Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/s3/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/usie/@/amd64/compile/hs32/modules/usr/src/sys/modules/ipwfw/ipw_monitor/@/amd64/compile/hs32/modules/usr/src/sys/modules/vxge/@/i386/i386/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/s3/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/usie/@/amd64/compile/hs32/modules/usr/src/sys/modules/ipwfw/ipw_monitor/@/amd64/compile/hs32/modules/usr/src/sys/modules/vxge/@/i386/i386/sys_machdep.c |
/*- * Copyright (c) 1990 The Regents of the University of California. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: @(#)sys_machdep.c 5.5 (Berkeley) 1/19/91 */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/i386/i386/sys_machdep.c 231150 2012-02-07 19:23:08Z jhb $"); #include "opt_capsicum.h" #include "opt_kstack_pages.h" #include <sys/param.h> #include <sys/capability.h> #include <sys/systm.h> #include <sys/lock.h> #include <sys/malloc.h> #include <sys/mutex.h> #include <sys/priv.h> #include <sys/proc.h> #include <sys/smp.h> #include <sys/sysproto.h> #include <vm/vm.h> #include <vm/pmap.h> #include <vm/vm_map.h> #include <vm/vm_extern.h> #include <machine/cpu.h> #include <machine/pcb.h> #include <machine/pcb_ext.h> #include <machine/proc.h> #include <machine/sysarch.h> #include <security/audit/audit.h> #ifdef XEN #include <machine/xen/xenfunc.h> void i386_reset_ldt(struct proc_ldt *pldt); void i386_reset_ldt(struct proc_ldt *pldt) { xen_set_ldt((vm_offset_t)pldt->ldt_base, pldt->ldt_len); } #else #define i386_reset_ldt(x) #endif #include <vm/vm_kern.h> /* for kernel_map */ #define MAX_LD 8192 #define LD_PER_PAGE 512 #define NEW_MAX_LD(num) ((num + LD_PER_PAGE) & ~(LD_PER_PAGE-1)) #define SIZE_FROM_LARGEST_LD(num) (NEW_MAX_LD(num) << 3) #define NULL_LDT_BASE ((caddr_t)NULL) #ifdef SMP static void set_user_ldt_rv(struct vmspace *vmsp); #endif static int i386_set_ldt_data(struct thread *, int start, int num, union descriptor *descs); static int i386_ldt_grow(struct thread *td, int len); #ifndef _SYS_SYSPROTO_H_ struct sysarch_args { int op; char *parms; }; #endif int sysarch(td, uap) struct thread *td; register struct sysarch_args *uap; { int error; union descriptor *lp; union { struct i386_ldt_args largs; struct i386_ioperm_args iargs; } kargs; uint32_t base; struct segment_descriptor sd, *sdp; AUDIT_ARG_CMD(uap->op); #ifdef CAPABILITY_MODE /* * When adding new operations, add a new case statement here to * explicitly indicate whether or not the operation is safe to * perform in capability mode. */ if (IN_CAPABILITY_MODE(td)) { switch (uap->op) { case I386_GET_LDT: case I386_SET_LDT: case I386_GET_IOPERM: case I386_GET_FSBASE: case I386_SET_FSBASE: case I386_GET_GSBASE: case I386_SET_GSBASE: break; case I386_SET_IOPERM: default: return (ECAPMODE); } } #endif switch (uap->op) { case I386_GET_IOPERM: case I386_SET_IOPERM: if ((error = copyin(uap->parms, &kargs.iargs, sizeof(struct i386_ioperm_args))) != 