Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/s3/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/usie/@/amd64/compile/hs32/modules/usr/src/sys/modules/oce/@/amd64/compile/hs32/modules/usr/src/sys/modules/netgraph/bpf/@/cddl/contrib/opensolaris/uts/common/fs/zfs/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/s3/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/usie/@/amd64/compile/hs32/modules/usr/src/sys/modules/oce/@/amd64/compile/hs32/modules/usr/src/sys/modules/netgraph/bpf/@/cddl/contrib/opensolaris/uts/common/fs/zfs/dsl_dir.c |
/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011 Pawel Jakub Dawidek <pawel@dawidek.net>. * All rights reserved. */ #include <sys/dmu.h> #include <sys/dmu_objset.h> #include <sys/dmu_tx.h> #include <sys/dsl_dataset.h> #include <sys/dsl_dir.h> #include <sys/dsl_prop.h> #include <sys/dsl_synctask.h> #include <sys/dsl_deleg.h> #include <sys/spa.h> #include <sys/metaslab.h> #include <sys/zap.h> #include <sys/zio.h> #include <sys/arc.h> #include <sys/sunddi.h> #include <sys/zvol.h> #ifdef _KERNEL #include <sys/zfs_vfsops.h> #endif #include "zfs_namecheck.h" static uint64_t dsl_dir_space_towrite(dsl_dir_t *dd); static void dsl_dir_set_reservation_sync(void *arg1, void *arg2, dmu_tx_t *tx); /* ARGSUSED */ static void dsl_dir_evict(dmu_buf_t *db, void *arg) { dsl_dir_t *dd = arg; dsl_pool_t *dp = dd->dd_pool; int t; for (t = 0; t < TXG_SIZE; t++) { ASSERT(!txg_list_member(&dp->dp_dirty_dirs, dd, t)); ASSERT(dd->dd_tempreserved[t] == 0); ASSERT(dd->dd_space_towrite[t] == 0); } if (dd->dd_parent) dsl_dir_close(dd->dd_parent, dd); spa_close(dd->dd_pool->dp_spa, dd); /* * The props callback list should have been cleaned up by * objset_evict(). */ list_destroy(&dd->dd_prop_cbs); mutex_destroy(&dd->dd_lock); kmem_free(dd, sizeof (dsl_dir_t)); } int dsl_dir_open_obj(dsl_pool_t *dp, uint64_t ddobj, const char *tail, void *tag, dsl_dir_t **ddp) { dmu_buf_t *dbuf; dsl_dir_t *dd; int err; ASSERT(RW_LOCK_HELD(&dp->dp_config_rwlock) || dsl_pool_sync_context(dp)); err = dmu_bonus_hold(dp->dp_meta_objset, ddobj, tag, &dbuf); if (err) return (err); dd = dmu_buf_get_user(dbuf); #ifdef ZFS_DEBUG { dmu_object_info_t doi; dmu_object_info_from_db(dbuf, &doi); ASSERT3U(doi.doi_type, ==, DMU_OT_DSL_DIR); ASSERT3U(doi.doi_bonus_size, >=, sizeof (dsl_dir_phys_t)); } #endif if (dd == NULL) { dsl_dir_t *winner; dd = kmem_zalloc(sizeof (dsl_dir_t), KM_SLEEP); dd->dd_object = ddobj; dd->dd_dbuf = dbuf; dd->dd_pool = dp; dd->dd_phys = dbuf->db_data; mutex_init(&dd->dd_lock, NULL, MUTEX_DEFAULT, NULL); list_create(&dd->dd_prop_cbs, sizeof (dsl_prop_cb_record_t), offsetof(dsl_prop_cb_record_t, cbr_node)); dsl_dir_snap_cmtime_update(dd); if (dd->dd_phys->dd_parent_obj) { err = dsl_dir_open_obj(dp, dd->dd_phys->dd_parent_obj, NULL, dd, &dd->dd_parent); if (err) goto errout; if (tail) { #ifdef ZFS_DEBUG uint64_t foundobj; err = zap_lookup(dp->dp_meta_objset, dd->dd_parent->dd_phys->dd_child_dir_zapobj, tail, sizeof (foundobj), 1, &foundobj); ASSERT(err || foundobj == ddobj); #endif (void) strcpy(dd->dd_myname, tail); } else { err = zap_value_search(dp->dp_meta_objset, dd->dd_parent->dd_phys->dd_child_dir_zapobj, ddobj, 0, dd->dd_myname); } if (err) goto errout; } else { (void) strcpy(dd->dd_myname, spa_name(dp->dp_spa)); } if (dsl_dir_is_clone(dd)) { dmu_buf_t *origin_bonus; dsl_dataset_phys_t *origin_phys; /* * We can't open the origin dataset, because * that would require opening this dsl_dir. * Just look at its phys directly instead. */ err = dmu_bonus_hold(dp->dp_meta_objset, dd->dd_phys->dd_origin_obj, FTAG, &origin_bonus); if (err) goto errout; origin_phys = origin_bonus->db_data; dd->dd_origin_txg = origin_phys->ds_creation_txg; dmu_buf_rele(origin_bonus, FTAG); } winner = dmu_buf_set_user_ie(dbuf, dd, &dd->dd_phys, dsl_dir_evict); if (winner) { if (dd->dd_parent) dsl_dir_close(dd->dd_parent, dd); mutex_destroy(&dd->dd_lock); kmem_free(dd, sizeof (dsl_dir_t)); dd = winner; } else { spa_open_ref(dp->dp_spa, dd); } } /* * The dsl_dir_t has both open-to-close and instantiate-to-evict * holds on the spa. We need the open-to-close holds because * otherwise the spa_refcnt wouldn't change when we open a * dir which the spa also has open, so we could incorrectly * think it was OK to unload/export/destroy the pool. We need * the instantiate-to-evict hold because