info->x)) B(is_mobile); B(is_i85x); B(is_i915g); B(is_i945gm); B(is_g33); B(need_gfx_hws); B(is_g4x); B(is_pineview); B(has_fbc); B(has_pipe_cxsr); B(has_hotplug); B(cursor_needs_physical); B(has_overlay); B(overlay_needs_physical); B(supports_tv); B(has_bsd_ring); B(has_blt_ring); B(has_llc); #undef B return (0); } static const char * get_pin_flag(struct drm_i915_gem_object *obj) { if (obj->user_pin_count > 0) return "P"; else if (obj->pin_count > 0) return "p"; else return " "; } static const char * get_tiling_flag(struct drm_i915_gem_object *obj) { switch (obj->tiling_mode) { default: case I915_TILING_NONE: return (" "); case I915_TILING_X: return ("X"); case I915_TILING_Y: return ("Y"); } } static const char * cache_level_str(int type) { switch (type) { case I915_CACHE_NONE: return " uncached"; case I915_CACHE_LLC: return " snooped (LLC)"; case I915_CACHE_LLC_MLC: return " snooped (LLC+MLC)"; default: return (""); } } static void describe_obj(struct sbuf *m, struct drm_i915_gem_object *obj) { sbuf_printf(m, "%p: %s%s %8zdKiB %04x %04x %d %d%s%s%s", &obj->base, get_pin_flag(obj), get_tiling_flag(obj), obj->base.size / 1024, obj->base.read_domains, obj->base.write_domain, obj->last_rendering_seqno, obj->last_fenced_seqno, cache_level_str(obj->cache_level), obj->dirty ? " dirty" : "", obj->madv == I915_MADV_DONTNEED ? " purgeable" : ""); if (obj->base.name) sbuf_printf(m, " (name: %d)", obj->base.name); if (obj->fence_reg != I915_FENCE_REG_NONE) sbuf_printf(m, " (fence: %d)", obj->fence_reg); if (obj->gtt_space != NULL) sbuf_printf(m, " (gtt offset: %08x, size: %08x)", obj->gtt_offset, (unsigned int)obj->gtt_space->size); if (obj->pin_mappable || obj->fault_mappable) { char s[3], *t = s; if (obj->pin_mappable) *t++ = 'p'; if (obj->fault_mappable) *t++ = 'f'; *t = '\0'; sbuf_printf(m, " (%s mappable)", s); } if (obj->ring != NULL) sbuf_printf(m, " (%s)", obj->ring->name); } static int i915_gem_object_list_info(struct drm_device *dev, struct sbuf *m, void *data) { uintptr_t list = (uintptr_t)data; struct list_head *head; drm_i915_private_t *dev_priv = dev->dev_private; struct drm_i915_gem_object *obj; size_t total_obj_size, total_gtt_size; int count; if (sx_xlock_sig(&dev->dev_struct_lock)) return (EINTR); switch (list) { case ACTIVE_LIST: sbuf_printf(m, "Active:\n"); head = &dev_priv->mm.active_list; break; case INACTIVE_LIST: sbuf_printf(m, "Inactive:\n"); head = &dev_priv->mm.inactive_list; break; case PINNED_LIST: sbuf_printf(m, "Pinned:\n"); head = &dev_priv->mm.pinned_list; break; case FLUSHING_LIST: sbuf_printf(m, "Flushing:\n"); head = &dev_priv->mm.flushing_list; break; case DEFERRED_FREE_LIST: sbuf_printf(m, "Deferred free:\n"); head = &dev_priv->mm.deferred_free_list; break; default: DRM_UNLOCK(dev); return (EINVAL); } total_obj_size = total_gtt_size = count = 0; list_for_each_entry(obj, head, mm_list) { sbuf_printf(m, " "); describe_obj(m, obj); sbuf_printf(m, "\n"); total_obj_size += obj->base.size; total_gtt_size += obj->gtt_space->size; count++; } DRM_UNLOCK(dev); sbuf_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n", count, total_obj_size, total_gtt_size); return (0); } #define count_objects(list, member) do { \ list_for_each_entry(obj, list, member) { \ size += obj->gtt_space->size; \ ++count; \ if (obj->map_and_fenceable) { \ mappable_size += obj->gtt_space->size; \ ++mappable_count; \ } \ } \ } while (0) static int i915_gem_object_info(struct drm_device *dev, struct sbuf *m, void *data) { struct drm_i915_private *dev_priv = dev->dev_private; u32 count, mappable_count; size_t size, mappable_size; struct drm_i915_gem_object *obj; if (sx_xlock_sig(&dev->dev_struct_lock)) return (EINTR); sbuf_printf(m, "%u objects, %zu bytes\n", dev_priv->mm.object_count, dev_priv->mm.object_memory); size = count = mappable_size = mappable_count = 0; count_objects(&dev_priv->mm.gtt_list, gtt_list); sbuf_printf(m, "%u [%u] objects, %zu [%zu] bytes in gtt\n", count, mappable_count, size, mappable_size); size = count = mappable_size = mappable_count = 0; count_objects(&dev_priv->mm.active_list, mm_list); count_objects(&dev_priv->mm.flushing_list, mm_list); sbuf_printf(m, " %u [%u] active objects, %zu [%zu] bytes\n", count, mappable_count, size, mappable_size); size = count = mappable_size = mappable_count = 0; count_objects(&dev_priv->mm.pinned_list, mm_list); sbuf_printf(m, " %u [%u] pinned objects, %zu [%zu] bytes\n", count, mappable_count, size, mappable_size); size = count = mappable_size = mappable_count = 0; count_objects(&dev_priv->mm.inactive_list, mm_list); sbuf_printf(m, " %u [%u] inactive objects, %zu [%zu] bytes\n", count, mappable_count, size, mappable_size); size = count = mappable_size = mappable_count = 0; count_objects(&dev_priv->mm.deferred_free_list, mm_list); sbuf_printf(m, " %u [%u] freed objects, %zu [%zu] bytes\n", count, mappable_count, size, mappable_size); size = count = mappable_size = mappable_count = 0; list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) { if (obj->fault_mappable) { size += obj->gtt_space->size; ++count; } if (obj->pin_mappable) { mappable_size += obj->gtt_space->size; ++mappable_count; } } sbuf_printf(m, "%u pinned mappable objects, %zu bytes\n", mappable_count, mappable_size); sbuf_printf(m, "%u