Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/s3/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/usie/@/amd64/compile/hs32/modules/usr/src/sys/modules/oce/@/amd64/compile/hs32/modules/usr/src/sys/modules/bxe/@/net/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/s3/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/usie/@/amd64/compile/hs32/modules/usr/src/sys/modules/oce/@/amd64/compile/hs32/modules/usr/src/sys/modules/bxe/@/net/if_spppsubr.c |
/* * Synchronous PPP/Cisco/Frame Relay link level subroutines. * Keepalive protocol implemented in both Cisco and PPP modes. */ /*- * Copyright (C) 1994-2000 Cronyx Engineering. * Author: Serge Vakulenko, <vak@cronyx.ru> * * Heavily revamped to conform to RFC 1661. * Copyright (C) 1997, 2001 Joerg Wunsch. * * This software is distributed with NO WARRANTIES, not even the implied * warranties for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * * Authors grant any other persons or organisations permission to use * or modify this software as long as this message is kept with the software, * all derivative works or modified versions. * * From: Version 2.4, Thu Apr 30 17:17:21 MSD 1997 * * $FreeBSD: release/9.1.0/sys/net/if_spppsubr.c 223741 2011-07-03 16:08:38Z bz $ */ #include <sys/param.h> #include "opt_inet.h" #include "opt_inet6.h" #include "opt_ipx.h" #include <sys/systm.h> #include <sys/kernel.h> #include <sys/module.h> #include <sys/sockio.h> #include <sys/socket.h> #include <sys/syslog.h> #include <sys/random.h> #include <sys/malloc.h> #include <sys/mbuf.h> #include <sys/md5.h> #include <net/if.h> #include <net/netisr.h> #include <net/if_types.h> #include <net/route.h> #include <net/vnet.h> #include <netinet/in.h> #include <netinet/in_systm.h> #include <netinet/ip.h> #include <net/slcompress.h> #include <machine/stdarg.h> #include <netinet/in_var.h> #ifdef INET #include <netinet/ip.h> #include <netinet/tcp.h> #endif #ifdef INET6 #include <netinet6/scope6_var.h> #endif #include <netinet/if_ether.h> #ifdef IPX #include <netipx/ipx.h> #include <netipx/ipx_if.h> #endif #include <net/if_sppp.h> #define IOCTL_CMD_T u_long #define MAXALIVECNT 3 /* max. alive packets */ /* * Interface flags that can be set in an ifconfig command. * * Setting link0 will make the link passive, i.e. it will be marked * as being administrative openable, but won't be opened to begin * with. Incoming calls will be answered, or subsequent calls with * -link1 will cause the administrative open of the LCP layer. * * Setting link1 will cause the link to auto-dial only as packets * arrive to be sent. * * Setting IFF_DEBUG will syslog the option negotiation and state * transitions at level kern.debug. Note: all logs consistently look * like * * <if-name><unit>: <proto-name> <additional info...> * * with <if-name><unit> being something like "bppp0", and <proto-name> * being one of "lcp", "ipcp", "cisco", "chap", "pap", etc. */ #define IFF_PASSIVE IFF_LINK0 /* wait passively for connection */ #define IFF_AUTO IFF_LINK1 /* auto-dial on output */ #define IFF_CISCO IFF_LINK2 /* auto-dial on output */ #define PPP_ALLSTATIONS 0xff /* All-Stations broadcast address */ #define PPP_UI 0x03 /* Unnumbered Information */ #define PPP_IP 0x0021 /* Internet Protocol */ #define PPP_ISO 0x0023 /* ISO OSI Protocol */ #define PPP_XNS 0x0025 /* Xerox NS Protocol */ #define PPP_IPX 0x002b /* Novell IPX Protocol */ #define PPP_VJ_COMP 0x002d /* VJ compressed TCP/IP */ #define PPP_VJ_UCOMP 0x002f /* VJ uncompressed TCP/IP */ #define PPP_IPV6 0x0057 /* Internet Protocol Version 6 */ #define PPP_LCP 0xc021 /* Link Control Protocol */ #define PPP_PAP 0xc023 /* Password Authentication Protocol */ #define PPP_CHAP 0xc223 /* Challenge-Handshake Auth Protocol */ #define PPP_IPCP 0x8021 /* Internet Protocol Control Protocol */ #define PPP_IPV6CP 0x8057 /* IPv6 Control Protocol */ #define CONF_REQ 1 /* PPP configure request */ #define CONF_ACK 2 /* PPP configure acknowledge */ #define CONF_NAK 3 /* PPP configure negative ack */ #define CONF_REJ 4 /* PPP configure reject */ #define TERM_REQ 5 /* PPP terminate request */ #define TERM_ACK 6 /* PPP terminate acknowledge */ #define CODE_REJ 7 /* PPP code reject */ #define PROTO_REJ 8 /* PPP protocol reject */ #define ECHO_REQ 9 /* PPP echo request */ #define ECHO_REPLY 10 /* PPP echo reply */ #define DISC_REQ 11 /* PPP discard request */ #define LCP_OPT_MRU 1 /* maximum receive unit */ #define LCP_OPT_ASYNC_MAP 2 /* async control character map */ #define LCP_OPT_AUTH_PROTO 3 /* authentication protocol */ #define LCP_OPT_QUAL_PROTO 4 /* quality protocol */ #define LCP_OPT_MAGIC 5 /* magic number */ #define LCP_OPT_RESERVED 6 /* reserved */ #define LCP_OPT_PROTO_COMP 7 /* protocol field compression */ #define LCP_OPT_ADDR_COMP 8 /* address/control field compression */ #define IPCP_OPT_ADDRESSES 1 /* both IP addresses; deprecated */ #define IPCP_OPT_COMPRESSION 2 /* IP compression protocol (VJ) */ #define IPCP_OPT_ADDRESS 3 /* local IP address */ #define IPV6CP_OPT_IFID 1 /* interface identifier */ #define IPV6CP_OPT_COMPRESSION 2 /* IPv6 compression protocol */ #define IPCP_COMP_VJ 0x2d /* Code for VJ compression */ #define PAP_REQ 1 /* PAP name/password request */ #define PAP_ACK 2 /* PAP acknowledge */ #define PAP_NAK 3 /* PAP fail */ #define CHAP_CHALLENGE 1 /* CHAP challenge request */ #define CHAP_RESPONSE 2 /* CHAP challenge response */ #define CHAP_SUCCESS 3 /* CHAP response ok */ #define CHAP_FAILURE 4 /* CHAP response failed */ #define CHAP_MD5 5 /* hash algorithm - MD5 */ #define CISCO_MULTICAST 0x8f /* Cisco multicast address */ #define CISCO_UNICAST 0x0f /* Cisco unicast address */ #define CISCO_KEEPALIVE 0x8035 /* Cisco keepalive protocol */ #define CISCO_ADDR_REQ 0 /* Cisco address request */ #define CISCO_ADDR_REPLY 1 /* Cisco address reply */ #define CISCO_KEEPALIVE_REQ 2 /* Cisco keepalive request */ /* states are named and numbered according to RFC 1661 */ #define STATE_INITIAL 0 #define STATE_STARTING 1 #define STATE_CLOSED 2 #define STATE_STOPPED 3 #define STATE_CLOSING 4 #define STATE_STOPPING 5 #define STATE_REQ_SENT 6 #define STATE_ACK_RCVD 7 #define STATE_ACK_SENT 8 #define STATE_OPENED 9 MALLOC_DEFINE(M_SPPP, "sppp", "synchronous PPP interface internals"); struct ppp_header { u_char address; u_char control; u_short protocol; } __packed; #define PPP_HEADER_LEN sizeof (struct ppp_header) struct lcp_header { u_char type; u_char ident; u_short len; } __packed; #define LCP_HEADER_LEN sizeof (struct lcp_header) struct cisco_packet { u_long type; u_long par1; u_long par2; u_short rel; u_short time0; u_short time1; } __packed; #define CISCO_PACKET_LEN sizeof (struct cisco_packet) /* * We follow the spelling and capitalization of RFC 1661 here, to make * it easier comparing with the standard. Please refer to this RFC in * case you can't make sense out of these abbreviation; it will also * explain the semantics related to the various events and actions. */ struct cp { u_short proto; /* PPP control protocol number */ u_char protoidx; /* index into state table in struct sppp */ u_char flags; #define CP_LCP 0x01 /* this is the LCP */ #define CP_AUTH 0x02 /* this is an authentication protocol */ #define CP_NCP 0x04 /* this is a NCP */ #define CP_QUAL 0x08 /* this is a quality reporting protocol */ const char *name; /* name of this control protocol */ /* event handlers */ void (*Up)(struct sppp *sp); void (*Down)(struct sppp *sp); void (*Open)(struct sppp *sp); void (*Close)(struct sppp *sp); void (*TO)(void *sp); int (*RCR)(struct sppp *sp, struct lcp_header *h, int len); void (*RCN_rej)(struct sppp *sp, struct lcp_header *h, int len); void (*RCN_nak)(struct sppp *sp, struct lcp_header *h, int len); /* actions */ void (*tlu)(struct sppp *sp); void (*tld)(struct sppp *sp); void (*tls)(struct sppp *sp); void (*tlf)(struct sppp *sp); void (*scr)(struct sppp *sp); }; #define SPP_FMT "%s: " #define SPP_ARGS(ifp) (ifp)->if_xname #define SPPP_LOCK(sp) mtx_lock (&(sp)->mtx) #define SPPP_UNLOCK(sp) mtx_unlock (&(sp)->mtx) #define SPPP_LOCK_ASSERT(sp) mtx_assert (&(sp)->mtx, MA_OWNED) #define SPPP_LOCK_OWNED(sp) mtx_owned (&(sp)->mtx) #ifdef INET /* * The following disgusting hack gets around the problem that IP TOS * can't be set yet. We want to put "interactive" traffic on a high * priority queue. To decide if traffic is interactive, we check that * a) it is TCP and b) one of its ports is telnet, rlogin or ftp control. * * XXX is this really still necessary? - joerg - */ static const u_short interactive_ports[8] = { 0, 513, 0, 0, 0, 21, 0, 23, }; #define INTERACTIVE(p) (interactive_ports[(p) & 7] == (p)) #endif /* almost every function needs these */ #define STDDCL \ struct ifnet *ifp = SP2IFP(sp); \ int debug = ifp->if_flags & IFF_DEBUG static int sppp_output(struct ifnet *ifp, struct mbuf *m, struct sockaddr *dst, struct route *ro); static void sppp_cisco_send(struct sppp *sp, int type, long par1, long par2); static void sppp_cisco_input(struct sppp *sp, struct mbuf *m); static void sppp_cp_input(const struct cp *cp, struct sppp *sp, struct mbuf *m); static void sppp_cp_send(struct sppp *sp, u_short proto, u_char type, u_char ident, u_short len, void *data); /* static void sppp_cp_timeout(void *arg); */ static void sppp_cp_change_state(const struct cp *cp, struct sppp *sp, int newstate); static void sppp_auth_send(const struct cp *cp, struct sppp *sp, unsigned int type, unsigned int id, ...); static void sppp_up_event(const struct cp *cp, struct sppp *sp); static void sppp_down_event(const struct cp *cp, struct sppp *sp); static void sppp_open_event(const struct cp *cp, struct sppp *sp); static void sppp_close_event(const struct cp *cp, struct sppp *sp); static void sppp_to_event(const struct cp *cp, struct sppp *sp); static void sppp_null(struct sppp *sp); static void sppp_pp_up(struct sppp *sp); static void sppp_pp_down(struct sppp *sp); static void sppp_lcp_init(struct sppp *sp); static void sppp_lcp_up(struct sppp *sp); static void sppp_lcp_down(struct sppp *sp); static void sppp_lcp_open(struct sppp *sp); static void sppp_lcp_close(struct sppp *sp); static void sppp_lcp_TO(void *sp); static int sppp_lcp_RCR(struct sppp *sp, struct lcp_header *h, int len); static void sppp_lcp_RCN_rej(struct sppp *sp, struct lcp_header *h, int len); static void sppp_lcp_RCN_nak(struct sppp *sp, struct lcp_header *h, int len); static void sppp_lcp_tlu(struct sppp *sp); static void sppp_lcp_tld(struct sppp *sp); static void sppp_lcp_tls(struct sppp *sp); static void sppp_lcp_tlf(struct sppp *sp); static void sppp_lcp_scr(struct sppp *sp); static void sppp_lcp_check_and_close(struct sppp *sp); static int sppp_ncp_check(struct sppp *sp); static void sppp_ipcp_init(struct sppp *sp); static void sppp_ipcp_up(struct sppp *sp); static void sppp_ipcp_down(struct sppp *sp); static void sppp_ipcp_open(struct sppp *sp); static void sppp_ipcp_close(struct sppp *sp); static void sppp_ipcp_TO(void *sp); static int sppp_ipcp_RCR(struct sppp *sp, struct lcp_header *h, int len); static void sppp_ipcp_RCN_rej(struct sppp *sp, struct lcp_header *h, int len); static void sppp_ipcp_RCN_nak(struct sppp *sp, struct lcp_header *h, int len); static void sppp_ipcp_tlu(struct sppp *sp); static void sppp_ipcp_tld(struct sppp *sp); static void sppp_ipcp_tls(struct sppp *sp); static void sppp_ipcp_tlf(struct sppp *sp); static void sppp_ipcp_scr(struct sppp *sp); static void sppp_ipv6cp_init(struct sppp *sp); static void sppp_ipv6cp_up(struct sppp *sp); static void sppp_ipv6cp_down(struct sppp *sp); static void sppp_ipv6cp_open(struct sppp *sp); static void sppp_ipv6cp_close(struct sppp *sp); static void sppp_ipv6cp_TO(void *sp); static int sppp_ipv6cp_RCR(struct sppp *sp, struct lcp_header *h, int len); static void sppp_ipv6cp_RCN_rej(struct sppp *sp, struct lcp_header *h, int len); static void sppp_ipv6cp_RCN_nak(struct sppp *sp, struct lcp_header *h, int len); static void sppp_ipv6cp_tlu(struct sppp *sp); static void sppp_ipv6cp_tld(struct sppp *sp); static void sppp_ipv6cp_tls(struct sppp *sp); static void sppp_ipv6cp_tlf(struct sppp *sp); static void sppp_ipv6cp_scr(struct sppp *sp); static void sppp_pap_input(struct sppp *sp, struct mbuf *m); static void sppp_pap_init(struct sppp *sp); static void sppp_pap_open(struct sppp *sp); static void sppp_pap_close(struct sppp *sp); static void sppp_pap_TO(void *sp); static void sppp_pap_my_TO(void *sp); static void sppp_pap_tlu(struct sppp *sp); static void sppp_pap_tld(struct sppp *sp); static void sppp_pap_scr(struct sppp *sp); static void sppp_chap_input(struct sppp *sp, struct mbuf *m); static void sppp_chap_init(struct sppp *sp); static void sppp_chap_open(struct sppp *sp); static void sppp_chap_close(struct sppp *sp); static void sppp_chap_TO(void *sp); static void sppp_chap_tlu(struct sppp *sp); static void sppp_chap_tld(struct sppp *sp); static void sppp_chap_scr(struct sppp *sp); static const char *sppp_auth_type_name(u_short proto, u_char type); static const char *sppp_cp_type_name(u_char type); #ifdef INET static const char *sppp_dotted_quad(u_long addr); static const char *sppp_ipcp_opt_name(u_char opt); #endif #ifdef INET6 static const char *sppp_ipv6cp_opt_name(u_char opt); #endif static const char *sppp_lcp_opt_name(u_char opt); static const char *sppp_phase_name(enum ppp_phase phase); static const char *sppp_proto_name(u_short proto); static const char *sppp_state_name(int state); static int sppp_params(struct sppp *sp, u_long cmd, void *data); static int sppp_strnlen(u_char *p, int max); static void sppp_keepalive(void *dummy); static void sppp_phase_network(struct sppp *sp); static void sppp_print_bytes(const u_char *p, u_short len); static void sppp_print_string(const char *p, u_short len); static void sppp_qflush(struct ifqueue *ifq); #ifdef INET static void sppp_set_ip_addr(struct sppp *sp, u_long src); #endif #ifdef INET6 static void sppp_get_ip6_addrs(struct sppp *sp, struct in6_addr *src, struct in6_addr *dst, struct in6_addr *srcmask); #ifdef IPV6CP_MYIFID_DYN static void sppp_set_ip6_addr(struct sppp *sp, const struct in6_addr *src); static void sppp_gen_ip6_addr(struct sppp *sp, const struct in6_addr *src); #endif static void sppp_suggest_ip6_addr(struct sppp *sp, struct in6_addr *src); #endif /* if_start () wrapper */ static void sppp_ifstart (struct ifnet *ifp); /* our control protocol descriptors */ static const struct cp lcp = { PPP_LCP, IDX_LCP, CP_LCP, "lcp", sppp_lcp_up, sppp_lcp_down, sppp_lcp_open, sppp_lcp_close, sppp_lcp_TO, sppp_lcp_RCR, sppp_lcp_RCN_rej, sppp_lcp_RCN_nak, sppp_lcp_tlu, sppp_lcp_tld, sppp_lcp_tls, sppp_lcp_tlf, sppp_lcp_scr }; static const struct cp ipcp = { PPP_IPCP, IDX_IPCP, #ifdef INET /* don't run IPCP if there's no IPv4 support */ CP_NCP, #else 0, #endif "ipcp", sppp_ipcp_up, sppp_ipcp_down, sppp_ipcp_open, sppp_ipcp_close, sppp_ipcp_TO, sppp_ipcp_RCR, sppp_ipcp_RCN_rej, sppp_ipcp_RCN_nak, sppp_ipcp_tlu, sppp_ipcp_tld, sppp_ipcp_tls, sppp_ipcp_tlf, sppp_ipcp_scr }; static const struct cp ipv6cp = { PPP_IPV6CP, IDX_IPV6CP, #ifdef INET6 /*don't run IPv6CP if there's no IPv6 support*/ CP_NCP, #else 0, #endif "ipv6cp", sppp_ipv6cp_up, sppp_ipv6cp_down, sppp_ipv6cp_open, sppp_ipv6cp_close, sppp_ipv6cp_TO, sppp_ipv6cp_RCR, sppp_ipv6cp_RCN_rej, sppp_ipv6cp_RCN_nak, sppp_ipv6cp_tlu, sppp_ipv6cp_tld, sppp_ipv6cp_tls, sppp_ipv6cp_tlf, sppp_ipv6cp_scr }; static const struct cp pap = { PPP_PAP, IDX_PAP, CP_AUTH, "pap", sppp_null, sppp_null, sppp_pap_open, sppp_pap_close, sppp_pap_TO, 0, 0, 