the dsl_dir_t has a * pointer to the dd_pool, which has a pointer to the spa_t. */ spa_open_ref(dp->dp_spa, tag); ASSERT3P(dd->dd_pool, ==, dp); ASSERT3U(dd->dd_object, ==, ddobj); ASSERT3P(dd->dd_dbuf, ==, dbuf); *ddp = dd; return (0); errout: if (dd->dd_parent) dsl_dir_close(dd->dd_parent, dd); mutex_destroy(&dd->dd_lock); kmem_free(dd, sizeof (dsl_dir_t)); dmu_buf_rele(dbuf, tag); return (err); } void dsl_dir_close(dsl_dir_t *dd, void *tag) { dprintf_dd(dd, "%s\n", ""); spa_close(dd->dd_pool->dp_spa, tag); dmu_buf_rele(dd->dd_dbuf, tag); } /* buf must be long enough (MAXNAMELEN + strlen(MOS_DIR_NAME) + 1 should do) */ void dsl_dir_name(dsl_dir_t *dd, char *buf) { if (dd->dd_parent) { dsl_dir_name(dd->dd_parent, buf); (void) strcat(buf, "/"); } else { buf[0] = '\0'; } if (!MUTEX_HELD(&dd->dd_lock)) { /* * recursive mutex so that we can use * dprintf_dd() with dd_lock held */ mutex_enter(&dd->dd_lock); (void) strcat(buf, dd->dd_myname); mutex_exit(&dd->dd_lock); } else { (void) strcat(buf, dd->dd_myname); } } /* Calculate name legnth, avoiding all the strcat calls of dsl_dir_name */ int dsl_dir_namelen(dsl_dir_t *dd) { int result = 0; if (dd->dd_parent) { /* parent's name + 1 for the "/" */ result = dsl_dir_namelen(dd->dd_parent) + 1; } if (!MUTEX_HELD(&dd->dd_lock)) { /* see dsl_dir_name */ mutex_enter(&dd->dd_lock); result += strlen(dd->dd_myname); mutex_exit(&dd->dd_lock); } else { result += strlen(dd->dd_myname); } return (result); } static int getcomponent(const char *path, char *component, const char **nextp) { char *p; if ((path == NULL) || (path[0] == '\0')) return (ENOENT); /* This would be a good place to reserve some namespace... */ p = strpbrk(path, "/@"); if (p && (p[1] == '/' || p[1] == '@')) { /* two separators in a row */ return (EINVAL); } if (p == NULL || p == path) { /* * if the first thing is an @ or /, it had better be an * @ and it had better not have any more ats or slashes, * and it had better have something after the @. */ if (p != NULL && (p[0] != '@' || strpbrk(path+1, "/@") || p[1] == '\0')) return (EINVAL); if (strlen(path) >= MAXNAMELEN) return (ENAMETOOLONG); (void) strcpy(component, path); p = NULL; } else if (p[0] == '/') { if (p-path >= MAXNAMELEN) return (ENAMETOOLONG); (void) strncpy(component, path, p - path); component[p-path] = '\0'; p++; } else if (p[0] == '@') { /* * if the next separator is an @, there better not be * any more slashes. */ if (strchr(path, '/')) return (EINVAL); if (p-path >= MAXNAMELEN) return (ENAMETOOLONG); (void) strncpy(component, path, p - path); component[p-path] = '\0'; } else { ASSERT(!"invalid p"); } *nextp = p; return (0); } /* * same as dsl_open_dir, ignore the first component of name and use the * spa instead */ int dsl_dir_open_spa(spa_t *spa, const char *name, void *tag, dsl_dir_t **ddp, const char **tailp) { char buf[MAXNAMELEN]; const char *next, *nextnext = NULL; int err; dsl_dir_t *dd; dsl_pool_t *dp; uint64_t ddobj; int openedspa = FALSE; dprintf("%s\n", name); err = getcomponent(name, buf, &next); if (err) return (err); if (spa == NULL) { err = spa_open(buf, &spa, FTAG); if (err) { dprintf("spa_open(%s) failed\n", buf); return (err); } openedspa = TRUE; /* XXX this assertion belongs in spa_open */ ASSERT(!dsl_pool_sync_context(spa_get_dsl(spa))); } dp = spa_get_dsl(spa); rw_enter(&dp->dp_config_rwlock, RW_READER); err = dsl_dir_open_obj(dp, dp->dp_root_dir_obj, NULL, tag, &dd); if (err) { rw_exit(&dp->dp_config_rwlock); if (openedspa) spa_close(spa, FTAG); return (err); } while (next != NULL) { dsl_dir_t *child_ds; err = getcomponent(next, buf, &nextnext); if (err) break; ASSERT(next[0] != '\0'); if (next[0] == '@') break; dprintf("looking up %s in obj%lld\n", buf, dd->dd_phys->dd_child_dir_zapobj); err = zap_lookup(dp->dp_meta_objset, dd->dd_phys->dd_child_dir_zapobj, buf, sizeof (ddobj), 1, &ddobj); if (err) { if (err == ENOENT) err = 0; break; } err = dsl_dir_open_obj(dp, ddobj, buf, tag, &child_ds); if (err) break; dsl_dir_close(dd, tag); dd = child_ds; next = nextnext; } rw_exit(&dp->dp_config_rwlock); if (err) { dsl_dir_close(dd, tag); if (openedspa) spa_close(spa, FTAG); return (err); } /* * It's an error if there's more than one component left, or * tailp==NULL and there's any component left. */ if (next != NULL && (tailp == NULL || (nextnext && nextnext[0] != '\0'))) { /* bad path name */ dsl_dir_close(dd, tag); dprintf("next=%p (%s) tail=%p\n", next, next?next:"", tailp); err = ENOENT; } if (tailp) *tailp = next; if (openedspa) spa_close(spa, FTAG); *ddp = dd; return (err); } /* * Return the dsl_dir_t, and possibly the last component which couldn't * be found in *tail. Return NULL if the path is bogus, or if * tail==NULL and we couldn't parse the whole name. (*tail)[0] == '@' * means that the last component is a snapshot. */ int dsl_dir_open(const char *name, void *tag, dsl_dir_t **ddp, const char **tailp) { return (dsl_dir_open_spa(NULL, name, tag, ddp, tailp)); } uint64_t dsl_dir_create_sync(dsl_pool_t *dp, dsl_dir_t *pds, const char *name, dmu_tx_t *tx) { objset_t *mos = dp->dp_meta_objset; uint64_t ddobj; dsl_dir_phys_t *ddphys; dmu_buf_t *dbuf; ddobj = dmu_object_alloc(mos, DMU_OT_DSL_DIR, 0, DMU_OT_DSL_DIR, sizeof (dsl_dir_phys_t), tx); if (pds) { VERIFY(0 == zap_add(mos, pds->dd_phys->dd_child_dir_zapobj, name, sizeof (uint64_t), 1, &ddobj, tx)); } else { /* it's the root dir */ VERIFY(0 == zap_add(mos, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, &ddobj, tx)); } VERIFY(0 == dmu_bonus_hold(mos, ddobj, FTAG, &dbuf)); dmu_buf_will_dirty(dbuf, tx); ddphys = dbuf->db_data; ddphys->dd_creation_time = gethrestime_sec(); if (pds) ddphys->dd_parent_obj = pds->dd_object; ddphys->dd_props_zapobj = zap_create(mos, DMU_OT_DSL_PROPS, DMU_OT_NONE, 0, tx); ddphys->dd_child_dir_zapobj = zap_create(mos, DMU_OT_DSL_DIR_CHILD_MAP, DMU_OT_NONE, 0, tx); if (spa_version(dp->dp_spa) >= SPA_VERSION_USED_BREAKDOWN) ddphys->dd_flags |= DD_FLAG_USED_BREAKDOWN; dmu_buf_rele(dbuf, FTAG); return (ddobj); } /* ARGSUSED */ int dsl_dir_destroy_check(void *arg1, void *arg2, dmu_tx_t *tx) { dsl_dataset_t *ds = arg1; dsl_dir_t *dd = ds->ds_dir; dsl_pool_t *dp = dd->dd_pool; objset_t *mos = dp->dp_meta_objset; int err; uint64_t count; /* * There should be exactly two holds, both from * dsl_dataset_destroy: one on the dd directory, and one on its * head ds. Otherwise, someone is trying to lookup something * inside this dir while we want to destroy it. The * config_rwlock ensures that nobody else opens it after we * check. */ if (dmu_buf_refcount(dd->dd_dbuf) > 2) return (EBUSY); err = zap_count(mos, dd->dd_phys->dd_child_dir_zapobj, &count); if (err) return (err); if (count != 0) return (EEXIST); return (0); } void dsl_dir_destroy_sync(void *arg1, void *tag, dmu_tx_t *tx) { dsl_dataset_t *ds = arg1; dsl_dir_t *dd = ds->ds_dir; objset_t *mos = dd->dd_pool->dp_meta_objset; dsl_prop_setarg_t psa; uint64_t value = 0; uint64_t obj; dd_used_t t; ASSERT(RW_WRITE_HELD(&dd->dd_pool->dp_config_rwlock)); ASSERT(dd->dd_phys->dd_head_dataset_obj == 0); /* Remove our reservation. */ dsl_prop_setarg_init_uint64(&psa, "reservation", (ZPROP_SRC_NONE | ZPROP_SRC_LOCAL | ZPROP_SRC_RECEIVED), &value); psa.psa_effective_value = 0; /* predict default value */ dsl_dir_set_reservation_sync(ds, &psa, tx); ASSERT3U(dd->dd_phys->dd_used_bytes, ==, 0); ASSERT3U(dd->dd_phys->dd_reserved, ==, 0); for (t = 0; t < DD_USED_NUM; t++) ASSERT3U(dd->dd_phys->dd_used_breakdown[t], ==, 0); VERIFY(0 == zap_destroy(mos, dd->dd_phys->dd_child_dir_zapobj, tx)); VERIFY(0 == zap_destroy(mos, dd->dd_phys->dd_props_zapobj, tx)); VERIFY(0 == dsl_deleg_destroy(mos, dd->dd_phys->dd_deleg_zapobj, tx)); VERIFY(0 == zap_remove(mos, dd->dd_parent->dd_phys->dd_child_dir_zapobj, dd->dd_myname, tx)); obj = dd->dd_object; dsl_dir_close(dd, tag); VERIFY(0 == dmu_object_free(mos, obj, tx)); } boolean_t dsl_dir_is_clone(dsl_dir_t *dd) { return (dd->dd_phys->dd_origin_obj && (dd->dd_pool->dp_origin_snap == NULL || dd->dd_phys->dd_origin_obj != dd->dd_pool->dp_origin_snap->ds_object)); } void dsl_dir_stats(dsl_dir_t *dd, nvlist_t *nv) { mutex_enter(&dd->dd_lock); dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USED, dd->dd_phys->dd_used_bytes); dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_QUOTA, dd->dd_phys->dd_quota); dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_RESERVATION, dd->dd_phys->dd_reserved); dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_COMPRESSRATIO, dd->dd_phys->dd_compressed_bytes == 0 ? 