Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/s3/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/usie/@/amd64/compile/hs32/modules/usr/src/sys/modules/oce/@/amd64/compile/hs32/modules/usr/src/sys/modules/dtrace/dtrace_test/@/mips/cavium/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/s3/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/usie/@/amd64/compile/hs32/modules/usr/src/sys/modules/oce/@/amd64/compile/hs32/modules/usr/src/sys/modules/dtrace/dtrace_test/@/mips/cavium/octeon_ebt3000_cf.c |
/***********************license start*************** * Copyright (c) 2003-2008 Cavium Networks (support@cavium.com). All rights * reserved. * * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * * Neither the name of Cavium Networks nor the names of * its contributors may be used to endorse or promote products * derived from this software without specific prior written * permission. * * TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS" * AND WITH ALL FAULTS AND CAVIUM NETWORKS MAKES NO PROMISES, REPRESENTATIONS * OR WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH * RESPECT TO THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY * REPRESENTATION OR DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT * DEFECTS, AND CAVIUM SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES * OF TITLE, MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR * PURPOSE, LACK OF VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET * POSSESSION OR CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT * OF USE OR PERFORMANCE OF THE SOFTWARE LIES WITH YOU. * * * For any questions regarding licensing please contact marketing@caviumnetworks.com * ***********************license end**************************************/ /* * octeon_ebt3000_cf.c * */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/mips/cavium/octeon_ebt3000_cf.c 222671 2011-06-04 07:06:05Z imp $"); #include <sys/param.h> #include <sys/bio.h> #include <sys/systm.h> #include <sys/sysctl.h> #include <sys/ata.h> #include <sys/bus.h> #include <sys/kernel.h> #include <sys/module.h> #include <sys/rman.h> #include <sys/power.h> #include <sys/smp.h> #include <sys/time.h> #include <sys/timetc.h> #include <sys/malloc.h> #include <geom/geom.h> #include <machine/clock.h> #include <machine/locore.h> #include <machine/md_var.h> #include <machine/cpuregs.h> #include <mips/cavium/octeon_pcmap_regs.h> #include <contrib/octeon-sdk/cvmx.h> /* ATA Commands */ #define CMD_READ_SECTOR 0x20 #define CMD_WRITE_SECTOR 0x30 #define CMD_IDENTIFY 0xEC /* The ATA Task File */ #define TF_DATA 0x00 #define TF_ERROR 0x01 #define TF_PRECOMP 0x01 #define TF_SECTOR_COUNT 0x02 #define TF_SECTOR_NUMBER 0x03 #define TF_CYL_LSB 0x04 #define TF_CYL_MSB 0x05 #define TF_DRV_HEAD 0x06 #define TF_STATUS 0x07 #define TF_COMMAND 0x07 /* Status Register */ #define STATUS_BSY 0x80 /* Drive is busy */ #define STATUS_RDY 0x40 /* Drive is ready */ #define STATUS_DF 0x20 /* Device fault */ #define STATUS_DRQ 0x08 /* Data can be transferred */ /* Miscelaneous */ #define SECTOR_SIZE 512 #define WAIT_DELAY 1000 #define NR_TRIES 1000 #define SWAP_SHORT(x) ((x << 8) | (x >> 8)) #define MODEL_STR_SIZE 40 /* XXX */ extern cvmx_bootinfo_t *octeon_bootinfo; /* Globals */ /* * There's three bus types supported by this driver. * * CF_8 -- Traditional PC Card IDE interface on an 8-bit wide bus. We assume * the bool loader has configure attribute memory properly. We then access * the device like old-school 8-bit IDE card (which is all a traditional PC Card * interface really is). * CF_16 -- Traditional PC Card IDE interface on a 16-bit wide bus. Registers on * this bus are 16-bits wide too. When accessing registers in the task file, you * have to do it in 16-bit chunks, and worry about masking out what you don't want * or ORing together the traditional 