Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/s3/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/usie/@/amd64/compile/hs32/modules/usr/src/sys/modules/oce/@/amd64/compile/hs32/modules/usr/src/sys/modules/ahci/@/amd64/compile/hs32/modules/usr/src/sys/modules/nmdm/@/kern/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/s3/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/usie/@/amd64/compile/hs32/modules/usr/src/sys/modules/oce/@/amd64/compile/hs32/modules/usr/src/sys/modules/ahci/@/amd64/compile/hs32/modules/usr/src/sys/modules/nmdm/@/kern/subr_taskqueue.c |
/*- * Copyright (c) 2000 Doug Rabson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/kern/subr_taskqueue.c 225570 2011-09-15 08:42:06Z adrian $"); #include <sys/param.h> #include <sys/systm.h> #include <sys/bus.h> #include <sys/interrupt.h> #include <sys/kernel.h> #include <sys/kthread.h> #include <sys/limits.h> #include <sys/lock.h> #include <sys/malloc.h> #include <sys/mutex.h> #include <sys/proc.h> #include <sys/sched.h> #include <sys/taskqueue.h> #include <sys/unistd.h> #include <machine/stdarg.h> static MALLOC_DEFINE(M_TASKQUEUE, "taskqueue", "Task Queues"); static void *taskqueue_giant_ih; static void *taskqueue_ih; struct taskqueue_busy { struct task *tb_running; TAILQ_ENTRY(taskqueue_busy) tb_link; }; struct taskqueue { STAILQ_HEAD(, task) tq_queue; taskqueue_enqueue_fn tq_enqueue; void *tq_context; TAILQ_HEAD(, taskqueue_busy) tq_active; struct mtx tq_mutex; struct thread **tq_threads; int tq_tcount; int tq_spin; int tq_flags; int tq_callouts; }; #define TQ_FLAGS_ACTIVE (1 << 0) #define TQ_FLAGS_BLOCKED (1 << 1) #define TQ_FLAGS_PENDING (1 << 2) #define DT_CALLOUT_ARMED (1 << 0) #define TQ_LOCK(tq) \ do { \ if ((tq)->tq_spin) \ mtx_lock_spin(&(tq)->tq_mutex); \ else \ mtx_lock(&(tq)->tq_mutex); \ } while (0) #define TQ_UNLOCK(tq) \ do { \ if ((tq)->tq_spin) \ mtx_unlock_spin(&(tq)->tq_mutex); \ else \ mtx_unlock(&(tq)->tq_mutex); \ } while (0) void _timeout_task_init(struct taskqueue *queue, struct timeout_task *timeout_task, int priority, task_fn_t func, void *context) { TASK_INIT(&timeout_task->t, priority, func, context); callout_init_mtx(&timeout_task->c, &queue->tq_mutex, 0); timeout_task->q = queue; timeout_task->f = 0; } static __inline int TQ_SLEEP(struct taskqueue *tq, void *p, struct mtx *m, int pri, const char *wm, int t) { if (tq->tq_spin) return (msleep_spin(p, m, wm, t)); return (msleep(p, m, pri, wm, t)); } static struct taskqueue * _taskqueue_create(const char *name __unused, int mflags, taskqueue_enqueue_fn enqueue, void *context, int mtxflags, const char *mtxname) { struct taskqueue *queue; queue = malloc(sizeof(struct taskqueue), M_TASKQUEUE, mflags | M_ZERO); if (!queue) return NULL; STAILQ_INIT(&queue->tq_queue); TAILQ_INIT(&queue->tq_active); queue->tq_enqueue = enqueue; queue->tq_context = context; queue->tq_spin = (mtxflags & MTX_SPIN) != 0; queue->tq_flags |= TQ_FLAGS_ACTIVE; mtx_init(&queue->tq_mutex, mtxname, NULL, mtxflags); return queue; } struct taskqueue * taskqueue_create(const char *name, int mflags, taskqueue_enqueue_fn