100 : (dd->dd_phys->dd_uncompressed_bytes * 100 / dd->dd_phys->dd_compressed_bytes)); if (dd->dd_phys->dd_flags & DD_FLAG_USED_BREAKDOWN) { dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDSNAP, dd->dd_phys->dd_used_breakdown[DD_USED_SNAP]); dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDDS, dd->dd_phys->dd_used_breakdown[DD_USED_HEAD]); dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDREFRESERV, dd->dd_phys->dd_used_breakdown[DD_USED_REFRSRV]); dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDCHILD, dd->dd_phys->dd_used_breakdown[DD_USED_CHILD] + dd->dd_phys->dd_used_breakdown[DD_USED_CHILD_RSRV]); } mutex_exit(&dd->dd_lock); rw_enter(&dd->dd_pool->dp_config_rwlock, RW_READER); if (dsl_dir_is_clone(dd)) { dsl_dataset_t *ds; char buf[MAXNAMELEN]; VERIFY(0 == dsl_dataset_hold_obj(dd->dd_pool, dd->dd_phys->dd_origin_obj, FTAG, &ds)); dsl_dataset_name(ds, buf); dsl_dataset_rele(ds, FTAG); dsl_prop_nvlist_add_string(nv, ZFS_PROP_ORIGIN, buf); } rw_exit(&dd->dd_pool->dp_config_rwlock); } void dsl_dir_dirty(dsl_dir_t *dd, dmu_tx_t *tx) { dsl_pool_t *dp = dd->dd_pool; ASSERT(dd->dd_phys); if (txg_list_add(&dp->dp_dirty_dirs, dd, tx->tx_txg) == 0) { /* up the hold count until we can be written out */ dmu_buf_add_ref(dd->dd_dbuf, dd); } } static int64_t parent_delta(dsl_dir_t *dd, uint64_t used, int64_t delta) { uint64_t old_accounted = MAX(used, dd->dd_phys->dd_reserved); uint64_t new_accounted = MAX(used + delta, dd->dd_phys->dd_reserved); return (new_accounted - old_accounted); } void dsl_dir_sync(dsl_dir_t *dd, dmu_tx_t *tx) { ASSERT(dmu_tx_is_syncing(tx)); dmu_buf_will_dirty(dd->dd_dbuf, tx); mutex_enter(&dd->dd_lock); ASSERT3U(dd->dd_tempreserved[tx->tx_txg&TXG_MASK], ==, 0); dprintf_dd(dd, "txg=%llu towrite=%lluK\n", tx->tx_txg, dd->dd_space_towrite[tx->tx_txg&TXG_MASK] / 1024); dd->dd_space_towrite[tx->tx_txg&TXG_MASK] = 0; mutex_exit(&dd->dd_lock); /* release the hold from dsl_dir_dirty */ dmu_buf_rele(dd->dd_dbuf, dd); } static uint64_t dsl_dir_space_towrite(dsl_dir_t *dd) { uint64_t space = 0; int i; ASSERT(MUTEX_HELD(&dd->dd_lock)); for (i = 0; i < TXG_SIZE; i++) { space += dd->dd_space_towrite[i&TXG_MASK]; ASSERT3U(dd->dd_space_towrite[i&TXG_MASK], >=, 0); } return (space); } /* * How much space would dd have available if ancestor had delta applied * to it? If ondiskonly is set, we're only interested in what's * on-disk, not estimated pending changes. */ uint64_t dsl_dir_space_available(dsl_dir_t *dd, dsl_dir_t *ancestor, int64_t delta, int ondiskonly) { uint64_t parentspace, myspace, quota, used; /* * If there are no restrictions otherwise, assume we have * unlimited space available. */ quota = UINT64_MAX; parentspace = UINT64_MAX; if (dd->dd_parent != NULL) { parentspace = dsl_dir_space_available(dd->dd_parent, ancestor, delta, ondiskonly); } mutex_enter(&dd->dd_lock); if (dd->dd_phys->dd_quota != 0) quota = dd->dd_phys->dd_quota; used = dd->dd_phys->dd_used_bytes; if (!ondiskonly) used += dsl_dir_space_towrite(dd); if (dd->dd_parent == NULL) { uint64_t poolsize = dsl_pool_adjustedsize(dd->dd_pool, FALSE); quota = MIN(quota, poolsize); } if (dd->dd_phys->dd_reserved > used && parentspace != UINT64_MAX) { /* * We have some space reserved, in addition to what our * parent gave us. */ parentspace += dd->dd_phys->dd_reserved - used; } if (dd == ancestor) { ASSERT(delta <= 0); ASSERT(used >= -delta); used += delta; if (parentspace != UINT64_MAX) parentspace -= delta; } if (used > quota) { /* over quota */ myspace = 0; } else { /* * the lesser of the space provided by our parent and * the space left in our quota */ myspace = MIN(parentspace, quota - used); } mutex_exit(&dd->dd_lock); return (myspace); } struct tempreserve { list_node_t tr_node; dsl_pool_t *tr_dp; dsl_dir_t *tr_ds; uint64_t tr_size; }; static int dsl_dir_tempreserve_impl(dsl_dir_t *dd, uint64_t asize, boolean_t netfree, boolean_t ignorequota, boolean_t checkrefquota, list_t *tr_list, dmu_tx_t *tx, boolean_t first) { uint64_t txg = tx->tx_txg; uint64_t est_inflight, used_on_disk, quota, parent_rsrv; uint64_t deferred = 0; struct tempreserve *tr; int retval = EDQUOT; int txgidx = txg & TXG_MASK; int i; uint64_t ref_rsrv = 0; ASSERT3U(txg, !