Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/s3/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/usie/@/amd64/compile/hs32/modules/usr/src/sys/modules/ipwfw/ipw_monitor/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/run/@/gnu/fs/xfs/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/s3/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/usie/@/amd64/compile/hs32/modules/usr/src/sys/modules/ipwfw/ipw_monitor/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/run/@/gnu/fs/xfs/xfs_extfree_item.c |
/* * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc. * All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it would be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_types.h" #include "xfs_log.h" #include "xfs_inum.h" #include "xfs_trans.h" #include "xfs_buf_item.h" #include "xfs_sb.h" #include "xfs_dir.h" #include "xfs_dmapi.h" #include "xfs_mount.h" #include "xfs_trans_priv.h" #include "xfs_extfree_item.h" kmem_zone_t *xfs_efi_zone; kmem_zone_t *xfs_efd_zone; STATIC void xfs_efi_item_unlock(xfs_efi_log_item_t *); STATIC void xfs_efi_item_abort(xfs_efi_log_item_t *); STATIC void xfs_efd_item_abort(xfs_efd_log_item_t *); void xfs_efi_item_free(xfs_efi_log_item_t *efip) { int nexts = efip->efi_format.efi_nextents; if (nexts > XFS_EFI_MAX_FAST_EXTENTS) { kmem_free(efip, sizeof(xfs_efi_log_item_t) + (nexts - 1) * sizeof(xfs_extent_t)); } else { kmem_zone_free(xfs_efi_zone, efip); } } /* * This returns the number of iovecs needed to log the given efi item. * We only need 1 iovec for an efi item. It just logs the efi_log_format * structure. */ /*ARGSUSED*/ STATIC uint xfs_efi_item_size(xfs_efi_log_item_t *efip) { return 1; } /* * This is called to fill in the vector of log iovecs for the * given efi log item. We use only 1 iovec, and we point that * at the efi_log_format structure embedded in the efi item. * It is at this point that we assert that all of the extent * slots in the efi item have been filled. */ STATIC void xfs_efi_item_format(xfs_efi_log_item_t *efip, xfs_log_iovec_t *log_vector) { uint size; ASSERT(efip->efi_next_extent == efip->efi_format.efi_nextents); efip->efi_format.efi_type = XFS_LI_EFI; size = sizeof(xfs_efi_log_format_t); size += (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t); efip->efi_format.efi_size = 1; log_vector->i_addr = (xfs_caddr_t)&(efip->efi_format); log_vector->i_len = size; XLOG_VEC_SET_TYPE(log_vector, XLOG_REG_TYPE_EFI_FORMAT); ASSERT(size >= sizeof(xfs_efi_log_format_t)); } /* * Pinning has no meaning for an efi item, so just return. */ /*ARGSUSED*/ STATIC void xfs_efi_item_pin(xfs_efi_log_item_t *efip) { return; } /* * While EFIs cannot really be pinned, the unpin operation is the * last place at which the EFI is manipulated during a transaction. * Here we coordinate with xfs_efi_cancel() to determine who gets to * free the EFI. */ /*ARGSUSED*/ STATIC void xfs_efi_item_unpin(xfs_efi_log_item_t *efip, int stale) { xfs_mount_t *mp; SPLDECL(s); mp = efip->efi_item.li_mountp; AIL_LOCK(mp, s); if (efip->efi_flags & XFS_EFI_CANCELED) { /* * xfs_trans_delete_ail() drops the AIL lock. */ xfs_trans_delete_ail(mp, (xfs_log_item_t *)efip, s); xfs_efi_item_free(efip); } else { efip->efi_flags |= XFS_EFI_COMMITTED; AIL_UNLOCK(mp, s); } } /* * like unpin only we have to also clear the xaction descriptor * pointing the log item if we free the item. This routine duplicates * unpin because efi_flags is protected by the AIL lock. Freeing * the descriptor and then calling unpin would force us to drop the AIL * lock which would open up a race condition. */ STATIC void xfs_efi_item_unpin_remove(xfs_efi_log_item_t *efip, xfs_trans_t *tp) { xfs_mount_t *mp; xfs_log_item_desc_t *lidp; SPLDECL(s); mp = efip->efi_item.li_mountp; AIL_LOCK(mp, s); if (efip->efi_flags & XFS_EFI_CANCELED) { /* * free the xaction descriptor pointing to this item */ lidp = xfs_trans_find_item(tp, (xfs_log_item_t *) efip); xfs_trans_free_item(tp, lidp); /* * pull the item off the AIL. * xfs_trans_delete_ail() drops the AIL lock. */ xfs_trans_delete_ail(mp, (xfs_log_item_t *)efip, s); xfs_efi_item_free(efip); } else { efip->efi_flags |= XFS_EFI_COMMITTED; AIL_UNLOCK(mp, s); } } /* * Efi items have no locking or pushing. However, since EFIs are * pulled from the AIL when their corresponding EFDs are committed * to disk, their situation is very similar to being pinned. Return * XFS_ITEM_PINNED so that the caller will eventually flush the log. * This should help in getting the EFI out of the AIL. */ /*ARGSUSED*/ STATIC uint xfs_efi_item_trylock(xfs_efi_log_item_t *efip) { return XFS_ITEM_PINNED; } /* * Efi items have no locking, so just return. */ /*ARGSUSED*/ STATIC void xfs_efi_item_unlock(xfs_efi_log_item_t *efip) { if (efip->efi_item.li_flags & XFS_LI_ABORTED) xfs_efi_item_abort(efip); return; } /* * The EFI is logged only once and cannot be moved in the log, so * simply return the lsn at which it's been logged. The canceled * flag is not paid any attention here. Checking for that is delayed * until the EFI is unpinned. */ /*ARGSUSED*/ STATIC xfs_lsn_t xfs_efi_item_committed(xfs_efi_log_item_t *efip, xfs_lsn_t lsn) { return lsn; } /* * This is called when the transaction logging the EFI is aborted. * Free up the EFI and return. No need to clean up the slot for * the item in the transaction. That was done by the unpin code * which is called prior to this routine in the abort/fs-shutdown path. */ STATIC void xfs_efi_item_abort(xfs_efi_log_item_t *efip) { xfs_efi_item_free(efip); } /* * There isn't much you can do to push on an efi item. It is simply * stuck waiting for all of its corresponding efd items to be * committed to disk. */ /*ARGSUSED*/ STATIC void xfs_efi_item_push(xfs_efi_log_item_t *efip) { return; } /* * The EFI dependency tracking op doesn't do squat. It can't because * it doesn't know where the free extent is coming from. The dependency * tracking has to be handled by the "enclosing" metadata object. For * example, for inodes, the inode is locked throughout the extent freeing * so the dependency should be recorded there. */ /*ARGSUSED*/ STATIC void xfs_efi_item_committing(xfs_efi_log_item_t *efip, xfs_lsn_t lsn) { return; } /* * This is the ops vector shared by all efi log items. */ STATIC struct xfs_item_ops xfs_efi_item_ops = { .iop_size = (uint(*)(xfs_log_item_t*))xfs_efi_item_size, .iop_format = (void(*)(xfs_log_item_t*, xfs_log_iovec_t*)) xfs_efi_item_format, .iop_pin = (void(*)(xfs_log_item_t*))xfs_efi_item_pin, .iop_unpin = (void(*)(xfs_log_item_t*, int))xfs_efi_item_unpin, .iop_unpin_remove = (void(*)(xfs_log_item_t*, xfs_trans_t *)) xfs_efi_item_unpin_remove, .iop_trylock = (uint(*)(xfs_log_item_t*))xfs_efi_item_trylock, .iop_unlock = (void(*)(xfs_log_item_t*))xfs_efi_item_unlock, .iop_committed = (xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t)) xfs_efi_item_committed, .iop_push = (void(*)(xfs_log_item_t*))xfs_efi_item_push, .iop_abort = (void(*)(xfs_log_item_t*))xfs_efi_item_abort, .iop_pushbuf = NULL, .iop_committing = (void(*)(xfs_log_item_t*, xfs_lsn_t)) xfs_efi_item_committing }; /* * Allocate and initialize an efi item with the given number of extents. */ xfs_efi_log_item_t * xfs_efi_init(xfs_mount_t *mp, uint nextents) { xfs_efi_log_item_t *efip; uint size; ASSERT(nextents > 0); if (nextents > XFS_EFI_MAX_FAST_EXTENTS) { size = (uint)(sizeof(xfs_efi_log_item_t) + ((nextents - 1) * sizeof(xfs_extent_t))); efip = (xfs_efi_log_item_t*)kmem_zalloc(size, KM_SLEEP); } else { efip = (xfs_efi_log_item_t*)kmem_zone_zalloc(xfs_efi_zone, KM_SLEEP); } efip->efi_item.li_type = XFS_LI_EFI; efip->efi_item.li_ops = &xfs_efi_item_ops; efip->efi_item.li_mountp = mp; efip->efi_format.efi_nextents = nextents; efip->efi_format.efi_id = (__psint_t)(void*)efip; return (efip); } /* * This is called by the efd item code below to release references to * the given efi item. Each efd calls this with the number of * extents that it has logged, and when the sum of these reaches * the total number of extents logged by this efi item we can free * the efi item. * * Freeing the efi item requires that we remove it from the AIL. * We'll use the AIL lock to protect our counters as well as * the removal from the AIL. */ void xfs_efi_release(xfs_efi_log_item_t *efip, uint nextents) { xfs_mount_t *mp; int extents_left; SPLDECL(s); mp = efip->efi_item.li_mountp; ASSERT(efip->efi_next_extent > 0); ASSERT(efip->efi_flags & XFS_EFI_COMMITTED); AIL_LOCK(mp, s); ASSERT(efip->efi_next_extent >= nextents); efip->efi_next_extent -= nextents; extents_left = efip->efi_next_extent; if (extents_left == 0) { /* * xfs_trans_delete_ail() drops the AIL lock. */ xfs_trans_delete_ail(mp, (xfs_log_item_t *)efip, s); xfs_efi_item_free(efip); } else { AIL_UNLOCK(mp, s); } } /* * This is called when the transaction that should be committing the * EFD corresponding to the given EFI is aborted. The committed and * canceled flags are used to coordinate the freeing of the EFI and * the references by the transaction that committed it. */ STATIC void xfs_efi_cancel( xfs_efi_log_item_t *efip) { xfs_mount_t *mp; SPLDECL(s); mp = efip->efi_item.li_mountp; AIL_LOCK(mp, s); if (efip->efi_flags & XFS_EFI_COMMITTED) { /* * xfs_trans_delete_ail() drops the AIL lock. */ xfs_trans_delete_ail(mp, (xfs_log_item_t *)efip, s); xfs_efi_item_free(efip); } else { efip->efi_flags |= XFS_EFI_CANCELED; AIL_UNLOCK(mp, s); } } STATIC void xfs_efd_item_free(xfs_efd_log_item_t *efdp) { int nexts = efdp->efd_format.efd_nextents; if (nexts > XFS_EFD_MAX_FAST_EXTENTS) { kmem_free(efdp, sizeof(xfs_efd_log_item_t) + (nexts - 1) * sizeof(xfs_extent_t)); } else { kmem_zone_free(xfs_efd_zone, efdp); } } /* * This returns the number of iovecs needed to log the given efd item. * We only need 1 iovec for an efd item. It just logs the efd_log_format * structure. */ /*ARGSUSED*/ STATIC uint xfs_efd_item_size(xfs_efd_log_item_t *efdp) { return 1; } /* * This is called to fill in the vector of log iovecs for the * given efd log item. We use only 1 iovec, and we point that * at the efd_log_format structure embedded in the efd item. * It is at this point that we assert that all of the extent * slots in the efd item have been filled. */ STATIC void xfs_efd_item_format(xfs_efd_log_item_t *efdp, xfs_log_iovec_t *log_vector) { uint size; ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents); efdp->efd_format.efd_type = XFS_LI_EFD; size = sizeof(xfs_efd_log_format_t); size += (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t); efdp->efd_format.efd_size = 1; log_vector->i_addr = (xfs_caddr_t)&(efdp->efd_format); log_vector->i_len = size; XLOG_VEC_SET_TYPE(log_vector, XLOG_REG_TYPE_EFD_FORMAT); ASSERT(size >= sizeof(xfs_efd_log_format_t)); } /* * Pinning has no meaning for an efd item, so just return. */ /*ARGSUSED*/ STATIC void xfs_efd_item_pin(xfs_efd_log_item_t *efdp) { return; } /* * Since pinning has no meaning for an efd item, unpinning does * not either. */ /*ARGSUSED*/ STATIC void xfs_efd_item_unpin(xfs_efd_log_item_t *efdp, int stale) { return; } /*ARGSUSED*/ STATIC void xfs_efd_item_unpin_remove(xfs_efd_log_item_t *efdp, xfs_trans_t *tp) { return; } /* * Efd items have no locking, so just return success. */ /*ARGSUSED*/ STATIC uint xfs_efd_item_trylock(xfs_efd_log_item_t *efdp) { return XFS_ITEM_LOCKED; } /* * Efd items have no locking or pushing, so return failure * so that the