Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/s3/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/usie/@/amd64/compile/hs32/modules/usr/src/sys/modules/oce/@/amd64/compile/hs32/modules/usr/src/sys/modules/geom/geom_nop/@/powerpc/ps3/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/s3/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/usie/@/amd64/compile/hs32/modules/usr/src/sys/modules/oce/@/amd64/compile/hs32/modules/usr/src/sys/modules/geom/geom_nop/@/powerpc/ps3/if_glc.c |
/*- * Copyright (C) 2010 Nathan Whitehorn * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD: release/9.1.0/sys/powerpc/ps3/if_glc.c 223792 2011-07-05 15:00:55Z nwhitehorn $ */ #include <sys/param.h> #include <sys/systm.h> #include <sys/sockio.h> #include <sys/endian.h> #include <sys/mbuf.h> #include <sys/module.h> #include <sys/malloc.h> #include <sys/kernel.h> #include <sys/socket.h> #include <vm/vm.h> #include <vm/pmap.h> #include <net/bpf.h> #include <net/if.h> #include <net/if_arp.h> #include <net/ethernet.h> #include <net/if_dl.h> #include <net/if_media.h> #include <net/if_types.h> #include <net/if_vlan_var.h> #include <machine/pio.h> #include <machine/bus.h> #include <machine/platform.h> #include <machine/pmap.h> #include <machine/resource.h> #include <sys/bus.h> #include <sys/rman.h> #include "ps3bus.h" #include "ps3-hvcall.h" #include "if_glcreg.h" static int glc_probe(device_t); static int glc_attach(device_t); static void glc_init(void *xsc); static void glc_start(struct ifnet *ifp); static int glc_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data); static void glc_set_multicast(struct glc_softc *sc); static int glc_add_rxbuf(struct glc_softc *sc, int idx); static int glc_add_rxbuf_dma(struct glc_softc *sc, int idx); static int glc_encap(struct glc_softc *sc, struct mbuf **m_head, bus_addr_t *pktdesc); static int glc_intr_filter(void *xsc); static void glc_intr(void *xsc); static void glc_tick(void *xsc); static void glc_media_status(struct ifnet *ifp, struct ifmediareq *ifmr); static int glc_media_change(struct ifnet *ifp); static MALLOC_DEFINE(M_GLC, "gelic", "PS3 GELIC ethernet"); static device_method_t glc_methods[] = { /* Device interface */ DEVMETHOD(device_probe, glc_probe), DEVMETHOD(device_attach, glc_attach), { 0, 0 } }; static driver_t glc_driver = { "glc", glc_methods, sizeof(struct glc_softc) }; static devclass_t glc_devclass; DRIVER_MODULE(glc, ps3bus, glc_driver, glc_devclass, 0, 0); static int glc_probe(device_t dev) { if (ps3bus_get_bustype(dev) != PS3_BUSTYPE_SYSBUS || ps3bus_get_devtype(dev) != PS3_DEVTYPE_GELIC) return (ENXIO); device_set_desc(dev, "Playstation 3 GELIC Network Controller"); return (BUS_PROBE_SPECIFIC); } static void glc_getphys(void *xaddr, bus_dma_segment_t *segs, int nsegs, int error) { if (error != 0) return; *(bus_addr_t *)xaddr = segs[0].ds_addr; } static int