Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/s3/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/usie/@/amd64/compile/hs32/modules/usr/src/sys/modules/ipwfw/ipw_monitor/@/amd64/compile/hs32/modules/usr/src/sys/modules/wlan/@/security/audit/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/s3/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/usie/@/amd64/compile/hs32/modules/usr/src/sys/modules/ipwfw/ipw_monitor/@/amd64/compile/hs32/modules/usr/src/sys/modules/wlan/@/security/audit/audit_bsm_token.c |
/*- * Copyright (c) 2004-2009 Apple Inc. * Copyright (c) 2005 SPARTA, Inc. * All rights reserved. * * This code was developed in part by Robert N. M. Watson, Senior Principal * Scientist, SPARTA, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of Apple Inc. ("Apple") nor the names of * its contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * P4: //depot/projects/trustedbsd/openbsm/libbsm/bsm_token.c#93 */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/security/audit/audit_bsm_token.c 196971 2009-09-08 13:24:36Z phk $"); #include <sys/param.h> #include <sys/types.h> #include <sys/endian.h> #include <sys/queue.h> #include <sys/socket.h> #include <sys/time.h> #include <sys/ipc.h> #include <sys/libkern.h> #include <sys/malloc.h> #include <sys/un.h> #include <netinet/in.h> #include <netinet/in_systm.h> #include <netinet/ip.h> #include <bsm/audit.h> #include <bsm/audit_internal.h> #include <bsm/audit_record.h> #include <security/audit/audit.h> #include <security/audit/audit_private.h> #define GET_TOKEN_AREA(t, dptr, length) do { \ t = malloc(sizeof(token_t), M_AUDITBSM, M_WAITOK); \ t->t_data = malloc(length, M_AUDITBSM, M_WAITOK | M_ZERO); \ t->len = length; \ dptr = t->t_data; \ } while (0) /* * token ID 1 byte * argument # 1 byte * argument value 4 bytes/8 bytes (32-bit/64-bit value) * text length 2 bytes * text N bytes + 1 terminating NULL byte */ token_t * au_to_arg32(char n, const char *text, u_int32_t v) { token_t *t; u_char *dptr = NULL; u_int16_t textlen; textlen = strlen(text); textlen += 1; GET_TOKEN_AREA(t, dptr, 2 * sizeof(u_char) + sizeof(u_int32_t) + sizeof(u_int16_t) + textlen); ADD_U_CHAR(dptr, AUT_ARG32); ADD_U_CHAR(dptr, n); ADD_U_INT32(dptr, v); ADD_U_INT16(dptr, textlen); ADD_STRING(dptr, text, textlen); return (t); } token_t * au_to_arg64(char n, const char *text, u_int64_t v) { token_t *t; u_char *dptr = NULL; u_int16_t textlen; textlen = strlen(text); textlen += 1; GET_TOKEN_AREA(t, dptr, 2 * sizeof(u_char) + sizeof(u_int64_t) + sizeof(u_int16_t) + textlen); ADD_U_CHAR(dptr, AUT_ARG64); ADD_U_CHAR(dptr, n); ADD_U_INT64(dptr, v); ADD_U_INT16(dptr, textlen); ADD_STRING(dptr, text, textlen); return (t); } token_t * au_to_arg(char n, const char *text, u_int32_t v) { return (au_to_arg32(n, text, v)); } #if defined(_KERNEL) || defined(KERNEL) /* * token ID 1 byte * file access mode 4 bytes * owner user ID 4 bytes * owner group ID 4 bytes * file system ID 4 bytes * node ID 8 bytes * device 4 bytes/8 bytes (32-bit/64-bit) */ token_t * au_to_attr32(struct vnode_au_info *vni) { token_t *t; u_char *dptr = NULL; u_int16_t pad0_16 = 0; u_int32_t pad0_32 = 0; GET_TOKEN_AREA(t, dptr, sizeof(u_char) + 2 * sizeof(u_int16_t) + 3 * sizeof(u_int32_t) + sizeof(u_int64_t) + sizeof(u_int32_t)); ADD_U_CHAR(dptr, AUT_ATTR32); /* * BSD defines the size for the file mode as 2 bytes; BSM defines 4 * so pad with 0. * * XXXRW: Possibly should be conditionally compiled. * * XXXRW: Should any conversions take place on the mode? */ ADD_U_INT16(dptr, pad0_16); ADD_U_INT16(dptr, vni->vn_mode); ADD_U_INT32(dptr, vni->vn_uid); ADD_U_INT32(dptr, vni->vn_gid); ADD_U_INT32(dptr, vni->vn_fsid); /* * Some systems use 32-bit file ID's, others use 64-bit file IDs. * Attempt to handle both, and let the compiler sort it out. If we * could pick this out at compile-time, it would be better, so as to * avoid the else case below. */ if (sizeof(vni->vn_fileid) == sizeof(uint32_t)) { ADD_U_INT32(dptr, pad0_32); ADD_U_INT32(dptr, vni->vn_fileid); } else if (sizeof(vni->vn_fileid) == sizeof(uint64_t)) ADD_U_INT64(dptr, vni->vn_fileid); else ADD_U_INT64(dptr, 