Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/s3/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/usie/@/amd64/compile/hs32/modules/usr/src/sys/modules/oce/@/amd64/compile/hs32/modules/usr/src/sys/modules/netgraph/pipe/@/dev/glxsb/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/s3/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/usie/@/amd64/compile/hs32/modules/usr/src/sys/modules/oce/@/amd64/compile/hs32/modules/usr/src/sys/modules/netgraph/pipe/@/dev/glxsb/glxsb.c |
/* $OpenBSD: glxsb.c,v 1.7 2007/02/12 14:31:45 tom Exp $ */ /* * Copyright (c) 2006 Tom Cosgrove <tom@openbsd.org> * Copyright (c) 2003, 2004 Theo de Raadt * Copyright (c) 2003 Jason Wright * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* * Driver for the security block on the AMD Geode LX processors * http://www.amd.com/files/connectivitysolutions/geode/geode_lx/33234d_lx_ds.pdf */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/dev/glxsb/glxsb.c 233024 2012-03-16 08:46:58Z scottl $"); #include <sys/param.h> #include <sys/systm.h> #include <sys/bus.h> #include <sys/errno.h> #include <sys/kernel.h> #include <sys/lock.h> #include <sys/malloc.h> #include <sys/mbuf.h> #include <sys/module.h> #include <sys/mutex.h> #include <sys/proc.h> #include <sys/random.h> #include <sys/rman.h> #include <sys/rwlock.h> #include <sys/sysctl.h> #include <sys/taskqueue.h> #include <machine/bus.h> #include <machine/cpufunc.h> #include <machine/resource.h> #include <dev/pci/pcivar.h> #include <dev/pci/pcireg.h> #include <opencrypto/cryptodev.h> #include <opencrypto/cryptosoft.h> #include <opencrypto/xform.h> #include "cryptodev_if.h" #include "glxsb.h" #define PCI_VENDOR_AMD 0x1022 /* AMD */ #define PCI_PRODUCT_AMD_GEODE_LX_CRYPTO 0x2082 /* Geode LX Crypto */ #define SB_GLD_MSR_CAP 0x58002000 /* RO - Capabilities */ #define SB_GLD_MSR_CONFIG 0x58002001 /* RW - Master Config */ #define SB_GLD_MSR_SMI 0x58002002 /* RW - SMI */ #define SB_GLD_MSR_ERROR 0x58002003 /* RW - Error */ #define SB_GLD_MSR_PM 0x58002004 /* RW - Power Mgmt */ #define SB_GLD_MSR_DIAG 0x58002005 /* RW - Diagnostic */ #define SB_GLD_MSR_CTRL 0x58002006 /* RW - Security Block Cntrl */ /* For GLD_MSR_CTRL: */ #define SB_GMC_DIV0 0x0000 /* AES update divisor values */ #define SB_GMC_DIV1 0x0001 #define SB_GMC_DIV2 0x0002 #define SB_GMC_DIV3 0x0003 #define SB_GMC_DIV_MASK 0x0003 #define SB_GMC_SBI 0x0004 /* AES swap bits */ #define SB_GMC_SBY 0x0008 /* AES swap bytes */ #define SB_GMC_TW 0x0010 /* Time write (EEPROM) */ #define SB_GMC_T_SEL0 0x0000 /* RNG post-proc: none */ #define SB_GMC_T_SEL1 0x0100 /* RNG post-proc: LFSR */ #define SB_GMC_T_SEL2 0x0200 /* RNG post-proc: whitener */ #define SB_GMC_T_SEL3 0x0300 /* RNG LFSR+whitener */ #define SB_GMC_T_SEL_MASK 0x0300 #define SB_GMC_T_NE 0x0400 /* Noise (generator) Enable */ #define SB_GMC_T_TM 0x0800 /* RNG test mode */ /* (deterministic) */ /* Security Block configuration/control registers (offsets from base) */ #define SB_CTL_A 0x0000 /* RW - SB Control A */ #define SB_CTL_B 0x0004 /* RW - SB Control B */ #define SB_AES_INT 0x0008 /* RW - SB AES Interrupt */ #define SB_SOURCE_A 