0) return (error); break; case I386_GET_LDT: case I386_SET_LDT: if ((error = copyin(uap->parms, &kargs.largs, sizeof(struct i386_ldt_args))) != 0) return (error); if (kargs.largs.num > MAX_LD || kargs.largs.num <= 0) return (EINVAL); break; default: break; } switch(uap->op) { case I386_GET_LDT: error = i386_get_ldt(td, &kargs.largs); break; case I386_SET_LDT: if (kargs.largs.descs != NULL) { lp = (union descriptor *)kmem_alloc(kernel_map, kargs.largs.num * sizeof(union descriptor)); if (lp == NULL) { error = ENOMEM; break; } error = copyin(kargs.largs.descs, lp, kargs.largs.num * sizeof(union descriptor)); if (error == 0) error = i386_set_ldt(td, &kargs.largs, lp); kmem_free(kernel_map, (vm_offset_t)lp, kargs.largs.num * sizeof(union descriptor)); } else { error = i386_set_ldt(td, &kargs.largs, NULL); } break; case I386_GET_IOPERM: error = i386_get_ioperm(td, &kargs.iargs); if (error == 0) error = copyout(&kargs.iargs, uap->parms, sizeof(struct i386_ioperm_args)); break; case I386_SET_IOPERM: error = i386_set_ioperm(td, &kargs.iargs); break; case I386_VM86: error = vm86_sysarch(td, uap->parms); break; case I386_GET_FSBASE: sdp = &td->td_pcb->pcb_fsd; base = sdp->sd_hibase << 24 | sdp->sd_lobase; error = copyout(&base, uap->parms, sizeof(base)); break; case I386_SET_FSBASE: error = copyin(uap->parms, &base, sizeof(base)); if (!error) { /* * Construct a descriptor and store it in the pcb for * the next context switch. Also store it in the gdt * so that the load of tf_fs into %fs will activate it * at return to userland. */ sd.sd_lobase = base & 0xffffff; sd.sd_hibase = (base >> 24) & 0xff; #ifdef XEN /* need to do nosegneg like Linux */ sd.sd_lolimit = (HYPERVISOR_VIRT_START >> 12) & 0xffff; #else sd.sd_lolimit = 0xffff; /* 4GB limit, wraps around */ #endif sd.sd_hilimit = 0xf; sd.sd_type = SDT_MEMRWA; sd.sd_dpl = SEL_UPL; sd.sd_p = 1; sd.sd_xx = 0; sd.sd_def32 = 1; sd.sd_gran = 1; critical_enter(); td->td_pcb->pcb_fsd = sd; #ifdef XEN HYPERVISOR_update_descriptor(vtomach(&PCPU_GET(fsgs_gdt)[0]), *(uint64_t *)&sd); #else PCPU_GET(fsgs_gdt)[0] = sd; #endif critical_exit(); td->td_frame->tf_fs = GSEL(GUFS_SEL, SEL_UPL); } break; case I386_GET_GSBASE: sdp = &td->td_pcb->pcb_gsd; base = sdp->sd_hibase << 24 | sdp->sd_lobase; error = copyout(&base, uap->parms, sizeof(base)); break; case I386_SET_GSBASE: error = copyin(uap->parms, &base, sizeof(base)); if (!error) { /* * Construct a descriptor and store it in the pcb for * the next context switch. Also store it in the gdt * because we have to do a load_gs() right now. */ sd.sd_lobase = base & 0xffffff; sd.sd_hibase = (base >> 24) & 0xff; #ifdef XEN /* need to do nosegneg like Linux */ sd.sd_lolimit = (HYPERVISOR_VIRT_START >> 12) & 0xffff; #else sd.sd_lolimit = 0xffff; /* 4GB limit, wraps around */ #endif sd.sd_hilimit = 0xf; sd.sd_type = SDT_MEMRWA; sd.sd_dpl = SEL_UPL; sd.sd_p = 1; sd.sd_xx = 0; sd.sd_def32 = 1; sd.sd_gran = 1; critical_enter(); td->td_pcb->pcb_gsd = sd; #ifdef