caller doesn't bother with us. */ /*ARGSUSED*/ STATIC void xfs_efd_item_unlock(xfs_efd_log_item_t *efdp) { if (efdp->efd_item.li_flags & XFS_LI_ABORTED) xfs_efd_item_abort(efdp); return; } /* * When the efd item is committed to disk, all we need to do * is delete our reference to our partner efi item and then * free ourselves. Since we're freeing ourselves we must * return -1 to keep the transaction code from further referencing * this item. */ /*ARGSUSED*/ STATIC xfs_lsn_t xfs_efd_item_committed(xfs_efd_log_item_t *efdp, xfs_lsn_t lsn) { /* * If we got a log I/O error, it's always the case that the LR with the * EFI got unpinned and freed before the EFD got aborted. */ if ((efdp->efd_item.li_flags & XFS_LI_ABORTED) == 0) xfs_efi_release(efdp->efd_efip, efdp->efd_format.efd_nextents); xfs_efd_item_free(efdp); return (xfs_lsn_t)-1; } /* * The transaction of which this EFD is a part has been aborted. * Inform its companion EFI of this fact and then clean up after * ourselves. No need to clean up the slot for the item in the * transaction. That was done by the unpin code which is called * prior to this routine in the abort/fs-shutdown path. */ STATIC void xfs_efd_item_abort(xfs_efd_log_item_t *efdp) { /* * If we got a log I/O error, it's always the case that the LR with the * EFI got unpinned and freed before the EFD got aborted. So don't * reference the EFI at all in that case. */ if ((efdp->efd_item.li_flags & XFS_LI_ABORTED) == 0) xfs_efi_cancel(efdp->efd_efip); xfs_efd_item_free(efdp); } /* * There isn't much you can do to push on an efd item. It is simply * stuck waiting for the log to be flushed to disk. */ /*ARGSUSED*/ STATIC void xfs_efd_item_push(xfs_efd_log_item_t *efdp) { return; } /* * The EFD dependency tracking op doesn't do squat. It can't because * it doesn't know where the free extent is coming from. The dependency * tracking has to be handled by the "enclosing" metadata object. For * example, for inodes, the inode is locked throughout the extent freeing * so the dependency should be recorded there. */ /*ARGSUSED*/ STATIC void xfs_efd_item_committing(xfs_efd_log_item_t *efip, xfs_lsn_t lsn) { return; } /* * This is the ops vector shared by all efd log items. */ STATIC struct xfs_item_ops xfs_efd_item_ops = { .iop_size = (uint(*)(xfs_log_item_t*))xfs_efd_item_size, .iop_format = (void(*)(xfs_log_item_t*, xfs_log_iovec_t*)) xfs_efd_item_format, .iop_pin = (void(*)(xfs_log_item_t*))xfs_efd_item_pin, .iop_unpin = (void(*)(xfs_log_item_t*, int))xfs_efd_item_unpin, .iop_unpin_remove = (void(*)(xfs_log_item_t*, xfs_trans_t*)) xfs_efd_item_unpin_remove, .iop_trylock = (uint(*)(xfs_log_item_t*))xfs_efd_item_trylock, .iop_unlock = (void(*)(xfs_log_item_t*))xfs_efd_item_unlock, .iop_committed = (xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t)) xfs_efd_item_committed, .iop_push = (void(*)(xfs_log_item_t*))xfs_efd_item_push, .iop_abort = (void(*)(xfs_log_item_t*))xfs_efd_item_abort, .iop_pushbuf = NULL, .iop_committing = (void(*)(xfs_log_item_t*, xfs_lsn_t)) xfs_efd_item_committing }; /* * Allocate and initialize an efd item with the given number of extents. */ xfs_efd_log_item_t * xfs_efd_init(xfs_mount_t *mp, xfs_efi_log_item_t *efip, uint nextents) { xfs_efd_log_item_t *efdp; uint size; ASSERT(nextents > 0); if (nextents > XFS_EFD_MAX_FAST_EXTENTS) { size = (uint)(sizeof(xfs_efd_log_item_t) + ((nextents - 1) * sizeof(xfs_extent_t))); efdp = (xfs_efd_log_item_t*)kmem_zalloc(size, KM_SLEEP); } else { efdp = (xfs_efd_log_item_t*)kmem_zone_zalloc(xfs_efd_zone, KM_SLEEP); } efdp->efd_item.li_type = XFS_LI_EFD; efdp->efd_item.li_ops = &xfs_efd_item_ops; efdp->efd_item.li_mountp = mp; efdp->efd_efip = efip; efdp->efd_format.efd_nextents = nextents; efdp->efd_format.efd_efi_id = efip->efi_format.efi_id; return (efdp); }