8-bit values. We assume the bootloader does * the right attribute memory initialization dance. * CF_TRUE_IDE_8 - CF Card wired to True IDE mode. There's no Attribute memory * space at all. Instead all the traditional 8-bit registers are there, but * on a 16-bit bus where addr0 isn't wired. This means we need to read/write them * 16-bit chunks, but only the lower 8 bits are valid. We do not (and can not) * access this like CF_16 with the comingled registers. Yet we can't access * this like CF_8 because of the register offset. Except the TF_DATA register * appears to be full width? */ void *base_addr; int bus_type; #define CF_8 1 /* 8-bit bus, no offsets - PC Card */ #define CF_16 2 /* 16-bit bus, registers shared - PC Card */ #define CF_TRUE_IDE_8 3 /* 16-bit bus, only lower 8-bits, TrueIDE */ const char *const cf_type[] = { "impossible type", "CF 8-bit", "CF 16-bit", "True IDE" }; /* Device softc */ struct cf_priv { device_t dev; struct drive_param *drive_param; struct bio_queue_head cf_bq; struct g_geom *cf_geom; struct g_provider *cf_provider; }; /* Device parameters */ struct drive_param{ union { char buf[SECTOR_SIZE]; struct ata_params driveid; } u; char model[MODEL_STR_SIZE]; uint32_t nr_sectors; uint16_t sector_size; uint16_t heads; uint16_t tracks; uint16_t sec_track; } drive_param; /* GEOM class implementation */ static g_access_t cf_access; static g_start_t cf_start; static g_ioctl_t cf_ioctl; struct g_class g_cf_class = { .name = "CF", .version = G_VERSION, .start = cf_start, .access = cf_access, .ioctl = cf_ioctl, }; DECLARE_GEOM_CLASS(g_cf_class, g_cf); /* Device methods */ static int cf_probe(device_t); static void cf_identify(driver_t *, device_t); static int cf_attach(device_t); static int cf_attach_geom(void *, int); /* ATA methods */ static int cf_cmd_identify(void); static int cf_cmd_write(uint32_t, uint32_t, void *); static int cf_cmd_read(uint32_t, uint32_t, void *); static int cf_wait_busy(void); static int cf_send_cmd(uint32_t, uint8_t); static void cf_attach_geom_proxy(void *arg, int flag); /* Miscelenous */ static void cf_swap_ascii(unsigned char[], char[]); /* ------------------------------------------------------------------- * * cf_access() * * ------------------------------------------------------------------- */ static int cf_access (struct g_provider *pp, int r, int w, int e) { pp->sectorsize = drive_param.sector_size; pp->stripesize = drive_param.heads * drive_param.sec_track * drive_param.sector_size; pp->mediasize = pp->stripesize * drive_param.tracks; return (0); } /* ------------------------------------------------------------------- * * cf_start() * * ------------------------------------------------------------------- */ static void cf_start (struct bio *bp) { int error; /* * Handle actual I/O requests. The request is passed down through * the bio struct. */ if(bp->bio_cmd & BIO_GETATTR) { if (g_handleattr_int(bp, "GEOM::fwsectors", drive_param.sec_track)) return; if (g_handleattr_int(bp, "GEOM::fwheads", drive_param.heads)) return; g_io_deliver(bp, ENOIOCTL); return; } if ((bp->bio_cmd & (BIO_READ | BIO_WRITE))) { if (bp->bio_cmd & BIO_READ) { error = cf_cmd_read(bp->bio_length / drive_param.sector_size, bp->bio_offset / drive_param.sector_size, bp->bio_data); } else if (bp->bio_cmd & BIO_WRITE) { error = cf_cmd_write(bp->bio_length / drive_param.sector_size, bp->bio_offset/drive_param.sector_size, bp->bio_data); } else { printf("%s: unrecognized bio_cmd %x.