XEN HYPERVISOR_update_descriptor(vtomach(&PCPU_GET(fsgs_gdt)[1]), *(uint64_t *)&sd); #else PCPU_GET(fsgs_gdt)[1] = sd; #endif critical_exit(); load_gs(GSEL(GUGS_SEL, SEL_UPL)); } break; default: error = EINVAL; break; } return (error); } int i386_extend_pcb(struct thread *td) { int i, offset; u_long *addr; struct pcb_ext *ext; struct soft_segment_descriptor ssd = { 0, /* segment base address (overwritten) */ ctob(IOPAGES + 1) - 1, /* length */ SDT_SYS386TSS, /* segment type */ 0, /* priority level */ 1, /* descriptor present */ 0, 0, 0, /* default 32 size */ 0 /* granularity */ }; ext = (struct pcb_ext *)kmem_alloc(kernel_map, ctob(IOPAGES+1)); if (ext == 0) return (ENOMEM); bzero(ext, sizeof(struct pcb_ext)); /* -16 is so we can convert a trapframe into vm86trapframe inplace */ ext->ext_tss.tss_esp0 = td->td_kstack + ctob(KSTACK_PAGES) - sizeof(struct pcb) - 16; ext->ext_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL); /* * The last byte of the i/o map must be followed by an 0xff byte. * We arbitrarily allocate 16 bytes here, to keep the starting * address on a doubleword boundary. */ offset = PAGE_SIZE - 16; ext->ext_tss.tss_ioopt = (offset - ((unsigned)&ext->ext_tss - (unsigned)ext)) << 16; ext->ext_iomap = (caddr_t)ext + offset; ext->ext_vm86.vm86_intmap = (caddr_t)ext + offset - 32; addr = (u_long *)ext->ext_vm86.vm86_intmap; for (i = 0; i < (ctob(IOPAGES) + 32 + 16) / sizeof(u_long); i++) *addr++ = ~0; ssd.ssd_base = (unsigned)&ext->ext_tss; ssd.ssd_limit -= ((unsigned)&ext->ext_tss - (unsigned)ext); ssdtosd(&ssd, &ext->ext_tssd); KASSERT(td == curthread, ("giving TSS to !curthread")); KASSERT(td->td_pcb->pcb_ext == 0, ("already have a TSS!")); /* Switch to the new TSS. */ critical_enter(); td->td_pcb->pcb_ext = ext; PCPU_SET(private_tss, 1); *PCPU_GET(tss_gdt) = ext->ext_tssd; ltr(GSEL(GPROC0_SEL, SEL_KPL)); critical_exit(); return 0; } int i386_set_ioperm(td, uap) struct thread *td; struct i386_ioperm_args *uap; { int i, error; char *iomap; if ((error = priv_check(td, PRIV_IO)) != 0) return (error); if ((error = securelevel_gt(td->td_ucred, 0)) != 0) return (error); /* * XXX * While this is restricted to root, we should probably figure out * whether any other driver is using this i/o address, as so not to * cause confusion. This probably requires a global 'usage registry'. */ if (td->td_pcb->pcb_ext == 0) if ((error = i386_extend_pcb(td)) != 0) return (error); iomap = (char *)td->td_pcb->pcb_ext->ext_iomap; if (uap->start + uap->length > IOPAGES * PAGE_SIZE * NBBY) return (EINVAL); for (i = uap->start; i < uap->start + uap->length; i++) { if (uap->enable) iomap[i >> 3] &= ~(1 << (i & 7)); else iomap[i >> 3] |= (1 << (i & 7)); } return (error); } int i386_get_ioperm(td, uap) struct thread *td; struct i386_ioperm_args *uap; { int i, state; char *iomap; if (uap->start >= IOPAGES * PAGE_SIZE * NBBY) return (EINVAL); if (td->td_pcb->pcb_ext == 0) { uap->length = 0; goto done; } iomap = (char *)td->td_pcb->pcb_ext->ext_iomap; i = uap->start; state = (iomap[i >> 3] >> (i & 7)) & 1; uap->enable = !state; uap->length = 1; for (i = uap->start + 1; i < IOPAGES * PAGE_SIZE * NBBY; i++) { if (state != ((iomap[i >> 3] >> (i & 7)) & 1)) break; uap->length++; } done: return (0); } /* * Update the GDT entry pointing to the LDT to point to the LDT of the * current process. Manage dt_lock holding/unholding autonomously. */ void set_user_ldt(struct mdproc *mdp) { struct proc_ldt *pldt; int dtlocked; dtlocked = 0; if (!mtx_owned(&dt_lock)) { mtx_lock_spin(&dt_lock); dtlocked = 1; } pldt = mdp->md_ldt; #ifdef XEN i386_reset_ldt(pldt); PCPU_SET(currentldt, (int)pldt); #else #ifdef SMP gdt[PCPU_GET(cpuid) * NGDT + GUSERLDT_SEL].sd = pldt->ldt_sd; #else gdt[GUSERLDT_SEL].sd = pldt->ldt_sd; #endif lldt(GSEL(GUSERLDT_SEL, SEL_KPL)); PCPU_SET(currentldt, GSEL(GUSERLDT_SEL, SEL_KPL)); #endif /* XEN */ if (dtlocked) mtx_unlock_spin(&dt_lock); } #ifdef SMP static void set_user_ldt_rv(struct vmspace *vmsp) { struct thread *td; td = curthread; if (vmsp != td->td_proc->p_vmspace) return; set_user_ldt(&td->td_proc->p_md); } #endif #ifdef XEN /* * dt_lock must be held. Returns with dt_lock held. */ struct proc_ldt * user_ldt_alloc(struct mdproc *mdp, int len) { struct proc_ldt *pldt, *new_ldt; mtx_assert(&dt_lock, MA_OWNED); mtx_unlock_spin(&dt_lock); new_ldt = malloc(sizeof(struct proc_ldt), M_SUBPROC, M_WAITOK); new_ldt->ldt_len = len = NEW_MAX_LD(len); new_ldt->ldt_base = (caddr_t)kmem_alloc(kernel_map, round_page(len * sizeof(union descriptor))); if (new_ldt->ldt_base == NULL) { free(new_ldt, M_SUBPROC); mtx_lock_spin(&dt_lock); return (NULL); } new_ldt->ldt_refcnt = 1; new_ldt->ldt_active = 0; mtx_lock_spin(&dt_lock); if ((pldt = mdp->md_ldt)) { if (len > pldt->ldt_len) len = pldt->ldt_len; bcopy(pldt->ldt_base, new_ldt->ldt_base, len * sizeof(union descriptor)); } else { bcopy(ldt, new_ldt->ldt_base, PAGE_SIZE); } mtx_unlock_spin(&dt_lock); /* XXX kill once pmap locking fixed. */ pmap_map_readonly(kernel_pmap, (vm_offset_t)new_ldt->ldt_base, new_ldt->ldt_len*sizeof(union descriptor)); mtx_lock_spin(&dt_lock); /* XXX kill once pmap locking fixed. */ return (new_ldt); } #else /* * dt_lock must be held. Returns with dt_lock held. */ struct proc_ldt * user_ldt_alloc(struct mdproc *mdp, int len) { struct proc_ldt *pldt, *new_ldt; mtx_assert(&dt_lock, MA_OWNED); mtx_unlock_spin(&dt_lock); new_ldt = malloc(sizeof(struct proc_ldt), M_SUBPROC, M_WAITOK); new_ldt->ldt_len = len = NEW_MAX_LD(len); new_ldt->ldt_base = (caddr_t)kmem_alloc(kernel_map, len * sizeof(union descriptor)); if (new_ldt->ldt_base == NULL) { free(new_ldt, M_SUBPROC); mtx_lock_spin(&dt_lock); return (NULL); } new_ldt->ldt_refcnt = 1; new_ldt->ldt_active = 0; mtx_lock_spin(&dt_lock); gdt_segs[GUSERLDT_SEL].ssd_base = (unsigned)new_ldt->ldt_base; gdt_segs[GUSERLDT_SEL].ssd_limit = len * sizeof(union descriptor) - 1; ssdtosd(&gdt_segs[GUSERLDT_SEL], &new_ldt->ldt_sd); if ((pldt = mdp->md_ldt) != NULL) { if (len > pldt->ldt_len) len = pldt->ldt_len; bcopy(pldt->ldt_base, new_ldt->ldt_base, len * sizeof(union descriptor)); } else bcopy(ldt, new_ldt->ldt_base, sizeof(ldt)); return (new_ldt); } #endif /* !XEN */ /* * Must be called with dt_lock held. Returns with dt_lock unheld. */ void user_ldt_free(struct thread *td) { struct mdproc *mdp = &td->td_proc->p_md; struct proc_ldt *pldt; mtx_assert(&dt_lock, MA_OWNED); if ((pldt = mdp->md_ldt) == NULL) { mtx_unlock_spin(&dt_lock); return; } if (td == curthread) { #ifdef XEN i386_reset_ldt(&default_proc_ldt); PCPU_SET(currentldt, (int)&default_proc_ldt); #else lldt(_default_ldt); PCPU_SET(currentldt, _default_ldt); #endif } mdp->md_ldt = NULL; user_ldt_deref(pldt); } void user_ldt_deref(struct proc_ldt *pldt) { mtx_assert(&dt_lock, MA_OWNED); if (--pldt->ldt_refcnt == 0) { mtx_unlock_spin(&dt_lock); kmem_free(kernel_map, (vm_offset_t)pldt->ldt_base, pldt->ldt_len * sizeof(union descriptor)); free(pldt, M_SUBPROC); } else mtx_unlock_spin(&dt_lock); } /* * Note for the authors of compat layers (linux, etc): copyout() in * the function below is not a problem since it presents data in * arch-specific format (i.e. i386-specific in this case), not in * the OS-specific one. */ int i386_get_ldt(td, uap) struct thread *td; struct i386_ldt_args *uap; { int error = 0; struct proc_ldt *pldt; int nldt, num; union descriptor *lp; #ifdef DEBUG printf("i386_get_ldt: start=%d num=%d descs=%p\n", uap->start, uap->num, (void *)uap->descs); #endif mtx_lock_spin(&dt_lock); if ((pldt = td->td_proc->p_md.md_ldt) != NULL) { nldt = pldt->ldt_len; lp = &((union descriptor *)(pldt->ldt_base))[uap->start]; mtx_unlock_spin(&dt_lock); num = min(uap->num, nldt); } else { mtx_unlock_spin(&dt_lock); nldt = sizeof(ldt)/sizeof(ldt[0]); num = min(uap->num, nldt); lp = &ldt[uap->start]; } if ((uap->start > (unsigned int)nldt) || ((unsigned int)num > (unsigned int)nldt) || ((unsigned int)(uap->start + num) > (unsigned int)nldt)) return(EINVAL); error = copyout(lp, uap->descs, num * sizeof(union descriptor)); if (!error) td->td_retval[0] = num; return(error); } int i386_set_ldt(td, uap, descs) struct thread *td; struct i386_ldt_args *uap; union descriptor *descs; { int error = 0, i; int largest_ld; struct mdproc *mdp = &td->td_proc->p_md; struct proc_ldt *pldt; union descriptor *dp; #ifdef DEBUG printf("i386_set_ldt: start=%d num=%d descs=%p\n", uap->start, uap->num, (void *)uap->descs); #endif if (descs == NULL) { /* Free descriptors */ if (uap->start == 0 && uap->num == 0) { /* * Treat this as a special case, so userland needn't * know magic number NLDT. */ uap->start = NLDT; uap->num = MAX_LD - NLDT; } if (uap->num == 0) return (EINVAL); mtx_lock_spin(&dt_lock); if ((pldt = mdp->md_ldt) == NULL || uap->start >= pldt->ldt_len) { mtx_unlock_spin(&dt_lock); return (0); } largest_ld = uap->start + uap->num; if (largest_ld > pldt->ldt_len) largest_ld = pldt->ldt_len; i = largest_ld - uap->start; bzero(&((union descriptor *)(pldt->ldt_base))[uap->start], sizeof(union descriptor) * i); mtx_unlock_spin(&dt_lock); return (0); } if (!