0x0010 /* RW - Source A */ #define SB_DEST_A 0x0014 /* RW - Destination A */ #define SB_LENGTH_A 0x0018 /* RW - Length A */ #define SB_SOURCE_B 0x0020 /* RW - Source B */ #define SB_DEST_B 0x0024 /* RW - Destination B */ #define SB_LENGTH_B 0x0028 /* RW - Length B */ #define SB_WKEY 0x0030 /* WO - Writable Key 0-3 */ #define SB_WKEY_0 0x0030 /* WO - Writable Key 0 */ #define SB_WKEY_1 0x0034 /* WO - Writable Key 1 */ #define SB_WKEY_2 0x0038 /* WO - Writable Key 2 */ #define SB_WKEY_3 0x003C /* WO - Writable Key 3 */ #define SB_CBC_IV 0x0040 /* RW - CBC IV 0-3 */ #define SB_CBC_IV_0 0x0040 /* RW - CBC IV 0 */ #define SB_CBC_IV_1 0x0044 /* RW - CBC IV 1 */ #define SB_CBC_IV_2 0x0048 /* RW - CBC IV 2 */ #define SB_CBC_IV_3 0x004C /* RW - CBC IV 3 */ #define SB_RANDOM_NUM 0x0050 /* RW - Random Number */ #define SB_RANDOM_NUM_STATUS 0x0054 /* RW - Random Number Status */ #define SB_EEPROM_COMM 0x0800 /* RW - EEPROM Command */ #define SB_EEPROM_ADDR 0x0804 /* RW - EEPROM Address */ #define SB_EEPROM_DATA 0x0808 /* RW - EEPROM Data */ #define SB_EEPROM_SEC_STATE 0x080C /* RW - EEPROM Security State */ /* For SB_CTL_A and _B */ #define SB_CTL_ST 0x0001 /* Start operation (enc/dec) */ #define SB_CTL_ENC 0x0002 /* Encrypt (0 is decrypt) */ #define SB_CTL_DEC 0x0000 /* Decrypt */ #define SB_CTL_WK 0x0004 /* Use writable key (we set) */ #define SB_CTL_DC 0x0008 /* Destination coherent */ #define SB_CTL_SC 0x0010 /* Source coherent */ #define SB_CTL_CBC 0x0020 /* CBC (0 is ECB) */ /* For SB_AES_INT */ #define SB_AI_DISABLE_AES_A 0x0001 /* Disable AES A compl int */ #define SB_AI_ENABLE_AES_A 0x0000 /* Enable AES A compl int */ #define SB_AI_DISABLE_AES_B 0x0002 /* Disable AES B compl int */ #define SB_AI_ENABLE_AES_B 0x0000 /* Enable AES B compl int */ #define SB_AI_DISABLE_EEPROM 0x0004 /* Disable EEPROM op comp int */ #define SB_AI_ENABLE_EEPROM 0x0000 /* Enable EEPROM op compl int */ #define SB_AI_AES_A_COMPLETE 0x10000 /* AES A operation complete */ #define SB_AI_AES_B_COMPLETE 0x20000 /* AES B operation complete */ #define SB_AI_EEPROM_COMPLETE 0x40000 /* EEPROM operation complete */ #define SB_AI_CLEAR_INTR \ (SB_AI_DISABLE_AES_A | SB_AI_DISABLE_AES_B |\ SB_AI_DISABLE_EEPROM | SB_AI_AES_A_COMPLETE |\ SB_AI_AES_B_COMPLETE | SB_AI_EEPROM_COMPLETE) #define SB_RNS_TRNG_VALID 0x0001 /* in SB_RANDOM_NUM_STATUS */ #define SB_MEM_SIZE 0x0810 /* Size of memory block */ #define SB_AES_ALIGN 0x0010 /* Source and dest buffers */ /* must be 16-byte aligned */ #define SB_AES_BLOCK_SIZE 0x0010 /* * The Geode LX security block AES acceleration doesn't perform scatter- * gather: it just takes source and destination addresses. Therefore the * plain- and ciphertexts need to be contiguous. To this end, we allocate * a buffer for both, and accept the overhead of copying in and out. If * the number of bytes in one operation is bigger than allowed for by the * buffer (buffer is twice the size of the max length, as it has both input * and output) then we have to perform multiple encryptions/decryptions. */ #define GLXSB_MAX_AES_LEN 16384 MALLOC_DEFINE(M_GLXSB, "glxsb_data", "Glxsb Data"); struct