=, 0); ASSERT3S(asize, >, 0); mutex_enter(&dd->dd_lock); /* * Check against the dsl_dir's quota. We don't add in the delta * when checking for over-quota because they get one free hit. */ est_inflight = dsl_dir_space_towrite(dd); for (i = 0; i < TXG_SIZE; i++) est_inflight += dd->dd_tempreserved[i]; used_on_disk = dd->dd_phys->dd_used_bytes; /* * On the first iteration, fetch the dataset's used-on-disk and * refreservation values. Also, if checkrefquota is set, test if * allocating this space would exceed the dataset's refquota. */ if (first && tx->tx_objset) { int error; dsl_dataset_t *ds = tx->tx_objset->os_dsl_dataset; error = dsl_dataset_check_quota(ds, checkrefquota, asize, est_inflight, &used_on_disk, &ref_rsrv); if (error) { mutex_exit(&dd->dd_lock); return (error); } } /* * If this transaction will result in a net free of space, * we want to let it through. */ if (ignorequota || netfree || dd->dd_phys->dd_quota == 0) quota = UINT64_MAX; else quota = dd->dd_phys->dd_quota; /* * Adjust the quota against the actual pool size at the root * minus any outstanding deferred frees. * To ensure that it's possible to remove files from a full * pool without inducing transient overcommits, we throttle * netfree transactions against a quota that is slightly larger, * but still within the pool's allocation slop. In cases where * we're very close to full, this will allow a steady trickle of * removes to get through. */ if (dd->dd_parent == NULL) { spa_t *spa = dd->dd_pool->dp_spa; uint64_t poolsize = dsl_pool_adjustedsize(dd->dd_pool, netfree); deferred = metaslab_class_get_deferred(spa_normal_class(spa)); if (poolsize - deferred < quota) { quota = poolsize - deferred; retval = ENOSPC; } } /* * If they are requesting more space, and our current estimate * is over quota, they get to try again unless the actual * on-disk is over quota and there are no pending changes (which * may free up space for us). */ if (used_on_disk + est_inflight >= quota) { if (est_inflight > 0 || used_on_disk < quota || (retval == ENOSPC && used_on_disk < quota + deferred)) retval = ERESTART; dprintf_dd(dd, "failing: used=%lluK inflight = %lluK " "quota=%lluK tr=%lluK err=%d\n", used_on_disk>>10, est_inflight>>10, quota>>10, asize>>10, retval); mutex_exit(&dd->dd_lock); return (retval); } /* We need to up our estimated delta before dropping dd_lock */ dd->dd_tempreserved[txgidx] += asize; parent_rsrv = parent_delta(dd, used_on_disk + est_inflight, asize - ref_rsrv); mutex_exit(&dd->dd_lock); tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP); tr->tr_ds = dd; tr->tr_size = asize; list_insert_tail(tr_list, tr); /* see if it's OK with our parent */ if (dd->dd_parent && parent_rsrv) { boolean_t ismos = (dd->dd_phys->dd_head_dataset_obj == 0); return (dsl_dir_tempreserve_impl(dd->dd_parent, parent_rsrv, netfree, ismos, TRUE, tr_list, tx, FALSE)); } else { return (0); } } /* * Reserve space in this dsl_dir, to be used in this tx's txg. * After the space has been dirtied (and dsl_dir_willuse_space() * has been called), the reservation should be canceled, using * dsl_dir_tempreserve_clear(). */ int dsl_dir_tempreserve_space(dsl_dir_t *dd, uint64_t lsize, uint64_t asize, uint64_t fsize, uint64_t usize, void **tr_cookiep, dmu_tx_t *tx) { int err; list_t *tr_list; if (asize == 0) { *tr_cookiep = NULL; return (0); } tr_list = kmem_alloc(sizeof (list_t), KM_SLEEP); list_create(tr_list, sizeof (struct tempreserve), offsetof(struct tempreserve, tr_node)); ASSERT3S(asize, >, 0); ASSERT3S(fsize, >=, 0); err = arc_tempreserve_space(lsize, tx->tx_txg); if (err == 0) { struct tempreserve *tr; tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP); tr->tr_size = lsize; list_insert_tail(tr_list, tr); err = dsl_pool_tempreserve_space(dd->dd_pool, asize, tx); } else { if (err == EAGAIN) { txg_delay(dd->dd_pool, tx->tx_txg, 1); err = ERESTART; } dsl_pool_memory_pressure(dd->dd_pool); } if (err == 0) { struct tempreserve *tr; tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP); tr->tr_dp = dd->dd_pool; tr->tr_size = asize; list_insert_tail(tr_list, tr); err = dsl_dir_tempreserve_impl(dd, asize, fsize >= asize, FALSE, asize > usize, tr_list, tx, TRUE); } if (err) dsl_dir_tempreserve_clear(tr_list, tx); else *tr_cookiep = tr_list; return (err); } /* * Clear a temporary reservation that we previously made with * dsl_dir_tempreserve_space(). */ void dsl_dir_tempreserve_clear(void *tr_cookie, dmu_tx_t *tx) { int txgidx = tx->tx_txg & TXG_MASK; list_t *tr_list = tr_cookie; struct tempreserve *tr; ASSERT3U(tx->tx_txg, !