\n", __func__, bp->bio_cmd); error = ENOTSUP; } if (error != 0) { g_io_deliver(bp, error); return; } bp->bio_resid = 0; bp->bio_completed = bp->bio_length; g_io_deliver(bp, 0); } } static int cf_ioctl (struct g_provider *pp, u_long cmd, void *data, int fflag, struct thread *td) { return (0); } static uint8_t cf_inb_8(int port) { /* * Traditional 8-bit PC Card/CF bus access. */ if (bus_type == CF_8) { volatile uint8_t *task_file = (volatile uint8_t *)base_addr; return task_file[port]; } /* * True IDE access. lower 8 bits on a 16-bit bus (see above). */ volatile uint16_t *task_file = (volatile uint16_t *)base_addr; return task_file[port] & 0xff; } static void cf_outb_8(int port, uint8_t val) { /* * Traditional 8-bit PC Card/CF bus access. */ if (bus_type == CF_8) { volatile uint8_t *task_file = (volatile uint8_t *)base_addr; task_file[port] = val; } /* * True IDE access. lower 8 bits on a 16-bit bus (see above). */ volatile uint16_t *task_file = (volatile uint16_t *)base_addr; task_file[port] = val & 0xff; } static uint8_t cf_inb_16(int port) { volatile uint16_t *task_file = (volatile uint16_t *)base_addr; uint16_t val = task_file[port / 2]; if (port & 1) return (val >> 8) & 0xff; return val & 0xff; } static uint16_t cf_inw_16(int port) { volatile uint16_t *task_file = (volatile uint16_t *)base_addr; uint16_t val = task_file[port / 2]; return val; } static void cf_outw_16(int port, uint16_t val) { volatile uint16_t *task_file = (volatile uint16_t *)base_addr; task_file[port / 2] = val; } /* ------------------------------------------------------------------- * * cf_cmd_read() * * ------------------------------------------------------------------- * * * Read nr_sectors from the device starting from start_sector. */ static int cf_cmd_read (uint32_t nr_sectors, uint32_t start_sector, void *buf) { unsigned long lba; uint32_t count; uint16_t *ptr_16; uint8_t *ptr_8; int error; //#define OCTEON_VISUAL_CF_0 1 #ifdef OCTEON_VISUAL_CF_0 octeon_led_write_char(0, 'R'); #endif ptr_8 = (uint8_t*)buf; ptr_16 = (uint16_t*)buf; lba = start_sector; while (nr_sectors--) { error = cf_send_cmd(lba, CMD_READ_SECTOR); if (error != 0) { printf("%s: cf_send_cmd(CMD_READ_SECTOR) failed: %d\n", __func__, error); return (error); } switch (bus_type) { case CF_8: for (count = 0; count < SECTOR_SIZE; count++) { *ptr_8++ = cf_inb_8(TF_DATA); if ((count & 0xf) == 0) (void)cf_inb_8(TF_STATUS); } break; case CF_TRUE_IDE_8: case CF_16: default: for (count = 0; count < SECTOR_SIZE; count+=2) { uint16_t temp; temp = cf_inw_16(TF_DATA); *ptr_16++ = SWAP_SHORT(temp); if ((count & 0xf) == 0) (void)cf_inb_16(TF_STATUS); } break; } lba++; } #ifdef OCTEON_VISUAL_CF_0 octeon_led_write_char(0, ' '); #endif return (0); } /* ------------------------------------------------------------------- * * cf_cmd_write() * * ------------------------------------------------------------------- * * * Write nr_sectors to the device starting from start_sector. */ static int cf_cmd_write (uint32_t nr_sectors, uint32_t start_sector, void *buf) { uint32_t lba; uint32_t count; uint16_t *ptr_16; uint8_t *ptr_8; int error; //#define OCTEON_VISUAL_CF_1 1 #ifdef OCTEON_VISUAL_CF_1 octeon_led_write_char(1, 'W'); #endif lba = start_sector; ptr_8 = (uint8_t*)buf; ptr_16 = (uint16_t*)buf; while (nr_sectors--) { error = cf_send_cmd(lba, CMD_WRITE_SECTOR); if (error != 0) { printf("%s: cf_send_cmd(CMD_WRITE_SECTOR) failed: %d\n", __func__, error); return (error); } switch (bus_type) { case CF_8: for (count = 0; count < SECTOR_SIZE; count++) { cf_outb_8(TF_DATA, *ptr_8++); if ((count & 0xf) == 0) (void)cf_inb_8(TF_STATUS); } break; case CF_TRUE_IDE_8: case CF_16: default: for (count = 0; count < SECTOR_SIZE; count+=2) { uint16_t temp = *ptr_16++; cf_outw_16(TF_DATA, SWAP_SHORT(temp)); if ((count & 0xf) == 0) (void)cf_inb_16(TF_STATUS); } break; } lba++; } #ifdef OCTEON_VISUAL_CF_1 octeon_led_write_char(1, ' '); #endif return (0); } /* ------------------------------------------------------------------- * * cf_cmd_identify() * * ------------------------------------------------------------------- * * * Read parameters and other information from the drive and store * it in the drive_param structure * */ static int cf_cmd_identify (void) { int count; int error; error = cf_send_cmd(0, CMD_IDENTIFY); if (error != 0) { printf("%s: identify failed: %d\n", __func__, error); return (error); } switch (bus_type) { case CF_8: for (count = 0; count < SECTOR_SIZE; count++) drive_param.u.buf[count] = cf_inb_8(TF_DATA); break; case CF_TRUE_IDE_8: case CF_16: default: for (count = 0; count < SECTOR_SIZE; count += 2) { uint16_t temp; temp = cf_inw_16(TF_DATA); /* endianess will be swapped below */ drive_param.u.buf[count] = (temp & 0xff); drive_param.u.buf[count + 1] = (temp & 0xff00) >> 8; } break; } cf_swap_ascii(drive_param.u.driveid.model, drive_param.model); drive_param.sector_size = 512; //= SWAP_SHORT (drive_param.u.driveid.sector_bytes); drive_param.heads = SWAP_SHORT (drive_param.u.driveid.current_heads); drive_param.tracks = SWAP_SHORT (drive_param.u.driveid.current_cylinders); drive_param.sec_track = SWAP_SHORT (drive_param.u.driveid.current_sectors); drive_param.nr_sectors = (uint32_t)SWAP_SHORT (drive_param.u.driveid.lba_size_1) | ((uint32_t)SWAP_SHORT (drive_param.u.driveid.lba_size_2)); printf("cf0: <%s> %lld sectors\n", drive_param.model, (long long)drive_param.nr_sectors); return (0); } /* ------------------------------------------------------------------- * * cf_send_cmd() * * ------------------------------------------------------------------- * * * Send command to read/write one sector specified by lba. * */ static int cf_send_cmd (uint32_t lba, uint8_t cmd) { switch (bus_type) { case CF_8: case CF_TRUE_IDE_8: while (cf_inb_8(TF_STATUS) & STATUS_BSY) DELAY(WAIT_DELAY); cf_outb_8(TF_SECTOR_COUNT, 1); cf_outb_8(TF_SECTOR_NUMBER, lba & 0xff); cf_outb_8(TF_CYL_LSB, (lba >> 8) & 0xff); cf_outb_8(TF_CYL_MSB, (lba >> 16) & 0xff); cf_outb_8(TF_DRV_HEAD, ((lba >> 24) & 0xff) | 0xe0); cf_outb_8(TF_COMMAND, cmd); break; case CF_16: default: while (cf_inb_16(TF_STATUS) & STATUS_BSY) DELAY(WAIT_DELAY); cf_outw_16(TF_SECTOR_COUNT, 1 | ((lba & 0xff) << 8)); cf_outw_16(TF_CYL_LSB, ((lba >> 8) & 0xff) | (((lba >> 16) & 0xff) << 8)); cf_outw_16(TF_DRV_HEAD, (((lba >> 24) & 0xff) | 0xe0) | (cmd << 8)); break; } return (cf_wait_busy()); } /* ------------------------------------------------------------------- * * cf_wait_busy() * * ------------------------------------------------------------------- * * * Wait until the drive finishes a given command and data is * ready to be transferred. This is done by repeatedly checking * the BSY bit of the status register. When the controller is ready for * data transfer, it clears the BSY bit and sets the DRQ bit. * * If the DF bit is ever set, we return error. * * This code originally spun on DRQ. If that behavior turns out to be * necessary, a flag can be added or this function can be called * repeatedly as long as it is returning ENXIO. */ static int cf_wait_busy (void) { uint8_t status; //#define OCTEON_VISUAL_CF_2 1 #ifdef OCTEON_VISUAL_CF_2 static int where0 = 0; octeon_led_run_wheel(&where0, 2); #endif switch (bus_type) { case CF_8: case CF_TRUE_IDE_8: status = cf_inb_8(TF_STATUS); while ((status & STATUS_BSY) == STATUS_BSY) { if ((status & STATUS_DF) != 0) { printf("%s: device fault (status=%x)\n", __func__, status); return (EIO); } DELAY(WAIT_DELAY); status = cf_inb_8(TF_STATUS); } break; case CF_16: default: status = cf_inb_16(TF_STATUS); while ((status & STATUS_BSY) == STATUS_BSY) { if ((status & STATUS_DF) != 0) { printf("%s: device fault (status=%x)\n", __func__, status); return (EIO); } DELAY(WAIT_DELAY); status = cf_inb_16(TF_STATUS); } break; } if ((status & STATUS_DRQ) == 0) { printf("%s: device not ready (status=%x)\n", __func__, status); return (ENXIO); } #ifdef OCTEON_VISUAL_CF_2 octeon_led_write_char(2, ' '); #endif return (0); } /* ------------------------------------------------------------------- * * cf_swap_ascii() * * ------------------------------------------------------------------- * * * The