(uap->start == LDT_AUTO_ALLOC && uap->num == 1)) { /* verify range of descriptors to modify */ largest_ld = uap->start + uap->num; if (uap->start >= MAX_LD || largest_ld > MAX_LD) { return (EINVAL); } } /* Check descriptors for access violations */ for (i = 0; i < uap->num; i++) { dp = &descs[i]; switch (dp->sd.sd_type) { case SDT_SYSNULL: /* system null */ dp->sd.sd_p = 0; break; case SDT_SYS286TSS: /* system 286 TSS available */ case SDT_SYSLDT: /* system local descriptor table */ case SDT_SYS286BSY: /* system 286 TSS busy */ case SDT_SYSTASKGT: /* system task gate */ case SDT_SYS286IGT: /* system 286 interrupt gate */ case SDT_SYS286TGT: /* system 286 trap gate */ case SDT_SYSNULL2: /* undefined by Intel */ case SDT_SYS386TSS: /* system 386 TSS available */ case SDT_SYSNULL3: /* undefined by Intel */ case SDT_SYS386BSY: /* system 386 TSS busy */ case SDT_SYSNULL4: /* undefined by Intel */ case SDT_SYS386IGT: /* system 386 interrupt gate */ case SDT_SYS386TGT: /* system 386 trap gate */ case SDT_SYS286CGT: /* system 286 call gate */ case SDT_SYS386CGT: /* system 386 call gate */ /* I can't think of any reason to allow a user proc * to create a segment of these types. They are * for OS use only. */ return (EACCES); /*NOTREACHED*/ /* memory segment types */ case SDT_MEMEC: /* memory execute only conforming */ case SDT_MEMEAC: /* memory execute only accessed conforming */ case SDT_MEMERC: /* memory execute read conforming */ case SDT_MEMERAC: /* memory execute read accessed conforming */ /* Must be "present" if executable and conforming. */ if (dp->sd.sd_p == 0) return (EACCES); break; case SDT_MEMRO: /* memory read only */ case SDT_MEMROA: /* memory read only accessed */ case SDT_MEMRW: /* memory read write */ case SDT_MEMRWA: /* memory read write accessed */ case SDT_MEMROD: /* memory read only expand dwn limit */ case SDT_MEMRODA: /* memory read only expand dwn lim accessed */ case SDT_MEMRWD: /* memory read write expand dwn limit */ case SDT_MEMRWDA: /* memory read write expand dwn lim acessed */ case SDT_MEME: /* memory execute only */ case SDT_MEMEA: /* memory execute only accessed */ case SDT_MEMER: /* memory execute read */ case SDT_MEMERA: /* memory execute read accessed */ break; default: return(EINVAL); /*NOTREACHED*/ } /* Only user (ring-3) descriptors may be present. */ if ((dp->sd.sd_p != 0) && (dp->sd.sd_dpl != SEL_UPL)) return (EACCES); } if (uap->start == LDT_AUTO_ALLOC && uap->num == 1) { /* Allocate a free slot */ mtx_lock_spin(&dt_lock); if ((pldt = mdp->md_ldt) == NULL) { if ((error = i386_ldt_grow(td, NLDT + 1))) { mtx_unlock_spin(&dt_lock); return (error); } pldt = mdp->md_ldt; } again: /* * start scanning a bit up to leave room for NVidia and * Wine, which still user the "Blat" method of allocation. */ dp = &((union descriptor *)(pldt->ldt_base))[NLDT]; for (i = NLDT; i < pldt->ldt_len; ++i) { if (dp->sd.sd_type == SDT_SYSNULL) break; dp++; } if (i >= pldt->ldt_len) { if ((error = i386_ldt_grow(td, pldt->ldt_len+1))) { mtx_unlock_spin(&dt_lock); return (error); } goto again; } uap->start = i; error = i386_set_ldt_data(td, i, 1, descs); mtx_unlock_spin(&dt_lock); } else { largest_ld = uap->start + uap->num; mtx_lock_spin(&dt_lock); if (!