=, 0); if (tr_cookie == NULL) return; while (tr = list_head(tr_list)) { if (tr->tr_dp) { dsl_pool_tempreserve_clear(tr->tr_dp, tr->tr_size, tx); } else if (tr->tr_ds) { mutex_enter(&tr->tr_ds->dd_lock); ASSERT3U(tr->tr_ds->dd_tempreserved[txgidx], >=, tr->tr_size); tr->tr_ds->dd_tempreserved[txgidx] -= tr->tr_size; mutex_exit(&tr->tr_ds->dd_lock); } else { arc_tempreserve_clear(tr->tr_size); } list_remove(tr_list, tr); kmem_free(tr, sizeof (struct tempreserve)); } kmem_free(tr_list, sizeof (list_t)); } static void dsl_dir_willuse_space_impl(dsl_dir_t *dd, int64_t space, dmu_tx_t *tx) { int64_t parent_space; uint64_t est_used; mutex_enter(&dd->dd_lock); if (space > 0) dd->dd_space_towrite[tx->tx_txg & TXG_MASK] += space; est_used = dsl_dir_space_towrite(dd) + dd->dd_phys->dd_used_bytes; parent_space = parent_delta(dd, est_used, space); mutex_exit(&dd->dd_lock); /* Make sure that we clean up dd_space_to* */ dsl_dir_dirty(dd, tx); /* XXX this is potentially expensive and unnecessary... */ if (parent_space && dd->dd_parent) dsl_dir_willuse_space_impl(dd->dd_parent, parent_space, tx); } /* * Call in open context when we think we're going to write/free space, * eg. when dirtying data. Be conservative (ie. OK to write less than * this or free more than this, but don't write more or free less). */ void dsl_dir_willuse_space(dsl_dir_t *dd, int64_t space, dmu_tx_t *tx) { dsl_pool_willuse_space(dd->dd_pool, space, tx); dsl_dir_willuse_space_impl(dd, space, tx); } /* call from syncing context when we actually write/free space for this dd */ void dsl_dir_diduse_space(dsl_dir_t *dd, dd_used_t type, int64_t used, int64_t compressed, int64_t uncompressed, dmu_tx_t *tx) { int64_t accounted_delta; boolean_t needlock = !MUTEX_HELD(&dd->dd_lock); ASSERT(dmu_tx_is_syncing(tx)); ASSERT(type < DD_USED_NUM); dsl_dir_dirty(dd, tx); if (needlock) mutex_enter(&dd->dd_lock); accounted_delta = parent_delta(dd, dd->dd_phys->dd_used_bytes, used); ASSERT(used >= 0 || dd->dd_phys->dd_used_bytes >= -used); ASSERT(compressed >= 0 || dd->dd_phys->dd_compressed_bytes >= -compressed); ASSERT(uncompressed >= 0 || dd->dd_phys->dd_uncompressed_bytes >= -uncompressed); dd->dd_phys->dd_used_bytes += used; dd->dd_phys->dd_uncompressed_bytes += uncompressed; dd->dd_phys->dd_compressed_bytes += compressed; if (dd->dd_phys->dd_flags & DD_FLAG_USED_BREAKDOWN) { ASSERT(used > 0 || dd->dd_phys->dd_used_breakdown[type] >= -used); dd->dd_phys->dd_used_breakdown[type] += used; #ifdef DEBUG dd_used_t t; uint64_t u = 0; for (t = 0; t < DD_USED_NUM; t++) u += dd->dd_phys->dd_used_breakdown[t]; ASSERT3U(u, ==, dd->dd_phys->dd_used_bytes); #endif } if (needlock) mutex_exit(&dd->dd_lock); if (dd->dd_parent != NULL) { dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD, accounted_delta, compressed, uncompressed, tx); dsl_dir_transfer_space(dd->dd_parent, used - accounted_delta, DD_USED_CHILD_RSRV, DD_USED_CHILD, tx); } } void dsl_dir_transfer_space(dsl_dir_t *dd, int64_t delta, dd_used_t oldtype, dd_used_t newtype, dmu_tx_t *tx) { boolean_t needlock = !MUTEX_HELD(&dd->dd_lock); ASSERT(dmu_tx_is_syncing(tx)); ASSERT(oldtype < DD_USED_NUM); ASSERT(newtype < DD_USED_NUM); if (delta == 0 || !(dd->dd_phys->dd_flags & DD_FLAG_USED_BREAKDOWN)) return; dsl_dir_dirty(dd, tx); if (needlock) mutex_enter(&dd->dd_lock); ASSERT(delta > 0 ? dd->dd_phys->dd_used_breakdown[oldtype] >= delta : dd->dd_phys->dd_used_breakdown[newtype] >= -delta); ASSERT(dd->dd_phys->dd_used_bytes >= ABS(delta)); dd->dd_phys->dd_used_breakdown[oldtype] -= delta; dd->dd_phys->dd_used_breakdown[newtype] += delta; if (needlock) mutex_exit(&dd->dd_lock); } static int dsl_dir_set_quota_check(void *arg1, void *arg2, dmu_tx_t *tx) { dsl_dataset_t *ds = arg1; dsl_dir_t *dd = ds->ds_dir; dsl_prop_setarg_t *psa = arg2; int err; uint64_t towrite; if ((err = dsl_prop_predict_sync(ds->ds_dir, psa)) != 0) return (err); if (psa->psa_effective_value == 0) return (0); mutex_enter(&dd->dd_lock); /* * If we are doing the preliminary check in open context, and * there are pending changes, then don't fail it, since the * pending changes could under-estimate the amount of space to be * freed up. */ towrite = dsl_dir_space_towrite(dd); if ((dmu_tx_is_syncing(tx) || towrite == 0) && (psa->psa_effective_value < dd->dd_phys->dd_reserved || psa->psa_effective_value < dd->dd_phys->dd_used_bytes + towrite)) { err = ENOSPC; } mutex_exit(&dd->dd_lock); return (err); } extern dsl_syncfunc_t dsl_prop_set_sync; static void dsl_dir_set_quota_sync(void *arg1, void *arg2, dmu_tx_t *tx) { dsl_dataset_t *ds = arg1; dsl_dir_t *dd = ds->ds_dir; dsl_prop_setarg_t *psa = arg2; uint64_t effective_value = psa->psa_effective_value; dsl_prop_set_sync(ds, psa, tx); DSL_PROP_CHECK_PREDICTION(dd, psa); dmu_buf_will_dirty(dd->dd_dbuf, tx); mutex_enter(&dd->dd_lock); dd->dd_phys->dd_quota = effective_value; mutex_exit(&dd->dd_lock); spa_history_log_internal(LOG_DS_QUOTA, dd->dd_pool->dp_spa, tx, "%lld dataset = %llu ", (longlong_t)effective_value, dd->dd_phys->dd_head_dataset_obj); } int dsl_dir_set_quota(const char *ddname, zprop_source_t source, uint64_t quota) { dsl_dir_t *dd; dsl_dataset_t *ds; dsl_prop_setarg_t psa; int err; dsl_prop_setarg_init_uint64(&psa, "quota", source, "a); err = dsl_dataset_hold(ddname, FTAG, &ds); if (err) return (err); err = dsl_dir_open(ddname, FTAG, &dd, NULL); if (err) { dsl_dataset_rele(ds, FTAG); return (err); } ASSERT(ds->ds_dir == dd); /* * If someone removes a file, then tries to set the quota, we want to * make sure the file freeing takes effect. */ txg_wait_open(dd->dd_pool, 0); err = dsl_sync_task_do(dd->dd_pool, dsl_dir_set_quota_check, dsl_dir_set_quota_sync, ds, &psa, 0); dsl_dir_close(dd, FTAG); dsl_dataset_rele(ds, FTAG); return (err); } int dsl_dir_set_reservation_check(void *arg1, void *arg2, dmu_tx_t *tx) { dsl_dataset_t *ds = arg1; dsl_dir_t *dd = ds->ds_dir; dsl_prop_setarg_t *psa = arg2; uint64_t effective_value; uint64_t used, avail; int err; if ((err = dsl_prop_predict_sync(ds->ds_dir, psa)) != 0) return (err); effective_value = psa->psa_effective_value; /* * If we are doing the preliminary check in open context, the * space estimates may be inaccurate. */ if (!dmu_tx_is_syncing(tx)) return (0); mutex_enter(&dd->dd_lock); used = dd->dd_phys->dd_used_bytes; mutex_exit(&dd->dd_lock); if (dd->dd_parent) { avail = dsl_dir_space_available(dd->dd_parent, NULL, 0, FALSE); } else { avail = dsl_pool_adjustedsize(dd->dd_pool, B_FALSE) - used; } if (MAX(used, effective_value) > MAX(used, dd->dd_phys->dd_reserved)) { uint64_t delta = MAX(used, effective_value) - MAX(used, dd->dd_phys->dd_reserved); if (delta > avail) return (ENOSPC); if (dd->dd_phys->dd_quota > 0 && effective_value > dd->dd_phys->dd_quota) return (ENOSPC); } return (0); } static void dsl_dir_set_reservation_sync(void *arg1, void *arg2, dmu_tx_t *tx) { dsl_dataset_t *ds = arg1; dsl_dir_t *dd = ds->ds_dir; dsl_prop_setarg_t *psa = arg2; uint64_t effective_value = psa->psa_effective_value; uint64_t used; int64_t delta; dsl_prop_set_sync(ds, psa, tx); DSL_PROP_CHECK_PREDICTION(dd, psa); dmu_buf_will_dirty(dd->dd_dbuf, tx); mutex_enter(&dd->dd_lock); used = dd->dd_phys->dd_used_bytes; delta = MAX(used, effective_value) - MAX(used, dd->dd_phys->dd_reserved); dd->dd_phys->dd_reserved = effective_value; if (dd->dd_parent != NULL) { /* Roll up this additional usage into our ancestors */ dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV, delta, 0, 0, tx); } mutex_exit(&dd->dd_lock); spa_history_log_internal(LOG_DS_RESERVATION, dd->dd_pool->dp_spa, tx, "%lld dataset = %llu", (longlong_t)effective_value, dd->dd_phys->dd_head_dataset_obj); } int dsl_dir_set_reservation(const char *ddname, zprop_source_t source, uint64_t reservation) { dsl_dir_t *dd; dsl_dataset_t *ds; dsl_prop_setarg_t psa; int err; dsl_prop_setarg_init_uint64(&psa, "reservation", source, &reservation); err = dsl_dataset_hold(ddname, FTAG, &ds); if (err) return (err); err = dsl_dir_open(ddname, FTAG, &dd, NULL); if (err) { dsl_dataset_rele(ds, FTAG); return (err); } ASSERT(ds->ds_dir == dd); err = dsl_sync_task_do(dd->dd_pool, dsl_dir_set_reservation_check, dsl_dir_set_reservation_sync, ds, &psa, 0); dsl_dir_close(dd, FTAG); dsl_dataset_rele(ds, FTAG); return (err); } static dsl_dir_t * closest_common_ancestor(dsl_dir_t *ds1, dsl_dir_t *ds2) { for (; ds1; ds1 = ds1->dd_parent) { dsl_dir_t *dd; for (dd = ds2; dd; dd = dd->dd_parent) { if (ds1 == dd) return (dd); } } return (NULL); } /* * If delta is applied to dd, how much of that delta would be applied to * ancestor? Syncing context only. */ static int64_t would_change(dsl_dir_t *dd, int64_t delta, dsl_dir_t *ancestor) { if (dd == ancestor) return (delta); mutex_enter(&dd->dd_lock); delta = parent_delta(dd, dd->dd_phys->dd_used_bytes, delta); mutex_exit(&dd->dd_lock); return (would_change(dd->dd_parent, delta, ancestor)); } struct