0, sppp_pap_tlu, sppp_pap_tld, sppp_null, sppp_null, sppp_pap_scr }; static const struct cp chap = { PPP_CHAP, IDX_CHAP, CP_AUTH, "chap", sppp_null, sppp_null, sppp_chap_open, sppp_chap_close, sppp_chap_TO, 0, 0, 0, sppp_chap_tlu, sppp_chap_tld, sppp_null, sppp_null, sppp_chap_scr }; static const struct cp *cps[IDX_COUNT] = { &lcp, /* IDX_LCP */ &ipcp, /* IDX_IPCP */ &ipv6cp, /* IDX_IPV6CP */ &pap, /* IDX_PAP */ &chap, /* IDX_CHAP */ }; static void* sppp_alloc(u_char type, struct ifnet *ifp) { struct sppp *sp; sp = malloc(sizeof(struct sppp), M_SPPP, M_WAITOK | M_ZERO); sp->pp_ifp = ifp; return (sp); } static void sppp_free(void *com, u_char type) { free(com, M_SPPP); } static int sppp_modevent(module_t mod, int type, void *unused) { switch (type) { case MOD_LOAD: /* * XXX: should probably be IFT_SPPP, but it's fairly * harmless to allocate struct sppp's for non-sppp * interfaces. */ if_register_com_alloc(IFT_PPP, sppp_alloc, sppp_free); break; case MOD_UNLOAD: /* if_deregister_com_alloc(IFT_PPP); */ return EACCES; default: return EOPNOTSUPP; } return 0; } static moduledata_t spppmod = { "sppp", sppp_modevent, 0 }; MODULE_VERSION(sppp, 1); DECLARE_MODULE(sppp, spppmod, SI_SUB_DRIVERS, SI_ORDER_ANY); /* * Exported functions, comprising our interface to the lower layer. */ /* * Process the received packet. */ void sppp_input(struct ifnet *ifp, struct mbuf *m) { struct ppp_header *h; int isr = -1; struct sppp *sp = IFP2SP(ifp); int debug, do_account = 0; #ifdef INET int hlen, vjlen; u_char *iphdr; #endif SPPP_LOCK(sp); debug = ifp->if_flags & IFF_DEBUG; if (ifp->if_flags & IFF_UP) /* Count received bytes, add FCS and one flag */ ifp->if_ibytes += m->m_pkthdr.len + 3; if (m->m_pkthdr.len <= PPP_HEADER_LEN) { /* Too small packet, drop it. */ if (debug) log(LOG_DEBUG, SPP_FMT "input packet is too small, %d bytes\n", SPP_ARGS(ifp), m->m_pkthdr.len); drop: m_freem (m); SPPP_UNLOCK(sp); drop2: ++ifp->if_ierrors; ++ifp->if_iqdrops; return; } if (sp->pp_mode == PP_FR) { sppp_fr_input (sp, m); SPPP_UNLOCK(sp); return; } /* Get PPP header. */ h = mtod (m, struct ppp_header*); m_adj (m, PPP_HEADER_LEN); switch (h->address) { case PPP_ALLSTATIONS: if (h->control != PPP_UI) goto invalid; if (sp->pp_mode == IFF_CISCO) { if (debug) log(LOG_DEBUG, SPP_FMT "PPP packet in Cisco mode " "<addr=0x%x ctrl=0x%x proto=0x%x>\n", SPP_ARGS(ifp), h->address, h->control, ntohs(h->protocol)); goto drop; } switch (ntohs (h->protocol)) { default: if (debug) log(LOG_DEBUG, SPP_FMT "rejecting protocol " "<addr=0x%x ctrl=0x%x proto=0x%x>\n", SPP_ARGS(ifp), h->address, h->control, ntohs(h->protocol)); if (sp->state[IDX_LCP] == STATE_OPENED) sppp_cp_send (sp, PPP_LCP, PROTO_REJ, ++sp->pp_seq[IDX_LCP], m->m_pkthdr.len + 2, &h->protocol); ++ifp->if_noproto; goto drop; case PPP_LCP: sppp_cp_input(&lcp, sp, m); m_freem (m); SPPP_UNLOCK(sp); return; case PPP_PAP: if (sp->pp_phase >= PHASE_AUTHENTICATE) sppp_pap_input(sp, m); m_freem (m); SPPP_UNLOCK(sp); return; case PPP_CHAP: if (sp->pp_phase >= PHASE_AUTHENTICATE) sppp_chap_input(sp, m); m_freem (m); SPPP_UNLOCK(sp); return; #ifdef INET case PPP_IPCP: if (sp->pp_phase == PHASE_NETWORK) sppp_cp_input(&ipcp, sp, m); m_freem (m); SPPP_UNLOCK(sp); return; case PPP_IP: if (sp->state[IDX_IPCP] == STATE_OPENED) { isr = NETISR_IP; } do_account++; break; case PPP_VJ_COMP: if (sp->state[IDX_IPCP] == STATE_OPENED) { if ((vjlen = sl_uncompress_tcp_core(mtod(m, u_char *), m->m_len, m->m_len, TYPE_COMPRESSED_TCP, sp->pp_comp, &iphdr, &hlen)) <= 0) { if (debug) log(LOG_INFO, SPP_FMT "VJ uncompress failed on compressed packet\n", SPP_ARGS(ifp)); goto drop; } /* * Trim the VJ header off the packet, and prepend * the uncompressed IP header (which will usually * end up in two chained mbufs since there's not * enough leading space in the existing mbuf). */ m_adj(m, vjlen); M_PREPEND(m, hlen, M_DONTWAIT); if (m == NULL) { SPPP_UNLOCK(sp); goto drop2; } bcopy(iphdr, mtod(m, u_char *), hlen); isr = NETISR_IP; } do_account++; break; case PPP_VJ_UCOMP: if (sp->state[IDX_IPCP] == STATE_OPENED) { if (sl_uncompress_tcp_core(mtod(m, u_char *), m->m_len, m->m_len, TYPE_UNCOMPRESSED_TCP, sp->pp_comp, &iphdr, &hlen) != 0) { if (debug) log(LOG_INFO, SPP_FMT "VJ uncompress failed on uncompressed packet\n", SPP_ARGS(ifp)); goto drop; } isr = NETISR_IP; } do_account++; break; #endif #ifdef INET6 case PPP_IPV6CP: if (sp->pp_phase == PHASE_NETWORK) sppp_cp_input(&ipv6cp, sp, m); m_freem (m); SPPP_UNLOCK(sp); return; case PPP_IPV6: if (sp->state[IDX_IPV6CP] == STATE_OPENED) isr = NETISR_IPV6; do_account++; break; #endif #ifdef IPX case PPP_IPX: /* IPX IPXCP not implemented yet */ if (sp->pp_phase == PHASE_NETWORK) isr = NETISR_IPX; do_account++; break; #endif } break; case CISCO_MULTICAST: case CISCO_UNICAST: /* Don't check the control field here (RFC 1547). */ if (sp->pp_mode != IFF_CISCO) { if (debug) log(LOG_DEBUG, SPP_FMT "Cisco packet in PPP mode " "<addr=0x%x ctrl=0x%x proto=0x%x>\n", SPP_ARGS(ifp), h->address, h->control, ntohs(h->protocol)); goto drop; } switch (ntohs (h->protocol)) { default: ++ifp->if_noproto; goto invalid; case CISCO_KEEPALIVE: sppp_cisco_input (sp, m); m_freem (m); SPPP_UNLOCK(sp); return; #ifdef INET case ETHERTYPE_IP: isr = NETISR_IP; do_account++; break; #endif #ifdef INET6 case ETHERTYPE_IPV6: isr = NETISR_IPV6; do_account++; break; #endif #ifdef IPX case ETHERTYPE_IPX: isr = NETISR_IPX; do_account++; break; #endif } break; default: /* Invalid PPP packet. */ invalid: if (debug) log(LOG_DEBUG, SPP_FMT "invalid input packet " "<addr=0x%x ctrl=0x%x proto=0x%x>\n", SPP_ARGS(ifp), h->address, h->control, ntohs(h->protocol)); goto drop; } if (! (ifp->if_flags & IFF_UP) || isr == -1) goto drop; SPPP_UNLOCK(sp); M_SETFIB(m, ifp->if_fib); /* Check queue. */ if (netisr_queue(isr, m)) { /* (0) on success. */ if (debug) log(LOG_DEBUG, SPP_FMT "protocol queue overflow\n", SPP_ARGS(ifp)); goto drop2; } if (do_account) /* * Do only account for network packets, not for control * packets. This is used by some subsystems to detect * idle lines. */ sp->pp_last_recv = time_uptime; } static void sppp_ifstart_sched(void *dummy) { struct sppp *sp = dummy; sp->if_start(SP2IFP(sp)); } /* if_start () wrapper function. We use it to schedule real if_start () for * execution. We can't call it directly */ static void sppp_ifstart(struct ifnet *ifp) { struct sppp *sp = IFP2SP(ifp); if (SPPP_LOCK_OWNED(sp)) { if (callout_pending(&sp->ifstart_callout)) return; callout_reset(&sp->ifstart_callout, 1, sppp_ifstart_sched, (void *)sp); } else { sp->if_start(ifp); } } /* * Enqueue transmit packet. */ static int sppp_output(struct ifnet *ifp, struct mbuf *m, struct sockaddr *dst, struct route *ro) { struct sppp *sp = IFP2SP(ifp); struct ppp_header *h; struct ifqueue *ifq = NULL; int s, error, rv = 0; #ifdef INET int ipproto = PPP_IP; #endif int debug = ifp->if_flags & IFF_DEBUG; s = splimp(); SPPP_LOCK(sp); if (!(ifp->if_flags & IFF_UP) || (!(ifp->if_flags & IFF_AUTO) && !(ifp->if_drv_flags & IFF_DRV_RUNNING))) { #ifdef INET6 drop: #endif m_freem (m); SPPP_UNLOCK(sp); splx (s); return (ENETDOWN); } if ((ifp->if_flags & IFF_AUTO) && !(ifp->if_drv_flags & IFF_DRV_RUNNING)) { #ifdef INET6 /* * XXX * * Hack to prevent the initialization-time generated * IPv6 multicast packet to erroneously cause a * dialout event in case IPv6 has been * administratively disabled on that interface. */ if (dst->sa_family == AF_INET6 && !(sp->confflags & CONF_ENABLE_IPV6)) goto drop; #endif /* * Interface is not yet running, but auto-dial. Need * to start LCP for it. */ ifp->if_drv_flags |= IFF_DRV_RUNNING; splx(s); lcp.Open(sp); s = splimp(); } #ifdef INET if (dst->sa_family == AF_INET) { /* XXX Check mbuf length here? */ struct ip *ip = mtod (m, struct ip*); struct tcphdr *tcp = (struct tcphdr*) ((long*)ip + ip->ip_hl); /* * When using dynamic local IP address assignment by using * 0.0.0.0 as a local address, the first TCP session will * not connect because the local TCP checksum is computed * using 0.0.0.0 which will later become our real IP address * so the TCP checksum computed at the remote end will * become invalid. So we * - don't let packets with src ip addr 0 thru * - we flag TCP packets with src ip 0 as an error */ if(ip->ip_src.s_addr == INADDR_ANY) /* -hm */ { m_freem(m); SPPP_UNLOCK(sp); splx(s); if(ip->ip_p == IPPROTO_TCP) return(EADDRNOTAVAIL); else return(0); } /* * Put low delay, telnet, rlogin and ftp control packets * in front of the queue or let ALTQ take care. */ if (ALTQ_IS_ENABLED(&ifp->if_snd)) ; else if (_IF_QFULL(&sp->pp_fastq)) ; else if (ip->ip_tos & IPTOS_LOWDELAY) ifq = &sp->pp_fastq; else if (m->m_len < sizeof *ip + sizeof *tcp) ; else if (ip->ip_p != IPPROTO_TCP) ; else if (INTERACTIVE (ntohs (tcp->th_sport))) ifq = &sp->pp_fastq; else if (INTERACTIVE (ntohs (tcp->th_dport))) ifq = &sp->pp_fastq; /* * Do IP Header compression */ if (sp->pp_mode != IFF_CISCO && sp->pp_mode != PP_FR && (sp->ipcp.flags & IPCP_VJ) && ip->ip_p == IPPROTO_TCP) switch (sl_compress_tcp(m, ip, sp->pp_comp, sp->ipcp.compress_cid)) { case TYPE_COMPRESSED_TCP: ipproto = PPP_VJ_COMP; break; case TYPE_UNCOMPRESSED_TCP: ipproto = PPP_VJ_UCOMP; break; case TYPE_IP: ipproto = PPP_IP; break; default: m_freem(m); SPPP_UNLOCK(sp); splx(s); return (EINVAL); } } #endif #ifdef INET6 if (dst->sa_family == AF_INET6) { /* XXX do something tricky here? */ } #endif if (sp->pp_mode == PP_FR) { /* Add frame relay header. */ m = sppp_fr_header (sp, m, dst->sa_family); if (! m) goto nobufs; goto out; } /* * Prepend general data packet PPP header. For now, IP only. */ M_PREPEND (m, PPP_HEADER_LEN, M_DONTWAIT); if (! m) { nobufs: if (debug) log(LOG_DEBUG, SPP_FMT "no memory for transmit header\n", SPP_ARGS(ifp)); ++ifp->if_oerrors; SPPP_UNLOCK(sp); splx (s); return (ENOBUFS); } /* * May want to check size of packet * (albeit due to the implementation it's always enough) */ h = mtod (m, struct ppp_header*); if (sp->pp_mode == IFF_CISCO) { h->address = CISCO_UNICAST; /* unicast address */ h->control = 0; } else { h->address = PPP_ALLSTATIONS; /* broadcast address */ h->control = PPP_UI; /* Unnumbered Info */ } switch (dst->sa_family) { #ifdef INET case AF_INET: /* Internet Protocol */ if (sp->pp_mode == IFF_CISCO) h->protocol = htons (ETHERTYPE_IP); else { /* * Don't choke with an ENETDOWN early. It's * possible that we just started dialing out, * so don't drop the packet immediately. If * we notice that we run out of buffer space * below, we will however remember that we are * not ready to carry IP packets, and return * ENETDOWN, as opposed to ENOBUFS. */ h->protocol = htons(ipproto); if (sp->state[IDX_IPCP] != STATE_OPENED) rv = ENETDOWN; } break; #endif #ifdef INET6 case AF_INET6: /* Internet Protocol */ if (sp->pp_mode == IFF_CISCO) h->protocol = htons (ETHERTYPE_IPV6); else { /* * Don't choke with an ENETDOWN early. It's * possible that we just started dialing out, * so don't drop the packet immediately. If * we notice that we run out of buffer space * below, we will however remember that we are * not ready to carry IP packets, and return * ENETDOWN, as opposed to ENOBUFS. */ h->protocol = htons(PPP_IPV6); if (sp->state[IDX_IPV6CP] != STATE_OPENED) rv = ENETDOWN; } break; #endif #ifdef IPX case AF_IPX: /* Novell IPX Protocol */ h->protocol = htons (sp->pp_mode == IFF_CISCO ? ETHERTYPE_IPX : PPP_IPX); break; #endif default: m_freem (m); ++ifp->if_oerrors; SPPP_UNLOCK(sp); splx (s); return (EAFNOSUPPORT); } /* * Queue message on interface, and start output if interface * not yet active. */ out: if (ifq != NULL) error = !(IF_HANDOFF_ADJ(ifq, m, ifp, 3)); else IFQ_HANDOFF_ADJ(ifp, m, 3, error); if (error) { ++ifp->if_oerrors; SPPP_UNLOCK(sp); splx (s); return (rv? rv: ENOBUFS); } SPPP_UNLOCK(sp); splx (s); /* * Unlike in sppp_input(), we can always bump the timestamp * here since sppp_output() is only called on behalf of * network-layer traffic; control-layer traffic is handled * by sppp_cp_send(). */ sp->pp_last_sent = time_uptime; return (0); } void sppp_attach(struct ifnet *ifp) { struct sppp *sp = IFP2SP(ifp); /* Initialize mtx lock */ mtx_init(&sp->mtx, "sppp", MTX_NETWORK_LOCK, MTX_DEF | MTX_RECURSE); /* Initialize keepalive handler. */ callout_init(&sp->keepalive_callout, CALLOUT_MPSAFE); callout_reset(&sp->keepalive_callout, hz * 10, sppp_keepalive, (void *)sp); ifp->if_mtu = PP_MTU; ifp->if_flags = IFF_POINTOPOINT | IFF_MULTICAST; ifp->if_output = sppp_output; #if 0 sp->pp_flags = PP_KEEPALIVE; #endif ifp->if_snd.ifq_maxlen = 32; sp->pp_fastq.ifq_maxlen = 32; sp->pp_cpq.ifq_maxlen = 20; sp->pp_loopcnt = 0; sp->pp_alivecnt = 0; bzero(&sp->pp_seq[0], sizeof(sp->pp_seq)); bzero(&sp->pp_rseq[0], sizeof(sp->pp_rseq)); sp->pp_phase = PHASE_DEAD; sp->pp_up = sppp_pp_up; sp->pp_down = sppp_pp_down; if(!mtx_initialized(&sp->pp_cpq.ifq_mtx)) mtx_init(&sp->pp_cpq.ifq_mtx, "sppp_cpq", NULL, MTX_DEF); if(!mtx_initialized(&sp->pp_fastq.ifq_mtx)) mtx_init(&sp->pp_fastq.ifq_mtx, "sppp_fastq", NULL, MTX_DEF); sp->pp_last_recv = sp->pp_last_sent = time_uptime; sp->confflags = 0; #ifdef INET sp->confflags |= CONF_ENABLE_VJ; #endif #ifdef INET6 sp->confflags |= CONF_ENABLE_IPV6; #endif callout_init(&sp->ifstart_callout, CALLOUT_MPSAFE); sp->if_start = ifp->if_start; ifp->if_start = sppp_ifstart; sp->pp_comp = malloc(sizeof(struct slcompress), M_TEMP, M_WAITOK); sl_compress_init(sp->pp_comp, -1); sppp_lcp_init(sp); sppp_ipcp_init(sp); sppp_ipv6cp_init(sp); sppp_pap_init(sp); sppp_chap_init(sp); } void sppp_detach(struct ifnet *ifp) { struct sppp *sp = IFP2SP(ifp); int i; KASSERT(mtx_initialized(&sp->mtx), ("sppp mutex is not initialized")); /* Stop keepalive handler. */ if (!callout_drain(&sp->keepalive_callout)) callout_stop(&sp->keepalive_callout); for (i = 0; i < IDX_COUNT; i++) { if (!callout_drain(&sp->ch[i])) callout_stop(&sp->ch[i]); } if (!callout_drain(&sp->pap_my_to_ch)) callout_stop(&sp->pap_my_to_ch); mtx_destroy(&sp->pp_cpq.ifq_mtx); mtx_destroy(&sp->pp_fastq.ifq_mtx); mtx_destroy(&sp->mtx); } /* * Flush the interface output queue. */ static void sppp_flush_unlocked(struct ifnet *ifp) { struct sppp *sp = IFP2SP(ifp); sppp_qflush ((struct ifqueue *)&SP2IFP(sp)->if_snd); sppp_qflush (&sp->pp_fastq); sppp_qflush (&sp->pp_cpq); } void sppp_flush(struct ifnet *ifp) { struct sppp *sp = IFP2SP(ifp); SPPP_LOCK(sp); sppp_flush_unlocked (ifp); SPPP_UNLOCK(sp); } /* * Check if the output queue is empty. */ int sppp_isempty(struct ifnet *ifp) { struct sppp *sp = IFP2SP(ifp); int empty, s; s = splimp(); SPPP_LOCK(sp); empty = !sp->pp_fastq.ifq_head && !sp->pp_cpq.ifq_head && !SP2IFP(sp)->if_snd.ifq_head; SPPP_UNLOCK(sp); splx(s); return (empty); } /* * Get next packet to send. */ struct mbuf * sppp_dequeue(struct ifnet *ifp) { struct sppp *sp = IFP2SP(ifp); struct mbuf *m; int s; s = splimp(); SPPP_LOCK(sp); /* * Process only the control protocol queue until we have at * least one NCP open. * * Do always serve all three queues in Cisco mode. */ IF_DEQUEUE(&sp->pp_cpq, m); if (m == NULL && (sppp_ncp_check(sp) || sp->pp_mode == IFF_CISCO || sp->pp_mode == PP_FR)) { IF_DEQUEUE(&sp->pp_fastq, m); if (m == NULL) IF_DEQUEUE (&SP2IFP(sp)->if_snd, m); } SPPP_UNLOCK(sp); splx(s); return m; } /* * Pick the next packet, do not remove it from the queue. */ struct mbuf * sppp_pick(struct ifnet *ifp) { struct sppp *sp = IFP2SP(ifp); struct mbuf *m; int s; s = splimp (); SPPP_LOCK(sp); m = sp->pp_cpq.ifq_head; if (m == NULL && (sp->pp_phase == PHASE_NETWORK || sp->pp_mode == IFF_CISCO || sp->pp_mode == PP_FR)) if ((m = sp->pp_fastq.ifq_head) == NULL) m = SP2IFP(sp)->if_snd.ifq_head; SPPP_UNLOCK(sp); splx (s); return (m); } /* * Process an ioctl request. Called on low priority level. */ int sppp_ioctl(struct ifnet *ifp, IOCTL_CMD_T cmd, void *data) { struct ifreq *ifr = (struct ifreq*) data; struct sppp *sp = IFP2SP(ifp); int s, rv, going_up, going_down, newmode; s = splimp(); SPPP_LOCK(sp); rv = 0; switch (cmd) { case SIOCAIFADDR: case SIOCSIFDSTADDR: break; case SIOCSIFADDR: /* set the interface "up" when assigning an IP address */ ifp->if_flags |= IFF_UP; /* FALLTHROUGH */ case SIOCSIFFLAGS: going_up = ifp->if_flags & IFF_UP && (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0; going_down = (ifp->if_flags & IFF_UP) == 0 && ifp->if_drv_flags & IFF_DRV_RUNNING; newmode = ifp->if_flags & IFF_PASSIVE; if (!newmode) newmode = ifp->if_flags & IFF_AUTO; if (!newmode) newmode = ifp->if_flags & IFF_CISCO; ifp->if_flags &= ~(IFF_PASSIVE | IFF_AUTO | IFF_CISCO); ifp->if_flags |= newmode; if (!newmode) newmode = sp->pp_flags & PP_FR; if (newmode != sp->pp_mode) { going_down = 1; if (!going_up) going_up = ifp->if_drv_flags & IFF_DRV_RUNNING; } if (going_down) { if (sp->pp_mode != IFF_CISCO && sp->pp_mode != PP_FR) lcp.Close(sp); else if (sp->pp_tlf) (sp->pp_tlf)(sp); sppp_flush_unlocked(ifp); ifp->if_drv_flags &= ~IFF_DRV_RUNNING; sp->pp_mode = newmode; } if (going_up) { if (sp->pp_mode != IFF_CISCO && sp->pp_mode != PP_FR) lcp.Close(sp); sp->pp_mode = newmode; if (sp->pp_mode == 0) { ifp->if_drv_flags |= IFF_DRV_RUNNING; lcp.Open(sp); } if ((sp->pp_mode == IFF_CISCO) || (sp->pp_mode == PP_FR)) { if (sp->pp_tls) (sp->pp_tls)(sp); ifp->if_drv_flags |= IFF_DRV_RUNNING; } } break; #ifdef SIOCSIFMTU #ifndef ifr_mtu #define ifr_mtu ifr_metric #endif case SIOCSIFMTU: if (ifr->ifr_mtu < 128 || ifr->ifr_mtu > sp->lcp.their_mru) return (EINVAL); ifp->if_mtu = ifr->ifr_mtu; break; #endif #ifdef SLIOCSETMTU case SLIOCSETMTU: if (*(short*)data < 128 || *(short*)data > sp->lcp.their_mru) return (EINVAL); ifp->if_mtu = *(short*)data; break; #endif #ifdef SIOCGIFMTU case SIOCGIFMTU: ifr->ifr_mtu = ifp->if_mtu; break; #endif #ifdef SLIOCGETMTU case SLIOCGETMTU: *(short*)data = ifp->if_mtu; break; #endif case SIOCADDMULTI: case SIOCDELMULTI: break; case SIOCGIFGENERIC: case SIOCSIFGENERIC: rv = sppp_params(sp, cmd, data); break; default: rv = ENOTTY; } SPPP_UNLOCK(sp); splx(s); return rv; } /* * Cisco framing implementation. */ /* * Handle incoming Cisco keepalive protocol packets. */ static void sppp_cisco_input(struct sppp *sp, struct mbuf *m) { STDDCL; struct cisco_packet *h; u_long me, mymask; if (m->m_pkthdr.len < CISCO_PACKET_LEN) { if (debug) log(LOG_DEBUG, SPP_FMT "cisco invalid packet length: %d bytes\n", SPP_ARGS(ifp), m->m_pkthdr.len); return; } h = mtod (m, struct cisco_packet*); if (debug) log(LOG_DEBUG, SPP_FMT "cisco input: %d bytes " "<0x%lx 0x%lx 0x%lx 0x%x 0x%x-0x%x>\n", SPP_ARGS(ifp), m->m_pkthdr.len, (u_long)ntohl (h->type), (u_long)h->par1, (u_long)h->par2, (u_int)h->rel, (u_int)h->time0, (u_int)h->time1); switch (ntohl (h->type)) { default: if (debug) log(-1, SPP_FMT "cisco unknown packet type: 0x%lx\n", SPP_ARGS(ifp), (u_long)ntohl (h->type)); break; case CISCO_ADDR_REPLY: /* Reply on address request, ignore */ break; case CISCO_KEEPALIVE_REQ: sp->pp_alivecnt = 0; sp->pp_rseq[IDX_LCP] = ntohl (h->par1); if (sp->pp_seq[IDX_LCP] == sp->pp_rseq[IDX_LCP]) { /* Local and remote sequence numbers are equal. * Probably, the line is in loopback mode. */ if (sp->pp_loopcnt >= MAXALIVECNT) { printf (SPP_FMT "loopback\n", SPP_ARGS(ifp)); sp->pp_loopcnt = 0; if (ifp->if_flags & IFF_UP) { if_down (ifp); sppp_qflush (&sp->pp_cpq); } } ++sp->pp_loopcnt; /* Generate new local sequence number */ sp->pp_seq[IDX_LCP] = random(); break; } sp->pp_loopcnt = 0; if (! (ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING)) { if_up(ifp); printf (SPP_FMT "up\n", SPP_ARGS(ifp)); } break; case CISCO_ADDR_REQ: sppp_get_ip_addrs(sp, &me, 0, &mymask); if (me != 0L) sppp_cisco_send(sp, CISCO_ADDR_REPLY, me, mymask); break; } } /* * Send Cisco keepalive packet. */ static void sppp_cisco_send(struct sppp *sp, int type, long par1, long par2) { STDDCL; struct ppp_header *h; struct cisco_packet *ch; struct mbuf *m; struct timeval tv; getmicrouptime(&tv); MGETHDR (m, M_DONTWAIT, MT_DATA); if (! m) return; m->m_pkthdr.len = m->m_len = PPP_HEADER_LEN + CISCO_PACKET_LEN; m->m_pkthdr.rcvif = 0; h = mtod (m, struct ppp_header*); h->address = CISCO_MULTICAST; h->control = 0; h->protocol = htons (CISCO_KEEPALIVE); ch = (struct cisco_packet*) (h + 1); ch->type = htonl (type); ch->par1 = htonl (par1); ch->par2 = htonl (par2); ch->rel = -1; ch->time0 = htons ((u_short) (tv.tv_sec >> 16)); ch->time1 = htons ((u_short) tv.tv_sec); if (debug) log(LOG_DEBUG, SPP_FMT "cisco output: <0x%lx 0x%lx 0x%lx 0x%x 0x%x-0x%x>\n", SPP_ARGS(ifp), (u_long)ntohl (ch->type), (u_long)ch->par1, (u_long)ch->par2, (u_int)ch->rel, (u_int)ch->time0, (u_int)ch->time1); if (! IF_HANDOFF_ADJ(&sp->pp_cpq, m, ifp, 3)) ifp->if_oerrors++; } /* * PPP protocol implementation. */ /* * Send PPP control protocol packet. */ static void sppp_cp_send(struct sppp *sp, u_short proto, u_char type, u_char ident, u_short len, void *data) { STDDCL; struct ppp_header *h; struct lcp_header *lh; struct mbuf *m; if (len > MHLEN - PPP_HEADER_LEN - LCP_HEADER_LEN) len = MHLEN - PPP_HEADER_LEN - LCP_HEADER_LEN; MGETHDR (m, M_DONTWAIT, MT_DATA); if (! m) return; m->m_pkthdr.len = m->m_len = PPP_HEADER_LEN + LCP_HEADER_LEN + len; m->m_pkthdr.rcvif = 0; h = mtod (m, struct ppp_header*); h->address = PPP_ALLSTATIONS; /* broadcast address */ h->control = PPP_UI; /* Unnumbered Info */ h->protocol = htons (proto); /* Link Control Protocol */ lh = (struct lcp_header*) (h + 1); lh->type = type; lh->ident = ident; lh->len = htons (LCP_HEADER_LEN + len); if (len) bcopy (data, lh+1, len); if (debug) { log(LOG_DEBUG, SPP_FMT "%s output <%s id=0x%x len=%d", SPP_ARGS(ifp), sppp_proto_name(proto), sppp_cp_type_name (lh->type), lh->ident, ntohs (lh->len)); sppp_print_bytes ((u_char*) (lh+1), len); log(-1, ">\n"); } if (! IF_HANDOFF_ADJ(&sp->pp_cpq, m, ifp, 3)) ifp->if_oerrors++; } /* * Handle incoming PPP control protocol packets. */ static void sppp_cp_input(const struct cp *cp, struct sppp *sp, struct mbuf *m) { STDDCL; struct lcp_header *h; int len = m->m_pkthdr.len; int rv; u_char *p; if (len < 4) { if (debug) log(LOG_DEBUG, SPP_FMT "%s invalid packet length: %d bytes\n", SPP_ARGS(ifp), cp->name, len); return; } h = mtod (m, struct lcp_header*); if (debug) { log(LOG_DEBUG, SPP_FMT "%s input(%s): <%s id=0x%x len=%d", SPP_ARGS(ifp), cp->name, sppp_state_name(sp->state[cp->protoidx]), sppp_cp_type_name (h->type), h->ident, ntohs (h->len)); sppp_print_bytes ((u_char*) (h+1), len-4); log(-1, ">\n"); } if (len > ntohs (h->len)) len = ntohs (h->len); p = (u_char *)(h + 1); switch (h->type) { case CONF_REQ: if (len < 4) { if (debug) log(-1, SPP_FMT "%s invalid conf-req length %d\n", SPP_ARGS(ifp), cp->name, len); ++ifp->if_ierrors; break; } /* handle states where RCR doesn't get a SCA/SCN */ switch (sp->state[cp->protoidx]) { case STATE_CLOSING: case STATE_STOPPING: return; case STATE_CLOSED: sppp_cp_send(sp, cp->proto, TERM_ACK, h->ident, 0, 0); return; } rv = (cp->RCR)(sp, h, len); switch (sp->state[cp->protoidx]) { case STATE_OPENED: (cp->tld)(sp); (cp->scr)(sp); /* FALLTHROUGH */ case STATE_ACK_SENT: case STATE_REQ_SENT: /* * sppp_cp_change_state() have the side effect of * restarting the timeouts. We want to avoid that * if the state don't change, otherwise we won't * ever timeout and resend a configuration request * that got lost. */ if (sp->state[cp->protoidx] == (rv ? STATE_ACK_SENT: STATE_REQ_SENT)) break; sppp_cp_change_state(cp, sp, rv? STATE_ACK_SENT: STATE_REQ_SENT); break; case STATE_STOPPED: sp->rst_counter[cp->protoidx] = sp->lcp.max_configure; (cp->scr)(sp); sppp_cp_change_state(cp, sp, rv? STATE_ACK_SENT: STATE_REQ_SENT); break; case STATE_ACK_RCVD: if (rv) { sppp_cp_change_state(cp, sp, STATE_OPENED); if (debug) log(LOG_DEBUG, SPP_FMT "%s tlu\n", SPP_ARGS(ifp), cp->name); (cp->tlu)(sp); } else sppp_cp_change_state(cp, sp, STATE_ACK_RCVD); break; default: printf(SPP_FMT "%s illegal %s in state %s\n", SPP_ARGS(ifp), cp->name, sppp_cp_type_name(h->type), sppp_state_name(sp->state[cp->protoidx])); ++ifp->if_ierrors; } break; case CONF_ACK: if (h->ident != sp->confid[cp->protoidx]) { if (debug) log(-1, SPP_FMT "%s id mismatch 0x%x != 0x%x\n", SPP_ARGS(ifp), cp->name, h->ident, sp->confid[cp->protoidx]); ++ifp->if_ierrors; break; } switch (sp->state[cp->protoidx]) { case STATE_CLOSED: case STATE_STOPPED: sppp_cp_send(sp, cp->proto, TERM_ACK, h->ident, 0, 0); break; case STATE_CLOSING: case STATE_STOPPING: break; case STATE_REQ_SENT: sp->rst_counter[cp->protoidx] = sp->lcp.max_configure; sppp_cp_change_state(cp, sp, STATE_ACK_RCVD); break; case STATE_OPENED: (cp->tld)(sp); /* FALLTHROUGH */ case STATE_ACK_RCVD: (cp->scr)(sp); sppp_cp_change_state(cp, sp, STATE_REQ_SENT); break; case STATE_ACK_SENT: sp->rst_counter[cp->protoidx] = sp->lcp.max_configure; sppp_cp_change_state(cp, sp, STATE_OPENED); if (debug) log(LOG_DEBUG, SPP_FMT "%s tlu\n", SPP_ARGS(ifp), cp->name); (cp->tlu)(sp); break; default: printf(SPP_FMT "%s illegal %s in state %s\n", SPP_ARGS(ifp), cp->name, sppp_cp_type_name(h->type), sppp_state_name(sp->state[cp->protoidx])); ++ifp->if_ierrors; } break; case CONF_NAK: case CONF_REJ: if (h->ident != sp->confid[cp->protoidx]) { if (debug) log(-1, SPP_FMT "%s id mismatch 0x%x != 0x%x\n", SPP_ARGS(ifp), cp->name, h->ident, sp->confid[cp->protoidx]); ++ifp->if_ierrors; break; } if (h->type == CONF_NAK) (cp->RCN_nak)(sp, h, len); else /* CONF_REJ */ (cp->RCN_rej)(sp, h, len); switch (sp->state[cp->protoidx]) { case STATE_CLOSED: case STATE_STOPPED: sppp_cp_send(sp, cp->proto, TERM_ACK, h->ident, 0, 0); break; case STATE_REQ_SENT: case STATE_ACK_SENT: sp->rst_counter[cp->protoidx] = sp->lcp.max_configure; /* * Slow things down a bit if we think we might be * in loopback. Depend on the timeout to send the * next configuration request. */ if (sp->pp_loopcnt) break; (cp->scr)(sp); break; case STATE_OPENED: (cp->tld)(sp); /* FALLTHROUGH */ case STATE_ACK_RCVD: sppp_cp_change_state(cp, sp, STATE_REQ_SENT); (cp->scr)(sp); break; case STATE_CLOSING: case STATE_STOPPING: break; default: printf(SPP_FMT "%s illegal %s in state %s\n", SPP_ARGS(ifp), cp->name, sppp_cp_type_name(h->type), sppp_state_name(sp->state[cp->protoidx])); ++ifp->if_ierrors; } break; case TERM_REQ: switch (sp->state[cp->protoidx]) { case STATE_ACK_RCVD: case STATE_ACK_SENT: sppp_cp_change_state(cp, sp, STATE_REQ_SENT); /* FALLTHROUGH */ case STATE_CLOSED: case STATE_STOPPED: case STATE_CLOSING: case STATE_STOPPING: case STATE_REQ_SENT: sta: /* Send Terminate-Ack packet. */ if (debug) log(LOG_DEBUG, SPP_FMT "%s send terminate-ack\n", SPP_ARGS(ifp), cp->name); sppp_cp_send(sp, cp->proto, TERM_ACK, h->ident, 0, 0); break; case STATE_OPENED: (cp->tld)(sp); sp->rst_counter[cp->protoidx] = 0; sppp_cp_change_state(cp, sp, STATE_STOPPING); goto sta; break; default: printf(SPP_FMT "%s illegal %s in state %s\n", SPP_ARGS(ifp), cp->name, sppp_cp_type_name(h->type), sppp_state_name(sp->state[cp->protoidx])); ++ifp->if_ierrors; } break; case TERM_ACK: switch (sp->state[cp->protoidx]) { case STATE_CLOSED: case STATE_STOPPED: case STATE_REQ_SENT: case STATE_ACK_SENT: break; case STATE_CLOSING: sppp_cp_change_state(cp, sp, STATE_CLOSED); (cp->tlf)(sp); break; case STATE_STOPPING: sppp_cp_change_state(cp, sp, STATE_STOPPED); (cp->tlf)(sp); break; case STATE_ACK_RCVD: sppp_cp_change_state(cp, sp, STATE_REQ_SENT); break; case STATE_OPENED: (cp->tld)(sp); (cp->scr)(sp); sppp_cp_change_state(cp, sp, STATE_ACK_RCVD); break; default: printf(SPP_FMT "%s illegal %s in state %s\n", SPP_ARGS(ifp), cp->name, sppp_cp_type_name(h->type), sppp_state_name(sp->state[cp->protoidx])); ++ifp->if_ierrors; } break; case CODE_REJ: /* XXX catastrophic rejects (RXJ-) aren't handled yet. */ log(LOG_INFO, SPP_FMT "%s: ignoring RXJ (%s) for proto 0x%x, " "danger will robinson\n", SPP_ARGS(ifp), cp->name, sppp_cp_type_name(h->type), ntohs(*((u_short *)p))); switch (sp->state[cp->protoidx]) { case STATE_CLOSED: case STATE_STOPPED: case STATE_REQ_SENT: case STATE_ACK_SENT: case STATE_CLOSING: case STATE_STOPPING: case STATE_OPENED: break; case STATE_ACK_RCVD: sppp_cp_change_state(cp, sp, STATE_REQ_SENT); break; default: printf(SPP_FMT "%s illegal %s in state %s\n", SPP_ARGS(ifp), cp->name, sppp_cp_type_name(h->type), sppp_state_name(sp->state[cp->protoidx])); ++ifp->if_ierrors; } break; case PROTO_REJ: { int catastrophic; const struct cp *upper; int i; u_int16_t proto; catastrophic = 0; upper = NULL; proto = ntohs(*((u_int16_t *)p)); for (i = 0; i < IDX_COUNT; i++) { if (cps[i]->proto == proto) { upper = cps[i]; break; } } if (upper == NULL) catastrophic++; if (catastrophic || debug) log(catastrophic? LOG_INFO: LOG_DEBUG, SPP_FMT "%s: RXJ%c (%s) for proto 0x%x (%s/%s)\n", SPP_ARGS(ifp), cp->name, catastrophic ? '-' : '+', sppp_cp_type_name(h->type), proto, upper ? upper->name : "unknown", upper ? sppp_state_name(sp->state[upper->protoidx]) : "?"); /* * if we got RXJ+ against conf-req, the peer does not implement * this particular protocol type. terminate the protocol. */ if (upper && !catastrophic) { if (sp->state[upper->protoidx] == STATE_REQ_SENT) { upper->Close(sp); break; } } /* XXX catastrophic rejects (RXJ-) aren't handled yet. */ switch (sp->state[cp->protoidx]) { case STATE_CLOSED: case STATE_STOPPED: case STATE_REQ_SENT: case STATE_ACK_SENT: case STATE_CLOSING: case STATE_STOPPING: case STATE_OPENED: break; case STATE_ACK_RCVD: sppp_cp_change_state(cp, sp, STATE_REQ_SENT); break; default: printf(SPP_FMT "%s illegal %s in state %s\n", SPP_ARGS(ifp), cp->name, sppp_cp_type_name(h->type), sppp_state_name(sp->state[cp->protoidx])); ++ifp->if_ierrors; } break; } case DISC_REQ: if (cp->proto != PPP_LCP) goto illegal; /* Discard the packet. */ break; case ECHO_REQ: if (cp->proto != PPP_LCP) goto illegal; if (sp->state[cp->protoidx] != STATE_OPENED) { if (debug) log(-1, SPP_FMT "lcp echo req but lcp closed\n", SPP_ARGS(ifp)); ++ifp->if_ierrors; break; } if (len < 8) { if (debug) log(-1, SPP_FMT "invalid lcp echo request " "packet length: %d bytes\n", SPP_ARGS(ifp), len); break; } if ((sp->lcp.opts & (1 << LCP_OPT_MAGIC)) && ntohl (*(long*)(h+1)) == sp->lcp.magic) { /* Line loopback mode detected. */ printf(SPP_FMT "loopback\n", SPP_ARGS(ifp)); sp->pp_loopcnt = MAXALIVECNT * 5; if_down (ifp); sppp_qflush (&sp->pp_cpq); /* Shut down the PPP link. */ /* XXX */ lcp.Down(sp); lcp.Up(sp); break; } *(long*)(h+1) = htonl (sp->lcp.magic); if (debug) log(-1, SPP_FMT "got lcp echo req, sending echo rep\n", SPP_ARGS(ifp)); sppp_cp_send (sp, PPP_LCP, ECHO_REPLY, h->ident, len-4, h+1); break; case ECHO_REPLY: if (cp->proto != PPP_LCP) goto illegal; if (h->ident != sp->lcp.echoid) { ++ifp->if_ierrors; break; } if (len < 8) { if (debug) log(-1, SPP_FMT "lcp invalid echo reply " "packet length: %d bytes\n", SPP_ARGS(ifp), len); break; } if (debug) log(-1, SPP_FMT "lcp got echo rep\n", SPP_ARGS(ifp)); if (!