glxsb_dma_map { bus_dmamap_t dma_map; /* DMA map */ bus_dma_segment_t dma_seg; /* segments */ int dma_nsegs; /* #segments */ int dma_size; /* size */ caddr_t dma_vaddr; /* virtual address */ bus_addr_t dma_paddr; /* physical address */ }; struct glxsb_taskop { struct glxsb_session *to_ses; /* crypto session */ struct cryptop *to_crp; /* cryptop to perfom */ struct cryptodesc *to_enccrd; /* enccrd to perform */ struct cryptodesc *to_maccrd; /* maccrd to perform */ }; struct glxsb_softc { device_t sc_dev; /* device backpointer */ struct resource *sc_sr; /* resource */ int sc_rid; /* resource rid */ struct callout sc_rngco; /* RNG callout */ int sc_rnghz; /* RNG callout ticks */ bus_dma_tag_t sc_dmat; /* DMA tag */ struct glxsb_dma_map sc_dma; /* DMA map */ int32_t sc_cid; /* crypto tag */ uint32_t sc_sid; /* session id */ TAILQ_HEAD(ses_head, glxsb_session) sc_sessions; /* crypto sessions */ struct rwlock sc_sessions_lock;/* sessions lock */ struct mtx sc_task_mtx; /* task mutex */ struct taskqueue *sc_tq; /* task queue */ struct task sc_cryptotask; /* task */ struct glxsb_taskop sc_to; /* task's crypto operation */ int sc_task_count; /* tasks count */ }; static int glxsb_probe(device_t); static int glxsb_attach(device_t); static int glxsb_detach(device_t); static void glxsb_dmamap_cb(void *, bus_dma_segment_t *, int, int); static int glxsb_dma_alloc(struct glxsb_softc *); static void glxsb_dma_pre_op(struct glxsb_softc *, struct glxsb_dma_map *); static void glxsb_dma_post_op(struct glxsb_softc *, struct glxsb_dma_map *); static void glxsb_dma_free(struct glxsb_softc *, struct glxsb_dma_map *); static void glxsb_rnd(void *); static int glxsb_crypto_setup(struct glxsb_softc *); static int glxsb_crypto_newsession(device_t, uint32_t *, struct cryptoini *); static int glxsb_crypto_freesession(device_t, uint64_t); static int glxsb_aes(struct glxsb_softc *, uint32_t, uint32_t, uint32_t, void *, int, void *); static int glxsb_crypto_encdec(struct cryptop *, struct cryptodesc *, struct glxsb_session *, struct glxsb_softc *); static void glxsb_crypto_task(void *, int); static int glxsb_crypto_process(device_t, struct cryptop *, int); static device_method_t glxsb_methods[] = { /* device interface */ DEVMETHOD(device_probe, glxsb_probe), DEVMETHOD(device_attach, glxsb_attach), DEVMETHOD(device_detach, glxsb_detach), /* crypto device methods */ DEVMETHOD(cryptodev_newsession, glxsb_crypto_newsession), DEVMETHOD(cryptodev_freesession, glxsb_crypto_freesession), DEVMETHOD(cryptodev_process, glxsb_crypto_process), {0,0} }; static driver_t glxsb_driver = { "glxsb", glxsb_methods, sizeof(struct glxsb_softc) }; static devclass_t glxsb_devclass; DRIVER_MODULE(glxsb, pci, glxsb_driver, glxsb_devclass, 0, 0); MODULE_VERSION(glxsb, 1); MODULE_DEPEND(glxsb, crypto, 1, 1, 1); static int glxsb_probe(device_t dev) { if (pci_get_vendor(dev) == PCI_VENDOR_AMD && pci_get_device(dev) == PCI_PRODUCT_AMD_GEODE_LX_CRYPTO) { device_set_desc(dev, "AMD Geode LX Security Block (AES-128-CBC, RNG)"); return (BUS_PROBE_DEFAULT); } return (ENXIO); } static int glxsb_attach(device_t dev) { struct glxsb_softc *sc = device_get_softc(dev); uint64_t msr; sc->sc_dev = dev; msr = rdmsr(SB_GLD_MSR_CAP); if ((msr & 0xFFFF00) != 0x130400) { device_printf(dev, "unknown ID 0x%x\n", (int)((msr & 0xFFFF00) >> 16)); return (ENXIO); } pci_enable_busmaster(dev); /* Map in the security block configuration/control registers */ sc->sc_rid = PCIR_BAR(0); sc->sc_sr = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->sc_rid, RF_ACTIVE); if (sc->sc_sr == NULL) { device_printf(dev, "cannot map register space\n"); return (ENXIO); } /* * Configure the Security Block. * * We want to enable the noise generator (T_NE), and enable the * linear feedback shift register and whitener post-processing * (T_SEL = 3). Also ensure that test mode (deterministic values) * is disabled. */ msr = rdmsr(SB_GLD_MSR_CTRL); msr &= ~(SB_GMC_T_TM | SB_GMC_T_SEL_MASK); msr |= SB_GMC_T_NE | SB_GMC_T_SEL3; #if 0 msr |= SB_GMC_SBI | SB_GMC_SBY; /* for AES, if necessary */ #endif wrmsr(SB_GLD_MSR_CTRL, msr); /* Disable interrupts */ bus_write_4(sc->sc_sr, SB_AES_INT, SB_AI_CLEAR_INTR); /* Allocate a contiguous DMA-able buffer to work in */ if (glxsb_dma_alloc(sc) != 0) goto fail0; /* Initialize our task queue */ sc->sc_tq = taskqueue_create("glxsb_taskq", M_NOWAIT | M_ZERO, taskqueue_thread_enqueue, &sc->sc_tq); if (sc->sc_tq == NULL) { device_printf(dev, "cannot create task queue\n"); goto fail0; } if (taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq", device_get_nameunit(dev)) != 0) { device_printf(dev, "cannot start task queue\n"); goto fail1; } TASK_INIT(&sc->sc_cryptotask, 0, glxsb_crypto_task, sc); /* Initialize crypto */ if (glxsb_crypto_setup(sc) != 0) goto fail1; /* Install a periodic collector for the "true" (AMD's word) RNG */ if (hz > 100) sc->sc_rnghz = hz / 100; else sc->sc_rnghz = 1; callout_init(&sc->sc_rngco, CALLOUT_MPSAFE); glxsb_rnd(sc); return (0); fail1: taskqueue_free(sc->sc_tq); fail0: bus_release_resource(dev, SYS_RES_MEMORY, sc->sc_rid, sc->sc_sr); return (ENXIO); } static int glxsb_detach(device_t dev) { struct glxsb_softc *sc = device_get_softc(dev); struct glxsb_session *ses; rw_wlock(&sc->sc_sessions_lock); TAILQ_FOREACH(ses, &sc->sc_sessions, ses_next) { if (ses->ses_used) { rw_wunlock(&sc->sc_sessions_lock); device_printf(dev, "cannot detach, sessions still active.\n"); return (EBUSY); } } while (!TAILQ_EMPTY(&sc->sc_sessions)) { ses = TAILQ_FIRST(&sc->sc_sessions); TAILQ_REMOVE(&sc->sc_sessions, ses, ses_next); free(ses, M_GLXSB); } rw_wunlock(&sc->sc_sessions_lock); crypto_unregister_all(sc->sc_cid); callout_drain(&sc->sc_rngco); taskqueue_drain(sc->sc_tq, &sc->sc_cryptotask); bus_generic_detach(dev); glxsb_dma_free(sc, &sc->sc_dma); bus_release_resource(dev, SYS_RES_MEMORY, sc->sc_rid, sc->sc_sr); taskqueue_free(sc->sc_tq); rw_destroy(&sc->sc_sessions_lock); mtx_destroy(&sc->sc_task_mtx); return (0); } /* * callback for bus_dmamap_load() */ static void glxsb_dmamap_cb(void *arg, bus_dma_segment_t *seg, int nseg, int error) { bus_addr_t *paddr = (bus_addr_t*) arg; *paddr = seg[0].ds_addr; } static int glxsb_dma_alloc(struct glxsb_softc *sc) { struct glxsb_dma_map *dma = &sc->sc_dma; int