0LL); ADD_U_INT32(dptr, vni->vn_dev); return (t); } token_t * au_to_attr64(struct vnode_au_info *vni) { token_t *t; u_char *dptr = NULL; u_int16_t pad0_16 = 0; u_int32_t pad0_32 = 0; GET_TOKEN_AREA(t, dptr, sizeof(u_char) + 2 * sizeof(u_int16_t) + 3 * sizeof(u_int32_t) + sizeof(u_int64_t) * 2); ADD_U_CHAR(dptr, AUT_ATTR64); /* * BSD defines the size for the file mode as 2 bytes; BSM defines 4 * so pad with 0. * * XXXRW: Possibly should be conditionally compiled. * * XXXRW: Should any conversions take place on the mode? */ ADD_U_INT16(dptr, pad0_16); ADD_U_INT16(dptr, vni->vn_mode); ADD_U_INT32(dptr, vni->vn_uid); ADD_U_INT32(dptr, vni->vn_gid); ADD_U_INT32(dptr, vni->vn_fsid); /* * Some systems use 32-bit file ID's, other's use 64-bit file IDs. * Attempt to handle both, and let the compiler sort it out. If we * could pick this out at compile-time, it would be better, so as to * avoid the else case below. */ if (sizeof(vni->vn_fileid) == sizeof(uint32_t)) { ADD_U_INT32(dptr, pad0_32); ADD_U_INT32(dptr, vni->vn_fileid); } else if (sizeof(vni->vn_fileid) == sizeof(uint64_t)) ADD_U_INT64(dptr, vni->vn_fileid); else ADD_U_INT64(dptr, 0LL); ADD_U_INT64(dptr, vni->vn_dev); return (t); } token_t * au_to_attr(struct vnode_au_info *vni) { return (au_to_attr32(vni)); } #endif /* !(defined(_KERNEL) || defined(KERNEL) */ /* * token ID 1 byte * how to print 1 byte * basic unit 1 byte * unit count 1 byte * data items (depends on basic unit) */ token_t * au_to_data(char unit_print, char unit_type, char unit_count, const char *p) { token_t *t; u_char *dptr = NULL; size_t datasize, totdata; /* Determine the size of the basic unit. */ switch (unit_type) { case AUR_BYTE: /* case AUR_CHAR: */ datasize = AUR_BYTE_SIZE; break; case AUR_SHORT: datasize = AUR_SHORT_SIZE; break; case AUR_INT32: /* case AUR_INT: */ datasize = AUR_INT32_SIZE; break; case AUR_INT64: datasize = AUR_INT64_SIZE; break; default: return (NULL); } totdata = datasize * unit_count; GET_TOKEN_AREA(t, dptr, 4 * sizeof(u_char) + totdata); /* * XXXRW: We should be byte-swapping each data item for multi-byte * types. */ ADD_U_CHAR(dptr, AUT_DATA); ADD_U_CHAR(dptr, unit_print); ADD_U_CHAR(dptr, unit_type); ADD_U_CHAR(dptr, unit_count); ADD_MEM(dptr, p, totdata); return (t); } /* * token ID 1 byte * status 4 bytes * return value 4 bytes */ token_t * au_to_exit(int retval, int err) { token_t *t; u_char *dptr = NULL; GET_TOKEN_AREA(t, dptr, sizeof(u_char) + 2 * sizeof(u_int32_t)); ADD_U_CHAR(dptr, AUT_EXIT); ADD_U_INT32(dptr, err); ADD_U_INT32(dptr, retval); return (t); } /* */ token_t * au_to_groups(int *groups) { return (au_to_newgroups(AUDIT_MAX_GROUPS, (gid_t *)groups)); } /* * token ID 1 byte * number groups 2 bytes * group list count * 4 bytes */ token_t * au_to_newgroups(u_int16_t n, gid_t *groups) { token_t *t; u_char *dptr = NULL; int i; GET_TOKEN_AREA(t, dptr, sizeof(u_char) + sizeof(u_int16_t) + n * sizeof(u_int32_t)); ADD_U_CHAR(dptr, AUT_NEWGROUPS); ADD_U_INT16(dptr, n); for (i = 0; i < n; i++) ADD_U_INT32(dptr, groups[i]); return (t); } /* * token ID 1 byte * internet address 4 bytes */ token_t * au_to_in_addr(struct in_addr *internet_addr) { token_t *t; u_char *dptr = NULL; GET_TOKEN_AREA(t, dptr, sizeof(u_char) + sizeof(uint32_t)); ADD_U_CHAR(dptr, AUT_IN_ADDR); ADD_MEM(dptr, &internet_addr->s_addr, sizeof(uint32_t)); return (t); } /* * token ID 1 byte * address type/length 4 bytes * address 16 bytes */ token_t * au_to_in_addr_ex(struct in6_addr *internet_addr) { token_t *t; u_char *dptr = NULL; u_int32_t type = AU_IPv6; GET_TOKEN_AREA(t, dptr, sizeof(u_char) + 5 * sizeof(uint32_t)); ADD_U_CHAR(dptr, AUT_IN_ADDR_EX); ADD_U_INT32(dptr, type); ADD_MEM(dptr, internet_addr, 4 * sizeof(uint32_t)); return (t); } /* * token ID 1 byte * ip header 20 bytes * * The IP header should be submitted in network byte order. */ token_t * au_to_ip(struct ip *ip) { token_t *t; u_char *dptr = NULL; GET_TOKEN_AREA(t, dptr, sizeof(u_char) + sizeof(struct ip)); ADD_U_CHAR(dptr, AUT_IP); ADD_MEM(dptr, ip, sizeof(struct ip)); return (t); } /* * token ID 1 byte * object ID type 1 byte * object ID 4 bytes */ token_t * au_to_ipc(char type, int id) { token_t *t; u_char *dptr = NULL; GET_TOKEN_AREA(t, dptr, 2 * sizeof(u_char) + sizeof(u_int32_t)); ADD_U_CHAR(dptr, AUT_IPC); ADD_U_CHAR(dptr, type); ADD_U_INT32(dptr, id); return (t); } /* * token ID 1 byte * owner user ID 4 bytes * owner group ID 4 bytes * creator user ID 4 bytes * creator group ID 4 bytes * access mode 4 bytes * slot sequence # 4 bytes * key 4 bytes */ token_t * au_to_ipc_perm(struct ipc_perm *perm) { token_t *t; u_char *dptr = NULL; u_int16_t pad0 = 0; GET_TOKEN_AREA(t, dptr, sizeof(u_char) + 12 * sizeof(u_int16_t) + sizeof(u_int32_t)); ADD_U_CHAR(dptr, AUT_IPC_PERM); /* * Systems vary significantly in what types they use in struct * ipc_perm; at least a few still use 16-bit uid's and gid's, so * allow for that, as BSM define 32-bit values here. * Some systems define the sizes for ipc_perm members as 2 bytes; * BSM defines 4 so pad with 0. * * XXXRW: Possibly shoulid be conditionally compiled, and more cases * need to be handled. */ if (sizeof(perm->uid) != sizeof(u_int32_t)) { ADD_U_INT16(dptr, pad0); ADD_U_INT16(dptr, perm->uid); ADD_U_INT16(dptr, pad0); ADD_U_INT16(dptr, perm->gid); ADD_U_INT16(dptr, pad0); ADD_U_INT16(dptr, perm->cuid); ADD_U_INT16(dptr, pad0); ADD_U_INT16(dptr, perm->cgid); } else { ADD_U_INT32(dptr, perm->uid); ADD_U_INT32(dptr, perm->gid); ADD_U_INT32(dptr, perm->cuid); ADD_U_INT32(dptr, perm->cgid); } ADD_U_INT16(dptr, pad0); ADD_U_INT16(dptr, perm->mode); ADD_U_INT16(dptr, pad0); ADD_U_INT16(dptr, perm->seq); ADD_U_INT32(dptr, perm->key); return (t); } /* * token ID 1 byte * port IP address 2 bytes */ token_t * au_to_iport(u_int16_t iport) { token_t *t; u_char *dptr = NULL; GET_TOKEN_AREA(t, dptr, sizeof(u_char) + sizeof(u_int16_t)); ADD_U_CHAR(dptr, AUT_IPORT); ADD_U_INT16(dptr, iport); return (t); } /* * token ID 1 byte * size 2 bytes * data size bytes */ token_t * au_to_opaque(const char *data, u_int16_t bytes) { token_t *t; u_char *dptr = NULL; GET_TOKEN_AREA(t, dptr, sizeof(u_char) + sizeof(u_int16_t) + bytes); ADD_U_CHAR(dptr, AUT_OPAQUE); ADD_U_INT16(dptr, bytes); ADD_MEM(dptr, data, bytes); return (t); } /* * token ID 1 byte * seconds of time 4 bytes * milliseconds of time 4 bytes * file name len 2 bytes * file pathname N bytes + 1 terminating NULL byte */ token_t * au_to_file(const char *file, struct timeval tm) { token_t *t; u_char *dptr = NULL; u_int16_t filelen; u_int32_t timems; filelen = strlen(file); filelen += 1; GET_TOKEN_AREA(t, dptr, sizeof(u_char) + 2 * sizeof(u_int32_t) + sizeof(u_int16_t) + filelen); timems = tm.tv_usec/1000; ADD_U_CHAR(dptr, AUT_OTHER_FILE32); ADD_U_INT32(dptr, tm.tv_sec); ADD_U_INT32(dptr, timems); /* We need time in ms. */ ADD_U_INT16(dptr, filelen); ADD_STRING(dptr, file, filelen); return (t); } /* * token ID 1 byte * text length 2 bytes * text N bytes + 1 terminating NULL byte */ token_t * au_to_text(const char *text) { token_t *t; u_char *dptr = NULL; u_int16_t textlen; textlen = strlen(text); textlen += 1; /* XXXRW: Should validate length against token size limit. */ GET_TOKEN_AREA(t, dptr, sizeof(u_char) + sizeof(u_int16_t) + textlen); ADD_U_CHAR(dptr, AUT_TEXT); ADD_U_INT16(dptr, textlen); ADD_STRING(dptr, text, textlen); return (t); } /* * token ID 1 byte * path length 2 bytes * path N bytes + 1 terminating NULL byte */ token_t * au_to_path(const char *text) { token_t *t; u_char *dptr = NULL; u_int16_t textlen; textlen = strlen(text); textlen += 1; GET_TOKEN_AREA(t, dptr, sizeof(u_char) + sizeof(u_int16_t) + textlen); ADD_U_CHAR(dptr, AUT_PATH); ADD_U_INT16(dptr, textlen); ADD_STRING(dptr, text, textlen); return (t); } /* * token ID 1 byte * audit ID 4 bytes * effective user ID 4 bytes * effective group ID 4 bytes * real user ID 4 bytes * real group ID 4 bytes * process ID 4 bytes * session ID 4 bytes * terminal ID * port ID 4 bytes/8 bytes (32-bit/64-bit value) * machine address 4 bytes */ token_t * au_to_process32(au_id_t auid, uid_t euid, gid_t egid, uid_t ruid, gid_t rgid, pid_t pid, au_asid_t sid, au_tid_t *tid) { token_t *t; u_char *dptr = NULL; GET_TOKEN_AREA(t, dptr, sizeof(u_char) + 9 * sizeof(u_int32_t)); ADD_U_CHAR(dptr, AUT_PROCESS32); ADD_U_INT32(dptr, auid); ADD_U_INT32(dptr, euid); ADD_U_INT32(dptr, egid); ADD_U_INT32(dptr, ruid); ADD_U_INT32(dptr, rgid); ADD_U_INT32(dptr, pid); ADD_U_INT32(dptr, sid); ADD_U_INT32(dptr, tid->port); /* * Note: Solaris will write out IPv6 addresses here as a 32-bit * address type and 16 bytes of address, but for IPv4 addresses it * simply writes the 4-byte address directly. We support only IPv4 * addresses for process32 tokens. */ ADD_MEM(dptr, &tid->machine, sizeof(u_int32_t)); return (t); } token_t * au_to_process64(au_id_t auid, uid_t euid, gid_t egid, uid_t ruid, gid_t rgid, pid_t pid, au_asid_t sid, au_tid_t *tid) { token_t *t; u_char *dptr = NULL; GET_TOKEN_AREA(t, dptr, sizeof(u_char) + 8 * sizeof(u_int32_t) + sizeof(u_int64_t)); ADD_U_CHAR(dptr, AUT_PROCESS64); ADD_U_INT32(dptr, auid); ADD_U_INT32(dptr, euid); ADD_U_INT32(dptr, egid); ADD_U_INT32(dptr, ruid); ADD_U_INT32(dptr, rgid); ADD_U_INT32(dptr, pid); ADD_U_INT32(dptr, sid); ADD_U_INT64(dptr, tid->port); /* * Note: Solaris will write out IPv6 addresses here as a 32-bit * address type and 16 bytes of address, but for IPv4 addresses it * simply writes the 4-byte address directly. We support only IPv4 * addresses for process64 tokens. */ ADD_MEM(dptr, &tid->machine, sizeof(u_int32_t)); return (t); } token_t * au_to_process(au_id_t auid, uid_t euid, gid_t egid, uid_t ruid, gid_t rgid, pid_t pid, au_asid_t sid, au_tid_t *tid) { return (au_to_process32(auid, euid, egid, ruid, rgid, pid, sid, tid)); } /* * token ID 1 byte * audit ID 4 bytes * effective user ID 4 bytes * effective group ID 4 bytes * real user ID 4 bytes * real group ID 4 bytes * process ID 4 bytes * session ID 4 bytes * terminal ID * port ID 4 bytes/8 bytes (32-bit/64-bit value) * address type-len 4 bytes * machine address 16 bytes */ token_t * au_to_process32_ex(au_id_t auid, uid_t euid, gid_t egid, uid_t ruid, gid_t rgid, pid_t pid, au_asid_t sid, au_tid_addr_t *tid) { token_t *t; u_char *dptr = NULL; KASSERT((tid->at_type == AU_IPv4) || (tid->at_type == AU_IPv6), ("au_to_process32_ex: type %u", (unsigned int)tid->at_type)); if (tid->at_type == AU_IPv4) GET_TOKEN_AREA(t, dptr, sizeof(u_char) + 10 * sizeof(u_int32_t)); else GET_TOKEN_AREA(t, dptr, sizeof(u_char) + 13 * sizeof(u_int32_t)); ADD_U_CHAR(dptr, AUT_PROCESS32_EX); ADD_U_INT32(dptr, auid); ADD_U_INT32(dptr, euid); ADD_U_INT32(dptr, egid); ADD_U_INT32(dptr, ruid); ADD_U_INT32(dptr, rgid); ADD_U_INT32(dptr, pid); ADD_U_INT32(dptr, sid); ADD_U_INT32(dptr, tid->at_port); ADD_U_INT32(dptr, tid->at_type); ADD_MEM(dptr, &tid->at_addr[0], sizeof(u_int32_t)); if (tid->at_type == AU_IPv6) { ADD_MEM(dptr, &tid->at_addr[1], sizeof(u_int32_t)); ADD_MEM(dptr, &tid->at_addr[2], sizeof(u_int32_t)); ADD_MEM(dptr, &tid->at_addr[3], sizeof(u_int32_t)); } return (t); } token_t * au_to_process64_ex(au_id_t auid, uid_t euid, gid_t egid, uid_t ruid, gid_t rgid, pid_t pid, au_asid_t sid, au_tid_addr_t *tid) { token_t *t; u_char *dptr = NULL; if (tid->at_type == AU_IPv4) GET_TOKEN_AREA(t, dptr, sizeof(u_char) + 7 * sizeof(u_int32_t) + sizeof(u_int64_t) + 2 * sizeof(u_int32_t)); else if (tid->at_type == AU_IPv6) GET_TOKEN_AREA(t, dptr, sizeof(u_char) + 7 * sizeof(u_int32_t) + sizeof(u_int64_t) + 5 * sizeof(u_int32_t)); else panic("au_to_process64_ex: invalidate at_type (%d)", tid->at_type); ADD_U_CHAR(dptr, AUT_PROCESS64_EX); ADD_U_INT32(dptr, auid); ADD_U_INT32(dptr, euid); ADD_U_INT32(dptr, egid); ADD_U_INT32(dptr, ruid); ADD_U_INT32(dptr, rgid); ADD_U_INT32(dptr, pid); ADD_U_INT32(dptr, sid); ADD_U_INT64(dptr, tid->at_port); ADD_U_INT32(dptr, tid->at_type); ADD_MEM(dptr, &tid->at_addr[0], sizeof(u_int32_t)); if (tid->at_type == AU_IPv6) { ADD_MEM(dptr, &tid->at_addr[1], sizeof(u_int32_t)); ADD_MEM(dptr, &tid->at_addr[2], sizeof(u_int32_t)); ADD_MEM(dptr, &tid->at_addr[3], sizeof(u_int32_t)); } return (t); } token_t * au_to_process_ex(au_id_t auid, uid_t euid, gid_t egid, uid_t ruid, gid_t rgid, pid_t pid, au_asid_t sid, au_tid_addr_t *tid) { return (au_to_process32_ex(auid, euid, egid, ruid, rgid, pid, sid, tid)); } /* * token ID 1 byte * error status 1 byte * return value 4 bytes/8 bytes (32-bit/64-bit value) */ token_t * au_to_return32(char status, u_int32_t