(error = i386_ldt_grow(td, largest_ld))) { error = i386_set_ldt_data(td, uap->start, uap->num, descs); } mtx_unlock_spin(&dt_lock); } if (error == 0) td->td_retval[0] = uap->start; return (error); } #ifdef XEN static int i386_set_ldt_data(struct thread *td, int start, int num, union descriptor *descs) { struct mdproc *mdp = &td->td_proc->p_md; struct proc_ldt *pldt = mdp->md_ldt; mtx_assert(&dt_lock, MA_OWNED); while (num) { xen_update_descriptor( &((union descriptor *)(pldt->ldt_base))[start], descs); num--; start++; descs++; } return (0); } #else static int i386_set_ldt_data(struct thread *td, int start, int num, union descriptor *descs) { struct mdproc *mdp = &td->td_proc->p_md; struct proc_ldt *pldt = mdp->md_ldt; mtx_assert(&dt_lock, MA_OWNED); /* Fill in range */ bcopy(descs, &((union descriptor *)(pldt->ldt_base))[start], num * sizeof(union descriptor)); return (0); } #endif /* !XEN */ static int i386_ldt_grow(struct thread *td, int len) { struct mdproc *mdp = &td->td_proc->p_md; struct proc_ldt *new_ldt, *pldt; caddr_t old_ldt_base = NULL_LDT_BASE; int old_ldt_len = 0; mtx_assert(&dt_lock, MA_OWNED); if (len > MAX_LD) return (ENOMEM); if (len < NLDT + 1) len = NLDT + 1; /* Allocate a user ldt. */ if ((pldt = mdp->md_ldt) == NULL || len > pldt->ldt_len) { new_ldt = user_ldt_alloc(mdp, len); if (new_ldt == NULL) return (ENOMEM); pldt = mdp->md_ldt; if (pldt != NULL) { if (new_ldt->ldt_len <= pldt->ldt_len) { /* * We just lost the race for allocation, so * free the new object and return. */ mtx_unlock_spin(&dt_lock); kmem_free(kernel_map, (vm_offset_t)new_ldt->ldt_base, new_ldt->ldt_len * sizeof(union descriptor)); free(new_ldt, M_SUBPROC); mtx_lock_spin(&dt_lock); return (0); } /* * We have to substitute the current LDT entry for * curproc with the new one since its size grew. */ old_ldt_base = pldt->ldt_base; old_ldt_len = pldt->ldt_len; pldt->ldt_sd = new_ldt->ldt_sd; pldt->ldt_base = new_ldt->ldt_base; pldt->ldt_len = new_ldt->ldt_len; } else mdp->md_ldt = pldt = new_ldt; #ifdef SMP /* * Signal other cpus to reload ldt. We need to unlock dt_lock * here because other CPU will contest on it since their * curthreads won't hold the lock and will block when trying * to acquire it. */ mtx_unlock_spin(&dt_lock); smp_rendezvous(NULL, (void (*)(void *))set_user_ldt_rv, NULL, td->td_proc->p_vmspace); #else set_user_ldt(&td->td_proc->p_md); mtx_unlock_spin(&dt_lock); #endif if (old_ldt_base != NULL_LDT_BASE) { kmem_free(kernel_map, (vm_offset_t)old_ldt_base, old_ldt_len * sizeof(union descriptor)); free(new_ldt, M_SUBPROC); } mtx_lock_spin(&dt_lock); } return (0); }