(sp->lcp.opts & (1 << LCP_OPT_MAGIC)) || ntohl (*(long*)(h+1)) != sp->lcp.magic) sp->pp_alivecnt = 0; break; default: /* Unknown packet type -- send Code-Reject packet. */ illegal: if (debug) log(-1, SPP_FMT "%s send code-rej for 0x%x\n", SPP_ARGS(ifp), cp->name, h->type); sppp_cp_send(sp, cp->proto, CODE_REJ, ++sp->pp_seq[cp->protoidx], m->m_pkthdr.len, h); ++ifp->if_ierrors; } } /* * The generic part of all Up/Down/Open/Close/TO event handlers. * Basically, the state transition handling in the automaton. */ static void sppp_up_event(const struct cp *cp, struct sppp *sp) { STDDCL; if (debug) log(LOG_DEBUG, SPP_FMT "%s up(%s)\n", SPP_ARGS(ifp), cp->name, sppp_state_name(sp->state[cp->protoidx])); switch (sp->state[cp->protoidx]) { case STATE_INITIAL: sppp_cp_change_state(cp, sp, STATE_CLOSED); break; case STATE_STARTING: sp->rst_counter[cp->protoidx] = sp->lcp.max_configure; (cp->scr)(sp); sppp_cp_change_state(cp, sp, STATE_REQ_SENT); break; default: printf(SPP_FMT "%s illegal up in state %s\n", SPP_ARGS(ifp), cp->name, sppp_state_name(sp->state[cp->protoidx])); } } static void sppp_down_event(const struct cp *cp, struct sppp *sp) { STDDCL; if (debug) log(LOG_DEBUG, SPP_FMT "%s down(%s)\n", SPP_ARGS(ifp), cp->name, sppp_state_name(sp->state[cp->protoidx])); switch (sp->state[cp->protoidx]) { case STATE_CLOSED: case STATE_CLOSING: sppp_cp_change_state(cp, sp, STATE_INITIAL); break; case STATE_STOPPED: sppp_cp_change_state(cp, sp, STATE_STARTING); (cp->tls)(sp); break; case STATE_STOPPING: case STATE_REQ_SENT: case STATE_ACK_RCVD: case STATE_ACK_SENT: sppp_cp_change_state(cp, sp, STATE_STARTING); break; case STATE_OPENED: (cp->tld)(sp); sppp_cp_change_state(cp, sp, STATE_STARTING); break; default: printf(SPP_FMT "%s illegal down in state %s\n", SPP_ARGS(ifp), cp->name, sppp_state_name(sp->state[cp->protoidx])); } } static void sppp_open_event(const struct cp *cp, struct sppp *sp) { STDDCL; if (debug) log(LOG_DEBUG, SPP_FMT "%s open(%s)\n", SPP_ARGS(ifp), cp->name, sppp_state_name(sp->state[cp->protoidx])); switch (sp->state[cp->protoidx]) { case STATE_INITIAL: sppp_cp_change_state(cp, sp, STATE_STARTING); (cp->tls)(sp); break; case STATE_STARTING: break; case STATE_CLOSED: sp->rst_counter[cp->protoidx] = sp->lcp.max_configure; (cp->scr)(sp); sppp_cp_change_state(cp, sp, STATE_REQ_SENT); break; case STATE_STOPPED: /* * Try escaping stopped state. This seems to bite * people occasionally, in particular for IPCP, * presumably following previous IPCP negotiation * aborts. Somehow, we must have missed a Down event * which would have caused a transition into starting * state, so as a bandaid we force the Down event now. * This effectively implements (something like the) * `restart' option mentioned in the state transition * table of RFC 1661. */ sppp_cp_change_state(cp, sp, STATE_STARTING); (cp->tls)(sp); break; case STATE_STOPPING: case STATE_REQ_SENT: case STATE_ACK_RCVD: case STATE_ACK_SENT: case STATE_OPENED: break; case STATE_CLOSING: sppp_cp_change_state(cp, sp, STATE_STOPPING); break; } } static void sppp_close_event(const struct cp *cp, struct sppp *sp) { STDDCL; if (debug) log(LOG_DEBUG, SPP_FMT "%s close(%s)\n", SPP_ARGS(ifp), cp->name, sppp_state_name(sp->state[cp->protoidx])); switch (sp->state[cp->protoidx]) { case STATE_INITIAL: case STATE_CLOSED: case STATE_CLOSING: break; case STATE_STARTING: sppp_cp_change_state(cp, sp, STATE_INITIAL); (cp->tlf)(sp); break; case STATE_STOPPED: sppp_cp_change_state(cp, sp, STATE_CLOSED); break; case STATE_STOPPING: sppp_cp_change_state(cp, sp, STATE_CLOSING); break; case STATE_OPENED: (cp->tld)(sp); /* FALLTHROUGH */ case STATE_REQ_SENT: case STATE_ACK_RCVD: case STATE_ACK_SENT: sp->rst_counter[cp->protoidx] = sp->lcp.max_terminate; sppp_cp_send(sp, cp->proto, TERM_REQ, ++sp->pp_seq[cp->protoidx], 0, 0); sppp_cp_change_state(cp, sp, STATE_CLOSING); break; } } static void sppp_to_event(const struct cp *cp, struct sppp *sp) { STDDCL; int s; s = splimp(); SPPP_LOCK(sp); if (debug) log(LOG_DEBUG, SPP_FMT "%s TO(%s) rst_counter = %d\n", SPP_ARGS(ifp), cp->name, sppp_state_name(sp->state[cp->protoidx]), sp->rst_counter[cp->protoidx]); if (--sp->rst_counter[cp->protoidx] < 0) /* TO- event */ switch (sp->state[cp->protoidx]) { case STATE_CLOSING: sppp_cp_change_state(cp, sp, STATE_CLOSED); (cp->tlf)(sp); break; case STATE_STOPPING: sppp_cp_change_state(cp, sp, STATE_STOPPED); (cp->tlf)(sp); break; case STATE_REQ_SENT: case STATE_ACK_RCVD: case STATE_ACK_SENT: sppp_cp_change_state(cp, sp, STATE_STOPPED); (cp->tlf)(sp); break; } else /* TO+ event */ switch (sp->state[cp->protoidx]) { case STATE_CLOSING: case STATE_STOPPING: sppp_cp_send(sp, cp->proto, TERM_REQ, ++sp->pp_seq[cp->protoidx], 0, 0); callout_reset(&sp->ch[cp->protoidx], sp->lcp.timeout, cp->TO, (void *)sp); break; case STATE_REQ_SENT: case STATE_ACK_RCVD: (cp->scr)(sp); /* sppp_cp_change_state() will restart the timer */ sppp_cp_change_state(cp, sp, STATE_REQ_SENT); break; case STATE_ACK_SENT: (cp->scr)(sp); callout_reset(&sp->ch[cp->protoidx], sp->lcp.timeout, cp->TO, (void *)sp); break; } SPPP_UNLOCK(sp); splx(s); } /* * Change the state of a control protocol in the state automaton. * Takes care of starting/stopping the restart timer. */ static void sppp_cp_change_state(const struct cp *cp, struct sppp *sp, int newstate) { sp->state[cp->protoidx] = newstate; callout_stop (&sp->ch[cp->protoidx]); switch (newstate) { case STATE_INITIAL: case STATE_STARTING: case STATE_CLOSED: case STATE_STOPPED: case STATE_OPENED: break; case STATE_CLOSING: case STATE_STOPPING: case STATE_REQ_SENT: case STATE_ACK_RCVD: case STATE_ACK_SENT: callout_reset(&sp->ch[cp->protoidx], sp->lcp.timeout, cp->TO, (void *)sp); break; } } /* *--------------------------------------------------------------------------* * * * The LCP implementation. * * * *--------------------------------------------------------------------------* */ static void sppp_pp_up(struct sppp *sp) { SPPP_LOCK(sp); lcp.Up(sp); SPPP_UNLOCK(sp); } static void sppp_pp_down(struct sppp *sp) { SPPP_LOCK(sp); lcp.Down(sp); SPPP_UNLOCK(sp); } static void sppp_lcp_init(struct sppp *sp) { sp->lcp.opts = (1 << LCP_OPT_MAGIC); sp->lcp.magic = 0; sp->state[IDX_LCP] = STATE_INITIAL; sp->fail_counter[IDX_LCP] = 0; sp->pp_seq[IDX_LCP] = 0; sp->pp_rseq[IDX_LCP] = 0; sp->lcp.protos = 0; sp->lcp.mru = sp->lcp.their_mru = PP_MTU; /* Note that these values are relevant for all control protocols */ sp->lcp.timeout = 3 * hz; sp->lcp.max_terminate = 2; sp->lcp.max_configure = 10; sp->lcp.max_failure = 10; callout_init(&sp->ch[IDX_LCP], CALLOUT_MPSAFE); } static void sppp_lcp_up(struct sppp *sp) { STDDCL; sp->pp_alivecnt = 0; sp->lcp.opts = (1 << LCP_OPT_MAGIC); sp->lcp.magic = 0; sp->lcp.protos = 0; sp->lcp.mru = sp->lcp.their_mru = PP_MTU; /* * If we are authenticator, negotiate LCP_AUTH */ if (sp->hisauth.proto != 0) sp->lcp.opts |= (1 << LCP_OPT_AUTH_PROTO); else sp->lcp.opts &= ~(1 << LCP_OPT_AUTH_PROTO); sp->pp_flags &= ~PP_NEEDAUTH; /* * If this interface is passive or dial-on-demand, and we are * still in Initial state, it means we've got an incoming * call. Activate the interface. */ if ((ifp->if_flags & (IFF_AUTO | IFF_PASSIVE)) != 0) { if (debug) log(LOG_DEBUG, SPP_FMT "Up event", SPP_ARGS(ifp)); ifp->if_drv_flags |= IFF_DRV_RUNNING; if (sp->state[IDX_LCP] == STATE_INITIAL) { if (debug) log(-1, "(incoming call)\n"); sp->pp_flags |= PP_CALLIN; lcp.Open(sp); } else if (debug) log(-1, "\n"); } else if ((ifp->if_flags & (IFF_AUTO | IFF_PASSIVE)) == 0 && (sp->state[IDX_LCP] == STATE_INITIAL)) { ifp->if_drv_flags |= IFF_DRV_RUNNING; lcp.Open(sp); } sppp_up_event(&lcp, sp); } static void sppp_lcp_down(struct sppp *sp) { STDDCL; sppp_down_event(&lcp, sp); /* * If this is neither a dial-on-demand nor a passive * interface, simulate an ``ifconfig down'' action, so the * administrator can force a redial by another ``ifconfig * up''. XXX For leased line operation, should we immediately * try to reopen the connection here? */ if ((ifp->if_flags & (IFF_AUTO | IFF_PASSIVE)) == 0) { log(LOG_INFO, SPP_FMT "Down event, taking interface down.\n", SPP_ARGS(ifp)); if_down(ifp); } else { if (debug) log(LOG_DEBUG, SPP_FMT "Down event (carrier loss)\n", SPP_ARGS(ifp)); sp->pp_flags &= ~PP_CALLIN; if (sp->state[IDX_LCP] != STATE_INITIAL) lcp.Close(sp); ifp->if_drv_flags &= ~IFF_DRV_RUNNING; } } static void sppp_lcp_open(struct sppp *sp) { sppp_open_event(&lcp, sp); } static void sppp_lcp_close(struct sppp *sp) { sppp_close_event(&lcp, sp); } static void sppp_lcp_TO(void *cookie) { sppp_to_event(&lcp, (struct sppp *)cookie); } /* * Analyze a configure request. Return true if it was agreeable, and * caused action sca, false if it has been rejected or nak'ed, and * caused action scn. (The return value is used to make the state * transition decision in the state automaton.) */ static int sppp_lcp_RCR(struct sppp *sp, struct lcp_header *h, int len) { STDDCL; u_char *buf, *r, *p; int origlen, rlen; u_long nmagic; u_short authproto; len -= 4; origlen = len; buf = r = malloc (len, M_TEMP, M_NOWAIT); if (! buf) return (0); if (debug) log(LOG_DEBUG, SPP_FMT "lcp parse opts: ", SPP_ARGS(ifp)); /* pass 1: check for things that need to be rejected */ p = (void*) (h+1); for (rlen=0; len >= 2 && p[1] >= 2 && len >= p[1]; len-=p[1], p+=p[1]) { if (debug) log(-1, " %s ", sppp_lcp_opt_name(*p)); switch (*p) { case LCP_OPT_MAGIC: /* Magic number. */ if (len >= 6 && p[1] == 6) continue; if (debug) log(-1, "[invalid] "); break; case LCP_OPT_ASYNC_MAP: /* Async control character map. */ if (len >= 6 && p[1] == 6) continue; if (debug) log(-1, "[invalid] "); break; case LCP_OPT_MRU: /* Maximum receive unit. */ if (len >= 4 && p[1] == 4) continue; if (debug) log(-1, "[invalid] "); break; case LCP_OPT_AUTH_PROTO: if (len < 4) { if (debug) log(-1, "[invalid] "); break; } authproto = (p[2] << 8) + p[3]; if (authproto == PPP_CHAP && p[1] != 5) { if (debug) log(-1, "[invalid chap len] "); break; } if (sp->myauth.proto == 0) { /* we are not configured to do auth */ if (debug) log(-1, "[not configured] "); break; } /* * Remote want us to authenticate, remember this, * so we stay in PHASE_AUTHENTICATE after LCP got * up. */ sp->pp_flags |= PP_NEEDAUTH; continue; default: /* Others not supported. */ if (debug) log(-1, "[rej] "); break; } /* Add the option to rejected list. */ bcopy (p, r, p[1]); r += p[1]; rlen += p[1]; } if (rlen) { if (debug) log(-1, " send conf-rej\n"); sppp_cp_send (sp, PPP_LCP, CONF_REJ, h->ident, rlen, buf); return 0; } else if (debug) log(-1, "\n"); /* * pass 2: check for option values that are unacceptable and * thus require to be nak'ed. */ if (debug) log(LOG_DEBUG, SPP_FMT "lcp parse opt values: ", SPP_ARGS(ifp)); p = (void*) (h+1); len = origlen; for (rlen=0; len >= 2 && p[1] >= 2 && len >= p[1]; len-=p[1], p+=p[1]) { if (debug) log(-1, " %s ", sppp_lcp_opt_name(*p)); switch (*p) { case LCP_OPT_MAGIC: /* Magic number -- extract. */ nmagic = (u_long)p[2] << 24 | (u_long)p[3] << 16 | p[4] << 8 | p[5]; if (nmagic != sp->lcp.magic) { sp->pp_loopcnt = 0; if (debug) log(-1, "0x%lx ", nmagic); continue; } if (debug && sp->pp_loopcnt < MAXALIVECNT*5) log(-1, "[glitch] "); ++sp->pp_loopcnt; /* * We negate our magic here, and NAK it. If * we see it later in an NAK packet, we * suggest a new one. */ nmagic = ~sp->lcp.magic; /* Gonna NAK it. */ p[2] = nmagic >> 24; p[3] = nmagic >> 16; p[4] = nmagic >> 8; p[5] = nmagic; break; case LCP_OPT_ASYNC_MAP: /* * Async control character map -- just ignore it. * * Quote from RFC 1662, chapter 6: * To enable this functionality, synchronous PPP * implementations MUST always respond to the * Async-Control-Character-Map Configuration * Option with the LCP Configure-Ack. However, * acceptance of the Configuration Option does * not imply that the synchronous implementation * will do any ACCM mapping. Instead, all such * octet mapping will be performed by the * asynchronous-to-synchronous converter. */ continue; case LCP_OPT_MRU: /* * Maximum receive unit. Always agreeable, * but ignored by now. */ sp->lcp.their_mru = p[2] * 256 + p[3]; if (debug) log(-1, "%lu ", sp->lcp.their_mru); continue; case LCP_OPT_AUTH_PROTO: authproto = (p[2] << 8) + p[3]; if (sp->myauth.proto != authproto) { /* not agreed, nak */ if (debug) log(-1, "[mine %s != his %s] ", sppp_proto_name(sp->hisauth.proto), sppp_proto_name(authproto)); p[2] = sp->myauth.proto >> 8; p[3] = sp->myauth.proto; break; } if (authproto == PPP_CHAP && p[4] != CHAP_MD5) { if (debug) log(-1, "[chap not MD5] "); p[4] = CHAP_MD5; break; } continue; } /* Add the option to nak'ed list. */ bcopy (p, r, p[1]); r += p[1]; rlen += p[1]; } if (rlen) { /* * Local and remote magics equal -- loopback? */ if (sp->pp_loopcnt >= MAXALIVECNT*5) { if (sp->pp_loopcnt == MAXALIVECNT*5) printf (SPP_FMT "loopback\n", SPP_ARGS(ifp)); if (ifp->if_flags & IFF_UP) { if_down(ifp); sppp_qflush(&sp->pp_cpq); /* XXX ? */ lcp.Down(sp); lcp.Up(sp); } } else if (!sp->pp_loopcnt && ++sp->fail_counter[IDX_LCP] >= sp->lcp.max_failure) { if (debug) log(-1, " max_failure (%d) exceeded, " "send conf-rej\n", sp->lcp.max_failure); sppp_cp_send(sp, PPP_LCP, CONF_REJ, h->ident, rlen, buf); } else { if (debug) log(-1, " send conf-nak\n"); sppp_cp_send (sp, PPP_LCP, CONF_NAK, h->ident, rlen, buf); } } else { if (debug) log(-1, " send conf-ack\n"); sp->fail_counter[IDX_LCP] = 0; sp->pp_loopcnt = 0; sppp_cp_send (sp, PPP_LCP, CONF_ACK, h->ident, origlen, h+1); } free (buf, M_TEMP); return (rlen == 0); } /* * Analyze the LCP Configure-Reject option list, and adjust our * negotiation. */ static void sppp_lcp_RCN_rej(struct sppp *sp, struct lcp_header *h, int len) { STDDCL; u_char *buf, *p; len -= 4; buf = malloc (len, M_TEMP, M_NOWAIT); if (!buf) return; if (debug) log(LOG_DEBUG, SPP_FMT "lcp rej opts: ", SPP_ARGS(ifp)); p = (void*) (h+1); for (; len >= 2 && p[1] >= 2 && len >= p[1]; len -= p[1], p += p[1]) { if (debug) log(-1, " %s ", sppp_lcp_opt_name(*p)); switch (*p) { case LCP_OPT_MAGIC: /* Magic number -- can't use it, use 0 */ sp->lcp.opts &= ~(1 << LCP_OPT_MAGIC); sp->lcp.magic = 0; break; case LCP_OPT_MRU: /* * Should not be rejected anyway, since we only * negotiate a MRU if explicitly requested by * peer. */ sp->lcp.opts &= ~(1 << LCP_OPT_MRU); break; case LCP_OPT_AUTH_PROTO: /* * Peer doesn't want to authenticate himself, * deny unless this is a dialout call, and * AUTHFLAG_NOCALLOUT is set. */ if ((sp->pp_flags & PP_CALLIN) == 0 && (sp->hisauth.flags & AUTHFLAG_NOCALLOUT) != 0) { if (debug) log(-1, "[don't insist on auth " "for callout]"); sp->lcp.opts &= ~(1 << LCP_OPT_AUTH_PROTO); break; } if (debug) log(-1, "[access denied]\n"); lcp.Close(sp); break; } } if (debug) log(-1, "\n"); free (buf, M_TEMP); return; } /* * Analyze the LCP Configure-NAK option list, and adjust our * negotiation. */ static void sppp_lcp_RCN_nak(struct sppp *sp, struct lcp_header *h, int len) { STDDCL; u_char *buf, *p; u_long magic; len -= 4; buf = malloc (len, M_TEMP, M_NOWAIT); if (!buf) return; if (debug) log(LOG_DEBUG, SPP_FMT "lcp nak opts: ", SPP_ARGS(ifp)); p = (void*) (h+1); for (; len >= 2 && p[1] >= 2 && len >= p[1]; len -= p[1], p += p[1]) { if (debug) log(-1, " %s ", sppp_lcp_opt_name(*p)); switch (*p) { case LCP_OPT_MAGIC: /* Magic number -- renegotiate */ if ((sp->lcp.opts & (1 << LCP_OPT_MAGIC)) && len >= 6 && p[1] == 6) { magic = (u_long)p[2] << 24 | (u_long)p[3] << 16 | p[4] << 8 | p[5]; /* * If the remote magic is our negated one, * this looks like a loopback problem. * Suggest a new magic to make sure. */ if (magic == ~sp->lcp.magic) { if (debug) log(-1, "magic glitch "); sp->lcp.magic = random(); } else { sp->lcp.magic = magic; if (debug) log(-1, "%lu ", magic); } } break; case LCP_OPT_MRU: /* * Peer wants to advise us to negotiate an MRU. * Agree on it if it's reasonable, or use * default otherwise. */ if (len >= 4 && p[1] == 4) { u_int mru = p[2] * 256 + p[3]; if (debug) log(-1, "%d ", mru); if (mru < PP_MTU || mru > PP_MAX_MRU) mru = PP_MTU; sp->lcp.mru = mru; sp->lcp.opts |= (1 << LCP_OPT_MRU); } break; case LCP_OPT_AUTH_PROTO: /* * Peer doesn't like our authentication method, * deny. */ if (debug) log(-1, "[access denied]\n"); lcp.Close(sp); break; } } if (debug) log(-1, "\n"); free (buf, M_TEMP); return; } static void sppp_lcp_tlu(struct sppp *sp) { STDDCL; int i; u_long mask; /* XXX ? */ if (! (ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING)) { /* Coming out of loopback mode. */ if_up(ifp); printf (SPP_FMT "up\n", SPP_ARGS(ifp)); } for (i = 0; i < IDX_COUNT; i++) if ((cps[i])->flags & CP_QUAL) (cps[i])->Open(sp); if ((sp->lcp.opts & (1 << LCP_OPT_AUTH_PROTO)) != 0 || (sp->pp_flags & PP_NEEDAUTH) != 0) sp->pp_phase = PHASE_AUTHENTICATE; else sp->pp_phase = PHASE_NETWORK; if (debug) log(LOG_DEBUG, SPP_FMT "phase %s\n", SPP_ARGS(ifp), sppp_phase_name(sp->pp_phase)); /* * Open all authentication protocols. This is even required * if we already proceeded to network phase, since it might be * that remote wants us to authenticate, so we might have to * send a PAP request. Undesired authentication protocols * don't do anything when they get an Open event. */ for (i = 0; i < IDX_COUNT; i++) if ((cps[i])->flags & CP_AUTH) (cps[i])->Open(sp); if (sp->pp_phase == PHASE_NETWORK) { /* Notify all NCPs. */ for (i = 0; i < IDX_COUNT; i++) if (((cps[i])->flags & CP_NCP) && /* * XXX * Hack to administratively disable IPv6 if * not desired. Perhaps we should have another * flag for this, but right now, we can make * all struct cp's read/only. */ (cps[i] != &ipv6cp || (sp->confflags & CONF_ENABLE_IPV6))) (cps[i])->Open(sp); } /* Send Up events to all started protos. */ for (i = 0, mask = 1; i < IDX_COUNT; i++, mask <<= 1) if ((sp->lcp.protos & mask) && ((cps[i])->flags & CP_LCP) == 0) (cps[i])->Up(sp); /* notify low-level driver of state change */ if (sp->pp_chg) sp->pp_chg(sp, (int)sp->pp_phase); if (sp->pp_phase == PHASE_NETWORK) /* if no NCP is starting, close down */ sppp_lcp_check_and_close(sp); } static void sppp_lcp_tld(struct sppp *sp) { STDDCL; int i; u_long mask; sp->pp_phase = PHASE_TERMINATE; if (debug) log(LOG_DEBUG, SPP_FMT "phase %s\n", SPP_ARGS(ifp), sppp_phase_name(sp->pp_phase)); /* * Take upper layers down. We send the Down event first and * the Close second to prevent the upper layers from sending * ``a flurry of terminate-request packets'', as the RFC * describes it. */ for (i = 0, mask = 1; i < IDX_COUNT; i++, mask <<= 1) if ((sp->lcp.protos & mask) && ((cps[i])->flags & CP_LCP) == 0) { (cps[i])->Down(sp); (cps[i])->Close(sp); } } static void sppp_lcp_tls(struct sppp *sp) { STDDCL; sp->pp_phase = PHASE_ESTABLISH; if (debug) log(LOG_DEBUG, SPP_FMT "phase %s\n", SPP_ARGS(ifp), sppp_phase_name(sp->pp_phase)); /* Notify lower layer if desired. */ if (sp->pp_tls) (sp->pp_tls)(sp); else (sp->pp_up)(sp); } static void sppp_lcp_tlf(struct sppp *sp) { STDDCL; sp->pp_phase = PHASE_DEAD; if (debug) log(LOG_DEBUG, SPP_FMT "phase %s\n", SPP_ARGS(ifp), sppp_phase_name(sp->pp_phase)); /* Notify lower layer if desired. */ if (sp->pp_tlf) (sp->pp_tlf)(sp); else (sp->pp_down)(sp); } static void sppp_lcp_scr(struct sppp *sp) { char opt[6 /* magicnum */ + 4 /* mru */ + 5 /* chap */]; int i = 0; u_short authproto; if (sp->lcp.opts & (1 << LCP_OPT_MAGIC)) { if (! sp->lcp.magic) sp->lcp.magic = random(); opt[i++] = LCP_OPT_MAGIC; opt[i++] = 6; opt[i++] = sp->lcp.magic >> 24; opt[i++] = sp->lcp.magic >> 16; opt[i++] = sp->lcp.magic >> 8; opt[i++] = sp->lcp.magic; } if (sp->lcp.opts & (1 << LCP_OPT_MRU)) { opt[i++] = LCP_OPT_MRU; opt[i++] = 4; opt[i++] = sp->lcp.mru >> 8; opt[i++] = sp->lcp.mru; } if (sp->lcp.opts & (1 << LCP_OPT_AUTH_PROTO)) { authproto = sp->hisauth.proto; opt[i++] = LCP_OPT_AUTH_PROTO; opt[i++] = authproto == PPP_CHAP? 5: 4; opt[i++] = authproto >> 8; opt[i++] = authproto; if (authproto == PPP_CHAP) opt[i++] = CHAP_MD5; } sp->confid[IDX_LCP] = ++sp->pp_seq[IDX_LCP]; sppp_cp_send (sp, PPP_LCP, CONF_REQ, sp->confid[IDX_LCP], i, &opt); } /* * Check the open NCPs, return true if at least one NCP is open. */ static int sppp_ncp_check(struct sppp *sp) { int i, mask; for (i = 0, mask = 1; i < IDX_COUNT; i++, mask <<= 1) if ((sp->lcp.protos & mask) && (cps[i])->flags & CP_NCP) return 1; return 0; } /* * Re-check the open NCPs and see if we should terminate the link. * Called by the NCPs during their tlf action handling. */ static void sppp_lcp_check_and_close(struct sppp *sp) { if (sp->pp_phase < PHASE_NETWORK) /* don't bother, we are already going down */ return; if (sppp_ncp_check(sp)) return; lcp.Close(sp); } /* *--------------------------------------------------------------------------* * * * The IPCP implementation. * * * *--------------------------------------------------------------------------* */ #ifdef INET static void sppp_ipcp_init(struct sppp *sp) { sp->ipcp.opts = 0; sp->ipcp.flags = 0; sp->state[IDX_IPCP] = STATE_INITIAL; sp->fail_counter[IDX_IPCP] = 0; sp->pp_seq[IDX_IPCP] = 0; sp->pp_rseq[IDX_IPCP] = 0; callout_init(&sp->ch[IDX_IPCP], CALLOUT_MPSAFE); } static void sppp_ipcp_up(struct sppp *sp) { sppp_up_event(&ipcp, sp); } static void sppp_ipcp_down(struct sppp *sp) { sppp_down_event(&ipcp, sp); } static void sppp_ipcp_open(struct sppp *sp) { STDDCL; u_long myaddr, hisaddr; sp->ipcp.flags &= ~(IPCP_HISADDR_SEEN | IPCP_MYADDR_SEEN | IPCP_MYADDR_DYN | IPCP_VJ); sp->ipcp.opts = 0; sppp_get_ip_addrs(sp, &myaddr, &hisaddr, 0); /* * If we don't have his address, this probably means our * interface doesn't want to talk IP at all. (This could * be the case if somebody wants to speak only IPX, for * example.) Don't open IPCP in this case. */ if (hisaddr == 0L) { /* XXX this message should go away */ if (debug) log(LOG_DEBUG, SPP_FMT "ipcp_open(): no IP interface\n", SPP_ARGS(ifp)); return; } if (myaddr == 0L) { /* * I don't have an assigned address, so i need to * negotiate my address. */ sp->ipcp.flags |= IPCP_MYADDR_DYN; sp->ipcp.opts |= (1 << IPCP_OPT_ADDRESS); } else sp->ipcp.flags |= IPCP_MYADDR_SEEN; if (sp->confflags & CONF_ENABLE_VJ) { sp->ipcp.opts |= (1 << IPCP_OPT_COMPRESSION); sp->ipcp.max_state = MAX_STATES - 1; sp->ipcp.compress_cid = 1; } sppp_open_event(&ipcp, sp); } static void sppp_ipcp_close(struct sppp *sp) { sppp_close_event(&ipcp, sp); if (sp->ipcp.flags & IPCP_MYADDR_DYN) /* * My address was dynamic, clear it again. */ sppp_set_ip_addr(sp, 0L); } static void sppp_ipcp_TO(void *cookie) { sppp_to_event(&ipcp, (struct sppp *)cookie); } /* * Analyze a configure request. Return true if it was agreeable, and * caused action sca, false if it has been rejected or nak'ed, and * caused action scn. (The return value is used to make the state * transition decision in the state automaton.) */ static int sppp_ipcp_RCR(struct sppp *sp, struct lcp_header *h, int len) { u_char *buf, *r, *p; struct ifnet *ifp = SP2IFP(sp); int rlen, origlen, debug = ifp->if_flags & IFF_DEBUG; u_long hisaddr, desiredaddr; int gotmyaddr = 0; int desiredcomp; len -= 4; origlen = len; /* * Make sure to allocate a buf that can at least hold a * conf-nak with an `address' option. We might need it below. */ buf = r = malloc ((len < 6? 6: len), M_TEMP, M_NOWAIT); if (! buf) return (0); /* pass 1: see if we can recognize them */ if (debug) log(LOG_DEBUG, SPP_FMT "ipcp parse opts: ", SPP_ARGS(ifp)); p = (void*) (h+1); for (rlen=0; len >= 2 && p[1] >= 2 && len >= p[1]; len-=p[1], p+=p[1]) { if (debug) log(-1, " %s ", sppp_ipcp_opt_name(*p)); switch (*p) { case IPCP_OPT_COMPRESSION: if (!(sp->confflags & CONF_ENABLE_VJ)) { /* VJ compression administratively disabled */ if (debug) log(-1, "[locally disabled] "); break; } /* * In theory, we should only conf-rej an * option that is shorter than RFC 1618 * requires (i.e. < 4), and should conf-nak * anything else that is not VJ. However, * since our algorithm always uses the * original option to NAK it with new values, * things would become more complicated. In * pratice, the only commonly implemented IP * compression option is VJ anyway, so the * difference is negligible. */ if (len >= 6 && p[1] == 6) { /* * correctly formed compression option * that could be VJ compression */ continue; } if (debug) log(-1, "optlen %d [invalid/unsupported] ", p[1]); break; case IPCP_OPT_ADDRESS: if (len >= 6 && p[1] == 6) { /* correctly formed address option */ continue; } if (debug) log(-1, "[invalid] "); break; default: /* Others not supported. */ if (debug) log(-1, "[rej] "); break; } /* Add the option to rejected list. */ bcopy (p, r, p[1]); r += p[1]; rlen += p[1]; } if (rlen) { if (debug) log(-1, " send conf-rej\n"); sppp_cp_send (sp, PPP_IPCP, CONF_REJ, h->ident, rlen, buf); return 0; } else if (debug) log(-1, "\n"); /* pass 2: parse option values */ sppp_get_ip_addrs(sp, 0, &hisaddr, 0); if (debug) log(LOG_DEBUG, SPP_FMT "ipcp parse opt values: ", SPP_ARGS(ifp)); p = (void*) (h+1); len = origlen; for (rlen=0; len >= 2 && p[1] >= 2 && len >= p[1]; len-=p[1], p+=p[1]) { if (debug) log(-1, " %s ", sppp_ipcp_opt_name(*p)); switch (*p) { case IPCP_OPT_COMPRESSION: desiredcomp = p[2] << 8 | p[3]; /* We only support VJ */ if (desiredcomp == IPCP_COMP_VJ) { if (debug) log(-1, "VJ [ack] "); sp->ipcp.flags |= IPCP_VJ; sl_compress_init(sp->pp_comp, p[4]); sp->ipcp.max_state = p[4]; sp->ipcp.compress_cid = p[5]; continue; } if (debug) log(-1, "compproto %#04x [not supported] ", desiredcomp); p[2] = IPCP_COMP_VJ >> 8; p[3] = IPCP_COMP_VJ; p[4] = sp->ipcp.max_state; p[5] = sp->ipcp.compress_cid; break; case IPCP_OPT_ADDRESS: /* This is the address he wants in his end */ desiredaddr = p[2] << 24 | p[3] << 16 | p[4] << 8 | p[5]; if (desiredaddr == hisaddr || (hisaddr >= 1 && hisaddr <= 254 && desiredaddr != 0)) { /* * Peer's address is same as our value, * or we have set it to 0.0.0.* to * indicate that we do not really care, * this is agreeable. Gonna conf-ack * it. */ if (debug) log(-1, "%s [ack] ", sppp_dotted_quad(hisaddr)); /* record that we've seen it already */ sp->ipcp.flags |= IPCP_HISADDR_SEEN; continue; } /* * The address wasn't agreeable. This is either * he sent us 0.0.0.0, asking to assign him an * address, or he send us another address not * matching our value. Either case, we gonna * conf-nak it with our value. * XXX: we should "rej" if hisaddr == 0 */ if (debug) { if (desiredaddr == 0) log(-1, "[addr requested] "); else log(-1, "%s [not agreed] ", sppp_dotted_quad(desiredaddr)); } p[2] = hisaddr >> 24; p[3] = hisaddr >> 16; p[4] = hisaddr >> 8; p[5] = hisaddr; break; } /* Add the option to nak'ed list. */ bcopy (p, r, p[1]); r += p[1]; rlen += p[1]; } /* * If we are about to conf-ack the request, but haven't seen * his address so far, gonna conf-nak it instead, with the * `address' option present and our idea of his address being * filled in there, to request negotiation of both addresses. * * XXX This can result in an endless req - nak loop if peer * doesn't want to send us his address. Q: What should we do * about it? XXX A: implement the max-failure counter. */ if (rlen == 0 && !(sp->ipcp.flags & IPCP_HISADDR_SEEN) && !gotmyaddr) { buf[0] = IPCP_OPT_ADDRESS; buf[1] = 6; buf[2] = hisaddr >> 24; buf[3] = hisaddr >> 16; buf[4] = hisaddr >> 8; buf[5] = hisaddr; rlen = 6; if (debug) log(-1, "still need hisaddr "); } if (rlen) { if (debug) log(-1, " send conf-nak\n"); sppp_cp_send (sp, PPP_IPCP, CONF_NAK, h->ident, rlen, buf); } else { if (debug) log(-1, " send conf-ack\n"); sppp_cp_send (sp, PPP_IPCP, CONF_ACK, h->ident, origlen, h+1); } free (buf, M_TEMP); return (rlen == 0); } /* * Analyze the IPCP Configure-Reject option list, and adjust our * negotiation. */ static void sppp_ipcp_RCN_rej(struct sppp *sp, struct lcp_header *h, int len) { u_char *buf, *p; struct ifnet *ifp = SP2IFP(sp); int debug = ifp->if_flags & IFF_DEBUG; len -= 4; buf = malloc (len, M_TEMP, M_NOWAIT); if (!buf) return; if (debug) log(LOG_DEBUG, SPP_FMT "ipcp rej opts: ", SPP_ARGS(ifp)); p = (void*) (h+1); for (; len >= 2 && p[1] >= 2 && len >= p[1]; len -= p[1], p += p[1]) { if (debug) log(-1, " %s ", sppp_ipcp_opt_name(*p)); switch (*p) { case IPCP_OPT_COMPRESSION: sp->ipcp.opts &= ~(1 << IPCP_OPT_COMPRESSION); break; case IPCP_OPT_ADDRESS: /* * Peer doesn't grok address option. This is * bad. XXX Should we better give up here? * XXX We could try old "addresses" option... */ sp->ipcp.opts &= ~(1 << IPCP_OPT_ADDRESS); break; } } if (debug) log(-1, "\n"); free (buf, M_TEMP); return; } /* * Analyze the IPCP Configure-NAK option list, and adjust our * negotiation. */ static void sppp_ipcp_RCN_nak(struct sppp *sp, struct lcp_header *h, int len) { u_char *buf, *p; struct ifnet *ifp = SP2IFP(sp); int debug = ifp->if_flags & IFF_DEBUG; int desiredcomp; u_long wantaddr; len -= 4; buf = malloc (len, M_TEMP, M_NOWAIT); if (!buf) return; if (debug) log(LOG_DEBUG, SPP_FMT "ipcp nak opts: ", SPP_ARGS(ifp)); p = (void*) (h+1); for (; len >= 2 && p[1] >= 2 && len >= p[1]; len -= p[1], p += p[1]) { if (debug) log(-1, " %s ", sppp_ipcp_opt_name(*p)); switch (*p) { case IPCP_OPT_COMPRESSION: if (len >= 6 && p[1] == 6) { desiredcomp = p[2] << 8 | p[3]; if (debug) log(-1, "[wantcomp %#04x] ", desiredcomp); if (desiredcomp == IPCP_COMP_VJ) { sl_compress_init(sp->pp_comp, p[4]); sp->ipcp.max_state = p[4]; sp->ipcp.compress_cid = p[5]; if (debug) log(-1, "[agree] "); } else sp->ipcp.opts &= ~(1 << IPCP_OPT_COMPRESSION); } break; case IPCP_OPT_ADDRESS: /* * Peer doesn't like our local IP address. See * if we can do something for him. We'll drop * him our address then. */ if (len >= 6 && p[1] == 6) { wantaddr = p[2] << 24 | p[3] << 16 | p[4] << 8 | p[5]; sp->ipcp.opts |= (1 << IPCP_OPT_ADDRESS); if (debug) log(-1, "[wantaddr %s] ", sppp_dotted_quad(wantaddr)); /* * When doing dynamic address assignment, * we accept his offer. Otherwise, we * ignore it and thus continue to negotiate * our already existing value. * XXX: Bogus, if he said no once, he'll * just say no again, might as well die. */ if (sp->ipcp.flags & IPCP_MYADDR_DYN) { sppp_set_ip_addr(sp, wantaddr); if (debug) log(-1, "[agree] "); sp->ipcp.flags |= IPCP_MYADDR_SEEN; } } break; } } if (debug) log(-1, "\n"); free (buf, M_TEMP); return; } static void sppp_ipcp_tlu(struct sppp *sp) { /* we are up - notify isdn daemon */ if (sp->pp_con) sp->pp_con(sp); } static void sppp_ipcp_tld(struct sppp *sp) { } static void sppp_ipcp_tls(struct sppp *sp) { /* indicate to LCP that it must stay alive */ sp->lcp.protos |= (1 << IDX_IPCP); } static void sppp_ipcp_tlf(struct sppp *sp) { /* we no longer need LCP */ sp->lcp.protos &= ~(1 << IDX_IPCP); sppp_lcp_check_and_close(sp); } static void sppp_ipcp_scr(struct sppp *sp) { char opt[6 /* compression */ + 6 /* address */]; u_long ouraddr; int i = 0; if (sp->ipcp.opts & (1 << IPCP_OPT_COMPRESSION)) { opt[i++] = IPCP_OPT_COMPRESSION; opt[i++] = 6; opt[i++] = IPCP_COMP_VJ >> 8; opt[i++] = IPCP_COMP_VJ; opt[i++] = sp->ipcp.max_state; opt[i++] = sp->ipcp.compress_cid; } if (sp->ipcp.opts & (1 << IPCP_OPT_ADDRESS)) { sppp_get_ip_addrs(sp, &ouraddr, 0, 0); opt[i++] = IPCP_OPT_ADDRESS; opt[i++] = 6; opt[i++] = ouraddr >> 24; opt[i++] = ouraddr >> 16; opt[i++] = ouraddr >> 8; opt[i++] = ouraddr; } sp->confid[IDX_IPCP] = ++sp->pp_seq[IDX_IPCP]; sppp_cp_send(sp, PPP_IPCP, CONF_REQ, sp->confid[IDX_IPCP], i, &opt); } #else /* !INET */ static void sppp_ipcp_init(struct sppp *sp) { } static void sppp_ipcp_up(struct sppp *sp) { } static void sppp_ipcp_down(struct sppp *sp) { } static void sppp_ipcp_open(struct sppp *sp) { } static