fault mappable objects, %zu bytes\n", count, size); sbuf_printf(m, "%zu [%zu] gtt total\n", dev_priv->mm.gtt_total, dev_priv->mm.mappable_gtt_total); DRM_UNLOCK(dev); return (0); } static int i915_gem_gtt_info(struct drm_device *dev, struct sbuf *m, void* data) { struct drm_i915_private *dev_priv = dev->dev_private; struct drm_i915_gem_object *obj; size_t total_obj_size, total_gtt_size; int count; if (sx_xlock_sig(&dev->dev_struct_lock)) return (EINTR); total_obj_size = total_gtt_size = count = 0; list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) { sbuf_printf(m, " "); describe_obj(m, obj); sbuf_printf(m, "\n"); total_obj_size += obj->base.size; total_gtt_size += obj->gtt_space->size; count++; } DRM_UNLOCK(dev); sbuf_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n", count, total_obj_size, total_gtt_size); return (0); } static int i915_gem_pageflip_info(struct drm_device *dev, struct sbuf *m, void *data) { struct intel_crtc *crtc; struct drm_i915_gem_object *obj; struct intel_unpin_work *work; char pipe; char plane; if ((dev->driver->driver_features & DRIVER_MODESET) == 0) return (0); list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) { pipe = pipe_name(crtc->pipe); plane = plane_name(crtc->plane); mtx_lock(&dev->event_lock); work = crtc->unpin_work; if (work == NULL) { sbuf_printf(m, "No flip due on pipe %c (plane %c)\n", pipe, plane); } else { if (!work->pending) { sbuf_printf(m, "Flip queued on pipe %c (plane %c)\n", pipe, plane); } else { sbuf_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n", pipe, plane); } if (work->enable_stall_check) sbuf_printf(m, "Stall check enabled, "); else sbuf_printf(m, "Stall check waiting for page flip ioctl, "); sbuf_printf(m, "%d prepares\n", work->pending); if (work->old_fb_obj) { obj = work->old_fb_obj; if (obj) sbuf_printf(m, "Old framebuffer gtt_offset 0x%08x\n", obj->gtt_offset); } if (work->pending_flip_obj) { obj = work->pending_flip_obj; if (obj) sbuf_printf(m, "New framebuffer gtt_offset 0x%08x\n", obj->gtt_offset); } } mtx_unlock(&dev->event_lock); } return (0); } static int i915_gem_request_info(struct drm_device *dev, struct sbuf *m, void *data) { drm_i915_private_t *dev_priv = dev->dev_private; struct drm_i915_gem_request *gem_request; int count; if (sx_xlock_sig(&dev->dev_struct_lock)) return (EINTR); count = 0; if (!list_empty(&dev_priv->rings[RCS].request_list)) { sbuf_printf(m, "Render requests:\n"); list_for_each_entry(gem_request, &dev_priv->rings[RCS].request_list, list) { sbuf_printf(m, " %d @ %d\n", gem_request->seqno, (int) (jiffies - gem_request->emitted_jiffies)); } count++; } if (!list_empty(&dev_priv->rings[VCS].request_list)) { sbuf_printf(m, "BSD requests:\n"); list_for_each_entry(gem_request, &dev_priv->rings[VCS].request_list, list) { sbuf_printf(m, " %d @ %d\n", gem_request->seqno, (int) (jiffies - gem_request->emitted_jiffies)); } count++; } if (!list_empty(&dev_priv->rings[BCS].request_list)) { sbuf_printf(m, "BLT requests:\n"); list_for_each_entry(gem_request, &dev_priv->rings[BCS].request_list, list) { sbuf_printf(m, " %d @ %d\n", gem_request->seqno, (int) (jiffies - gem_request->emitted_jiffies)); } count++; } DRM_UNLOCK(dev); if (count == 0) sbuf_printf(m, "No requests\n"); return 0; } static void i915_ring_seqno_info(struct sbuf *m, struct intel_ring_buffer *ring) { if (ring->get_seqno) { sbuf_printf(m, "Current sequence (%s): %d\n", ring->name, ring->get_seqno(ring)); sbuf_printf(m, "Waiter sequence (%s): %d\n", ring->name, ring->waiting_seqno); sbuf_printf(m, "IRQ sequence (%s): %d\n", ring->name, ring->irq_seqno); } } static int i915_gem_seqno_info(struct drm_device *dev, struct sbuf *m, void *data) { drm_i915_private_t *dev_priv = dev->dev_private; int i; if (sx_xlock_sig(&dev->dev_struct_lock)) return (EINTR); for (i = 0; i < I915_NUM_RINGS; i++) i915_ring_seqno_info(m, &dev_priv->rings[i]); DRM_UNLOCK(dev); return (0); } static int i915_interrupt_info(struct drm_device *dev, struct sbuf *m, void *data) { drm_i915_private_t *dev_priv = dev->dev_private; int i, pipe; if (sx_xlock_sig(&dev->dev_struct_lock)) return (EINTR); if (!HAS_PCH_SPLIT(dev)) { sbuf_printf(m, "Interrupt enable: %08x\n", I915_READ(IER)); sbuf_printf(m, "Interrupt identity: %08x\n", I915_READ(IIR)); sbuf_printf(m, "Interrupt mask: %08x\n", I915_READ(IMR)); for_each_pipe(pipe) sbuf_printf(m, "Pipe %c stat: %08x\n", pipe_name(pipe), I915_READ(PIPESTAT(pipe))); } else { sbuf_printf(m, "North Display Interrupt enable: %08x\n", I915_READ(DEIER)); sbuf_printf(m, "North Display Interrupt identity: %08x\n", I915_READ(DEIIR)); sbuf_printf(m, "North Display Interrupt mask: %08x\n", I915_READ(DEIMR)); sbuf_printf(m, "South Display Interrupt enable: %08x\n", I915_READ(SDEIER)); sbuf_printf(m, "South Display Interrupt identity: %08x\n", I915_READ(SDEIIR)); sbuf_printf(m, "South Display Interrupt mask: %08x\n", I915_READ(SDEIMR)); sbuf_printf(m, "Graphics Interrupt enable: %08x\n", I915_READ(GTIER)); sbuf_printf(m, "Graphics Interrupt identity: %08x\n", I915_READ(GTIIR)); sbuf_printf(m, "Graphics Interrupt mask: %08x\n", I915_READ(GTIMR)); } sbuf_printf(m, "Interrupts received: %d\n", atomic_read(&dev_priv->irq_received)); for (i = 0; i < I915_NUM_RINGS; i++) { if (IS_GEN6(dev) || IS_GEN7(dev)) { sbuf_printf(m, "Graphics Interrupt mask (%s): %08x\n", dev_priv->rings[i].name, I915_READ_IMR(&dev_priv->rings[i])); } i915_ring_seqno_info(m, &dev_priv->rings[i]); } DRM_UNLOCK(dev); return (0); } static int i915_gem_fence_regs_info(struct drm_device *dev, struct sbuf *m, void *data) { drm_i915_private_t *dev_priv = dev->dev_private; int i; if (sx_xlock_sig(&dev->dev_struct_lock)) return (EINTR); sbuf_printf(m, "Reserved fences = %d\n", dev_priv->fence_reg_start); sbuf_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs); for (i = 0; i < dev_priv->num_fence_regs; i++) { struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj; sbuf_printf(m, "Fenced object[%2d] = ", i); if (obj == NULL) sbuf_printf(m, "unused"); else describe_obj(m, obj); sbuf_printf(m, "\n"); } DRM_UNLOCK(dev); return (0); } static int i915_hws_info(struct drm_device *dev, struct sbuf *m, void *data) { drm_i915_private_t *dev_priv = dev->dev_private; struct intel_ring_buffer *ring; const volatile u32 *hws; int i; ring = &dev_priv->rings[(uintptr_t)data]; hws = (volatile u32 *)ring->status_page.page_addr; if (hws == NULL) return (0); for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) { sbuf_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n", i * 4, hws[i], hws[i + 1], hws[i + 2], hws[i + 3]); } return (0); } static int i915_ringbuffer_data(struct drm_device *dev, struct sbuf *m, void *data) { drm_i915_private_t *dev_priv = dev->dev_private; struct intel_ring_buffer *ring; if (sx_xlock_sig(&dev->dev_struct_lock)) return (EINTR); ring = &dev_priv->rings[(uintptr_t)data]; if (!ring->obj) { sbuf_printf(m, "No ringbuffer setup\n"); } else { u8 *virt = ring->virtual_start; uint32_t off; for (off = 0; off < ring->size; off += 4) { uint32_t *ptr = (uint32_t *)(virt + off); sbuf_printf(m, "%08x : %08x\n", off, *ptr); } } DRM_UNLOCK(dev); return (0); } static int i915_ringbuffer_info(struct drm_device *dev, struct sbuf *m, void *data) { drm_i915_private_t *dev_priv = dev->dev_private; struct intel_ring_buffer *ring; ring = &dev_priv->rings[(uintptr_t)data]; if (ring->size == 0) return (0); if (sx_xlock_sig(&dev->dev_struct_lock)) return (EINTR); sbuf_printf(m, "Ring %s:\n", ring->name); sbuf_printf(m, " Head : %08x\n", I915_READ_HEAD(ring) & HEAD_ADDR); sbuf_printf(m, " Tail : %08x\n", I915_READ_TAIL(ring) & TAIL_ADDR); sbuf_printf(m, " Size : %08x\n", ring->size); sbuf_printf(m, " Active : %08x\n", intel_ring_get_active_head(ring)); sbuf_printf(m, " NOPID : %08x\n", I915_READ_NOPID(ring)); if (IS_GEN6(dev) || IS_GEN7(dev)) { sbuf_printf(m, " Sync 0 : %08x\n", I915_READ_SYNC_0(ring)); sbuf_printf(m, " Sync 1 : %08x\n", I915_READ_SYNC_1(ring)); } sbuf_printf(m, " Control : %08x\n", I915_READ_CTL(ring)); sbuf_printf(m, " Start : %08x\n", I915_READ_START(ring)); DRM_UNLOCK(dev); return (0); } static const char * ring_str(int ring) { switch (ring) { case RCS: return (" render"); case VCS: return (" bsd"); case BCS: return (" blt"); default: return (""); } } static const char * pin_flag(int pinned) { if (pinned > 0) return (" P"); else if (pinned < 0) return (" p"); else return (""); } static const char *tiling_flag(int tiling) { switch (tiling) { default: case I915_TILING_NONE: return ""; case I915_TILING_X: return " X"; case I915_TILING_Y: return " Y"; } } static const char *dirty_flag(int dirty) { return dirty ? " dirty" : ""; } static const char *purgeable_flag(int purgeable) { return purgeable ? " purgeable" : ""; } static void print_error_buffers(struct sbuf *m, const char *name, struct drm_i915_error_buffer *err, int count) { sbuf_printf(m, "%s [%d]:\n", name, count); while (count--) { sbuf_printf(m, " %08x %8u %04x %04x %08x%s%s%s%s%s%s%s", err->gtt_offset, err->size, err->read_domains, err->write_domain, err->seqno, pin_flag(err->pinned), tiling_flag(err->tiling), dirty_flag(err->dirty), purgeable_flag(err->purgeable), err->ring != -1 ? " " : "", ring_str(err->ring), cache_level_str(err->cache_level)); if (err->name) sbuf_printf(m, " (name: %d)", err->name); if (err->fence_reg != I915_FENCE_REG_NONE) sbuf_printf(m, " (fence: %d)", err->fence_reg); sbuf_printf(m, "\n"); err++; } } static void i915_ring_error_state(struct sbuf *m, struct drm_device *dev, struct drm_i915_error_state *error, unsigned ring) { sbuf_printf(m, "%s command stream:\n", ring_str(ring)); sbuf_printf(m, " HEAD: 0x%08x\n", error->head[ring]); sbuf_printf(m, " TAIL: 0x%08x\n", error->tail[ring]); sbuf_printf(m, " ACTHD: 0x%08x\n", error->acthd[ring]); sbuf_printf(m, " IPEIR: 0x%08x\n", error->ipeir[ring]); sbuf_printf(m, " IPEHR: 0x%08x\n", error->ipehr[ring]); sbuf_printf(m, " INSTDONE: 0x%08x\n", error->instdone[ring]); if (ring == RCS && INTEL_INFO(dev)->gen >= 4) { sbuf_printf(m, " INSTDONE1: 0x%08x\n", error->instdone1); sbuf_printf(m, " BBADDR: 0x%08jx\n", (uintmax_t)error->bbaddr); } if (INTEL_INFO(dev)->gen >= 4) sbuf_printf(m, " INSTPS: 0x%08x\n", error->instps[ring]); sbuf_printf(m, " INSTPM: 0x%08x\n", error->instpm[ring]); if (INTEL_INFO(dev)->gen >= 6) { sbuf_printf(m, " FADDR: 0x%08x\n", error->faddr[ring]); sbuf_printf(m, " FAULT_REG: 0x%08x\n", error->fault_reg[ring]); sbuf_printf(m, " SYNC_0: 0x%08x\n", error->semaphore_mboxes[ring][0]); sbuf_printf(m, " SYNC_1: 