ret) { token_t *t; u_char *dptr = NULL; GET_TOKEN_AREA(t, dptr, 2 * sizeof(u_char) + sizeof(u_int32_t)); ADD_U_CHAR(dptr, AUT_RETURN32); ADD_U_CHAR(dptr, status); ADD_U_INT32(dptr, ret); return (t); } token_t * au_to_return64(char status, u_int64_t ret) { token_t *t; u_char *dptr = NULL; GET_TOKEN_AREA(t, dptr, 2 * sizeof(u_char) + sizeof(u_int64_t)); ADD_U_CHAR(dptr, AUT_RETURN64); ADD_U_CHAR(dptr, status); ADD_U_INT64(dptr, ret); return (t); } token_t * au_to_return(char status, u_int32_t ret) { return (au_to_return32(status, ret)); } /* * token ID 1 byte * sequence number 4 bytes */ token_t * au_to_seq(long audit_count) { token_t *t; u_char *dptr = NULL; GET_TOKEN_AREA(t, dptr, sizeof(u_char) + sizeof(u_int32_t)); ADD_U_CHAR(dptr, AUT_SEQ); ADD_U_INT32(dptr, audit_count); return (t); } /* * token ID 1 byte * socket domain 2 bytes * socket type 2 bytes * address type 2 byte * local port 2 bytes * local address 4 bytes/16 bytes (IPv4/IPv6 address) * remote port 2 bytes * remote address 4 bytes/16 bytes (IPv4/IPv6 address) * * Domain and type arguments to this routine are assumed to already have been * converted to the BSM constant space, so we don't do that here. */ token_t * au_to_socket_ex(u_short so_domain, u_short so_type, struct sockaddr *sa_local, struct sockaddr *sa_remote) { token_t *t; u_char *dptr = NULL; struct sockaddr_in *sin; struct sockaddr_in6 *sin6; if (so_domain == AF_INET) GET_TOKEN_AREA(t, dptr, sizeof(u_char) + 5 * sizeof(u_int16_t) + 2 * sizeof(u_int32_t)); else if (so_domain == AF_INET6) GET_TOKEN_AREA(t, dptr, sizeof(u_char) + 5 * sizeof(u_int16_t) + 8 * sizeof(u_int32_t)); else return (NULL); ADD_U_CHAR(dptr, AUT_SOCKET_EX); ADD_U_INT16(dptr, au_domain_to_bsm(so_domain)); ADD_U_INT16(dptr, au_socket_type_to_bsm(so_type)); if (so_domain == AF_INET) { ADD_U_INT16(dptr, AU_IPv4); sin = (struct sockaddr_in *)sa_local; ADD_MEM(dptr, &sin->sin_port, sizeof(uint16_t)); ADD_MEM(dptr, &sin->sin_addr.s_addr, sizeof(uint32_t)); sin = (struct sockaddr_in *)sa_remote; ADD_MEM(dptr, &sin->sin_port, sizeof(uint16_t)); ADD_MEM(dptr, &sin->sin_addr.s_addr, sizeof(uint32_t)); } else { ADD_U_INT16(dptr, AU_IPv6); sin6 = (struct sockaddr_in6 *)sa_local; ADD_MEM(dptr, &sin6->sin6_port, sizeof(uint16_t)); ADD_MEM(dptr, &sin6->sin6_addr, 4 * sizeof(uint32_t)); sin6 = (struct sockaddr_in6 *)sa_remote; ADD_MEM(dptr, &sin6->sin6_port, sizeof(uint16_t)); ADD_MEM(dptr, &sin6->sin6_addr, 4 * sizeof(uint32_t)); } return (t); } /* * Kernel-specific version of the above function. * * XXXRW: Should now use au_to_socket_ex() here. */ #ifdef _KERNEL token_t * kau_to_socket(struct socket_au_info *soi) { token_t *t; u_char *dptr; u_int16_t so_type; GET_TOKEN_AREA(t, dptr, sizeof(u_char) + 2 * sizeof(u_int16_t) + sizeof(u_int32_t) + sizeof(u_int16_t) + sizeof(u_int32_t)); ADD_U_CHAR(dptr, AUT_SOCKET); /* Coerce the socket type into a short value */ so_type = soi->so_type; ADD_U_INT16(dptr, so_type); ADD_U_INT16(dptr, soi->so_lport); ADD_U_INT32(dptr, soi->so_laddr); ADD_U_INT16(dptr, soi->so_rport); ADD_U_INT32(dptr, soi->so_raddr); return (t); } #endif /* * token ID 1 byte * socket family 2 bytes * path (up to) 104 bytes + NULL (NULL terminated string) */ token_t * au_to_sock_unix(struct sockaddr_un *so) { token_t *t; u_char *dptr; GET_TOKEN_AREA(t, dptr, 3 * sizeof(u_char) + strlen(so->sun_path) + 1); ADD_U_CHAR(dptr, AUT_SOCKUNIX); /* BSM token has two bytes for family */ ADD_U_CHAR(dptr, 0); ADD_U_CHAR(dptr, so->sun_family); ADD_STRING(dptr, so->sun_path, strlen(so->sun_path) + 1); return (t); } /* * token ID 1 byte * socket family 2 bytes * local port 2 bytes * socket address 4 bytes */ token_t * au_to_sock_inet32(struct sockaddr_in *so) { token_t *t; u_char *dptr = NULL; uint16_t family; GET_TOKEN_AREA(t, dptr, sizeof(u_char) + 2 * sizeof(uint16_t) + sizeof(uint32_t)); ADD_U_CHAR(dptr, AUT_SOCKINET32); /* * BSM defines the family field as 16 bits, but many operating * systems have an 8-bit sin_family field. Extend to 16 bits before * writing into the token. Assume that both the port and the address * in the sockaddr_in are already in network byte order, but family * is in local byte