void sppp_ipcp_close(struct sppp *sp) { } static void sppp_ipcp_TO(void *cookie) { } static int sppp_ipcp_RCR(struct sppp *sp, struct lcp_header *h, int len) { return (0); } static void sppp_ipcp_RCN_rej(struct sppp *sp, struct lcp_header *h, int len) { } static void sppp_ipcp_RCN_nak(struct sppp *sp, struct lcp_header *h, int len) { } static void sppp_ipcp_tlu(struct sppp *sp) { } static void sppp_ipcp_tld(struct sppp *sp) { } static void sppp_ipcp_tls(struct sppp *sp) { } static void sppp_ipcp_tlf(struct sppp *sp) { } static void sppp_ipcp_scr(struct sppp *sp) { } #endif /* *--------------------------------------------------------------------------* * * * The IPv6CP implementation. * * * *--------------------------------------------------------------------------* */ #ifdef INET6 static void sppp_ipv6cp_init(struct sppp *sp) { sp->ipv6cp.opts = 0; sp->ipv6cp.flags = 0; sp->state[IDX_IPV6CP] = STATE_INITIAL; sp->fail_counter[IDX_IPV6CP] = 0; sp->pp_seq[IDX_IPV6CP] = 0; sp->pp_rseq[IDX_IPV6CP] = 0; callout_init(&sp->ch[IDX_IPV6CP], CALLOUT_MPSAFE); } static void sppp_ipv6cp_up(struct sppp *sp) { sppp_up_event(&ipv6cp, sp); } static void sppp_ipv6cp_down(struct sppp *sp) { sppp_down_event(&ipv6cp, sp); } static void sppp_ipv6cp_open(struct sppp *sp) { STDDCL; struct in6_addr myaddr, hisaddr; #ifdef IPV6CP_MYIFID_DYN sp->ipv6cp.flags &= ~(IPV6CP_MYIFID_SEEN|IPV6CP_MYIFID_DYN); #else sp->ipv6cp.flags &= ~IPV6CP_MYIFID_SEEN; #endif sppp_get_ip6_addrs(sp, &myaddr, &hisaddr, 0); /* * If we don't have our address, this probably means our * interface doesn't want to talk IPv6 at all. (This could * be the case if somebody wants to speak only IPX, for * example.) Don't open IPv6CP in this case. */ if (IN6_IS_ADDR_UNSPECIFIED(&myaddr)) { /* XXX this message should go away */ if (debug) log(LOG_DEBUG, SPP_FMT "ipv6cp_open(): no IPv6 interface\n", SPP_ARGS(ifp)); return; } sp->ipv6cp.flags |= IPV6CP_MYIFID_SEEN; sp->ipv6cp.opts |= (1 << IPV6CP_OPT_IFID); sppp_open_event(&ipv6cp, sp); } static void sppp_ipv6cp_close(struct sppp *sp) { sppp_close_event(&ipv6cp, sp); } static void sppp_ipv6cp_TO(void *cookie) { sppp_to_event(&ipv6cp, (struct sppp *)cookie); } /* * Analyze a configure request. Return true if it was agreeable, and * caused action sca, false if it has been rejected or nak'ed, and * caused action scn. (The return value is used to make the state * transition decision in the state automaton.) */ static int sppp_ipv6cp_RCR(struct sppp *sp, struct lcp_header *h, int len) { u_char *buf, *r, *p; struct ifnet *ifp = SP2IFP(sp); int rlen, origlen, debug = ifp->if_flags & IFF_DEBUG; struct in6_addr myaddr, desiredaddr, suggestaddr; int ifidcount; int type; int collision, nohisaddr; char ip6buf[INET6_ADDRSTRLEN]; len -= 4; origlen = len; /* * Make sure to allocate a buf that can at least hold a * conf-nak with an `address' option. We might need it below. */ buf = r = malloc ((len < 6? 6: len), M_TEMP, M_NOWAIT); if (! buf) return (0); /* pass 1: see if we can recognize them */ if (debug) log(LOG_DEBUG, SPP_FMT "ipv6cp parse opts:", SPP_ARGS(ifp)); p = (void*) (h+1); ifidcount = 0; for (rlen=0; len >= 2 && p[1] >= 2 && len >= p[1]; len-=p[1], p+=p[1]) { if (debug) log(-1, " %s", sppp_ipv6cp_opt_name(*p)); switch (*p) { case IPV6CP_OPT_IFID: if (len >= 10 && p[1] == 10 && ifidcount == 0) { /* correctly formed address option */ ifidcount++; continue; } if (debug) log(-1, " [invalid]"); break; #ifdef notyet case IPV6CP_OPT_COMPRESSION: if (len >= 4 && p[1] >= 4) { /* correctly formed compress option */ continue; } if (debug) log(-1, " [invalid]"); break; #endif default: /* Others not supported. */ if (debug) log(-1, " [rej]"); break; } /* Add the option to rejected list. */ bcopy (p, r, p[1]); r += p[1]; rlen += p[1]; } if (rlen) { if (debug) log(-1, " send conf-rej\n"); sppp_cp_send (sp, PPP_IPV6CP, CONF_REJ, h->ident, rlen, buf); goto end; } else if (debug) log(-1, "\n"); /* pass 2: parse option values */ sppp_get_ip6_addrs(sp, &myaddr, 0, 0); if (debug) log(LOG_DEBUG, SPP_FMT "ipv6cp parse opt values: ", SPP_ARGS(ifp)); p = (void*) (h+1); len = origlen; type = CONF_ACK; for (rlen=0; len >= 2 && p[1] >= 2 && len >= p[1]; len-=p[1], p+=p[1]) { if (debug) log(-1, " %s", sppp_ipv6cp_opt_name(*p)); switch (*p) { #ifdef notyet case IPV6CP_OPT_COMPRESSION: continue; #endif case IPV6CP_OPT_IFID: bzero(&desiredaddr, sizeof(desiredaddr)); bcopy(&p[2], &desiredaddr.s6_addr[8], 8); collision = (bcmp(&desiredaddr.s6_addr[8], &myaddr.s6_addr[8], 8) == 0); nohisaddr = IN6_IS_ADDR_UNSPECIFIED(&desiredaddr); desiredaddr.s6_addr16[0] = htons(0xfe80); (void)in6_setscope(&desiredaddr, SP2IFP(sp), NULL); if (!collision && !nohisaddr) { /* no collision, hisaddr known - Conf-Ack */ type = CONF_ACK; if (debug) { log(-1, " %s [%s]", ip6_sprintf(ip6buf, &desiredaddr), sppp_cp_type_name(type)); } continue; } bzero(&suggestaddr, sizeof(&suggestaddr)); if (collision && nohisaddr) { /* collision, hisaddr unknown - Conf-Rej */ type = CONF_REJ; bzero(&p[2], 8); } else { /* * - no collision, hisaddr unknown, or * - collision, hisaddr known * Conf-Nak, suggest hisaddr */ type = CONF_NAK; sppp_suggest_ip6_addr(sp, &suggestaddr); bcopy(&suggestaddr.s6_addr[8], &p[2], 8); } if (debug) log(-1, " %s [%s]", ip6_sprintf(ip6buf, &desiredaddr), sppp_cp_type_name(type)); break; } /* Add the option to nak'ed list. */ bcopy (p, r, p[1]); r += p[1]; rlen += p[1]; } if (rlen == 0 && type == CONF_ACK) { if (debug) log(-1, " send %s\n", sppp_cp_type_name(type)); sppp_cp_send (sp, PPP_IPV6CP, type, h->ident, origlen, h+1); } else { #ifdef DIAGNOSTIC if (type == CONF_ACK) panic("IPv6CP RCR: CONF_ACK with non-zero rlen"); #endif if (debug) { log(-1, " send %s suggest %s\n", sppp_cp_type_name(type), ip6_sprintf(ip6buf, &suggestaddr)); } sppp_cp_send (sp, PPP_IPV6CP, type, h->ident, rlen, buf); } end: free (buf, M_TEMP); return (rlen == 0); } /* * Analyze the IPv6CP Configure-Reject option list, and adjust our * negotiation. */ static void sppp_ipv6cp_RCN_rej(struct sppp *sp, struct lcp_header *h, int len) { u_char *buf, *p; struct ifnet *ifp = SP2IFP(sp); int debug = ifp->if_flags & IFF_DEBUG; len -= 4; buf = malloc (len, M_TEMP, M_NOWAIT); if (!buf) return; if (debug) log(LOG_DEBUG, SPP_FMT "ipv6cp rej opts:", SPP_ARGS(ifp)); p = (void*) (h+1); for (; len >= 2 && p[1] >= 2 && len >= p[1]; len -= p[1], p += p[1]) { if (debug) log(-1, " %s", sppp_ipv6cp_opt_name(*p)); switch (*p) { case IPV6CP_OPT_IFID: /* * Peer doesn't grok address option. This is * bad. XXX Should we better give up here? */ sp->ipv6cp.opts &= ~(1 << IPV6CP_OPT_IFID); break; #ifdef notyet case IPV6CP_OPT_COMPRESS: sp->ipv6cp.opts &= ~(1 << IPV6CP_OPT_COMPRESS); break; #endif } } if (debug) log(-1, "\n"); free (buf, M_TEMP); return; } /* * Analyze the IPv6CP Configure-NAK option list, and adjust our * negotiation. */ static void sppp_ipv6cp_RCN_nak(struct sppp *sp, struct lcp_header *h, int len) { u_char *buf, *p; struct ifnet *ifp = SP2IFP(sp); int debug = ifp->if_flags & IFF_DEBUG; struct in6_addr suggestaddr; char ip6buf[INET6_ADDRSTRLEN]; len -= 4; buf = malloc (len, M_TEMP, M_NOWAIT); if (!buf) return; if (debug) log(LOG_DEBUG, SPP_FMT "ipv6cp nak opts:", SPP_ARGS(ifp)); p = (void*) (h+1); for (; len >= 2 && p[1] >= 2 && len >= p[1]; len -= p[1], p += p[1]) { if (debug) log(-1, " %s", sppp_ipv6cp_opt_name(*p)); switch (*p) { case IPV6CP_OPT_IFID: /* * Peer doesn't like our local ifid. See * if we can do something for him. We'll drop * him our address then. */ if (len < 10 || p[1] != 10) break; bzero(&suggestaddr, sizeof(suggestaddr)); suggestaddr.s6_addr16[0] = htons(0xfe80); (void)in6_setscope(&suggestaddr, SP2IFP(sp), NULL); bcopy(&p[2], &suggestaddr.s6_addr[8], 8); sp->ipv6cp.opts |= (1 << IPV6CP_OPT_IFID); if (debug) log(-1, " [suggestaddr %s]", ip6_sprintf(ip6buf, &suggestaddr)); #ifdef IPV6CP_MYIFID_DYN /* * When doing dynamic address assignment, * we accept his offer. */ if (sp->ipv6cp.flags & IPV6CP_MYIFID_DYN) { struct in6_addr lastsuggest; /* * If <suggested myaddr from peer> equals to * <hisaddr we have suggested last time>, * we have a collision. generate new random * ifid. */ sppp_suggest_ip6_addr(&lastsuggest); if (IN6_ARE_ADDR_EQUAL(&suggestaddr, lastsuggest)) { if (debug) log(-1, " [random]"); sppp_gen_ip6_addr(sp, &suggestaddr); } sppp_set_ip6_addr(sp, &suggestaddr, 0); if (debug) log(-1, " [agree]"); sp->ipv6cp.flags |= IPV6CP_MYIFID_SEEN; } #else /* * Since we do not do dynamic address assignment, * we ignore it and thus continue to negotiate * our already existing value. This can possibly * go into infinite request-reject loop. * * This is not likely because we normally use * ifid based on MAC-address. * If you have no ethernet card on the node, too bad. * XXX should we use fail_counter? */ #endif break; #ifdef notyet case IPV6CP_OPT_COMPRESS: /* * Peer wants different compression parameters. */ break; #endif } } if (debug) log(-1, "\n"); free (buf, M_TEMP); return; } static void sppp_ipv6cp_tlu(struct sppp *sp) { /* we are up - notify isdn daemon */ if (sp->pp_con) sp->pp_con(sp); } static void sppp_ipv6cp_tld(struct sppp *sp) { } static void sppp_ipv6cp_tls(struct sppp *sp) { /* indicate to LCP that it must stay alive */ sp->lcp.protos |= (1 << IDX_IPV6CP); } static void sppp_ipv6cp_tlf(struct sppp *sp) { #if 0 /* need #if 0 to close IPv6CP properly */ /* we no longer need LCP */ sp->lcp.protos &= ~(1 << IDX_IPV6CP); sppp_lcp_check_and_close(sp); #endif } static void sppp_ipv6cp_scr(struct sppp *sp) { char opt[10 /* ifid */ + 4 /* compression, minimum */]; struct in6_addr ouraddr; int i = 0; if (sp->ipv6cp.opts & (1 << IPV6CP_OPT_IFID)) { sppp_get_ip6_addrs(sp, &ouraddr, 0, 0); opt[i++] = IPV6CP_OPT_IFID; opt[i++] = 10; bcopy(&ouraddr.s6_addr[8], &opt[i], 8); i += 8; } #ifdef notyet if (sp->ipv6cp.opts & (1 << IPV6CP_OPT_COMPRESSION)) { opt[i++] = IPV6CP_OPT_COMPRESSION; opt[i++] = 4; opt[i++] = 0; /* TBD */ opt[i++] = 0; /* TBD */ /* variable length data may follow */ } #endif sp->confid[IDX_IPV6CP] = ++sp->pp_seq[IDX_IPV6CP]; sppp_cp_send(sp, PPP_IPV6CP, CONF_REQ, sp->confid[IDX_IPV6CP], i, &opt); } #else /*INET6*/ static void sppp_ipv6cp_init(struct sppp *sp) { } static void sppp_ipv6cp_up(struct sppp *sp) { } static void sppp_ipv6cp_down(struct sppp *sp) { } static void sppp_ipv6cp_open(struct sppp *sp) { } static void sppp_ipv6cp_close(struct sppp *sp) { } static void sppp_ipv6cp_TO(void *sp) { } static int sppp_ipv6cp_RCR(struct sppp *sp, struct lcp_header *h, int len) { return 0; } static void sppp_ipv6cp_RCN_rej(struct sppp *sp, struct lcp_header *h, int len) { } static void sppp_ipv6cp_RCN_nak(struct sppp *sp, struct lcp_header *h, int len) { } static void sppp_ipv6cp_tlu(struct sppp *sp) { } static void sppp_ipv6cp_tld(struct sppp *sp) { } static void sppp_ipv6cp_tls(struct sppp *sp) { } static void sppp_ipv6cp_tlf(struct sppp *sp) { } static void sppp_ipv6cp_scr(struct sppp *sp) { } #endif /*INET6*/ /* *--------------------------------------------------------------------------* * * * The CHAP implementation. * * * *--------------------------------------------------------------------------* */ /* * The authentication protocols don't employ a full-fledged state machine as * the control protocols do, since they do have Open and Close events, but * not Up and Down, nor are they explicitly terminated. Also, use of the * authentication protocols may be different in both directions (this makes * sense, think of a machine that never accepts incoming calls but only * calls out, it doesn't require the called party to authenticate itself). * * Our state machine for the local authentication protocol (we are requesting * the peer to authenticate) looks like: * * RCA- * +--------------------------------------------+ * V scn,tld| * +--------+ Close +---------+ RCA+ * | |<----------------------------------| |------+ * +--->| Closed | TO* | Opened | sca | * | | |-----+ +-------| |<-----+ * | +--------+ irc | | +---------+ * | ^ | | ^ * | | | | | * | | | | | * | TO-| | | | * | |tld TO+ V | | * | | +------->+ | | * | | | | | | * | +--------+ V | | * | | |<----+<--------------------+ | * | | Req- | scr | * | | Sent | | * | | | | * | +--------+ | * | RCA- | | RCA+ | * +------+ +------------------------------------------+ * scn,tld sca,irc,ict,tlu * * * with: * * Open: LCP reached authentication phase * Close: LCP reached terminate phase * * RCA+: received reply (pap-req, chap-response), acceptable * RCN: received reply (pap-req, chap-response), not acceptable * TO+: timeout with restart counter >= 0 * TO-: timeout with restart counter < 0 * TO*: reschedule timeout for CHAP * * scr: send request packet (none for PAP, chap-challenge) * sca: send ack packet (pap-ack, chap-success) * scn: send nak packet (pap-nak, chap-failure) * ict: initialize re-challenge timer (CHAP only) * * tlu: this-layer-up, LCP reaches network phase * tld: this-layer-down, LCP enters terminate phase * * Note that in CHAP mode, after sending a new challenge, while the state * automaton falls back into Req-Sent state, it doesn't signal a tld * event to LCP, so LCP remains in network phase. Only after not getting * any response (or after getting an unacceptable response), CHAP closes, * causing LCP to enter terminate phase. * * With PAP, there is no initial request that can be sent. The peer is * expected to send one based on the successful negotiation of PAP as * the authentication protocol during the LCP option negotiation. * * Incoming authentication protocol requests (remote requests * authentication, we are peer) don't employ a state machine at all, * they are simply answered. Some peers [Ascend P50 firmware rev * 4.50] react allergically when sending IPCP requests while they are * still in authentication phase (thereby violating the standard that * demands that these NCP packets are to be discarded), so we keep * track of the peer demanding us to authenticate, and only proceed to * phase network once we've seen a positive acknowledge for the * authentication. */ /* * Handle incoming CHAP packets. */ static void sppp_chap_input(struct sppp *sp, struct mbuf *m) { STDDCL; struct lcp_header *h; int len, x; u_char *value, *name, digest[AUTHKEYLEN], dsize; int value_len, name_len; MD5_CTX ctx; len = m->m_pkthdr.len; if (len < 4) { if (debug) log(LOG_DEBUG, SPP_FMT "chap invalid packet length: %d bytes\n", SPP_ARGS(ifp), len); return; } h = mtod (m, struct lcp_header*); if (len > ntohs (h->len)) len = ntohs (h->len); switch (h->type) { /* challenge, failure and success are his authproto */ case CHAP_CHALLENGE: value = 1 + (u_char*)(h+1); value_len = value[-1]; name = value + value_len; name_len = len - value_len - 5; if (name_len < 0) { if (debug) { log(LOG_DEBUG, SPP_FMT "chap corrupted challenge " "<%s id=0x%x len=%d", SPP_ARGS(ifp), sppp_auth_type_name(PPP_CHAP, h->type), h->ident, ntohs(h->len)); sppp_print_bytes((u_char*) (h+1), len-4); log(-1, ">\n"); } break; } if (debug) { log(LOG_DEBUG, SPP_FMT "chap input <%s id=0x%x len=%d name=", SPP_ARGS(ifp), sppp_auth_type_name(PPP_CHAP, h->type), h->ident, ntohs(h->len)); sppp_print_string((char*) name, name_len); log(-1, " value-size=%d value=", value_len); sppp_print_bytes(value, value_len); log(-1, ">\n"); } /* Compute reply value. */ MD5Init(&ctx); MD5Update(&ctx, &h->ident, 1); MD5Update(&ctx, sp->myauth.secret, sppp_strnlen(sp->myauth.secret, AUTHKEYLEN)); MD5Update(&ctx, value, value_len); MD5Final(digest, &ctx); dsize = sizeof digest; sppp_auth_send(&chap, sp, CHAP_RESPONSE, h->ident, sizeof