0x%08x\n", error->semaphore_mboxes[ring][1]); } sbuf_printf(m, " seqno: 0x%08x\n", error->seqno[ring]); sbuf_printf(m, " ring->head: 0x%08x\n", error->cpu_ring_head[ring]); sbuf_printf(m, " ring->tail: 0x%08x\n", error->cpu_ring_tail[ring]); } static int i915_error_state(struct drm_device *dev, struct sbuf *m, void *unused) { drm_i915_private_t *dev_priv = dev->dev_private; struct drm_i915_error_state *error; int i, j, page, offset, elt; mtx_lock(&dev_priv->error_lock); if (!dev_priv->first_error) { sbuf_printf(m, "no error state collected\n"); goto out; } error = dev_priv->first_error; sbuf_printf(m, "Time: %jd s %jd us\n", (intmax_t)error->time.tv_sec, (intmax_t)error->time.tv_usec); sbuf_printf(m, "PCI ID: 0x%04x\n", dev->pci_device); sbuf_printf(m, "EIR: 0x%08x\n", error->eir); sbuf_printf(m, "PGTBL_ER: 0x%08x\n", error->pgtbl_er); for (i = 0; i < dev_priv->num_fence_regs; i++) sbuf_printf(m, " fence[%d] = %08jx\n", i, (uintmax_t)error->fence[i]); if (INTEL_INFO(dev)->gen >= 6) { sbuf_printf(m, "ERROR: 0x%08x\n", error->error); sbuf_printf(m, "DONE_REG: 0x%08x\n", error->done_reg); } i915_ring_error_state(m, dev, error, RCS); if (HAS_BLT(dev)) i915_ring_error_state(m, dev, error, BCS); if (HAS_BSD(dev)) i915_ring_error_state(m, dev, error, VCS); if (error->active_bo) print_error_buffers(m, "Active", error->active_bo, error->active_bo_count); if (error->pinned_bo) print_error_buffers(m, "Pinned", error->pinned_bo, error->pinned_bo_count); for (i = 0; i < DRM_ARRAY_SIZE(error->ring); i++) { struct drm_i915_error_object *obj; if ((obj = error->ring[i].batchbuffer)) { sbuf_printf(m, "%s --- gtt_offset = 0x%08x\n", dev_priv->rings[i].name, obj->gtt_offset); offset = 0; for (page = 0; page < obj->page_count; page++) { for (elt = 0; elt < PAGE_SIZE/4; elt++) { sbuf_printf(m, "%08x : %08x\n", offset, obj->pages[page][elt]); offset += 4; } } } if (error->ring[i].num_requests) { sbuf_printf(m, "%s --- %d requests\n", dev_priv->rings[i].name, error->ring[i].num_requests); for (j = 0; j < error->ring[i].num_requests; j++) { sbuf_printf(m, " seqno 0x%08x, emitted %ld, tail 0x%08x\n", error->ring[i].requests[j].seqno, error->ring[i].requests[j].jiffies, error->ring[i].requests[j].tail); } } if ((obj = error->ring[i].ringbuffer)) { sbuf_printf(m, "%s --- ringbuffer = 0x%08x\n", dev_priv->rings[i].name, obj->gtt_offset); offset = 0; for (page = 0; page < obj->page_count; page++) { for (elt = 0; elt < PAGE_SIZE/4; elt++) { sbuf_printf(m, "%08x : %08x\n", offset, obj->pages[page][elt]); offset += 4; } } } } if (error->overlay) intel_overlay_print_error_state(m, error->overlay); if (error->display) intel_display_print_error_state(m, dev, error->display); out: mtx_unlock(&dev_priv->error_lock); return (0); } static int i915_rstdby_delays(struct drm_device *dev, struct sbuf *m, void *unused) { drm_i915_private_t *dev_priv = dev->dev_private; u16 crstanddelay; if (sx_xlock_sig(&dev->dev_struct_lock)) return (EINTR); crstanddelay = I915_READ16(CRSTANDVID); DRM_UNLOCK(dev); sbuf_printf(m, "w/ctx: %d, w/o ctx: %d\n", (crstanddelay >> 8) & 0x3f, (crstanddelay & 0x3f)); return 0; } static int i915_cur_delayinfo(struct drm_device *dev, struct sbuf *m, void *unused) { drm_i915_private_t *dev_priv = dev->dev_private; if (IS_GEN5(dev)) { u16 rgvswctl = I915_READ16(MEMSWCTL); u16 rgvstat = I915_READ16(MEMSTAT_ILK); sbuf_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf); sbuf_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f); sbuf_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >> MEMSTAT_VID_SHIFT); sbuf_printf(m, "Current P-state: %d\n", (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT); } else if (IS_GEN6(dev)) { u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS); u32 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS); u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP); u32 rpstat; u32 rpupei, rpcurup, rpprevup; u32 rpdownei, rpcurdown, rpprevdown; int max_freq; /* RPSTAT1 is in the GT power well */ if (sx_xlock_sig(&dev->dev_struct_lock)) return (EINTR); gen6_gt_force_wake_get(dev_priv); rpstat = I915_READ(GEN6_RPSTAT1); rpupei = I915_READ(GEN6_RP_CUR_UP_EI); rpcurup = I915_READ(GEN6_RP_CUR_UP); rpprevup = I915_READ(GEN6_RP_PREV_UP); rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI); rpcurdown = I915_READ(GEN6_RP_CUR_DOWN); rpprevdown = I915_READ(GEN6_RP_PREV_DOWN); gen6_gt_force_wake_put(dev_priv); DRM_UNLOCK(dev); sbuf_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status); sbuf_printf(m, "RPSTAT1: 0x%08x\n", rpstat); sbuf_printf(m, "Render p-state ratio: %d\n", (gt_perf_status & 0xff00) >> 8); sbuf_printf(m, "Render p-state VID: %d\n", gt_perf_status & 0xff); sbuf_printf(m, "Render p-state limit: %d\n", rp_state_limits & 0xff); sbuf_printf(m, "CAGF: %dMHz\n", ((rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT) * 50); sbuf_printf(m, "RP CUR UP EI: %dus\n", rpupei & GEN6_CURICONT_MASK); sbuf_printf(m, "RP CUR UP: %dus\n", rpcurup & GEN6_CURBSYTAVG_MASK); sbuf_printf(m, "RP PREV UP: %dus\n", rpprevup & GEN6_CURBSYTAVG_MASK); sbuf_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei & GEN6_CURIAVG_MASK); sbuf_printf(m, "RP CUR DOWN: %dus\n", rpcurdown & GEN6_CURBSYTAVG_MASK); sbuf_printf(m, "RP PREV DOWN: %dus\n", rpprevdown & GEN6_CURBSYTAVG_MASK); max_freq = (rp_state_cap & 0xff0000) >> 16; sbuf_printf(m, "Lowest (RPN) frequency: %dMHz\n", max_freq * 50); max_freq = (rp_state_cap & 0xff00) >> 8; sbuf_printf(m, "Nominal (RP1) frequency: %dMHz\n", max_freq * 50); max_freq = rp_state_cap & 0xff; sbuf_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n", max_freq * 50); } else { sbuf_printf(m, "no P-state info available\n"); } return 0; } static int i915_delayfreq_table(struct drm_device *dev, struct sbuf *m, void *unused) { drm_i915_private_t *dev_priv = dev->dev_private; u32 delayfreq; int i; if (sx_xlock_sig(&dev->dev_struct_lock)) return (EINTR); for (i = 0; i < 16; i++) { delayfreq = I915_READ(PXVFREQ_BASE + i * 4); sbuf_printf(m, "P%02dVIDFREQ: 0x%08x (VID: %d)\n", i, delayfreq, (delayfreq & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT); } DRM_UNLOCK(dev); return (0); } static inline int MAP_TO_MV(int map) { return 1250 - (map * 25); } static int i915_inttoext_table(struct drm_device *dev, struct sbuf *m, void *unused) { drm_i915_private_t *dev_priv = dev->dev_private; u32 inttoext; int i; if (sx_xlock_sig(&dev->dev_struct_lock)) return (EINTR); for (i = 1; i <= 32; i++) { inttoext = I915_READ(INTTOEXT_BASE_ILK + i * 4); sbuf_printf(m, "INTTOEXT%02d: 0x%08x\n", i, inttoext); } DRM_UNLOCK(dev); return (0); } static int ironlake_drpc_info(struct drm_device *dev, struct sbuf *m) { drm_i915_private_t *dev_priv = dev->dev_private; u32 rgvmodectl; u32 rstdbyctl; u16 crstandvid; if (sx_xlock_sig(&dev->dev_struct_lock)) return (EINTR); rgvmodectl = I915_READ(MEMMODECTL); rstdbyctl = I915_READ(RSTDBYCTL); crstandvid = I915_READ16(CRSTANDVID); DRM_UNLOCK(dev); sbuf_printf(m, "HD boost: %s\n", (rgvmodectl & MEMMODE_BOOST_EN) ? "yes" : "no"); sbuf_printf(m, "Boost freq: %d\n", (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >> MEMMODE_BOOST_FREQ_SHIFT); sbuf_printf(m, "HW control enabled: %s\n", rgvmodectl & MEMMODE_HWIDLE_EN ? "yes" : "no"); sbuf_printf(m, "SW control enabled: %s\n", rgvmodectl & MEMMODE_SWMODE_EN ? "yes" : "no"); sbuf_printf(m, "Gated voltage change: %s\n", rgvmodectl & MEMMODE_RCLK_GATE ? "yes" : "no"); sbuf_printf(m, "Starting frequency: P%d\n", (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT); sbuf_printf(m, "Max P-state: P%d\n", (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT); sbuf_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK)); sbuf_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f)); sbuf_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f)); sbuf_printf(m, "Render standby enabled: %s\n", (rstdbyctl & RCX_SW_EXIT) ? "no" : "yes"); sbuf_printf(m, "Current RS state: "); switch (rstdbyctl & RSX_STATUS_MASK) { case RSX_STATUS_ON: sbuf_printf(m, "on\n"); break; case RSX_STATUS_RC1: sbuf_printf(m, "RC1\n"); break; case RSX_STATUS_RC1E: sbuf_printf(m, "RC1E\n"); break; case RSX_STATUS_RS1: sbuf_printf(m, "RS1\n"); break; case RSX_STATUS_RS2: sbuf_printf(m, "RS2 (RC6)\n"); break; case RSX_STATUS_RS3: sbuf_printf(m, "RC3 (RC6+)\n"); break; default: sbuf_printf(m, "unknown\n"); break; } return 0; } static int gen6_drpc_info(struct drm_device *dev, struct sbuf *m) { drm_i915_private_t *dev_priv = dev->dev_private; u32 rpmodectl1, gt_core_status, rcctl1; unsigned forcewake_count; int count=0; if (sx_xlock_sig(&dev->dev_struct_lock)) return (EINTR); mtx_lock(&dev_priv->gt_lock); forcewake_count = dev_priv->forcewake_count; mtx_unlock(&dev_priv->gt_lock); if (forcewake_count) { sbuf_printf(m, "RC information inaccurate because userspace " "holds a reference \n"); } else { /* NB: we cannot use forcewake, else we read the wrong values */ while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1)) DRM_UDELAY(10); sbuf_printf(m, "RC information accurate: %s\n", yesno(count < 51)); } gt_core_status = DRM_READ32(dev_priv->mmio_map, GEN6_GT_CORE_STATUS); trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4); rpmodectl1 = I915_READ(GEN6_RP_CONTROL); rcctl1 = I915_READ(GEN6_RC_CONTROL); DRM_UNLOCK(dev); sbuf_printf(m, "Video Turbo Mode: %s\n", yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO)); sbuf_printf(m, "HW control enabled: %s\n", yesno(rpmodectl1 & GEN6_RP_ENABLE)); sbuf_printf(m, "SW control enabled: %s\n", yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) == GEN6_RP_MEDIA_SW_MODE)); sbuf_printf(m, "RC1e Enabled: %s\n", yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE)); sbuf_printf(m, "RC6 Enabled: %s\n", yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE)); sbuf_printf(m, "Deep RC6 Enabled: %s\n", yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE)); sbuf_printf(m, "Deepest RC6 Enabled: %s\n", yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE)); sbuf_printf(m, "Current RC state: "); switch (gt_core_status & GEN6_RCn_MASK) { case GEN6_RC0: if (gt_core_status & GEN6_CORE_CPD_STATE_MASK) sbuf_printf(m, "Core Power Down\n"); else sbuf_printf(m, "on\n"); break; case GEN6_RC3: sbuf_printf(m, "RC3\n"); break; case GEN6_RC6: sbuf_printf(m, "RC6\n"); break; case GEN6_RC7: sbuf_printf(m, "RC7\n"); break; default: sbuf_printf(m, "Unknown\n"); break; } sbuf_printf(m, "Core Power Down: %s\n", yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK)); return 0; } static int i915_drpc_info(struct drm_device *dev, struct sbuf *m, void *unused) { if (IS_GEN6(dev) || IS_GEN7(dev)) return (gen6_drpc_info(dev, m)); else return (ironlake_drpc_info(dev, m)); } static int i915_fbc_status(struct drm_device *dev, struct sbuf *m, void *unused) { drm_i915_private_t *dev_priv = dev->dev_private; if (!I915_HAS_FBC(dev)) { sbuf_printf(m, "FBC unsupported on this chipset"); return 0; } if (intel_fbc_enabled(dev)) { sbuf_printf(m, "FBC enabled"); } else { sbuf_printf(m, "FBC disabled: "); switch (dev_priv->no_fbc_reason) { case FBC_NO_OUTPUT: sbuf_printf(m, "no outputs"); break; case FBC_STOLEN_TOO_SMALL: sbuf_printf(m, "not enough stolen memory"); break; case FBC_UNSUPPORTED_MODE: sbuf_printf(m, "mode not supported"); break; case FBC_MODE_TOO_LARGE: sbuf_printf(m, "mode too large"); break; case FBC_BAD_PLANE: sbuf_printf(m, "FBC unsupported on plane"); break; case FBC_NOT_TILED: sbuf_printf(m, "scanout buffer not tiled"); break; case FBC_MULTIPLE_PIPES: sbuf_printf(m, "multiple pipes are enabled"); break; default: sbuf_printf(m, "unknown reason"); } } return 0; } static int i915_sr_status(struct drm_device *dev, struct sbuf *m, void *unused) { drm_i915_private_t *dev_priv = dev->dev_private; bool sr_enabled = false; if (HAS_PCH_SPLIT(dev)) sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN; else if (IS_CRESTLINE(dev) || IS_I945G(dev) || IS_I945GM(dev)) sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN; else if (IS_I915GM(dev)) sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN; else if (IS_PINEVIEW(dev)) sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN; sbuf_printf(m, "self-refresh: %s", sr_enabled ? "enabled" : "disabled"); return (0); } static int i915_ring_freq_table(struct drm_device *dev, struct sbuf *m, void *unused) { drm_i915_private_t *dev_priv = dev->dev_private; int gpu_freq, ia_freq; if (!(IS_GEN6(dev) || IS_GEN7(dev))) { sbuf_printf(m, "unsupported on this chipset"); return (0); } if (sx_xlock_sig(&dev->dev_struct_lock)) return (EINTR); sbuf_printf(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\n"); for (gpu_freq = dev_priv->min_delay; gpu_freq <= dev_priv->max_delay; gpu_freq++) { I915_WRITE(GEN6_PCODE_DATA, gpu_freq); I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | GEN6_PCODE_READ_MIN_FREQ_TABLE); if (_intel_wait_for(dev, (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0, 10, 1, "915frq")) { DRM_ERROR("pcode read of freq table timed out\n"); continue; } ia_freq = I915_READ(GEN6_PCODE_DATA); sbuf_printf(m, "%d\t\t%d\n", gpu_freq * 50, ia_freq * 100); } DRM_UNLOCK(dev); return (0); } static int i915_emon_status(struct drm_device *dev, struct sbuf *m, void *unused) { drm_i915_private_t *dev_priv = dev->dev_private; unsigned long temp, chipset, gfx; if (!IS_GEN5(dev)) { sbuf_printf(m, "Not supported\n"); return (0); } if (sx_xlock_sig(&dev->dev_struct_lock)) return (EINTR); temp = i915_mch_val(dev_priv); chipset = i915_chipset_val(dev_priv); gfx = i915_gfx_val(dev_priv); DRM_UNLOCK(dev); sbuf_printf(m, "GMCH temp: %ld\n", temp); sbuf_printf(m, "Chipset power: %ld\n", chipset); sbuf_printf(m, "GFX power: %ld\n", gfx); sbuf_printf(m, "Total power: %ld\n", chipset + gfx); return (0); } static int i915_gfxec(struct drm_device *dev, struct sbuf *m, void *unused) { drm_i915_private_t *dev_priv = dev->dev_private; if (sx_xlock_sig(&dev->dev_struct_lock)) return (EINTR); sbuf_printf(m, "GFXEC: %ld\n", (unsigned long)I915_READ(0x112f4)); DRM_UNLOCK(dev); return (0); } #if 0 static int i915_opregion(struct drm_device *dev, struct sbuf *m, void *unused) { drm_i915_private_t *dev_priv = dev->dev_private; struct intel_opregion *opregion = &dev_priv->opregion; if (sx_xlock_sig(&dev->dev_struct_lock)) return (EINTR); if (opregion->header) seq_write(m, opregion->header, OPREGION_SIZE); DRM_UNLOCK(dev); return 0; } #endif static int i915_gem_framebuffer_info(struct drm_device *dev, struct sbuf *m, void *data) { drm_i915_private_t *dev_priv = dev->dev_private; struct intel_fbdev *ifbdev; struct intel_framebuffer *fb; if (sx_xlock_sig(&dev->dev_struct_lock)) return (EINTR); ifbdev = dev_priv->fbdev; if (ifbdev == NULL) { DRM_UNLOCK(dev); return (0); } fb = to_intel_framebuffer(ifbdev->helper.fb); sbuf_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, obj ", fb->base.width, fb->base.height, fb->base.depth, fb->base.bits_per_pixel); describe_obj(m, fb->obj); sbuf_printf(m, "\n"); list_for_each_entry(fb, &dev->mode_config.fb_list, base.head) { if (&fb->base == ifbdev->helper.fb) continue; sbuf_printf(m, "user size: %d x %d, depth %d, %d bpp, obj ", fb->base.width, fb->base.height, fb->base.depth, fb->base.bits_per_pixel); describe_obj(m, fb->obj); sbuf_printf(m, "\n"); } DRM_UNLOCK(dev); return (0); } static int i915_context_status(struct drm_device *dev, struct sbuf *m, void *data) { drm_i915_private_t *dev_priv; int ret; if ((dev->driver->driver_features & DRIVER_MODESET) == 0) return (0); dev_priv = dev->dev_private; ret = sx_xlock_sig(&dev->mode_config.mutex); if (ret != 0) return (EINTR); if (dev_priv->pwrctx != NULL) { sbuf_printf(m, "power context "); describe_obj(m, dev_priv->pwrctx); sbuf_printf(m, "\n"); } if (dev_priv->renderctx != NULL) { sbuf_printf(m, "render context "); describe_obj(m, dev_priv->renderctx); sbuf_printf(m, "\n"); } sx_xunlock(&dev->mode_config.mutex); return (0); } static int i915_gen6_forcewake_count_info(struct drm_device *dev, struct sbuf *m, void *data) { struct drm_i915_private *dev_priv; unsigned forcewake_count; dev_priv = dev->dev_private; mtx_lock(&dev_priv->gt_lock); forcewake_count = dev_priv->forcewake_count; mtx_unlock(&dev_priv->gt_lock); sbuf_printf(m, "forcewake count = %u\n", forcewake_count); return (0); } static const char * swizzle_string(unsigned swizzle) { switch(swizzle) { case I915_BIT_6_SWIZZLE_NONE: return "none"; case I915_BIT_6_SWIZZLE_9: return "bit9"; case I915_BIT_6_SWIZZLE_9_10: return "bit9/bit10"; case I915_BIT_6_SWIZZLE_9_11: return "bit9/bit11"; case I915_BIT_6_SWIZZLE_9_10_11: return "bit9/bit10/bit11"; case I915_BIT_6_SWIZZLE_9_17: return "bit9/bit17"; case I915_BIT_6_SWIZZLE_9_10_17: return "bit9/bit10/bit17"; case I915_BIT_6_SWIZZLE_UNKNOWN: return "unknown"; } return "bug"; } static int i915_swizzle_info(struct drm_device *dev, struct sbuf *m, void *data) { struct drm_i915_private *dev_priv; int ret; dev_priv = dev->dev_private; ret = sx_xlock_sig(&dev->dev_struct_lock); if (ret != 0) return (EINTR); sbuf_printf(m, "bit6 swizzle for X-tiling = %s\n", swizzle_string(dev_priv->mm.bit_6_swizzle_x)); sbuf_printf(m, "bit6 swizzle for Y-tiling = %s\n", swizzle_string(dev_priv->mm.bit_6_swizzle_y)); if (IS_GEN3(dev) || IS_GEN4(dev)) { sbuf_printf(m, "DDC = 0x%08x\n", I915_READ(DCC)); sbuf_printf(m, "C0DRB3 = 0x%04x\n", I915_READ16(C0DRB3)); sbuf_printf(m, "C1DRB3 = 0x%04x\n", I915_READ16(C1DRB3)); } else if (IS_GEN6(dev) || IS_GEN7(dev)) { sbuf_printf(m, "MAD_DIMM_C0 = 0x%08x\n", I915_READ(MAD_DIMM_C0)); sbuf_printf(m, "MAD_DIMM_C1 = 0x%08x\n", I915_READ(MAD_DIMM_C1)); sbuf_printf(m, "MAD_DIMM_C2 = 0x%08x\n", I915_READ(MAD_DIMM_C2)); sbuf_printf(m, "TILECTL = 0x%08x\n", I915_READ(TILECTL)); sbuf_printf(m, "ARB_MODE = 0x%08x\n", I915_READ(ARB_MODE)); sbuf_printf(m, "DISP_ARB_CTL = 0x%08x\n", I915_READ(DISP_ARB_CTL)); } DRM_UNLOCK(dev); return (0); } static int i915_ppgtt_info(struct drm_device *dev, struct sbuf *m, void *data) { struct drm_i915_private *dev_priv; struct intel_ring_buffer *ring; int i, ret; dev_priv = dev->dev_private; ret = sx_xlock_sig(&dev->dev_struct_lock); if (ret != 0) return (EINTR); if (INTEL_INFO(dev)->gen == 6) sbuf_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE)); for (i = 0; i < I915_NUM_RINGS; i++) { ring = &dev_priv->rings[i]; sbuf_printf(m, "%s\n", ring->name); if (INTEL_INFO(dev)->gen == 7) sbuf_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring))); sbuf_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring))); sbuf_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring))); sbuf_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring))); } if (dev_priv->mm.aliasing_ppgtt) { struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt; sbuf_printf(m, "aliasing PPGTT:\n"); sbuf_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd_offset); } sbuf_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK)); DRM_UNLOCK(dev); return (0); } static int i915_debug_set_wedged(SYSCTL_HANDLER_ARGS) { struct drm_device *dev; drm_i915_private_t *dev_priv; int error, wedged; dev = arg1; dev_priv = dev->dev_private; if (dev_priv == NULL) return (EBUSY); wedged = dev_priv->mm.wedged; error = sysctl_handle_int(oidp, &wedged, 0, req); if (error || !req->newptr) return (error); DRM_INFO("Manually setting wedged to %d\n", wedged); i915_handle_error(dev, wedged); return (error); } static int i915_max_freq(SYSCTL_HANDLER_ARGS) { struct drm_device *dev; drm_i915_private_t *dev_priv; int error, max_freq; dev = arg1; dev_priv = dev->dev_private; if (dev_priv == NULL) return (EBUSY); max_freq = dev_priv->max_delay * 50; error = sysctl_handle_int(oidp, &max_freq, 0, req); if (error || !req->newptr) return (error); DRM_DEBUG("Manually setting max freq to %d\n", max_freq); /* * Turbo will still be enabled, but won't go above the set value. */ dev_priv->max_delay = max_freq / 50; gen6_set_rps(dev, max_freq / 50); return (error); } static int i915_cache_sharing(SYSCTL_HANDLER_ARGS) { struct drm_device *dev; drm_i915_private_t *dev_priv; int error, snpcr, cache_sharing; dev = arg1; dev_priv = dev->dev_private; if (dev_priv == NULL) return (EBUSY); DRM_LOCK(dev); snpcr = I915_READ(GEN6_MBCUNIT_SNPCR); DRM_UNLOCK(dev); cache_sharing = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT; error = sysctl_handle_int(oidp, &cache_sharing, 0, req); if (error || !req->newptr) return (error); if (cache_sharing < 0 || cache_sharing > 3) return (EINVAL); DRM_DEBUG("Manually setting uncore sharing to %d\n", cache_sharing); DRM_LOCK(dev); /* Update the cache sharing policy here as well */ snpcr = I915_READ(GEN6_MBCUNIT_SNPCR); snpcr &= ~GEN6_MBC_SNPCR_MASK; snpcr |= (cache_sharing << GEN6_MBC_SNPCR_SHIFT); I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr); DRM_UNLOCK(dev); return (0); } static struct i915_info_sysctl_list { const char *name; int (*ptr)(struct drm_device *dev, struct sbuf *m, void *data); int flags; void *data; } i915_info_sysctl_list[] = { {"i915_capabilities", i915_capabilities, 