ascii string returned by the controller specifying * the model of the drive is byte-swaped. This routine * corrects the byte ordering. * */ static void cf_swap_ascii (unsigned char str1[], char str2[]) { int i; for(i = 0; i < MODEL_STR_SIZE; i++) str2[i] = str1[i ^ 1]; } /* ------------------------------------------------------------------- * * cf_probe() * * ------------------------------------------------------------------- */ static int cf_probe (device_t dev) { if (octeon_is_simulation()) return (ENXIO); if (device_get_unit(dev) != 0) { panic("can't attach more devices\n"); } device_set_desc(dev, "Octeon Compact Flash Driver"); return (cf_cmd_identify()); } /* ------------------------------------------------------------------- * * cf_identify() * * ------------------------------------------------------------------- * * * Find the bootbus region for the CF to determine * 16 or 8 bit and check to see if device is * inserted. * */ typedef unsigned long long llu; static void cf_identify (driver_t *drv, device_t parent) { int bus_region; int count = 0; cvmx_mio_boot_reg_cfgx_t cfg; if (octeon_is_simulation()) return; base_addr = cvmx_phys_to_ptr(octeon_bootinfo->compact_flash_common_base_addr); for (bus_region = 0; bus_region < 8; bus_region++) { cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(bus_region)); if (cfg.s.base == octeon_bootinfo->compact_flash_common_base_addr >> 16) { if (octeon_bootinfo->compact_flash_attribute_base_addr == 0) bus_type = CF_TRUE_IDE_8; else bus_type = (cfg.s.width) ? CF_16 : CF_8; printf("Compact flash found in bootbus region %d (%s).\n", bus_region, cf_type[bus_type]); break; } } switch (bus_type) { case CF_8: case CF_TRUE_IDE_8: /* Check if CF is inserted */ while (cf_inb_8(TF_STATUS) & STATUS_BSY) { if ((count++) == NR_TRIES ) { printf("Compact Flash not present\n"); return; } DELAY(WAIT_DELAY); } break; case CF_16: default: /* Check if CF is inserted */ while (cf_inb_16(TF_STATUS) & STATUS_BSY) { if ((count++) == NR_TRIES ) { printf("Compact Flash not present\n"); return; } DELAY(WAIT_DELAY); } break; } BUS_ADD_CHILD(parent, 0, "cf", 0); } /* ------------------------------------------------------------------- * * cf_attach_geom() * * ------------------------------------------------------------------- */ static int cf_attach_geom (void *arg, int flag) { struct cf_priv *cf_priv; cf_priv = (struct cf_priv *) arg; cf_priv->cf_geom = g_new_geomf(&g_cf_class, "cf%d", device_get_unit(cf_priv->dev)); cf_priv->cf_provider = g_new_providerf(cf_priv->cf_geom, cf_priv->cf_geom->name); cf_priv->cf_geom->softc = cf_priv; g_error_provider(cf_priv->cf_provider, 0); return (0); } /* ------------------------------------------------------------------- * * cf_attach_geom() * * ------------------------------------------------------------------- */ static void cf_attach_geom_proxy (void *arg, int flag) { cf_attach_geom(arg, flag); } /* ------------------------------------------------------------------- * * cf_attach() * * ------------------------------------------------------------------- */ static int cf_attach (device_t dev) { struct cf_priv *cf_priv; if (octeon_is_simulation()) return (ENXIO); cf_priv = device_get_softc(dev); cf_priv->dev = dev; cf_priv->drive_param = &drive_param; g_post_event(cf_attach_geom_proxy, cf_priv, M_WAITOK, NULL); bioq_init(&cf_priv->cf_bq); return 0; } static device_method_t cf_methods[] = { /* Device interface */ DEVMETHOD(device_probe, cf_probe), DEVMETHOD(device_identify, cf_identify), DEVMETHOD(device_attach, cf_attach), DEVMETHOD(device_detach, bus_generic_detach), DEVMETHOD(device_shutdown, bus_generic_shutdown), { 0, 0 } }; static driver_t cf_driver = { "cf", cf_methods, sizeof(struct cf_priv) }; static devclass_t cf_devclass; DRIVER_MODULE(cf, nexus, cf_driver, cf_devclass, 0, 0);