rc; dma->dma_nsegs = 1; dma->dma_size = GLXSB_MAX_AES_LEN * 2; /* Setup DMA descriptor area */ rc = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), /* parent */ SB_AES_ALIGN, 0, /* alignments, bounds */ BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ dma->dma_size, /* maxsize */ dma->dma_nsegs, /* nsegments */ dma->dma_size, /* maxsegsize */ BUS_DMA_ALLOCNOW, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->sc_dmat); if (rc != 0) { device_printf(sc->sc_dev, "cannot allocate DMA tag (%d)\n", rc); return (rc); } rc = bus_dmamem_alloc(sc->sc_dmat, (void **)&dma->dma_vaddr, BUS_DMA_NOWAIT, &dma->dma_map); if (rc != 0) { device_printf(sc->sc_dev, "cannot allocate DMA memory of %d bytes (%d)\n", dma->dma_size, rc); goto fail0; } rc = bus_dmamap_load(sc->sc_dmat, dma->dma_map, dma->dma_vaddr, dma->dma_size, glxsb_dmamap_cb, &dma->dma_paddr, BUS_DMA_NOWAIT); if (rc != 0) { device_printf(sc->sc_dev, "cannot load DMA memory for %d bytes (%d)\n", dma->dma_size, rc); goto fail1; } return (0); fail1: bus_dmamem_free(sc->sc_dmat, dma->dma_vaddr, dma->dma_map); fail0: bus_dma_tag_destroy(sc->sc_dmat); return (rc); } static void glxsb_dma_pre_op(struct glxsb_softc *sc, struct glxsb_dma_map *dma) { bus_dmamap_sync(sc->sc_dmat, dma->dma_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } static void glxsb_dma_post_op(struct glxsb_softc *sc, struct glxsb_dma_map *dma) { bus_dmamap_sync(sc->sc_dmat, dma->dma_map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); } static void glxsb_dma_free(struct glxsb_softc *sc, struct glxsb_dma_map *dma) { bus_dmamap_unload(sc->sc_dmat, dma->dma_map); bus_dmamem_free(sc->sc_dmat, dma->dma_vaddr, dma->dma_map); bus_dma_tag_destroy(sc->sc_dmat); } static void glxsb_rnd(void *v) { struct glxsb_softc *sc = v; uint32_t status, value; status = bus_read_4(sc->sc_sr, SB_RANDOM_NUM_STATUS); if (status & SB_RNS_TRNG_VALID) { value = bus_read_4(sc->sc_sr, SB_RANDOM_NUM); /* feed with one uint32 */ random_harvest(&value, 4, 32, 0, RANDOM_PURE); } callout_reset(&sc->sc_rngco, sc->sc_rnghz, glxsb_rnd, sc); } static int glxsb_crypto_setup(struct glxsb_softc *sc) { sc->sc_cid = crypto_get_driverid(sc->sc_dev, CRYPTOCAP_F_HARDWARE); if (sc->sc_cid < 0) { device_printf(sc->sc_dev, "cannot get crypto driver id\n"); return (ENOMEM); } TAILQ_INIT(&sc->sc_sessions); sc->sc_sid = 1; rw_init(&sc->sc_sessions_lock, "glxsb_sessions_lock"); mtx_init(&sc->sc_task_mtx, "glxsb_crypto_mtx", NULL, MTX_DEF); if (crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0) != 0) goto crypto_fail; if (crypto_register(sc->sc_cid, CRYPTO_NULL_HMAC, 0, 0) != 0) goto crypto_fail; if (crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0) != 0) goto crypto_fail; if (crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0) != 0) goto crypto_fail; if (crypto_register(sc->sc_cid, CRYPTO_RIPEMD160_HMAC, 0, 0) != 0) goto crypto_fail; if (crypto_register(sc->sc_cid, CRYPTO_SHA2_256_HMAC, 0, 0) != 0) goto crypto_fail; if (crypto_register(sc->sc_cid, CRYPTO_SHA2_384_HMAC, 0, 0) != 0) goto crypto_fail; if (crypto_register(sc->sc_cid, CRYPTO_SHA2_512_HMAC, 0, 0) != 0) goto crypto_fail; return (0); crypto_fail: device_printf(sc->sc_dev, "cannot register crypto\n"); crypto_unregister_all(sc->sc_cid); rw_destroy(&sc->sc_sessions_lock); mtx_destroy(&sc->sc_task_mtx); return (ENOMEM); } static int glxsb_crypto_newsession(device_t dev, uint32_t *sidp, struct cryptoini *cri) { struct glxsb_softc *sc = device_get_softc(dev); struct glxsb_session *ses = NULL; struct cryptoini *encini, *macini; int error; if (sc == NULL || sidp == NULL || cri == NULL) return (EINVAL); encini = macini = NULL; for (; cri != NULL; cri = cri->cri_next) { switch(cri->cri_alg) { case CRYPTO_NULL_HMAC: case CRYPTO_MD5_HMAC: case CRYPTO_SHA1_HMAC: case CRYPTO_RIPEMD160_HMAC: case CRYPTO_SHA2_256_HMAC: case CRYPTO_SHA2_384_HMAC: case CRYPTO_SHA2_512_HMAC: if (macini != NULL) return (EINVAL); macini = cri; break; case CRYPTO_AES_CBC: if (encini != NULL) return (EINVAL); encini = cri; break; default: return (EINVAL); } } /* * We only support HMAC algorithms to be able to work with * ipsec(4), so if we are asked only for authentication without * encryption, don't pretend we can accellerate it. */ if (encini == NULL) return (EINVAL); /* * Look for a free session * * Free sessions goes first, so if first session is used, we need to * allocate one. */ rw_wlock(&sc->sc_sessions_lock); ses = TAILQ_FIRST(&sc->sc_sessions); if (ses == NULL || ses->ses_used) { ses = malloc(sizeof(*ses), M_GLXSB, M_NOWAIT | M_ZERO); if (ses == NULL) { rw_wunlock(&sc->sc_sessions_lock); return (ENOMEM); } ses->ses_id = sc->sc_sid++; } else { TAILQ_REMOVE(&sc->sc_sessions, ses, ses_next); } ses->ses_used = 1; TAILQ_INSERT_TAIL(&sc->sc_sessions, ses, ses_next); rw_wunlock(&sc->sc_sessions_lock); if (encini->cri_alg == CRYPTO_AES_CBC) { if (encini->cri_klen != 128) { glxsb_crypto_freesession(sc->sc_dev, ses->ses_id); return (EINVAL); } arc4rand(ses->ses_iv, sizeof(ses->ses_iv), 0); ses->ses_klen = encini->cri_klen; /* Copy the key (Geode LX wants the primary key only) */ bcopy(encini->cri_key, ses->ses_key, sizeof(ses->ses_key)); } if (macini != NULL) { error = glxsb_hash_setup(ses, macini); if (error != 0) { glxsb_crypto_freesession(sc->sc_dev, ses->ses_id); return (error); } } *sidp = ses->ses_id; return (0); } static int glxsb_crypto_freesession(device_t dev, uint64_t tid) { struct glxsb_softc *sc = device_get_softc(dev); struct glxsb_session *ses = NULL; uint32_t sid = ((uint32_t)tid) & 0xffffffff; if (sc == NULL) return (EINVAL); rw_wlock(&sc->sc_sessions_lock); TAILQ_FOREACH_REVERSE(ses, &sc->sc_sessions, ses_head, ses_next) { if (ses->ses_id == sid) break; } if (ses == NULL) { rw_wunlock(&sc->sc_sessions_lock); return (EINVAL); } TAILQ_REMOVE(&sc->sc_sessions, ses, ses_next); glxsb_hash_free(ses); bzero(ses, sizeof(*ses)); ses->ses_used = 0; ses->ses_id = sid; TAILQ_INSERT_HEAD(&sc->sc_sessions, ses, ses_next); rw_wunlock(&sc->sc_sessions_lock); return (0); } static int glxsb_aes(struct glxsb_softc *sc, uint32_t control, uint32_t psrc, uint32_t pdst, void *key, int len, void *iv) { uint32_t status; int i; if (len & 0xF) { device_printf(sc->sc_dev, "len must be a multiple of 16 (not %d)\n", len); return (EINVAL); } /* Set