0}, {"i915_gem_objects", i915_gem_object_info, 0}, {"i915_gem_gtt", i915_gem_gtt_info, 0}, {"i915_gem_active", i915_gem_object_list_info, 0, (void *)ACTIVE_LIST}, {"i915_gem_flushing", i915_gem_object_list_info, 0, (void *)FLUSHING_LIST}, {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *)INACTIVE_LIST}, {"i915_gem_pinned", i915_gem_object_list_info, 0, (void *)PINNED_LIST}, {"i915_gem_deferred_free", i915_gem_object_list_info, 0, (void *)DEFERRED_FREE_LIST}, {"i915_gem_pageflip", i915_gem_pageflip_info, 0}, {"i915_gem_request", i915_gem_request_info, 0}, {"i915_gem_seqno", i915_gem_seqno_info, 0}, {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0}, {"i915_gem_interrupt", i915_interrupt_info, 0}, {"i915_gem_hws", i915_hws_info, 0, (void *)RCS}, {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS}, {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS}, {"i915_ringbuffer_data", i915_ringbuffer_data, 0, (void *)RCS}, {"i915_ringbuffer_info", i915_ringbuffer_info, 0, (void *)RCS}, {"i915_bsd_ringbuffer_data", i915_ringbuffer_data, 0, (void *)VCS}, {"i915_bsd_ringbuffer_info", i915_ringbuffer_info, 0, (void *)VCS}, {"i915_blt_ringbuffer_data", i915_ringbuffer_data, 0, (void *)BCS}, {"i915_blt_ringbuffer_info", i915_ringbuffer_info, 0, (void *)BCS}, {"i915_error_state", i915_error_state, 0}, {"i915_rstdby_delays", i915_rstdby_delays, 0}, {"i915_cur_delayinfo", i915_cur_delayinfo, 0}, {"i915_delayfreq_table", i915_delayfreq_table, 0}, {"i915_inttoext_table", i915_inttoext_table, 0}, {"i915_drpc_info", i915_drpc_info, 0}, {"i915_emon_status", i915_emon_status, 0}, {"i915_ring_freq_table", i915_ring_freq_table, 0}, {"i915_gfxec", i915_gfxec, 0}, {"i915_fbc_status", i915_fbc_status, 0}, {"i915_sr_status", i915_sr_status, 0}, #if 0 {"i915_opregion", i915_opregion, 0}, #endif {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0}, {"i915_context_status", i915_context_status, 0}, {"i915_gen6_forcewake_count_info", i915_gen6_forcewake_count_info, 0}, {"i915_swizzle_info", i915_swizzle_info, 0}, {"i915_ppgtt_info", i915_ppgtt_info, 0}, }; struct i915_info_sysctl_thunk { struct drm_device *dev; int idx; void *arg; }; static int i915_info_sysctl_handler(SYSCTL_HANDLER_ARGS) { struct sbuf m; struct i915_info_sysctl_thunk *thunk; struct drm_device *dev; drm_i915_private_t *dev_priv; int error; thunk = arg1; dev = thunk->dev; dev_priv = dev->dev_private; if (dev_priv == NULL) return (EBUSY); error = sysctl_wire_old_buffer(req, 0); if (error != 0) return (error); sbuf_new_for_sysctl(&m, NULL, 128, req); error = i915_info_sysctl_list[thunk->idx].ptr(dev, &m, thunk->arg); if (error == 0) error = sbuf_finish(&m); sbuf_delete(&m); return (error); } extern int i915_gem_sync_exec_requests; extern int i915_fix_mi_batchbuffer_end; extern int i915_intr_pf; extern long i915_gem_wired_pages_cnt; int i915_sysctl_init(struct drm_device *dev, struct sysctl_ctx_list *ctx, struct sysctl_oid *top) { struct sysctl_oid *oid, *info; struct i915_info_sysctl_thunk *thunks; int i, error; thunks = malloc(sizeof(*thunks) * DRM_ARRAY_SIZE(i915_info_sysctl_list), DRM_MEM_DRIVER, M_WAITOK | M_ZERO); for (i = 0; i < DRM_ARRAY_SIZE(i915_info_sysctl_list); i++) { thunks[i].dev = dev; thunks[i].idx = i; thunks[i].arg = i915_info_sysctl_list[i].data; } dev->sysctl_private = thunks; info = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(top), OID_AUTO, "info", CTLFLAG_RW, NULL, NULL); if (info == NULL) return (ENOMEM); for (i = 0; i < DRM_ARRAY_SIZE(i915_info_sysctl_list); i++) { oid = SYSCTL_ADD_OID(ctx, SYSCTL_CHILDREN(info), OID_AUTO, i915_info_sysctl_list[i].name, CTLTYPE_STRING | CTLFLAG_RD, &thunks[i], 0, i915_info_sysctl_handler, "A", NULL); if (oid == NULL) return (ENOMEM); } oid = SYSCTL_ADD_LONG(ctx, SYSCTL_CHILDREN(info), OID_AUTO, "i915_gem_wired_pages", CTLFLAG_RD, &i915_gem_wired_pages_cnt, NULL); oid = SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(top), OID_AUTO, "wedged", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, dev, 0, i915_debug_set_wedged, "I", NULL); if (oid == NULL) return (ENOMEM); oid = SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(top), OID_AUTO, "max_freq", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, dev, 0, i915_max_freq, "I", NULL); if (oid == NULL) return (ENOMEM); oid = SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(top), OID_AUTO, "cache_sharing", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, dev, 0, i915_cache_sharing, "I", NULL); if (oid == NULL) return (ENOMEM); oid = SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(top), OID_AUTO, "sync_exec", CTLFLAG_RW, &i915_gem_sync_exec_requests, 0, NULL); if (oid == NULL) return (ENOMEM); oid = SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(top), OID_AUTO, "fix_mi", CTLFLAG_RW, &i915_fix_mi_batchbuffer_end, 0, NULL); if (oid == NULL) return (ENOMEM); oid = SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(top), OID_AUTO, "intr_pf", CTLFLAG_RW, &i915_intr_pf, 0, NULL); if (oid == NULL) return (ENOMEM); error = drm_add_busid_modesetting(dev, ctx, top); if (error != 0) return (error); return (0); } void i915_sysctl_cleanup(struct drm_device *dev) { free(dev->sysctl_private, DRM_MEM_DRIVER); }