order. * * XXXRW: Should a name space conversion be taking place on the value * of sin_family? */ family = so->sin_family; ADD_U_INT16(dptr, family); ADD_MEM(dptr, &so->sin_port, sizeof(uint16_t)); ADD_MEM(dptr, &so->sin_addr.s_addr, sizeof(uint32_t)); return (t); } token_t * au_to_sock_inet128(struct sockaddr_in6 *so) { token_t *t; u_char *dptr = NULL; GET_TOKEN_AREA(t, dptr, 3 * sizeof(u_char) + sizeof(u_int16_t) + 4 * sizeof(u_int32_t)); ADD_U_CHAR(dptr, AUT_SOCKINET128); /* * In BSD, sin6_family is one octet, but BSM defines the token to * store two. So we copy in a 0 first. XXXRW: Possibly should be * conditionally compiled. */ ADD_U_CHAR(dptr, 0); ADD_U_CHAR(dptr, so->sin6_family); ADD_U_INT16(dptr, so->sin6_port); ADD_MEM(dptr, &so->sin6_addr, 4 * sizeof(uint32_t)); return (t); } token_t * au_to_sock_inet(struct sockaddr_in *so) { return (au_to_sock_inet32(so)); } /* * token ID 1 byte * audit ID 4 bytes * effective user ID 4 bytes * effective group ID 4 bytes * real user ID 4 bytes * real group ID 4 bytes * process ID 4 bytes * session ID 4 bytes * terminal ID * port ID 4 bytes/8 bytes (32-bit/64-bit value) * machine address 4 bytes */ token_t * au_to_subject32(au_id_t auid, uid_t euid, gid_t egid, uid_t ruid, gid_t rgid, pid_t pid, au_asid_t sid, au_tid_t *tid) { token_t *t; u_char *dptr = NULL; GET_TOKEN_AREA(t, dptr, sizeof(u_char) + 9 * sizeof(u_int32_t)); ADD_U_CHAR(dptr, AUT_SUBJECT32); ADD_U_INT32(dptr, auid); ADD_U_INT32(dptr, euid); ADD_U_INT32(dptr, egid); ADD_U_INT32(dptr, ruid); ADD_U_INT32(dptr, rgid); ADD_U_INT32(dptr, pid); ADD_U_INT32(dptr, sid); ADD_U_INT32(dptr, tid->port); ADD_MEM(dptr, &tid->machine, sizeof(u_int32_t)); return (t); } token_t * au_to_subject64(au_id_t auid, uid_t euid, gid_t egid, uid_t ruid, gid_t rgid, pid_t pid, au_asid_t sid, au_tid_t *tid) { token_t *t; u_char *dptr = NULL; GET_TOKEN_AREA(t, dptr, sizeof(u_char) + 7 * sizeof(u_int32_t) + sizeof(u_int64_t) + sizeof(u_int32_t)); ADD_U_CHAR(dptr, AUT_SUBJECT64); ADD_U_INT32(dptr, auid); ADD_U_INT32(dptr, euid); ADD_U_INT32(dptr, egid); ADD_U_INT32(dptr, ruid); ADD_U_INT32(dptr, rgid); ADD_U_INT32(dptr, pid); ADD_U_INT32(dptr, sid); ADD_U_INT64(dptr, tid->port); ADD_MEM(dptr, &tid->machine, sizeof(u_int32_t)); return (t); } token_t * au_to_subject(au_id_t auid, uid_t euid, gid_t egid, uid_t ruid, gid_t rgid, pid_t pid, au_asid_t sid, au_tid_t *tid) { return (au_to_subject32(auid, euid, egid, ruid, rgid, pid, sid, tid)); } /* * token ID 1 byte * audit ID 4 bytes * effective user ID 4 bytes * effective group ID 4 bytes * real user ID 4 bytes * real group ID 4 bytes * process ID 4 bytes * session ID 4 bytes * terminal ID * port ID 4 bytes/8 bytes (32-bit/64-bit value) * address type/length 4 bytes * machine address 16 bytes */ token_t * au_to_subject32_ex(au_id_t auid, uid_t euid, gid_t egid, uid_t ruid, gid_t rgid, pid_t pid, au_asid_t sid, au_tid_addr_t *tid) { token_t *t; u_char *dptr = NULL; KASSERT((tid->at_type == AU_IPv4) || (tid->at_type == AU_IPv6), ("au_to_subject32_ex: type %u", (unsigned int)tid->at_type)); if (tid->at_type == AU_IPv4) GET_TOKEN_AREA(t, dptr, sizeof(u_char) + 10 * sizeof(u_int32_t)); else GET_TOKEN_AREA(t, dptr, sizeof(u_char) + 13 * sizeof(u_int32_t)); ADD_U_CHAR(dptr, AUT_SUBJECT32_EX); ADD_U_INT32(dptr, auid); ADD_U_INT32(dptr, euid); ADD_U_INT32(dptr, egid); ADD_U_INT32(dptr, ruid); ADD_U_INT32(dptr, rgid); ADD_U_INT32(dptr, pid); ADD_U_INT32(dptr, sid); ADD_U_INT32(dptr, tid->at_port); ADD_U_INT32(dptr, tid->at_type); if (tid->at_type == AU_IPv6) ADD_MEM(dptr, &tid->at_addr[0], 4 * sizeof(u_int32_t)); else ADD_MEM(dptr, &tid->at_addr[0], sizeof(u_int32_t)); return (t); } token_t * au_to_subject64_ex(au_id_t auid, uid_t euid, gid_t egid, uid_t ruid, gid_t rgid, pid_t pid, au_asid_t sid, au_tid_addr_t *tid) { token_t *t; u_char *dptr = NULL; KASSERT((tid->at_type == AU_IPv4) || (tid->at_type == AU_IPv6), ("au_to_subject64_ex: type %u", (unsigned int)tid->at_type)); if (tid->at_type == AU_IPv4) GET_TOKEN_AREA(t, dptr, sizeof(u_char) + 7 * sizeof(u_int32_t) + sizeof(u_int64_t) + 2 * sizeof(u_int32_t)); else GET_TOKEN_AREA(t, dptr, sizeof(u_char) + 7 * sizeof(u_int32_t) + sizeof(u_int64_t) + 5 * sizeof(u_int32_t)); ADD_U_CHAR(dptr, AUT_SUBJECT64_EX); ADD_U_INT32(dptr, auid); ADD_U_INT32(dptr, euid); ADD_U_INT32(dptr, egid); ADD_U_INT32(dptr, ruid); ADD_U_INT32(dptr, rgid); ADD_U_INT32(dptr, pid); ADD_U_INT32(dptr, sid); ADD_U_INT64(dptr, tid->at_port); ADD_U_INT32(dptr, tid->at_type); if (tid->at_type == AU_IPv6) ADD_MEM(dptr, &tid->at_addr[0], 4 * sizeof(u_int32_t)); else ADD_MEM(dptr, &tid->at_addr[0], sizeof(u_int32_t)); return (t); } token_t * au_to_subject_ex(au_id_t auid, uid_t euid, gid_t egid, uid_t ruid, gid_t rgid, pid_t pid, au_asid_t sid, au_tid_addr_t *tid) { return (au_to_subject32_ex(auid, euid, egid, ruid, rgid, pid, sid, tid)); } #if !defined(_KERNEL) && !defined(KERNEL) && defined(HAVE_AUDIT_SYSCALLS) /* * Collects audit information for the current process and creates a subject * token from it. */ token_t * au_to_me(void) { auditinfo_t auinfo; auditinfo_addr_t aia; /* * Try to use getaudit_addr(2) first. If this kernel does not support * it, then fall back on to getaudit(2). */ if (getaudit_addr(&aia, sizeof(aia)) != 0) { if (errno == ENOSYS) { if (getaudit(&auinfo) != 0) return (NULL); return (au_to_subject32(auinfo.ai_auid, geteuid(), getegid(), getuid(), getgid(), getpid(), auinfo.ai_asid, &auinfo.ai_termid)); } else { /* getaudit_addr(2) failed for some other reason. */ return (NULL); } } return (au_to_subject32_ex(aia.ai_auid, geteuid(), getegid(), getuid(), getgid(), getpid(), aia.ai_asid, &aia.ai_termid)); } #endif #if defined(_KERNEL) || defined(KERNEL) static token_t * au_to_exec_strings(char *strs, int count, u_char type) { token_t *t; u_char *dptr = NULL; u_int32_t totlen; int ctr; char *p; totlen = 0; ctr = count; p = strs; while (ctr-- > 0) { totlen += strlen(p) + 1; p = strs + totlen; } GET_TOKEN_AREA(t, dptr, sizeof(u_char) + sizeof(u_int32_t) + totlen); ADD_U_CHAR(dptr, type); ADD_U_INT32(dptr, count); ADD_STRING(dptr, strs, totlen); return (t); } /* * token ID 1 byte * count 4 bytes * text count null-terminated strings */ token_t * au_to_exec_args(char *args, int argc) { return (au_to_exec_strings(args, argc, AUT_EXEC_ARGS)); } /* * token ID 1 byte * count 4 bytes * text count null-terminated strings */ token_t * au_to_exec_env(char *envs, int envc) { return (au_to_exec_strings(envs, envc, AUT_EXEC_ENV)); } #else /* * token ID 1 byte * count 4 bytes * text count null-terminated strings */ token_t * au_to_exec_args(char **argv) { token_t *t; u_char *dptr = NULL; const char *nextarg; int i, count = 0; size_t totlen = 0; nextarg = *argv; while (nextarg != NULL) { int nextlen; nextlen = strlen(nextarg); totlen += nextlen + 1; count++; nextarg = *(argv + count); } GET_TOKEN_AREA(t, dptr, sizeof(u_char) + sizeof(u_int32_t) + totlen); ADD_U_CHAR(dptr, AUT_EXEC_ARGS); ADD_U_INT32(dptr, count); for (i = 0; i < count; i++) { nextarg = *(argv + i); ADD_MEM(dptr, nextarg, strlen(nextarg) + 1); } return (t); } /* * token ID 1 byte * count 4 bytes * text count null-terminated strings */ token_t * au_to_exec_env(char **envp) { token_t *t; u_char *dptr = NULL; int i, count = 0; size_t totlen = 0; const char *nextenv; nextenv = *envp; while (nextenv != NULL) { int nextlen; nextlen = strlen(nextenv); totlen += nextlen + 1; count++; nextenv = *(envp + count); } GET_TOKEN_AREA(t, dptr, sizeof(u_char) + sizeof(u_int32_t) + totlen); ADD_U_CHAR(dptr, AUT_EXEC_ENV); ADD_U_INT32(dptr, count); for (i = 0; i < count; i++) { nextenv = *(envp + i); ADD_MEM(dptr, nextenv, strlen(nextenv) + 1); } return (t); } #endif /* * token ID 1 byte * zonename length 2 bytes * zonename N bytes + 1 terminating NULL byte */ token_t * au_to_zonename(const char *zonename) { u_char *dptr = NULL; u_int16_t textlen; token_t *t; textlen = strlen(zonename) + 1; GET_TOKEN_AREA(t, dptr, sizeof(u_char) + sizeof(u_int16_t) + textlen); ADD_U_CHAR(dptr, AUT_ZONENAME); ADD_U_INT16(dptr, textlen); ADD_STRING(dptr, zonename, textlen); return (t); } /* * token ID 1 byte * record byte count 4 bytes * version # 1 byte [2] * event type 2 bytes * event modifier 2 bytes * seconds of time 4 bytes/8 bytes (32-bit/64-bit value) * milliseconds of time 4 bytes/8 bytes (32-bit/64-bit value) */ token_t * au_to_header32_tm(int rec_size, au_event_t e_type, au_emod_t e_mod, struct timeval tm) { token_t *t; u_char *dptr = NULL; u_int32_t timems; GET_TOKEN_AREA(t, dptr, sizeof(u_char) + sizeof(u_int32_t) + sizeof(u_char) + 2 * sizeof(u_int16_t) + 2 * sizeof(u_int32_t)); ADD_U_CHAR(dptr, AUT_HEADER32); ADD_U_INT32(dptr, rec_size); ADD_U_CHAR(dptr, AUDIT_HEADER_VERSION_OPENBSM); ADD_U_INT16(dptr, e_type); ADD_U_INT16(dptr, e_mod); timems = tm.tv_usec/1000; /* Add the timestamp */ ADD_U_INT32(dptr, tm.tv_sec); ADD_U_INT32(dptr, timems); /* We need time in ms. */ return (t); } /* * token ID 1 byte * record byte count 4 bytes * version # 1 byte [2] * event type 2 bytes * event modifier 2 bytes * address type/length 4 bytes * machine address 4 bytes/16 bytes (IPv4/IPv6 address) * seconds of time 4 bytes/8 bytes (32-bit/64-bit value) * milliseconds of time 4 bytes/8 bytes (32-bit/64-bit value) */ token_t * au_to_header32_ex_tm(int rec_size, au_event_t e_type, au_emod_t e_mod, struct timeval tm, struct auditinfo_addr *aia) { token_t *t; u_char *dptr = NULL; u_int32_t timems; au_tid_addr_t *tid; tid = &aia->ai_termid; KASSERT(tid->at_type == AU_IPv4 || tid->at_type == AU_IPv6, ("au_to_header32_ex_tm: invalid address family")); GET_TOKEN_AREA(t, dptr, sizeof(u_char) + sizeof(u_int32_t) + sizeof(u_char) + 2 * sizeof(u_int16_t) + 3 * sizeof(u_int32_t) + tid->at_type); ADD_U_CHAR(dptr, AUT_HEADER32_EX); ADD_U_INT32(dptr, rec_size); ADD_U_CHAR(dptr, AUDIT_HEADER_VERSION_OPENBSM); ADD_U_INT16(dptr, e_type); ADD_U_INT16(dptr, e_mod); ADD_U_INT32(dptr, tid->at_type); if (tid->at_type == AU_IPv6) ADD_MEM(dptr, &tid->at_addr[0], 4 * sizeof(u_int32_t)); else ADD_MEM(dptr, &tid->at_addr[0], sizeof(u_int32_t)); timems = tm.tv_usec/1000; /* Add the timestamp */ ADD_U_INT32(dptr, tm.tv_sec); ADD_U_INT32(dptr, timems); /* We need time in ms. */ return (t); } token_t * au_to_header64_tm(int rec_size, au_event_t e_type, au_emod_t e_mod, struct timeval tm) { token_t *t; u_char *dptr = NULL; u_int32_t timems; GET_TOKEN_AREA(t, dptr, sizeof(u_char) + sizeof(u_int32_t) + sizeof(u_char) + 2 * sizeof(u_int16_t) + 2 * sizeof(u_int64_t)); ADD_U_CHAR(dptr, AUT_HEADER64); ADD_U_INT32(dptr, rec_size); ADD_U_CHAR(dptr, AUDIT_HEADER_VERSION_OPENBSM); ADD_U_INT16(dptr, e_type); ADD_U_INT16(dptr, e_mod); timems = tm.tv_usec/1000; /* Add the timestamp */ ADD_U_INT64(dptr, tm.tv_sec); ADD_U_INT64(dptr, timems); /* We need time in ms. */ return (t); } #if !defined(KERNEL) && !defined(_KERNEL) #ifdef HAVE_AUDIT_SYSCALLS token_t * au_to_header32_ex(int rec_size, au_event_t e_type, au_emod_t e_mod) { struct timeval tm; struct auditinfo_addr aia; if (gettimeofday(&tm, NULL) == -1) return (NULL); if (audit_get_kaudit(&aia, sizeof(aia)) != 0) { if (errno != ENOSYS) return (NULL); return (au_to_header32_tm(rec_size, e_type, e_mod, tm)); } return (au_to_header32_ex_tm(rec_size, e_type, e_mod, tm, &aia)); } #endif /* HAVE_AUDIT_SYSCALLS */ token_t * au_to_header32(int rec_size, au_event_t e_type, au_emod_t e_mod) { struct timeval tm; if (gettimeofday(&tm, NULL) == -1) return (NULL); return (au_to_header32_tm(rec_size, e_type, e_mod, tm)); } token_t * au_to_header64(__unused int rec_size, __unused au_event_t e_type, __unused au_emod_t e_mod) { struct timeval tm; if (gettimeofday(&tm, NULL) == -1) return (NULL); return (au_to_header64_tm(rec_size, e_type, e_mod, tm)); } token_t * au_to_header(int rec_size, au_event_t e_type, au_emod_t e_mod) { return (au_to_header32(rec_size, e_type, e_mod)); } #ifdef HAVE_AUDIT_SYSCALLS token_t * au_to_header_ex(int rec_size, au_event_t e_type, au_emod_t e_mod) { return (au_to_header32_ex(rec_size, e_type, e_mod)); } #endif /* HAVE_AUDIT_SYSCALLS */ #endif /* !defined(KERNEL) && !defined(_KERNEL) */ /* * token ID 1 byte * trailer magic number 2 bytes * record byte count 4 bytes */ token_t * au_to_trailer(int rec_size) { token_t *t; u_char *dptr = NULL; u_int16_t magic = AUT_TRAILER_MAGIC; GET_TOKEN_AREA(t, dptr, sizeof(u_char) + sizeof(u_int16_t) + sizeof(u_int32_t)); ADD_U_CHAR(dptr, AUT_TRAILER); ADD_U_INT16(dptr, magic); ADD_U_INT32(dptr, rec_size); return (t); }