the source */ bus_write_4(sc->sc_sr, SB_SOURCE_A, psrc); /* Set the destination address */ bus_write_4(sc->sc_sr, SB_DEST_A, pdst); /* Set the data length */ bus_write_4(sc->sc_sr, SB_LENGTH_A, len); /* Set the IV */ if (iv != NULL) { bus_write_region_4(sc->sc_sr, SB_CBC_IV, iv, 4); control |= SB_CTL_CBC; } /* Set the key */ bus_write_region_4(sc->sc_sr, SB_WKEY, key, 4); /* Ask the security block to do it */ bus_write_4(sc->sc_sr, SB_CTL_A, control | SB_CTL_WK | SB_CTL_DC | SB_CTL_SC | SB_CTL_ST); /* * Now wait until it is done. * * We do a busy wait. Obviously the number of iterations of * the loop required to perform the AES operation depends upon * the number of bytes to process. * * On a 500 MHz Geode LX we see * * length (bytes) typical max iterations * 16 12 * 64 22 * 256 59 * 1024 212 * 8192 1,537 * * Since we have a maximum size of operation defined in * GLXSB_MAX_AES_LEN, we use this constant to decide how long * to wait. Allow an order of magnitude longer than it should * really take, just in case. */ for (i = 0; i < GLXSB_MAX_AES_LEN * 10; i++) { status = bus_read_4(sc->sc_sr, SB_CTL_A); if ((status & SB_CTL_ST) == 0) /* Done */ return (0); } device_printf(sc->sc_dev, "operation failed to complete\n"); return (EIO); } static int glxsb_crypto_encdec(struct cryptop *crp, struct cryptodesc *crd, struct glxsb_session *ses, struct glxsb_softc *sc) { char *op_src, *op_dst; uint32_t op_psrc, op_pdst; uint8_t op_iv[SB_AES_BLOCK_SIZE], *piv; int error; int len, tlen, xlen; int offset; uint32_t control; if (crd == NULL || (crd->crd_len % SB_AES_BLOCK_SIZE) != 0) return (EINVAL); /* How much of our buffer will we need to use? */ xlen = crd->crd_len > GLXSB_MAX_AES_LEN ? GLXSB_MAX_AES_LEN : crd->crd_len; /* * XXX Check if we can have input == output on Geode LX. * XXX In the meantime, use two separate (adjacent) buffers. */ op_src = sc->sc_dma.dma_vaddr; op_dst = (char *)sc->sc_dma.dma_vaddr + xlen; op_psrc = sc->sc_dma.dma_paddr; op_pdst = sc->sc_dma.dma_paddr + xlen; if (crd->crd_flags & CRD_F_ENCRYPT) { control = SB_CTL_ENC; if (crd->crd_flags & CRD_F_IV_EXPLICIT) bcopy(crd->crd_iv, op_iv, sizeof(op_iv)); else bcopy(ses->ses_iv, op_iv, sizeof(op_iv)); if ((crd->crd_flags & CRD_F_IV_PRESENT) == 0) { crypto_copyback(crp->crp_flags, crp->crp_buf, crd->crd_inject, sizeof(op_iv), op_iv); } } else { control = SB_CTL_DEC; if (crd->crd_flags & CRD_F_IV_EXPLICIT) bcopy(crd->crd_iv, op_iv, sizeof(op_iv)); else { crypto_copydata(crp->crp_flags, crp->crp_buf, crd->crd_inject, sizeof(op_iv), op_iv); } } offset = 0; tlen = crd->crd_len; piv = op_iv; /* Process the data in GLXSB_MAX_AES_LEN chunks */ while (tlen > 0) { len = (tlen > GLXSB_MAX_AES_LEN) ? GLXSB_MAX_AES_LEN : tlen; crypto_copydata(crp->crp_flags, crp->crp_buf, crd->crd_skip + offset, len, op_src); glxsb_dma_pre_op(sc, &sc->sc_dma); error = glxsb_aes(sc, control, op_psrc, op_pdst, ses->ses_key, len, op_iv); glxsb_dma_post_op(sc, &sc->sc_dma); if (error != 0) return (error); crypto_copyback(crp->crp_flags, crp->crp_buf, crd->crd_skip + offset, len, op_dst); offset += len; tlen -= len; if (tlen <= 0) { /* Ideally, just == 0 */ /* Finished - put the IV in session IV */ piv = ses->ses_iv; } /* * Copy out last block for use as next iteration/session IV. * * piv is set to op_iv[] before the loop starts, but is * set to ses->ses_iv if we're going to exit the loop this * time. */ if (crd->crd_flags & CRD_F_ENCRYPT) bcopy(op_dst + len - sizeof(op_iv), piv, sizeof(op_iv)); else { /* Decryption, only need this if another iteration */ if (tlen > 0) { bcopy(op_src + len - sizeof(op_iv), piv, sizeof(op_iv)); } } } /* while */ /* All AES processing has now been done. */ bzero(sc->sc_dma.dma_vaddr, xlen * 2); return (0); } static void glxsb_crypto_task(void *arg, int pending) { struct glxsb_softc *sc = arg; struct glxsb_session *ses; struct cryptop *crp; struct cryptodesc *enccrd, *maccrd; int error; maccrd = sc->sc_to.to_maccrd; enccrd = sc->sc_to.to_enccrd; crp = sc->sc_to.to_crp; ses = sc->sc_to.to_ses; /* Perform data authentication if requested before encryption */ if (maccrd != NULL && maccrd->crd_next == enccrd) { error = glxsb_hash_process(ses, maccrd, crp); if (error != 0) goto out; } error = glxsb_crypto_encdec(crp, enccrd, ses, sc); if (error != 0) goto out; /* Perform data authentication if requested after encryption */ if (maccrd != NULL && enccrd->crd_next == maccrd) { error = glxsb_hash_process(ses, maccrd, crp); if (error != 0) goto out; } out: mtx_lock(&sc->sc_task_mtx); sc->sc_task_count--; mtx_unlock(&sc->sc_task_mtx); crp->crp_etype = error; crypto_unblock(sc->sc_cid, CRYPTO_SYMQ); crypto_done(crp); } static int glxsb_crypto_process(device_t dev, struct cryptop *crp, int hint) { struct glxsb_softc *sc = device_get_softc(dev); struct glxsb_session *ses; struct cryptodesc *crd, *enccrd, *maccrd; uint32_t sid; int error = 0; enccrd = maccrd = NULL; /* Sanity check. */ if (crp == NULL) return (EINVAL); if (crp->crp_callback == NULL || crp->crp_desc == NULL) { error = EINVAL; goto fail; } for (crd = crp->crp_desc; crd != NULL; crd = crd->crd_next) { switch (crd->crd_alg) { case CRYPTO_NULL_HMAC: case CRYPTO_MD5_HMAC: case CRYPTO_SHA1_HMAC: case CRYPTO_RIPEMD160_HMAC: case CRYPTO_SHA2_256_HMAC: case CRYPTO_SHA2_384_HMAC: case CRYPTO_SHA2_512_HMAC: if (maccrd != NULL) { error = EINVAL; goto fail; } maccrd = crd; break; case CRYPTO_AES_CBC: if (enccrd != NULL) { error = EINVAL; goto fail; } enccrd = crd; break; default: error = EINVAL; goto fail; } } if (enccrd == NULL || enccrd->crd_len % AES_BLOCK_LEN != 0) { error = EINVAL; goto fail; } sid = crp->crp_sid & 0xffffffff; rw_rlock(&sc->sc_sessions_lock); TAILQ_FOREACH_REVERSE(ses, &sc->sc_sessions, ses_head, ses_next) { if (ses->ses_id == sid) break; } rw_runlock(&sc->sc_sessions_lock); if (ses == NULL || !ses->ses_used) { error = EINVAL; goto fail; } mtx_lock(&sc->sc_task_mtx); if (sc->sc_task_count != 0) { mtx_unlock(&sc->sc_task_mtx); return (ERESTART); } sc->sc_task_count++; sc->sc_to.to_maccrd = maccrd; sc->sc_to.to_enccrd = enccrd; sc->sc_to.to_crp = crp; sc->sc_to.to_ses = ses; mtx_unlock(&sc->sc_task_mtx); taskqueue_enqueue(sc->sc_tq, &sc->sc_cryptotask); return(0); fail: crp->crp_etype = error; crypto_done(crp); return (error); }