renamearg { dsl_dir_t *newparent; const char *mynewname; boolean_t allowmounted; }; static int dsl_dir_rename_check(void *arg1, void *arg2, dmu_tx_t *tx) { dsl_dir_t *dd = arg1; struct renamearg *ra = arg2; dsl_pool_t *dp = dd->dd_pool; objset_t *mos = dp->dp_meta_objset; int err; uint64_t val; /* * There should only be one reference, from dmu_objset_rename(). * Fleeting holds are also possible (eg, from "zfs list" getting * stats), but any that are present in open context will likely * be gone by syncing context, so only fail from syncing * context. * Don't check if we allow renaming of busy (mounted) dataset. */ if (!ra->allowmounted && dmu_tx_is_syncing(tx) && dmu_buf_refcount(dd->dd_dbuf) > 1) { return (EBUSY); } /* check for existing name */ err = zap_lookup(mos, ra->newparent->dd_phys->dd_child_dir_zapobj, ra->mynewname, 8, 1, &val); if (err == 0) return (EEXIST); if (err != ENOENT) return (err); if (ra->newparent != dd->dd_parent) { /* is there enough space? */ uint64_t myspace = MAX(dd->dd_phys->dd_used_bytes, dd->dd_phys->dd_reserved); /* no rename into our descendant */ if (closest_common_ancestor(dd, ra->newparent) == dd) return (EINVAL); if (err = dsl_dir_transfer_possible(dd->dd_parent, ra->newparent, myspace)) return (err); } return (0); } static void dsl_dir_rename_sync(void *arg1, void *arg2, dmu_tx_t *tx) { char oldname[MAXPATHLEN], newname[MAXPATHLEN]; dsl_dir_t *dd = arg1; struct renamearg *ra = arg2; dsl_pool_t *dp = dd->dd_pool; objset_t *mos = dp->dp_meta_objset; int err; ASSERT(ra->allowmounted || dmu_buf_refcount(dd->dd_dbuf) <= 2); if (ra->newparent != dd->dd_parent) { dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD, -dd->dd_phys->dd_used_bytes, -dd->dd_phys->dd_compressed_bytes, -dd->dd_phys->dd_uncompressed_bytes, tx); dsl_dir_diduse_space(ra->newparent, DD_USED_CHILD, dd->dd_phys->dd_used_bytes, dd->dd_phys->dd_compressed_bytes, dd->dd_phys->dd_uncompressed_bytes, tx); if (dd->dd_phys->dd_reserved > dd->dd_phys->dd_used_bytes) { uint64_t unused_rsrv = dd->dd_phys->dd_reserved - dd->dd_phys->dd_used_bytes; dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV, -unused_rsrv, 0, 0, tx); dsl_dir_diduse_space(ra->newparent, DD_USED_CHILD_RSRV, unused_rsrv, 0, 0, tx); } } dmu_buf_will_dirty(dd->dd_dbuf, tx); /* remove from old parent zapobj */ dsl_dir_name(dd, oldname); err = zap_remove(mos, dd->dd_parent->dd_phys->dd_child_dir_zapobj, dd->dd_myname, tx); ASSERT3U(err, ==, 0); (void) strcpy(dd->dd_myname, ra->mynewname); dsl_dir_close(dd->dd_parent, dd); dd->dd_phys->dd_parent_obj = ra->newparent->dd_object; VERIFY(0 == dsl_dir_open_obj(dd->dd_pool, ra->newparent->dd_object, NULL, dd, &dd->dd_parent)); /* add to new parent zapobj */ err = zap_add(mos, ra->newparent->dd_phys->dd_child_dir_zapobj, dd->dd_myname, 8, 1, &dd->dd_object, tx); ASSERT3U(err, ==, 0); dsl_dir_name(dd, newname); #ifdef _KERNEL zfsvfs_update_fromname(oldname, newname); zvol_rename_minors(oldname, newname); #endif spa_history_log_internal(LOG_DS_RENAME, dd->dd_pool->dp_spa, tx, "dataset = %llu", dd->dd_phys->dd_head_dataset_obj); } int dsl_dir_rename(dsl_dir_t *dd, const char *newname, int flags) { struct renamearg ra; int err; /* new parent should exist */ err = dsl_dir_open(newname, FTAG, &ra.newparent, &ra.mynewname); if (err) return (err); /* can't rename to different pool */ if (dd->dd_pool != ra.newparent->dd_pool) { err = ENXIO; goto out; } /* new name should not already exist */ if (ra.mynewname == NULL) { err = EEXIST; goto out; } ra.allowmounted = !!(flags & ZFS_RENAME_ALLOW_MOUNTED); err = dsl_sync_task_do(dd->dd_pool, dsl_dir_rename_check, dsl_dir_rename_sync, dd, &ra, 3); out: dsl_dir_close(ra.newparent, FTAG); return (err); } int dsl_dir_transfer_possible(dsl_dir_t *sdd, dsl_dir_t *tdd, uint64_t space) { dsl_dir_t *ancestor; int64_t adelta; uint64_t avail; ancestor = closest_common_ancestor(sdd, tdd); adelta = would_change(sdd, -space, ancestor); avail = dsl_dir_space_available(tdd, ancestor, adelta, FALSE); if (avail < space) return (ENOSPC); return (0); } timestruc_t dsl_dir_snap_cmtime(dsl_dir_t *dd) { timestruc_t t; mutex_enter(&dd->dd_lock); t = dd->dd_snap_cmtime; mutex_exit(&dd->dd_lock); return (t); } void dsl_dir_snap_cmtime_update(dsl_dir_t *dd) { timestruc_t t; gethrestime(&t); mutex_enter(&dd->dd_lock); dd->dd_snap_cmtime = t; mutex_exit(&dd->dd_lock); }