enqueue, void *context) { return _taskqueue_create(name, mflags, enqueue, context, MTX_DEF, "taskqueue"); } /* * Signal a taskqueue thread to terminate. */ static void taskqueue_terminate(struct thread **pp, struct taskqueue *tq) { while (tq->tq_tcount > 0 || tq->tq_callouts > 0) { wakeup(tq); TQ_SLEEP(tq, pp, &tq->tq_mutex, PWAIT, "taskqueue_destroy", 0); } } void taskqueue_free(struct taskqueue *queue) { TQ_LOCK(queue); queue->tq_flags &= ~TQ_FLAGS_ACTIVE; taskqueue_terminate(queue->tq_threads, queue); KASSERT(TAILQ_EMPTY(&queue->tq_active), ("Tasks still running?")); KASSERT(queue->tq_callouts == 0, ("Armed timeout tasks")); mtx_destroy(&queue->tq_mutex); free(queue->tq_threads, M_TASKQUEUE); free(queue, M_TASKQUEUE); } static int taskqueue_enqueue_locked(struct taskqueue *queue, struct task *task) { struct task *ins; struct task *prev; /* * Count multiple enqueues. */ if (task->ta_pending) { if (task->ta_pending < USHRT_MAX) task->ta_pending++; return (0); } /* * Optimise the case when all tasks have the same priority. */ prev = STAILQ_LAST(&queue->tq_queue, task, ta_link); if (!prev || prev->ta_priority >= task->ta_priority) { STAILQ_INSERT_TAIL(&queue->tq_queue, task, ta_link); } else { prev = NULL; for (ins = STAILQ_FIRST(&queue->tq_queue); ins; prev = ins, ins = STAILQ_NEXT(ins, ta_link)) if (ins->ta_priority < task->ta_priority) break; if (prev) STAILQ_INSERT_AFTER(&queue->tq_queue, prev, task, ta_link); else STAILQ_INSERT_HEAD(&queue->tq_queue, task, ta_link); } task->ta_pending = 1; if ((queue->tq_flags & TQ_FLAGS_BLOCKED) == 0) queue->tq_enqueue(queue->tq_context); else queue->tq_flags |= TQ_FLAGS_PENDING; return (0); } int taskqueue_enqueue(struct taskqueue *queue, struct task *task) { int res; TQ_LOCK(queue); res = taskqueue_enqueue_locked(queue, task); TQ_UNLOCK(queue); return (res); } static void taskqueue_timeout_func(void *arg) { struct taskqueue *queue; struct timeout_task *timeout_task; timeout_task = arg; queue = timeout_task->q; KASSERT((timeout_task->f & DT_CALLOUT_ARMED) != 0, ("Stray timeout")); timeout_task->f &= ~DT_CALLOUT_ARMED; queue->tq_callouts--; taskqueue_enqueue_locked(timeout_task->q, &timeout_task->t); } int taskqueue_enqueue_timeout(struct taskqueue *queue, struct timeout_task *timeout_task, int ticks) { int res; TQ_LOCK(queue); KASSERT(timeout_task->q == NULL || timeout_task->q == queue, ("Migrated queue")); KASSERT(!queue->tq_spin, ("Timeout for spin-queue")); timeout_task->q = queue; res = timeout_task->t.ta_pending; if (ticks == 0) { taskqueue_enqueue_locked(queue, &timeout_task->t); } else { if ((timeout_task->f & DT_CALLOUT_ARMED) != 0) { res++; } else { queue->tq_callouts++; timeout_task->f |= DT_CALLOUT_ARMED; } callout_reset(&timeout_task->c, ticks, taskqueue_timeout_func, timeout_task); } TQ_UNLOCK(queue); return (res); } void taskqueue_block(struct taskqueue *queue) { TQ_LOCK(queue); queue->tq_flags |= TQ_FLAGS_BLOCKED; TQ_UNLOCK(queue); } void taskqueue_unblock(struct taskqueue *queue) { TQ_LOCK(queue); queue->tq_flags &= ~TQ_FLAGS_BLOCKED; if (queue->tq_flags & TQ_FLAGS_PENDING) { queue->tq_flags &= ~TQ_FLAGS_PENDING; queue->tq_enqueue(queue->tq_context); } TQ_UNLOCK(queue); } static void taskqueue_run_locked(struct taskqueue *queue) { struct taskqueue_busy tb; struct task *task; int pending; mtx_assert(&queue->tq_mutex, MA_OWNED); tb.tb_running = NULL; TAILQ_INSERT_TAIL(&queue->tq_active, &tb, tb_link); while (STAILQ_FIRST(&queue->tq_queue)) { /* * Carefully remove the first task from the queue and * zero its pending count. */ task = STAILQ_FIRST(&queue->tq_queue); STAILQ_REMOVE_HEAD(&queue->tq_queue, ta_link); pending = task->ta_pending; task->ta_pending = 0; tb.tb_running = task; TQ_UNLOCK(queue); task->ta_func(task->ta_context, pending); TQ_LOCK(queue); tb.tb_running = NULL; wakeup(task); } TAILQ_REMOVE(&queue->tq_active, &tb, tb_link); } void taskqueue_run(struct taskqueue *queue) { TQ_LOCK(queue); taskqueue_run_locked(queue); TQ_UNLOCK(queue); } static int task_is_running(struct taskqueue *queue, struct task *task) { struct taskqueue_busy *tb; mtx_assert(&queue->tq_mutex, MA_OWNED); TAILQ_FOREACH(tb, &queue->tq_active, tb_link) { if (tb->tb_running == task) return (1); } return (0); } static int taskqueue_cancel_locked(struct taskqueue *queue, struct task *task, u_int *pendp) { if (task->ta_pending > 0) STAILQ_REMOVE(&queue->tq_queue, task, task, ta_link); if (pendp != NULL) *pendp = task->ta_pending; task->ta_pending = 0; return (task_is_running(queue, task) ? EBUSY : 0); } int taskqueue_cancel(struct taskqueue *queue, struct task *task, u_int *pendp) { u_int pending; int error; TQ_LOCK(queue); pending = task->ta_pending; error = taskqueue_cancel_locked(queue, task, pendp); TQ_UNLOCK(queue); return (error); } int taskqueue_cancel_timeout(struct taskqueue *queue, struct timeout_task *timeout_task, u_int *pendp) { u_int pending, pending1; int error; TQ_LOCK(queue); pending = !!callout_stop(&timeout_task->c); error = taskqueue_cancel_locked(queue, &timeout_task->t, &pending1); if ((timeout_task->f & DT_CALLOUT_ARMED) != 0) { timeout_task->f &= ~DT_CALLOUT_ARMED; queue->tq_callouts--; } TQ_UNLOCK(queue); if (pendp != NULL) *pendp = pending + pending1; return (error); } void taskqueue_drain(struct taskqueue *queue, struct task *task) { if (!queue->tq_spin) WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__); TQ_LOCK(queue); while (task->ta_pending != 0 || task_is_running(queue, task)) TQ_SLEEP(queue, task, &queue->tq_mutex, PWAIT, "-", 0); TQ_UNLOCK(queue); } void taskqueue_drain_timeout(struct taskqueue *queue, struct timeout_task *timeout_task) { callout_drain(&timeout_task->c); taskqueue_drain(queue, &timeout_task->t); } static void taskqueue_swi_enqueue(void *context) { swi_sched(taskqueue_ih, 0); } static void taskqueue_swi_run(void *dummy) { taskqueue_run(taskqueue_swi); } static void taskqueue_swi_giant_enqueue(void *context) { swi_sched(taskqueue_giant_ih, 0); } static void taskqueue_swi_giant_run(void *dummy) { taskqueue_run(taskqueue_swi_giant); } int taskqueue_start_threads(struct taskqueue **tqp, int count, int pri, const char *name, ...) { va_list ap; struct thread *td; struct taskqueue *tq; int i, error; char ktname[MAXCOMLEN + 1]; if (count <= 0) return (EINVAL); tq = *tqp; va_start(ap, name); vsnprintf(ktname, sizeof(ktname), name, ap); va_end(ap); tq->tq_threads = malloc(sizeof(struct thread *) * count, M_TASKQUEUE, M_NOWAIT | M_ZERO); if (tq->tq_threads == NULL) { printf("%s: no memory for %s threads\n", __func__, ktname); return (ENOMEM); } for (i = 0; i < count; i++) { if (count == 1) error = kthread_add(taskqueue_thread_loop, tqp, NULL, &tq->tq_threads[i], RFSTOPPED, 0, "%s", ktname); else error = kthread_add(taskqueue_thread_loop, tqp, NULL, &tq->tq_threads[i], RFSTOPPED, 0, "%s_%d", ktname, i); if (error) { /* should be ok to continue, taskqueue_free will dtrt */ printf("%s: kthread_add(%s): error %d", __func__, ktname, error); tq->tq_threads[i] = NULL; /* paranoid */ } else tq->tq_tcount++; } for (i = 0; i < count; i++) { if (tq->tq_threads[i] == NULL) continue; td = tq->tq_threads[i]; thread_lock(td); sched_prio(td, pri); sched_add(td, SRQ_BORING); thread_unlock(td); } return (0); } void taskqueue_thread_loop(void *arg) { struct taskqueue **tqp, *tq; tqp = arg; tq = *tqp; TQ_LOCK(tq); while ((tq->tq_flags & TQ_FLAGS_ACTIVE) != 0) { taskqueue_run_locked(tq); /* * Because taskqueue_run() can drop tq_mutex, we need to * check if the TQ_FLAGS_ACTIVE flag wasn't removed in the * meantime, which means we missed a wakeup. */ if ((tq->tq_flags & TQ_FLAGS_ACTIVE) == 0) break; TQ_SLEEP(tq, tq, &tq->tq_mutex, 0, "-", 0); } taskqueue_run_locked(tq); /* rendezvous with thread that asked us to terminate */ tq->tq_tcount--; wakeup_one(tq->tq_threads); TQ_UNLOCK(tq); kthread_exit(); } void taskqueue_thread_enqueue(void *context) { struct taskqueue **tqp, *tq; tqp = context; tq = *tqp; mtx_assert(&tq->tq_mutex, MA_OWNED); wakeup_one(tq); } TASKQUEUE_DEFINE(swi, taskqueue_swi_enqueue, NULL, swi_add(NULL, "task queue", taskqueue_swi_run, NULL, SWI_TQ, INTR_MPSAFE, &taskqueue_ih)); TASKQUEUE_DEFINE(swi_giant, taskqueue_swi_giant_enqueue, NULL, swi_add(NULL, "Giant taskq", taskqueue_swi_giant_run, NULL, SWI_TQ_GIANT, 0, &taskqueue_giant_ih)); TASKQUEUE_DEFINE_THREAD(thread); struct taskqueue * taskqueue_create_fast(const char *name, int mflags, taskqueue_enqueue_fn enqueue, void *context) { return _taskqueue_create(name, mflags, enqueue, context, MTX_SPIN, "fast_taskqueue"); } /* NB: for backwards compatibility */ int taskqueue_enqueue_fast(struct taskqueue *queue, struct task *task) { return taskqueue_enqueue(queue, task); } static void *taskqueue_fast_ih; static void taskqueue_fast_enqueue(void *context) { swi_sched(taskqueue_fast_ih, 0); } static void taskqueue_fast_run(void *dummy) { taskqueue_run(taskqueue_fast); } TASKQUEUE_FAST_DEFINE(fast, taskqueue_fast_enqueue, NULL, swi_add(NULL, "Fast task queue", taskqueue_fast_run, NULL, SWI_TQ_FAST, INTR_MPSAFE, &taskqueue_fast_ih)); int taskqueue_member(struct taskqueue *queue, struct thread *td) { int i, j, ret = 0; TQ_LOCK(queue); for (i = 0, j = 0; ; i++) { if (queue->tq_threads[i] == NULL) continue; if (queue->tq_threads[i] == td) { ret = 1; break; } if (++j >= queue->tq_tcount) break; } TQ_UNLOCK(queue); return (ret); }