dsize, (const char *)&dsize, sizeof digest, digest, (size_t)sppp_strnlen(sp->myauth.name, AUTHNAMELEN), sp->myauth.name, 0); break; case CHAP_SUCCESS: if (debug) { log(LOG_DEBUG, SPP_FMT "chap success", SPP_ARGS(ifp)); if (len > 4) { log(-1, ": "); sppp_print_string((char*)(h + 1), len - 4); } log(-1, "\n"); } x = splimp(); SPPP_LOCK(sp); sp->pp_flags &= ~PP_NEEDAUTH; if (sp->myauth.proto == PPP_CHAP && (sp->lcp.opts & (1 << LCP_OPT_AUTH_PROTO)) && (sp->lcp.protos & (1 << IDX_CHAP)) == 0) { /* * We are authenticator for CHAP but didn't * complete yet. Leave it to tlu to proceed * to network phase. */ SPPP_UNLOCK(sp); splx(x); break; } SPPP_UNLOCK(sp); splx(x); sppp_phase_network(sp); break; case CHAP_FAILURE: if (debug) { log(LOG_INFO, SPP_FMT "chap failure", SPP_ARGS(ifp)); if (len > 4) { log(-1, ": "); sppp_print_string((char*)(h + 1), len - 4); } log(-1, "\n"); } else log(LOG_INFO, SPP_FMT "chap failure\n", SPP_ARGS(ifp)); /* await LCP shutdown by authenticator */ break; /* response is my authproto */ case CHAP_RESPONSE: value = 1 + (u_char*)(h+1); value_len = value[-1]; name = value + value_len; name_len = len - value_len - 5; if (name_len < 0) { if (debug) { log(LOG_DEBUG, SPP_FMT "chap corrupted response " "<%s id=0x%x len=%d", SPP_ARGS(ifp), sppp_auth_type_name(PPP_CHAP, h->type), h->ident, ntohs(h->len)); sppp_print_bytes((u_char*)(h+1), len-4); log(-1, ">\n"); } break; } if (h->ident != sp->confid[IDX_CHAP]) { if (debug) log(LOG_DEBUG, SPP_FMT "chap dropping response for old ID " "(got %d, expected %d)\n", SPP_ARGS(ifp), h->ident, sp->confid[IDX_CHAP]); break; } if (name_len != sppp_strnlen(sp->hisauth.name, AUTHNAMELEN) || bcmp(name, sp->hisauth.name, name_len) != 0) { log(LOG_INFO, SPP_FMT "chap response, his name ", SPP_ARGS(ifp)); sppp_print_string(name, name_len); log(-1, " != expected "); sppp_print_string(sp->hisauth.name, sppp_strnlen(sp->hisauth.name, AUTHNAMELEN)); log(-1, "\n"); } if (debug) { log(LOG_DEBUG, SPP_FMT "chap input(%s) " "<%s id=0x%x len=%d name=", SPP_ARGS(ifp), sppp_state_name(sp->state[IDX_CHAP]), sppp_auth_type_name(PPP_CHAP, h->type), h->ident, ntohs (h->len)); sppp_print_string((char*)name, name_len); log(-1, " value-size=%d value=", value_len); sppp_print_bytes(value, value_len); log(-1, ">\n"); } if (value_len != AUTHKEYLEN) { if (debug) log(LOG_DEBUG, SPP_FMT "chap bad hash value length: " "%d bytes, should be %d\n", SPP_ARGS(ifp), value_len, AUTHKEYLEN); break; } MD5Init(&ctx); MD5Update(&ctx, &h->ident, 1); MD5Update(&ctx, sp->hisauth.secret, sppp_strnlen(sp->hisauth.secret, AUTHKEYLEN)); MD5Update(&ctx, sp->myauth.challenge, AUTHKEYLEN); MD5Final(digest, &ctx); #define FAILMSG "Failed..." #define SUCCMSG "Welcome!" if (value_len != sizeof digest || bcmp(digest, value, value_len) != 0) { /* action scn, tld */ sppp_auth_send(&chap, sp, CHAP_FAILURE, h->ident, sizeof(FAILMSG) - 1, (u_char *)FAILMSG, 0); chap.tld(sp); break; } /* action sca, perhaps tlu */ if (sp->state[IDX_CHAP] == STATE_REQ_SENT || sp->state[IDX_CHAP] == STATE_OPENED) sppp_auth_send(&chap, sp, CHAP_SUCCESS, h->ident, sizeof(SUCCMSG) - 1, (u_char *)SUCCMSG, 0); if (sp->state[IDX_CHAP] == STATE_REQ_SENT) { sppp_cp_change_state(&chap, sp, STATE_OPENED); chap.tlu(sp); } break; default: /* Unknown CHAP packet type -- ignore. */ if (debug) { log(LOG_DEBUG, SPP_FMT "chap unknown input(%s) " "<0x%x id=0x%xh len=%d", SPP_ARGS(ifp), sppp_state_name(sp->state[IDX_CHAP]), h->type, h->ident, ntohs(h->len)); sppp_print_bytes((u_char*)(h+1), len-4); log(-1, ">\n"); } break; } } static void sppp_chap_init(struct sppp *sp) { /* Chap doesn't have STATE_INITIAL at all. */ sp->state[IDX_CHAP] = STATE_CLOSED; sp->fail_counter[IDX_CHAP] = 0; sp->pp_seq[IDX_CHAP] = 0; sp->pp_rseq[IDX_CHAP] = 0; callout_init(&sp->ch[IDX_CHAP], CALLOUT_MPSAFE); } static void sppp_chap_open(struct sppp *sp) { if (sp->myauth.proto == PPP_CHAP && (sp->lcp.opts & (1 << LCP_OPT_AUTH_PROTO)) != 0) { /* we are authenticator for CHAP, start it */ chap.scr(sp); sp->rst_counter[IDX_CHAP] = sp->lcp.max_configure; sppp_cp_change_state(&chap, sp, STATE_REQ_SENT); } /* nothing to be done if we are peer, await a challenge */ } static void sppp_chap_close(struct sppp *sp) { if (sp->state[IDX_CHAP] != STATE_CLOSED) sppp_cp_change_state(&chap, sp, STATE_CLOSED); } static void sppp_chap_TO(void *cookie) { struct sppp *sp = (struct sppp *)cookie; STDDCL; int s; s = splimp(); SPPP_LOCK(sp); if (debug) log(LOG_DEBUG, SPP_FMT "chap TO(%s) rst_counter = %d\n", SPP_ARGS(ifp), sppp_state_name(sp->state[IDX_CHAP]), sp->rst_counter[IDX_CHAP]); if (--sp->rst_counter[IDX_CHAP] < 0) /* TO- event */ switch (sp->state[IDX_CHAP]) { case STATE_REQ_SENT: chap.tld(sp); sppp_cp_change_state(&chap, sp, STATE_CLOSED); break; } else /* TO+ (or TO*) event */ switch (sp->state[IDX_CHAP]) { case STATE_OPENED: /* TO* event */ sp->rst_counter[IDX_CHAP] = sp->lcp.max_configure; /* FALLTHROUGH */ case STATE_REQ_SENT: chap.scr(sp); /* sppp_cp_change_state() will restart the timer */ sppp_cp_change_state(&chap, sp, STATE_REQ_SENT); break; } SPPP_UNLOCK(sp); splx(s); } static void sppp_chap_tlu(struct sppp *sp) { STDDCL; int i, x; i = 0; sp->rst_counter[IDX_CHAP] = sp->lcp.max_configure; /* * Some broken CHAP implementations (Conware CoNet, firmware * 4.0.?) don't want to re-authenticate their CHAP once the * initial challenge-response exchange has taken place. * Provide for an option to avoid rechallenges. */ if ((sp->hisauth.flags & AUTHFLAG_NORECHALLENGE) == 0) { /* * Compute the re-challenge timeout. This will yield * a number between 300 and 810 seconds. */ i = 300 + ((unsigned)(random() & 0xff00) >> 7); callout_reset(&sp->ch[IDX_CHAP], i * hz, chap.TO, (void *)sp); } if (debug) { log(LOG_DEBUG, SPP_FMT "chap %s, ", SPP_ARGS(ifp), sp->pp_phase == PHASE_NETWORK? "reconfirmed": "tlu"); if ((sp->hisauth.flags & AUTHFLAG_NORECHALLENGE) == 0) log(-1, "next re-challenge in %d seconds\n", i); else log(-1, "re-challenging supressed\n"); } x = splimp(); SPPP_LOCK(sp); /* indicate to LCP that we need to be closed down */ sp->lcp.protos |= (1 << IDX_CHAP); if (sp->pp_flags & PP_NEEDAUTH) { /* * Remote is authenticator, but his auth proto didn't * complete yet. Defer the transition to network * phase. */ SPPP_UNLOCK(sp); splx(x); return; } SPPP_UNLOCK(sp); splx(x); /* * If we are already in phase network, we are done here. This * is the case if this is a dummy tlu event after a re-challenge. */ if (sp->pp_phase != PHASE_NETWORK) sppp_phase_network(sp); } static void sppp_chap_tld(struct sppp *sp) { STDDCL; if (debug) log(LOG_DEBUG, SPP_FMT "chap tld\n", SPP_ARGS(ifp)); callout_stop(&sp->ch[IDX_CHAP]); sp->lcp.protos &= ~(1 << IDX_CHAP); lcp.Close(sp); } static void sppp_chap_scr(struct sppp *sp) { u_long *ch, seed; u_char clen; /* Compute random challenge. */ ch = (u_long *)sp->myauth.challenge; read_random(&seed, sizeof seed); ch[0] = seed ^ random(); ch[1] = seed ^ random(); ch[2] = seed ^ random(); ch[3] = seed ^ random(); clen = AUTHKEYLEN; sp->confid[IDX_CHAP] = ++sp->pp_seq[IDX_CHAP]; sppp_auth_send(&chap, sp, CHAP_CHALLENGE, sp->confid[IDX_CHAP], sizeof clen, (const char *)&clen, (size_t)AUTHKEYLEN, sp->myauth.challenge, (size_t)sppp_strnlen(sp->myauth.name, AUTHNAMELEN), sp->myauth.name, 0); } /* *--------------------------------------------------------------------------* * * * The PAP implementation. * * * *--------------------------------------------------------------------------* */ /* * For PAP, we need to keep a little state also if we are the peer, not the * authenticator. This is since we don't get a request to authenticate, but * have to repeatedly authenticate ourself until we got a response (or the * retry counter is expired). */ /* * Handle incoming PAP packets. */ static void sppp_pap_input(struct sppp *sp, struct mbuf *m) { STDDCL; struct lcp_header *h; int len, x; u_char *name, *passwd, mlen; int name_len, passwd_len; len = m->m_pkthdr.len; if (len < 5) { if (debug) log(LOG_DEBUG, SPP_FMT "pap invalid packet length: %d bytes\n", SPP_ARGS(ifp), len); return; } h = mtod (m, struct lcp_header*); if (len > ntohs (h->len)) len = ntohs (h->len); switch (h->type) { /* PAP request is my authproto */ case PAP_REQ: name = 1 + (u_char*)(h+1); name_len = name[-1]; passwd = name + name_len + 1; if (name_len > len - 6 || (passwd_len = passwd[-1]) > len - 6 - name_len) { if (debug) { log(LOG_DEBUG, SPP_FMT "pap corrupted input " "<%s id=0x%x len=%d", SPP_ARGS(ifp), sppp_auth_type_name(PPP_PAP, h->type), h->ident, ntohs(h->len)); sppp_print_bytes((u_char*)(h+1), len-4); log(-1, ">\n"); } break; } if (debug) { log(LOG_DEBUG, SPP_FMT "pap input(%s) " "<%s id=0x%x len=%d name=", SPP_ARGS(ifp), sppp_state_name(sp->state[IDX_PAP]), sppp_auth_type_name(PPP_PAP, h->type), h->ident, ntohs(h->len)); sppp_print_string((char*)name, name_len); log(-1, " passwd="); sppp_print_string((char*)passwd, passwd_len); log(-1, ">\n"); } if (name_len != sppp_strnlen(sp->hisauth.name, AUTHNAMELEN) || passwd_len != sppp_strnlen(sp->hisauth.secret, AUTHKEYLEN) || bcmp(name, sp->hisauth.name, name_len) != 0 || bcmp(passwd, sp->hisauth.secret, passwd_len) != 0) { /* action scn, tld */ mlen = sizeof(FAILMSG) - 1; sppp_auth_send(&pap, sp, PAP_NAK, h->ident, sizeof mlen, (const char *)&mlen, sizeof(FAILMSG) - 1, (u_char *)FAILMSG, 0); pap.tld(sp); break; } /* action sca, perhaps tlu */ if (sp->state[IDX_PAP] == STATE_REQ_SENT || sp->state[IDX_PAP] == STATE_OPENED) { mlen = sizeof(SUCCMSG) - 1; sppp_auth_send(&pap, sp, PAP_ACK, h->ident, sizeof mlen, (const char *)&mlen, sizeof(SUCCMSG) - 1, (u_char *)SUCCMSG, 0); } if (sp->state[IDX_PAP] == STATE_REQ_SENT) { sppp_cp_change_state(&pap, sp, STATE_OPENED); pap.tlu(sp); } break; /* ack and nak are his authproto */ case PAP_ACK: callout_stop(&sp->pap_my_to_ch); if (debug) { log(LOG_DEBUG, SPP_FMT "pap success", SPP_ARGS(ifp)); name_len = *((char *)h); if (len > 5 && name_len) { log(-1, ": "); sppp_print_string((char*)(h+1), name_len); } log(-1, "\n"); } x = splimp(); SPPP_LOCK(sp); sp->pp_flags &= ~PP_NEEDAUTH; if (sp->myauth.proto == PPP_PAP && (sp->lcp.opts & (1 << LCP_OPT_AUTH_PROTO)) && (sp->lcp.protos & (1 << IDX_PAP)) == 0) { /* * We are authenticator for PAP but didn't * complete yet. Leave it to tlu to proceed * to network phase. */ SPPP_UNLOCK(sp); splx(x); break; } SPPP_UNLOCK(sp); splx(x); sppp_phase_network(sp); break; case PAP_NAK: callout_stop (&sp->pap_my_to_ch); if (debug) { log(LOG_INFO, SPP_FMT "pap failure", SPP_ARGS(ifp)); name_len = *((char *)h); if (len > 5 && name_len) { log(-1, ": "); sppp_print_string((char*)(h+1), name_len); } log(-1, "\n"); } else log(LOG_INFO, SPP_FMT "pap failure\n", SPP_ARGS(ifp)); /* await LCP shutdown by authenticator */ break; default: /* Unknown PAP packet type -- ignore. */ if (debug) { log(LOG_DEBUG, SPP_FMT "pap corrupted input " "<0x%x id=0x%x len=%d", SPP_ARGS(ifp), h->type, h->ident, ntohs(h->len)); sppp_print_bytes((u_char*)(h+1), len-4); log(-1, ">\n"); } break; } } static void sppp_pap_init(struct sppp *sp) { /* PAP doesn't have STATE_INITIAL at all. */ sp->state[IDX_PAP] = STATE_CLOSED; sp->fail_counter[IDX_PAP] = 0; sp->pp_seq[IDX_PAP] = 0; sp->pp_rseq[IDX_PAP] = 0; callout_init(&sp->ch[IDX_PAP], CALLOUT_MPSAFE); callout_init(&sp->pap_my_to_ch, CALLOUT_MPSAFE); } static void sppp_pap_open(struct sppp *sp) { if (sp->hisauth.proto == PPP_PAP && (sp->lcp.opts & (1 << LCP_OPT_AUTH_PROTO)) != 0) { /* we are authenticator for PAP, start our timer */ sp->rst_counter[IDX_PAP] = sp->lcp.max_configure; sppp_cp_change_state(&pap, sp, STATE_REQ_SENT); } if (sp->myauth.proto == PPP_PAP) { /* we are peer, send a request, and start a timer */ pap.scr(sp); callout_reset(&sp->pap_my_to_ch, sp->lcp.timeout, sppp_pap_my_TO, (void *)sp); } } static void sppp_pap_close(struct sppp *sp) { if (sp->state[IDX_PAP] != STATE_CLOSED) sppp_cp_change_state(&pap, sp, STATE_CLOSED); } /* * That's the timeout routine if we are authenticator. Since the * authenticator is basically passive in PAP, we can't do much here. */ static void sppp_pap_TO(void *cookie) { struct sppp *sp = (struct sppp *)cookie; STDDCL; int s; s = splimp(); SPPP_LOCK(sp); if (debug) log(LOG_DEBUG, SPP_FMT "pap TO(%s) rst_counter = %d\n", SPP_ARGS(ifp), sppp_state_name(sp->state[IDX_PAP]), sp->rst_counter[IDX_PAP]); if (--sp->rst_counter[IDX_PAP] < 0) /* TO- event */ switch (sp->state[IDX_PAP]) { case STATE_REQ_SENT: pap.tld(sp); sppp_cp_change_state(&pap, sp, STATE_CLOSED); break; } else /* TO+ event, not very much we could do */ switch (sp->state[IDX_PAP]) { case STATE_REQ_SENT: /* sppp_cp_change_state() will restart the timer */ sppp_cp_change_state(&pap, sp, STATE_REQ_SENT); break; } SPPP_UNLOCK(sp); splx(s); } /* * That's the timeout handler if we are peer. Since the peer is active, * we need to retransmit our PAP request since it is apparently lost. * XXX We should impose a max counter. */ static void sppp_pap_my_TO(void *cookie) { struct sppp *sp = (struct sppp *)cookie; STDDCL; if (debug) log(LOG_DEBUG, SPP_FMT "pap peer TO\n", SPP_ARGS(ifp)); SPPP_LOCK(sp); pap.scr(sp); SPPP_UNLOCK(sp); } static void sppp_pap_tlu(struct sppp *sp) { STDDCL; int x; sp->rst_counter[IDX_PAP] = sp->lcp.max_configure; if (debug) log(LOG_DEBUG, SPP_FMT "%s tlu\n", SPP_ARGS(ifp), pap.name); x = splimp(); SPPP_LOCK(sp); /* indicate to LCP that we need to be closed down */ sp->lcp.protos |= (1 << IDX_PAP); if (sp->pp_flags & PP_NEEDAUTH) { /* * Remote is authenticator, but his auth proto didn't * complete yet. Defer the transition to network * phase. */ SPPP_UNLOCK(sp); splx(x); return; } SPPP_UNLOCK(sp); splx(x); sppp_phase_network(sp); } static void sppp_pap_tld(struct sppp *sp) { STDDCL; if (debug) log(LOG_DEBUG, SPP_FMT "pap tld\n", SPP_ARGS(ifp)); callout_stop (&sp->ch[IDX_PAP]); callout_stop (&sp->pap_my_to_ch); sp->lcp.protos &= ~(1 << IDX_PAP); lcp.Close(sp); } static void sppp_pap_scr(struct sppp *sp) { u_char idlen, pwdlen; sp->confid[IDX_PAP] = ++sp->pp_seq[IDX_PAP]; pwdlen = sppp_strnlen(sp->myauth.secret, AUTHKEYLEN); idlen = sppp_strnlen(sp->myauth.name, AUTHNAMELEN); sppp_auth_send(&pap, sp, PAP_REQ, sp->confid[IDX_PAP], sizeof idlen, (const char *)&idlen, (size_t)idlen, sp->myauth.name, sizeof pwdlen, (const char *)&pwdlen, (size_t)pwdlen, sp->myauth.secret, 0); } /* * Random miscellaneous functions. */ /* * Send a PAP or CHAP proto packet. * * Varadic function, each of the elements for the ellipsis is of type * ``size_t mlen, const u_char *msg''. Processing will stop iff * mlen == 0. * NOTE: never declare variadic functions with types subject to type * promotion (i.e. u_char). This is asking for big trouble depending * on the architecture you are on... */ static void sppp_auth_send(const struct cp *cp, struct sppp *sp, unsigned int type, unsigned int id, ...) { STDDCL; struct ppp_header *h; struct lcp_header *lh; struct mbuf *m; u_char *p; int len; unsigned int mlen; const char *msg; va_list ap; MGETHDR (m, M_DONTWAIT, MT_DATA); if (! m) return; m->m_pkthdr.rcvif = 0; h = mtod (m, struct ppp_header*); h->address = PPP_ALLSTATIONS; /* broadcast address */ h->control = PPP_UI; /* Unnumbered Info */ h->protocol = htons(cp->proto); lh = (struct lcp_header*)(h + 1); lh->type = type; lh->ident = id; p = (u_char*) (lh+1); va_start(ap, id); len = 0; while ((mlen = (unsigned int)va_arg(ap, size_t)) != 0) { msg = va_arg(ap, const char *); len += mlen; if (len > MHLEN - PPP_HEADER_LEN - LCP_HEADER_LEN) { va_end(ap); m_freem(m); return; } bcopy(msg, p, mlen); p += mlen; } va_end(ap); m->m_pkthdr.len = m->m_len = PPP_HEADER_LEN + LCP_HEADER_LEN + len; lh->len = htons (LCP_HEADER_LEN + len); if (debug) { log(LOG_DEBUG, SPP_FMT "%s output <%s id=0x%x len=%d", SPP_ARGS(ifp), cp->name, sppp_auth_type_name(cp->proto, lh->type), lh->ident, ntohs(lh->len)); sppp_print_bytes((u_char*) (lh+1), len); log(-1, ">\n"); } if (! IF_HANDOFF_ADJ(&sp->pp_cpq, m, ifp, 3)) ifp->if_oerrors++; } /* * Flush interface queue. */ static void sppp_qflush(struct ifqueue *ifq) { struct mbuf *m, *n; n = ifq->ifq_head; while ((m = n)) { n = m->m_act; m_freem (m); } ifq->ifq_head = 0; ifq->ifq_tail = 0; ifq->ifq_len = 0; } /* * Send keepalive packets, every 10 seconds. */ static void sppp_keepalive(void *dummy) { struct sppp *sp = (struct sppp*)dummy; struct ifnet *ifp = SP2IFP(sp); int s; s = splimp(); SPPP_LOCK(sp); /* Keepalive mode disabled or channel down? */ if (! (sp->pp_flags & PP_KEEPALIVE) || ! (ifp->if_drv_flags & IFF_DRV_RUNNING)) goto out; if (sp->pp_mode == PP_FR) { sppp_fr_keepalive (sp); goto out; } /* No keepalive in PPP mode if LCP not opened yet. */ if (sp->pp_mode != IFF_CISCO && sp->pp_phase < PHASE_AUTHENTICATE) goto out; if (sp->pp_alivecnt == MAXALIVECNT) { /* No keepalive packets got. Stop the interface. */ printf (SPP_FMT "down\n", SPP_ARGS(ifp)); if_down (ifp); sppp_qflush (&sp->pp_cpq); if (sp->pp_mode != IFF_CISCO) { /* XXX */ /* Shut down the PPP link. */ lcp.Down(sp); /* Initiate negotiation. XXX */ lcp.Up(sp); } } if (sp->pp_alivecnt <= MAXALIVECNT) ++sp->pp_alivecnt; if (sp->pp_mode == IFF_CISCO) sppp_cisco_send (sp, CISCO_KEEPALIVE_REQ, ++sp->pp_seq[IDX_LCP], sp->pp_rseq[IDX_LCP]); else if (sp->pp_phase >= PHASE_AUTHENTICATE) { long nmagic = htonl (sp->lcp.magic); sp->lcp.echoid = ++sp->pp_seq[IDX_LCP]; sppp_cp_send (sp, PPP_LCP, ECHO_REQ, sp->lcp.echoid, 4, &nmagic); } out: SPPP_UNLOCK(sp); splx(s); callout_reset(&sp->keepalive_callout, hz * 10, sppp_keepalive, (void *)sp); } /* * Get both IP addresses. */ void sppp_get_ip_addrs(struct sppp *sp, u_long *src, u_long *dst, u_long *srcmask) { struct ifnet *ifp = SP2IFP(sp); struct ifaddr *ifa; struct sockaddr_in *si, *sm; u_long ssrc, ddst; sm = NULL; ssrc = ddst = 0L; /* * Pick the first AF_INET address from the list, * aliases don't make any sense on a p2p link anyway. */ si = 0; if_addr_rlock(ifp); TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) if (ifa->ifa_addr->sa_family == AF_INET) { si = (struct sockaddr_in *)ifa->ifa_addr; sm = (struct sockaddr_in *)ifa->ifa_netmask; if (si) break; } if (ifa) { if (si && si->sin_addr.s_addr) { ssrc = si->sin_addr.s_addr; if (srcmask) *srcmask = ntohl(sm->sin_addr.s_addr); } si = (struct sockaddr_in *)ifa->ifa_dstaddr; if (si && si->sin_addr.s_addr) ddst = si->sin_addr.s_addr; } if_addr_runlock(ifp); if (dst) *dst = ntohl(ddst); if (src) *src = ntohl(ssrc); } #ifdef INET /* * Set my IP address. Must be called at splimp. */ static void sppp_set_ip_addr(struct sppp *sp, u_long src) { STDDCL; struct ifaddr *ifa; struct sockaddr_in *si; struct in_ifaddr *ia; /* * Pick the first AF_INET address from the list, * aliases don't make any sense on a p2p link anyway. */ si = 0; if_addr_rlock(ifp); TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family == AF_INET) { si = (struct sockaddr_in *)ifa->ifa_addr; if (si != NULL) { ifa_ref(ifa); break; } } } if_addr_runlock(ifp); if (ifa != NULL) { int error; /* delete old route */ error = rtinit(ifa, (int)RTM_DELETE, RTF_HOST); if (debug && error) { log(LOG_DEBUG, SPP_FMT "sppp_set_ip_addr: rtinit DEL failed, error=%d\n", SPP_ARGS(ifp), error); } /* set new address */ si->sin_addr.s_addr = htonl(src); ia = ifatoia(ifa); IN_IFADDR_WLOCK(); LIST_REMOVE(ia, ia_hash); LIST_INSERT_HEAD(INADDR_HASH(si->sin_addr.s_addr), ia, ia_hash); IN_IFADDR_WUNLOCK(); /* add new route */ error = rtinit(ifa, (int)RTM_ADD, RTF_HOST); if (debug && error) { log(LOG_DEBUG, SPP_FMT "sppp_set_ip_addr: rtinit ADD failed, error=%d", SPP_ARGS(ifp), error); } ifa_free(ifa); } } #endif #ifdef INET6 /* * Get both IPv6 addresses. */ static void sppp_get_ip6_addrs(struct sppp *sp, struct in6_addr *src, struct in6_addr *dst, struct in6_addr *srcmask) { struct ifnet *ifp = SP2IFP(sp); struct ifaddr *ifa; struct sockaddr_in6 *si, *sm; struct in6_addr ssrc, ddst; sm = NULL; bzero(&ssrc, sizeof(ssrc)); bzero(&ddst, sizeof(ddst)); /* * Pick the first link-local AF_INET6 address from the list, * aliases don't make any sense on a p2p link anyway. */ si = NULL; if_addr_rlock(ifp); TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) if (ifa->ifa_addr->sa_family == AF_INET6) { si = (struct sockaddr_in6 *)ifa->ifa_addr; sm = (struct sockaddr_in6 *)ifa->ifa_netmask; if (si && IN6_IS_ADDR_LINKLOCAL(&si->sin6_addr)) break; } if (ifa) { if (si && !IN6_IS_ADDR_UNSPECIFIED(&si->sin6_addr)) { bcopy(&si->sin6_addr, &ssrc, sizeof(ssrc)); if (srcmask) { bcopy(&sm->sin6_addr, srcmask, sizeof(*srcmask)); } } si = (struct sockaddr_in6 *)ifa->ifa_dstaddr; if (si && !IN6_IS_ADDR_UNSPECIFIED(&si->sin6_addr)) bcopy(&si->sin6_addr, &ddst, sizeof(ddst)); } if (dst) bcopy(&ddst, dst, sizeof(*dst)); if (src) bcopy(&ssrc, src, sizeof(*src)); if_addr_runlock(ifp); } #ifdef IPV6CP_MYIFID_DYN /* * Generate random ifid. */ static void sppp_gen_ip6_addr(struct sppp *sp, struct in6_addr *addr) { /* TBD */ } /* * Set my IPv6 address. Must be called at splimp. */ static void sppp_set_ip6_addr(struct sppp *sp, const struct in6_addr *src) { STDDCL; struct ifaddr *ifa; struct sockaddr_in6 *sin6; /* * Pick the first link-local AF_INET6 address from the list, * aliases don't make any sense on a p2p link anyway. */ sin6 = NULL; if_addr_rlock(ifp); TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family == AF_INET6) { sin6 = (struct sockaddr_in6 *)ifa->ifa_addr; if (sin6 && IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr)) { ifa_ref(ifa); break; } } } if_addr_runlock(ifp); if (ifa != NULL) { int error; struct sockaddr_in6 new_sin6 = *sin6; bcopy(src, &new_sin6.sin6_addr, sizeof(new_sin6.sin6_addr)); error = in6_ifinit(ifp, ifatoia6(ifa), &new_sin6, 1); if (debug && error) { log(LOG_DEBUG, SPP_FMT "sppp_set_ip6_addr: in6_ifinit " " failed, error=%d\n", SPP_ARGS(ifp), error); } ifa_free(ifa); } } #endif /* * Suggest a candidate address to be used by peer. */ static void sppp_suggest_ip6_addr(struct sppp *sp, struct in6_addr *suggest) { struct in6_addr myaddr; struct timeval tv; sppp_get_ip6_addrs(sp, &myaddr, 0, 0); myaddr.s6_addr[8] &= ~0x02; /* u bit to "local" */ microtime(&tv); if ((tv.tv_usec & 0xff) == 0 && (tv.tv_sec & 0xff) == 0) { myaddr.s6_addr[14] ^= 0xff; myaddr.s6_addr[15] ^= 0xff; } else { myaddr.s6_addr[14] ^= (tv.tv_usec & 0xff); myaddr.s6_addr[15] ^= (tv.tv_sec & 0xff); } if (suggest) bcopy(&myaddr, suggest, sizeof(myaddr)); } #endif /*INET6*/ static int sppp_params(struct sppp *sp, u_long cmd, void *data) { u_long subcmd; struct ifreq *ifr = (struct ifreq *)data; struct spppreq *spr; int rv = 0; if ((spr = malloc(sizeof(struct spppreq), M_TEMP, M_NOWAIT)) == 0) return (EAGAIN); /* * ifr->ifr_data is supposed to point to a struct spppreq. * Check the cmd word first before attempting to fetch all the * data. */ if ((subcmd = fuword(ifr->ifr_data)) == -1) { rv = EFAULT; goto quit; } if (copyin((caddr_t)ifr->ifr_data, spr, sizeof(struct spppreq)) != 0) { rv = EFAULT; goto quit; } switch (subcmd) { case (u_long)SPPPIOGDEFS: if (cmd != SIOCGIFGENERIC) { rv = EINVAL; break; } /* * We copy over the entire current state, but clean * out some of the stuff we don't wanna pass up. * Remember, SIOCGIFGENERIC is unprotected, and can be * called by any user. No need to ever get PAP or * CHAP secrets back to userland anyway. */ spr->defs.pp_phase = sp->pp_phase; spr->defs.enable_vj = (sp->confflags & CONF_ENABLE_VJ) != 0; spr->defs.enable_ipv6 = (sp->confflags & CONF_ENABLE_IPV6) != 0; spr->defs.lcp = sp->lcp; spr->defs.ipcp = sp->ipcp; spr->defs.ipv6cp = sp->ipv6cp; spr->defs.myauth = sp->myauth; spr->defs.hisauth = sp->hisauth; bzero(spr->defs.myauth.secret, AUTHKEYLEN); bzero(spr->defs.myauth.challenge, AUTHKEYLEN); bzero(spr->defs.hisauth.secret, AUTHKEYLEN); bzero(spr->defs.hisauth.challenge, AUTHKEYLEN); /* * Fixup the LCP timeout value to milliseconds so * spppcontrol doesn't need to bother about the value * of "hz". We do the reverse calculation below when * setting it. */ spr->defs.lcp.timeout = sp->lcp.timeout * 1000 / hz; rv = copyout(spr, (caddr_t)ifr->ifr_data, sizeof(struct spppreq)); break; case (u_long)SPPPIOSDEFS: if (cmd != SIOCSIFGENERIC) { rv = EINVAL; break; } /* * We have a very specific idea of which fields we * allow being passed back from userland, so to not * clobber our current state. For one, we only allow * setting anything if LCP is in dead or establish * phase. Once the authentication negotiations * started, the authentication settings must not be * changed again. (The administrator can force an * ifconfig down in order to get LCP back into dead * phase.) * * Also, we only allow for authentication parameters to be * specified. * * XXX Should allow to set or clear pp_flags. * * Finally, if the respective authentication protocol to * be used is set differently than 0, but the secret is * passed as all zeros, we don't trash the existing secret. * This allows an administrator to change the system name * only without clobbering the secret (which he didn't get * back in a previous SPPPIOGDEFS call). However, the * secrets are cleared if the authentication protocol is * reset to 0. */ if (sp->pp_phase != PHASE_DEAD && sp->pp_phase != PHASE_ESTABLISH) { rv = EBUSY; break; } if ((spr->defs.myauth.proto != 0 && spr->defs.myauth.proto != PPP_PAP && spr->defs.myauth.proto != PPP_CHAP) || (spr->defs.hisauth.proto != 0 && spr->defs.hisauth.proto != PPP_PAP && spr->defs.hisauth.proto != PPP_CHAP)) { rv = EINVAL; break; } if (spr->defs.myauth.proto == 0) /* resetting myauth */ bzero(&sp->myauth, sizeof sp->myauth); else { /* setting/changing myauth */ sp->myauth.proto = spr->defs.myauth.proto; bcopy(spr->defs.myauth.name, sp->myauth.name, AUTHNAMELEN); if (spr->defs.myauth.secret[0] != '\0') bcopy(spr->defs.myauth.secret, sp->myauth.secret, AUTHKEYLEN); } if (spr->defs.hisauth.proto == 0) /* resetting hisauth */ bzero(&sp->hisauth, sizeof sp->hisauth); else { /* setting/changing hisauth */ sp->hisauth.proto = spr->defs.hisauth.proto; sp->hisauth.flags = spr->defs.hisauth.flags; bcopy(spr->defs.hisauth.name, sp->hisauth.name, AUTHNAMELEN); if (spr->defs.hisauth.secret[0] != '\0') bcopy(spr->defs.hisauth.secret, sp->hisauth.secret, AUTHKEYLEN); } /* set LCP restart timer timeout */ if (spr->defs.lcp.timeout != 0) sp->lcp.timeout = spr->defs.lcp.timeout * hz / 1000; /* set VJ enable and IPv6 disable flags */ #ifdef INET if (spr->defs.enable_vj) sp->confflags |= CONF_ENABLE_VJ; else sp->confflags &= ~CONF_ENABLE_VJ; #endif #ifdef INET6 if (spr->defs.enable_ipv6) sp->confflags |= CONF_ENABLE_IPV6; else sp->confflags &= ~CONF_ENABLE_IPV6; #endif break; default: rv = EINVAL; } quit: free(spr, M_TEMP); return (rv); } static void sppp_phase_network(struct sppp *sp) { STDDCL; int i; u_long mask; sp->pp_phase = PHASE_NETWORK; if (debug) log(LOG_DEBUG, SPP_FMT "phase %s\n", SPP_ARGS(ifp), sppp_phase_name(sp->pp_phase)); /* Notify NCPs now. */ for (i = 0; i < IDX_COUNT; i++) if ((cps[i])->flags & CP_NCP) (cps[i])->Open(sp); /* Send Up events to all NCPs. */ for (i = 0, mask = 1; i < IDX_COUNT; i++, mask <<= 1) if ((sp->lcp.protos & mask) && ((cps[i])->flags & CP_NCP)) (cps[i])->Up(sp); /* if no NCP is starting, all this was in vain, close down */ sppp_lcp_check_and_close(sp); } static const char * sppp_cp_type_name(u_char type) { static char buf[12]; switch (type) { case CONF_REQ: return "conf-req"; case CONF_ACK: return "conf-ack"; case CONF_NAK: return "conf-nak"; case CONF_REJ: return "conf-rej"; case TERM_REQ: return "term-req"; case TERM_ACK: return "term-ack"; case CODE_REJ: return "code-rej"; case PROTO_REJ: return "proto-rej"; case ECHO_REQ: return "echo-req"; case ECHO_REPLY: return "echo-reply"; case DISC_REQ: return "discard-req"; } snprintf (buf, sizeof(buf), "cp/0x%x", type); return buf; } static const char * sppp_auth_type_name(u_short proto, u_char type) { static char buf[12]; switch (proto) { case PPP_CHAP: switch (type) { case CHAP_CHALLENGE: return "challenge"; case CHAP_RESPONSE: return "response"; case CHAP_SUCCESS: return "success"; case CHAP_FAILURE: return "failure"; } case PPP_PAP: switch (type) { case PAP_REQ: return "req"; case PAP_ACK: return "ack"; case PAP_NAK: return "nak"; } } snprintf (buf, sizeof(buf), "auth/0x%x", type); return buf; } static const char * sppp_lcp_opt_name(u_char opt) { static char buf[12]; switch (opt) { case LCP_OPT_MRU: return "mru"; case LCP_OPT_ASYNC_MAP: return "async-map"; case LCP_OPT_AUTH_PROTO: return "auth-proto"; case LCP_OPT_QUAL_PROTO: return "qual-proto"; case LCP_OPT_MAGIC: return "magic"; case LCP_OPT_PROTO_COMP: return "proto-comp"; case LCP_OPT_ADDR_COMP: return "addr-comp"; } snprintf (buf, sizeof(buf), "lcp/0x%x", opt); return buf; } #ifdef INET static const char * sppp_ipcp_opt_name(u_char opt) { static char buf[12]; switch (opt) { case IPCP_OPT_ADDRESSES: return "addresses"; case IPCP_OPT_COMPRESSION: return "compression"; case IPCP_OPT_ADDRESS: return "address"; } snprintf (buf, sizeof(buf), "ipcp/0x%x", opt); return buf; } #endif #ifdef INET6 static const char * sppp_ipv6cp_opt_name(u_char opt) { static char buf[12]; switch (opt) { case IPV6CP_OPT_IFID: return "ifid"; case IPV6CP_OPT_COMPRESSION: return "compression"; } sprintf (buf, "0x%x", opt); return buf; } #endif static const char * sppp_state_name(int state) { switch (state) { case STATE_INITIAL: return "initial"; case STATE_STARTING: return "starting"; case STATE_CLOSED: return "closed"; case STATE_STOPPED: return "stopped"; case STATE_CLOSING: return "closing"; case STATE_STOPPING: return "stopping"; case STATE_REQ_SENT: return "req-sent"; case STATE_ACK_RCVD: return "ack-rcvd"; case STATE_ACK_SENT: return "ack-sent"; case STATE_OPENED: return "opened"; } return "illegal"; } static const char * sppp_phase_name(enum ppp_phase phase) { switch (phase) { case PHASE_DEAD: return "dead"; case PHASE_ESTABLISH: return "establish"; case PHASE_TERMINATE: return "terminate"; case PHASE_AUTHENTICATE: return "authenticate"; case PHASE_NETWORK: return "network"; } return "illegal"; } static const char * sppp_proto_name(u_short proto) { static char buf[12]; switch (proto) { case PPP_LCP: return "lcp"; case PPP_IPCP: return "ipcp"; case PPP_PAP: return "pap"; case PPP_CHAP: return "chap"; case PPP_IPV6CP: return "ipv6cp"; } snprintf(buf, sizeof(buf), "proto/0x%x", (unsigned)proto); return buf; } static void sppp_print_bytes(const u_char *p, u_short len) { if (len) log(-1, " %*D", len, p, "-"); } static void sppp_print_string(const char *p, u_short len) { u_char c; while (len-- > 0) { c = *p++; /* * Print only ASCII chars directly. RFC 1994 recommends * using only them, but we don't rely on it. */ if (c < ' ' || c > '~') log(-1, "\\x%x", c); else log(-1, "%c", c); } } #ifdef INET static const char * sppp_dotted_quad(u_long addr) { static char s[16]; sprintf(s, "%d.%d.%d.%d", (int)((addr >> 24) & 0xff), (int)((addr >> 16) & 0xff), (int)((addr >> 8) & 0xff), (int)(addr & 0xff)); return s; } #endif static int sppp_strnlen(u_char *p, int max) { int len; for (len = 0; len < max && *p; ++p) ++len; return len; } /* a dummy, used to drop uninteresting events */ static void sppp_null(struct sppp *unused) { /* do just nothing */ }