glc_attach(device_t dev) { struct glc_softc *sc; struct glc_txsoft *txs; uint64_t mac64, val, junk; int i, err; sc = device_get_softc(dev); sc->sc_bus = ps3bus_get_bus(dev); sc->sc_dev = ps3bus_get_device(dev); sc->sc_self = dev; mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF); callout_init_mtx(&sc->sc_tick_ch, &sc->sc_mtx, 0); sc->next_txdma_slot = 0; sc->bsy_txdma_slots = 0; sc->sc_next_rxdma_slot = 0; sc->first_used_txdma_slot = -1; /* * Shut down existing tasks. */ lv1_net_stop_tx_dma(sc->sc_bus, sc->sc_dev, 0); lv1_net_stop_rx_dma(sc->sc_bus, sc->sc_dev, 0); sc->sc_ifp = if_alloc(IFT_ETHER); sc->sc_ifp->if_softc = sc; /* * Get MAC address and VLAN id */ lv1_net_control(sc->sc_bus, sc->sc_dev, GELIC_GET_MAC_ADDRESS, 0, 0, 0, &mac64, &junk); memcpy(sc->sc_enaddr, &((uint8_t *)&mac64)[2], sizeof(sc->sc_enaddr)); sc->sc_tx_vlan = sc->sc_rx_vlan = -1; err = lv1_net_control(sc->sc_bus, sc->sc_dev, GELIC_GET_VLAN_ID, GELIC_VLAN_TX_ETHERNET, 0, 0, &val, &junk); if (err == 0) sc->sc_tx_vlan = val; err = lv1_net_control(sc->sc_bus, sc->sc_dev, GELIC_GET_VLAN_ID, GELIC_VLAN_RX_ETHERNET, 0, 0, &val, &junk); if (err == 0) sc->sc_rx_vlan = val; /* * Set up interrupt handler */ sc->sc_irqid = 0; sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->sc_irqid, RF_ACTIVE); if (sc->sc_irq == NULL) { device_printf(dev, "Could not allocate IRQ!\n"); mtx_destroy(&sc->sc_mtx); return (ENXIO); } bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET | INTR_MPSAFE | INTR_ENTROPY, glc_intr_filter, glc_intr, sc, &sc->sc_irqctx); sc->sc_hwirq_status = (uint64_t *)contigmalloc(8, M_GLC, M_ZERO, 0, BUS_SPACE_MAXADDR_32BIT, 8, PAGE_SIZE); lv1_net_set_interrupt_status_indicator(sc->sc_bus, sc->sc_dev, vtophys(sc->sc_hwirq_status), 0); lv1_net_set_interrupt_mask(sc->sc_bus, sc->sc_dev, GELIC_INT_RXDONE | GELIC_INT_RXFRAME | GELIC_INT_PHY | GELIC_INT_TX_CHAIN_END, 0); /* * Set up DMA. */ err = bus_dma_tag_create(bus_get_dma_tag(dev), 32, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 129*sizeof(struct glc_dmadesc), 1, 128*sizeof(struct glc_dmadesc), 0, NULL,NULL, &sc->sc_dmadesc_tag); err = bus_dmamem_alloc(sc->sc_dmadesc_tag, (void **)&sc->sc_txdmadesc, BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->sc_txdmadesc_map); err = bus_dmamap_load(sc->sc_dmadesc_tag, sc->sc_txdmadesc_map, sc->sc_txdmadesc, 128*sizeof(struct glc_dmadesc), glc_getphys, &sc->sc_txdmadesc_phys, 0); err = bus_dmamem_alloc(sc->sc_dmadesc_tag, (void **)&sc->sc_rxdmadesc, BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->sc_rxdmadesc_map); err = bus_dmamap_load(sc->sc_dmadesc_tag, sc->sc_rxdmadesc_map, sc->sc_rxdmadesc, 128*sizeof(struct glc_dmadesc), glc_getphys, &sc->sc_rxdmadesc_phys, 0); err = bus_dma_tag_create(bus_get_dma_tag(dev), 128, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0, NULL,NULL, &sc->sc_rxdma_tag); err = bus_dma_tag_create(bus_get_dma_tag(dev), 1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 16, BUS_SPACE_MAXSIZE_32BIT, 0, NULL,NULL, &sc->sc_txdma_tag); /* init transmit descriptors */ STAILQ_INIT(&sc->sc_txfreeq); STAILQ_INIT(&sc->sc_txdirtyq); /* create TX DMA maps */ err = ENOMEM; for (i = 0; i < GLC_MAX_TX_PACKETS; i++) { txs = &sc->sc_txsoft[i]; txs->txs_mbuf = NULL; err = bus_dmamap_create(sc->sc_txdma_tag, 0, &txs->txs_dmamap); if (err) { device_printf(dev, "unable to create TX DMA map %d, error = %d\n", i, err); } STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); } /* Create the receive buffer DMA maps. */ for (i = 0; i < GLC_MAX_RX_PACKETS; i++) { err = bus_dmamap_create(sc->sc_rxdma_tag, 0, &sc->sc_rxsoft[i].rxs_dmamap); if (err) { device_printf(dev, "unable to create RX DMA map %d, error = %d\n", i, err); } sc->sc_rxsoft[i].rxs_mbuf = NULL; } /* * Attach to network stack */ if_initname(sc->sc_ifp, device_get_name(dev), device_get_unit(dev)); sc->sc_ifp->if_mtu = ETHERMTU; sc->sc_ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; sc->sc_ifp->if_hwassist = CSUM_TCP | CSUM_UDP; sc->sc_ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_RXCSUM; sc->sc_ifp->if_capenable = IFCAP_HWCSUM | IFCAP_RXCSUM; sc->sc_ifp->if_start = glc_start; sc->sc_ifp->if_ioctl = glc_ioctl; sc->sc_ifp->if_init = glc_init; ifmedia_init(&sc->sc_media, IFM_IMASK, glc_media_change, glc_media_status); ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_10_T, 0, NULL); ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL); ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_100_TX, 0, NULL); ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL); ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL); ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_AUTO, 0, NULL); ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO); IFQ_SET_MAXLEN(&sc->sc_ifp->if_snd, GLC_MAX_TX_PACKETS); sc->sc_ifp->if_snd.ifq_drv_maxlen = GLC_MAX_TX_PACKETS; IFQ_SET_READY(&sc->sc_ifp->if_snd); ether_ifattach(sc->sc_ifp, sc->sc_enaddr); sc->sc_ifp->if_hwassist = 0; return (0); mtx_destroy(&sc->sc_mtx); if_free(sc->sc_ifp); return (ENXIO); } static void glc_init_locked(struct glc_softc *sc) { int i, error; struct glc_rxsoft *rxs; struct glc_txsoft *txs; mtx_assert(&sc->sc_mtx, MA_OWNED); lv1_net_stop_tx_dma(sc->sc_bus, sc->sc_dev, 0); lv1_net_stop_rx_dma(sc->sc_bus, sc->sc_dev, 0); glc_set_multicast(sc); for (i = 0; i < GLC_MAX_RX_PACKETS; i++) { rxs = &sc->sc_rxsoft[i]; rxs->rxs_desc_slot = i; if (rxs->rxs_mbuf == NULL) { glc_add_rxbuf(sc, i); if (rxs->rxs_mbuf == NULL) { rxs->rxs_desc_slot = -1; break; } } glc_add_rxbuf_dma(sc, i); bus_dmamap_sync(sc->sc_dmadesc_tag, sc->sc_rxdmadesc_map, BUS_DMASYNC_PREREAD); } /* Clear TX dirty queue */ while ((txs = STAILQ_FIRST(&sc->sc_txdirtyq)) != NULL) { STAILQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q); bus_dmamap_unload(sc->sc_txdma_tag, txs->txs_dmamap); if (txs->txs_mbuf != NULL) { m_freem(txs->txs_mbuf); txs->txs_mbuf = NULL; } STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); } sc->first_used_txdma_slot = -1; sc->bsy_txdma_slots = 0; error = lv1_net_start_rx_dma(sc->sc_bus, sc->sc_dev, sc->sc_rxsoft[0].rxs_desc, 0); if (error != 0) device_printf(sc->sc_self, "lv1_net_start_rx_dma error: %d\n", error); sc->sc_ifp->if_drv_flags |= IFF_DRV_RUNNING; sc->sc_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; sc->sc_ifpflags = sc->sc_ifp->if_flags; sc->sc_wdog_timer = 0; callout_reset(&sc->sc_tick_ch, hz, glc_tick, sc); } static void glc_stop(void *xsc) { struct glc_softc *sc = xsc; mtx_assert(&sc->sc_mtx, MA_OWNED); lv1_net_stop_tx_dma(sc->sc_bus, sc->sc_dev, 0); lv1_net_stop_rx_dma(sc->sc_bus, sc->sc_dev, 0); } static void glc_init(void *xsc) { struct glc_softc *sc = xsc; mtx_lock(&sc->sc_mtx); glc_init_locked(sc); mtx_unlock(&sc->sc_mtx); } static void glc_tick(void *xsc) { struct glc_softc *sc = xsc; mtx_assert(&sc->sc_mtx, MA_OWNED); /* * XXX: Sometimes the RX queue gets stuck. Poke it periodically until * we figure out why. This will fail harmlessly if the RX queue is * already running. */ lv1_net_start_rx_dma(sc->sc_bus, sc->sc_dev, sc->sc_rxsoft[sc->sc_next_rxdma_slot].rxs_desc, 0); if (sc->sc_wdog_timer == 0 || --sc->sc_wdog_timer != 0) { callout_reset(&sc->sc_tick_ch, hz, glc_tick, sc); return; } /* Problems */ device_printf(sc->sc_self, "device timeout\n"); glc_init_locked(sc); } static void glc_start_locked(struct ifnet *ifp) { struct glc_softc *sc = ifp->if_softc; bus_addr_t first, pktdesc; int kickstart = 0; int error; struct mbuf *mb_head; mtx_assert(&sc->sc_mtx, MA_OWNED); first = 0; if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != IFF_DRV_RUNNING) return; if (STAILQ_EMPTY(&sc->sc_txdirtyq)) kickstart = 1; while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) { IFQ_DRV_DEQUEUE(&ifp->if_snd, mb_head); if (mb_head == NULL) break; /* Check if the ring buffer is full */ if (sc->bsy_txdma_slots > 125) { /* Put the packet back and stop */ ifp->if_drv_flags |= IFF_DRV_OACTIVE; IFQ_DRV_PREPEND(&ifp->if_snd, mb_head); break; } BPF_MTAP(ifp, mb_head); if (sc->sc_tx_vlan >= 0) mb_head = ether_vlanencap(mb_head, sc->sc_tx_vlan); if (glc_encap(sc, &mb_head, &pktdesc)) { ifp->if_drv_flags |= IFF_DRV_OACTIVE; break; } if (first == 0) first = pktdesc; } if (kickstart && first != 0) { error = lv1_net_start_tx_dma(sc->sc_bus, sc->sc_dev, first, 0); if (error != 0) device_printf(sc->sc_self, "lv1_net_start_tx_dma error: %d\n", error); sc->sc_wdog_timer = 5; } } static void glc_start(struct ifnet *ifp) { struct glc_softc *sc = ifp->if_softc; mtx_lock(&sc->sc_mtx); glc_start_locked(ifp); mtx_unlock(&sc->sc_mtx); } static int glc_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct glc_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *)data; int err = 0; switch (cmd) { case SIOCSIFFLAGS: mtx_lock(&sc->sc_mtx); if ((ifp->if_flags & IFF_UP) != 0) { if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 && ((ifp->if_flags ^ sc->sc_ifpflags) & (IFF_ALLMULTI | IFF_PROMISC)) != 0) glc_set_multicast(sc); else glc_init_locked(sc); } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) glc_stop(sc); sc->sc_ifpflags = ifp->if_flags; mtx_unlock(&sc->sc_mtx); break; case SIOCADDMULTI: case SIOCDELMULTI: mtx_lock(&sc->sc_mtx); glc_set_multicast(sc); mtx_unlock(&sc->sc_mtx); break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: err = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd); break; default: err = ether_ioctl(ifp, cmd, data); break; } return (err); } static void glc_set_multicast(struct glc_softc *sc) { struct ifnet *ifp = sc->sc_ifp; struct ifmultiaddr *inm; uint64_t addr; int naddrs; /* Clear multicast filter */ lv1_net_remove_multicast_address(sc->sc_bus, sc->sc_dev, 0, 1); /* Add broadcast */ lv1_net_add_multicast_address(sc->sc_bus, sc->sc_dev, 0xffffffffffffL, 0); if ((ifp->if_flags & IFF_ALLMULTI) != 0) { lv1_net_add_multicast_address(sc->sc_bus, sc->sc_dev, 0, 1); } else { if_maddr_rlock(ifp); naddrs = 1; /* Include broadcast */ TAILQ_FOREACH(inm, &ifp->if_multiaddrs, ifma_link) { if (inm->ifma_addr->sa_family != AF_LINK) continue; addr = 0; memcpy(&((uint8_t *)(&addr))[2], LLADDR((struct sockaddr_dl *)inm->ifma_addr), ETHER_ADDR_LEN); lv1_net_add_multicast_address(sc->sc_bus, sc->sc_dev, addr, 0); /* * Filter can only hold 32 addresses, so fall back to * the IFF_ALLMULTI case if we have too many. */ if (++naddrs >= 32) { lv1_net_add_multicast_address(sc->sc_bus, sc->sc_dev, 0, 1); break; } } if_maddr_runlock(ifp); } } static int glc_add_rxbuf(struct glc_softc *sc, int idx) { struct glc_rxsoft *rxs = &sc->sc_rxsoft[idx]; struct mbuf *m; bus_dma_segment_t segs[1]; int error, nsegs; m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); if (m == NULL) return (ENOBUFS); m->m_len = m->m_pkthdr.len = m->m_ext.ext_size; if (rxs->rxs_mbuf != NULL) { bus_dmamap_sync(sc->sc_rxdma_tag, rxs->rxs_dmamap, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->sc_rxdma_tag, rxs->rxs_dmamap); } error = bus_dmamap_load_mbuf_sg(sc->sc_rxdma_tag, rxs->rxs_dmamap, m, segs, &nsegs, BUS_DMA_NOWAIT); if (error != 0) { device_printf(sc->sc_self, "cannot load RS DMA map %d, error = %d\n", idx, error); m_freem(m); return (error); } /* If nsegs is wrong then the stack is corrupt. */ KASSERT(nsegs == 1, ("%s: too many DMA segments (%d)", __func__, nsegs)); rxs->rxs_mbuf = m; rxs->segment = segs[0]; bus_dmamap_sync(sc->sc_rxdma_tag, rxs->rxs_dmamap, BUS_DMASYNC_PREREAD); return (0); } static int glc_add_rxbuf_dma(struct glc_softc *sc, int idx) { struct glc_rxsoft *rxs = &sc->sc_rxsoft[idx]; bzero(&sc->sc_rxdmadesc[idx], sizeof(sc->sc_rxdmadesc[idx])); sc->sc_rxdmadesc[idx].paddr = rxs->segment.ds_addr; sc->sc_rxdmadesc[idx].len = rxs->segment.ds_len; sc->sc_rxdmadesc[idx].next = sc->sc_rxdmadesc_phys + ((idx + 1) % GLC_MAX_RX_PACKETS)*sizeof(sc->sc_rxdmadesc[idx]); sc->sc_rxdmadesc[idx].cmd_stat = GELIC_DESCR_OWNED; rxs->rxs_desc_slot = idx; rxs->rxs_desc = sc->sc_rxdmadesc_phys + idx*sizeof(struct glc_dmadesc); return (0); } static int glc_encap(struct glc_softc *sc, struct mbuf **m_head, bus_addr_t *pktdesc) { bus_dma_segment_t segs[16]; struct glc_txsoft *txs; struct mbuf *m; bus_addr_t firstslotphys; int i, idx, nsegs, nsegs_max; int err = 0; /* Max number of segments is the number of free DMA slots */ nsegs_max = 128 - sc->bsy_txdma_slots; if (nsegs_max > 16 || sc->first_used_txdma_slot < 0) nsegs_max = 16; /* Get a work queue entry. */ if ((txs = STAILQ_FIRST(&sc->sc_txfreeq)) == NULL) { /* Ran out of descriptors. */ return (ENOBUFS); } nsegs = 0; for (m = *m_head; m != NULL; m = m->m_next) nsegs++; if (nsegs > nsegs_max) { m = m_collapse(*m_head, M_DONTWAIT, nsegs_max); if (m == NULL) { m_freem(*m_head); *m_head = NULL; return (ENOBUFS); } *m_head = m; } err = bus_dmamap_load_mbuf_sg(sc->sc_txdma_tag, txs->txs_dmamap, *m_head, segs, &nsegs, BUS_DMA_NOWAIT); if (err != 0) { m_freem(*m_head); *m_head = NULL; return (err); } KASSERT(nsegs <= 128 - sc->bsy_txdma_slots, ("GLC: Mapped too many (%d) DMA segments with %d available", nsegs, 128 - sc->bsy_txdma_slots)); if (nsegs == 0) { m_freem(*m_head); *m_head = NULL; return (EIO); } txs->txs_ndescs = nsegs; txs->txs_firstdesc = sc->next_txdma_slot; idx = txs->txs_firstdesc; firstslotphys = sc->sc_txdmadesc_phys + txs->txs_firstdesc*sizeof(struct glc_dmadesc); for (i = 0; i < nsegs; i++) { bzero(&sc->sc_txdmadesc[idx], sizeof(sc->sc_txdmadesc[idx])); sc->sc_txdmadesc[idx].paddr = segs[i].ds_addr; sc->sc_txdmadesc[idx].len = segs[i].ds_len; sc->sc_txdmadesc[idx].next = sc->sc_txdmadesc_phys + ((idx + 1) % GLC_MAX_TX_PACKETS)*sizeof(struct glc_dmadesc); sc->sc_txdmadesc[idx].cmd_stat |= GELIC_CMDSTAT_NOIPSEC; if (i+1 == nsegs) { txs->txs_lastdesc = idx; sc->sc_txdmadesc[idx].next = 0; sc->sc_txdmadesc[idx].cmd_stat |= GELIC_CMDSTAT_LAST; } if ((*m_head)->m_pkthdr.csum_flags & CSUM_TCP) sc->sc_txdmadesc[idx].cmd_stat |= GELIC_CMDSTAT_CSUM_TCP; if ((*m_head)->m_pkthdr.csum_flags & CSUM_UDP) sc->sc_txdmadesc[idx].cmd_stat |= GELIC_CMDSTAT_CSUM_UDP; sc->sc_txdmadesc[idx].cmd_stat |= GELIC_DESCR_OWNED; idx = (idx + 1) % GLC_MAX_TX_PACKETS; } sc->next_txdma_slot = idx; sc->bsy_txdma_slots += nsegs; if (txs->txs_firstdesc != 0) idx = txs->txs_firstdesc - 1; else idx = GLC_MAX_TX_PACKETS - 1; if (sc->first_used_txdma_slot < 0) sc->first_used_txdma_slot = txs->txs_firstdesc; bus_dmamap_sync(sc->sc_txdma_tag, txs->txs_dmamap, BUS_DMASYNC_PREWRITE); sc->sc_txdmadesc[idx].next = firstslotphys; STAILQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q); STAILQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q); txs->txs_mbuf = *m_head; *pktdesc = firstslotphys; return (0); } static void glc_rxintr(struct glc_softc *sc) { int i, restart_rxdma, error; struct mbuf *m; struct ifnet *ifp = sc->sc_ifp; bus_dmamap_sync(sc->sc_dmadesc_tag, sc->sc_rxdmadesc_map, BUS_DMASYNC_POSTREAD); restart_rxdma = 0; while ((sc->sc_rxdmadesc[sc->sc_next_rxdma_slot].cmd_stat & GELIC_DESCR_OWNED) == 0) { i = sc->sc_next_rxdma_slot; sc->sc_next_rxdma_slot++; if (sc->sc_next_rxdma_slot >= GLC_MAX_RX_PACKETS) sc->sc_next_rxdma_slot = 0; if (sc->sc_rxdmadesc[i].cmd_stat & GELIC_CMDSTAT_CHAIN_END) restart_rxdma = 1; if (sc->sc_rxdmadesc[i].rxerror & GELIC_RXERRORS) { ifp->if_ierrors++; goto requeue; } m = sc->sc_rxsoft[i].rxs_mbuf; if (sc->sc_rxdmadesc[i].data_stat & GELIC_RX_IPCSUM) { m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID; } if (sc->sc_rxdmadesc[i].data_stat & GELIC_RX_TCPUDPCSUM) { m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR; m->m_pkthdr.csum_data = 0xffff; } if (glc_add_rxbuf(sc, i)) { ifp->if_ierrors++; goto requeue; } ifp->if_ipackets++; m->m_pkthdr.rcvif = ifp; m->m_len = sc->sc_rxdmadesc[i].valid_size; m->m_pkthdr.len = m->m_len; /* * Remove VLAN tag. Even on early firmwares that do not allow * multiple VLANs, the VLAN tag is still in place here. */ m_adj(m, 2); mtx_unlock(&sc->sc_mtx); (*ifp->if_input)(ifp, m); mtx_lock(&sc->sc_mtx); requeue: glc_add_rxbuf_dma(sc, i); } bus_dmamap_sync(sc->sc_dmadesc_tag, sc->sc_rxdmadesc_map, BUS_DMASYNC_PREWRITE); if (restart_rxdma) { error = lv1_net_start_rx_dma(sc->sc_bus, sc->sc_dev, sc->sc_rxsoft[sc->sc_next_rxdma_slot].rxs_desc, 0); if (error != 0) device_printf(sc->sc_self, "lv1_net_start_rx_dma error: %d\n", error); } } static void glc_txintr(struct glc_softc *sc) { struct ifnet *ifp = sc->sc_ifp; struct glc_txsoft *txs; int progress = 0, kickstart = 0, error; bus_dmamap_sync(sc->sc_dmadesc_tag, sc->sc_txdmadesc_map, BUS_DMASYNC_POSTREAD); while ((txs = STAILQ_FIRST(&sc->sc_txdirtyq)) != NULL) { if (sc->sc_txdmadesc[txs->txs_lastdesc].cmd_stat & GELIC_DESCR_OWNED) break; STAILQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q); bus_dmamap_unload(sc->sc_txdma_tag, txs->txs_dmamap); sc->bsy_txdma_slots -= txs->txs_ndescs; if (txs->txs_mbuf != NULL) { m_freem(txs->txs_mbuf); txs->txs_mbuf = NULL; } if ((sc->sc_txdmadesc[txs->txs_lastdesc].cmd_stat & 0xf0000000) != 0) { lv1_net_stop_tx_dma(sc->sc_bus, sc->sc_dev, 0); kickstart = 1; ifp->if_oerrors++; } if (sc->sc_txdmadesc[txs->txs_lastdesc].cmd_stat & GELIC_CMDSTAT_CHAIN_END) kickstart = 1; STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); ifp->if_opackets++; progress = 1; } if (txs != NULL) sc->first_used_txdma_slot = txs->txs_firstdesc; else sc->first_used_txdma_slot = -1; if (kickstart || txs != NULL) { /* Speculatively (or necessarily) start the TX queue again */ error = lv1_net_start_tx_dma(sc->sc_bus, sc->sc_dev, sc->sc_txdmadesc_phys + txs->txs_firstdesc*sizeof(struct glc_dmadesc), 0); if (error != 0) device_printf(sc->sc_self, "lv1_net_start_tx_dma error: %d\n", error); } if (progress) { /* * We freed some descriptors, so reset IFF_DRV_OACTIVE * and restart. */ ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; sc->sc_wdog_timer = STAILQ_EMPTY(&sc->sc_txdirtyq) ? 0 : 5; if ((ifp->if_drv_flags & IFF_DRV_RUNNING) && !IFQ_DRV_IS_EMPTY(&ifp->if_snd)) glc_start_locked(ifp); } } static int glc_intr_filter(void *xsc) { struct glc_softc *sc = xsc; powerpc_sync(); atomic_set_64(&sc->sc_interrupt_status, *sc->sc_hwirq_status); return (FILTER_SCHEDULE_THREAD); } static void glc_intr(void *xsc) { struct glc_softc *sc = xsc; uint64_t status, linkstat, junk; mtx_lock(&sc->sc_mtx); status = atomic_readandclear_64(&sc->sc_interrupt_status); if (status == 0) { mtx_unlock(&sc->sc_mtx); return; } if (status & (GELIC_INT_RXDONE | GELIC_INT_RXFRAME)) glc_rxintr(sc); if (status & (GELIC_INT_TXDONE | GELIC_INT_TX_CHAIN_END)) glc_txintr(sc); if (status & GELIC_INT_PHY) { lv1_net_control(sc->sc_bus, sc->sc_dev, GELIC_GET_LINK_STATUS, GELIC_VLAN_TX_ETHERNET, 0, 0, &linkstat, &junk); linkstat = (linkstat & GELIC_LINK_UP) ? LINK_STATE_UP : LINK_STATE_DOWN; if (linkstat != sc->sc_ifp->if_link_state) if_link_state_change(sc->sc_ifp, linkstat); } mtx_unlock(&sc->sc_mtx); } static void glc_media_status(struct ifnet *ifp, struct ifmediareq *ifmr) { struct glc_softc *sc = ifp->if_softc; uint64_t status, junk; ifmr->ifm_status = IFM_AVALID; ifmr->ifm_active = IFM_ETHER; lv1_net_control(sc->sc_bus, sc->sc_dev, GELIC_GET_LINK_STATUS, GELIC_VLAN_TX_ETHERNET, 0, 0, &status, &junk); if (status & GELIC_LINK_UP) ifmr->ifm_status |= IFM_ACTIVE; if (status & GELIC_SPEED_10) ifmr->ifm_active |= IFM_10_T; else if (status & GELIC_SPEED_100) ifmr->ifm_active |= IFM_100_TX; else if (status & GELIC_SPEED_1000) ifmr->ifm_active |= IFM_1000_T; if (status & GELIC_FULL_DUPLEX) ifmr->ifm_active |= IFM_FDX; else ifmr->ifm_active |= IFM_HDX; } static int glc_media_change(struct ifnet *ifp) { struct glc_softc *sc = ifp->if_softc; uint64_t mode, junk; int result; if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER) return (EINVAL); switch (IFM_SUBTYPE(sc->sc_media.ifm_media)) { case IFM_AUTO: mode = GELIC_AUTO_NEG; break; case IFM_10_T: mode = GELIC_SPEED_10; break; case IFM_100_TX: mode = GELIC_SPEED_100; break; case IFM_1000_T: mode = GELIC_SPEED_1000 | GELIC_FULL_DUPLEX; break; default: return (EINVAL); } if (IFM_OPTIONS(sc->sc_media.ifm_media) & IFM_FDX) mode |= GELIC_FULL_DUPLEX; result = lv1_net_control(sc->sc_bus, sc->sc_dev, GELIC_SET_LINK_MODE, GELIC_VLAN_TX_ETHERNET, mode, 0, &junk, &junk); return (result ? EIO : 0); }