Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/s3/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/usie/@/amd64/compile/hs32/modules/usr/src/sys/modules/oce/@/amd64/compile/hs32/modules/usr/src/sys/modules/sfxge/@/kern/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/s3/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/usie/@/amd64/compile/hs32/modules/usr/src/sys/modules/oce/@/amd64/compile/hs32/modules/usr/src/sys/modules/sfxge/@/kern/kern_descrip.c |
/*- * Copyright (c) 1982, 1986, 1989, 1991, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)kern_descrip.c 8.6 (Berkeley) 4/19/94 */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/kern/kern_descrip.c 238560 2012-07-18 04:52:37Z mjg $"); #include "opt_capsicum.h" #include "opt_compat.h" #include "opt_ddb.h" #include "opt_ktrace.h" #include "opt_procdesc.h" #include <sys/param.h> #include <sys/systm.h> #include <sys/capability.h> #include <sys/conf.h> #include <sys/domain.h> #include <sys/fcntl.h> #include <sys/file.h> #include <sys/filedesc.h> #include <sys/filio.h> #include <sys/jail.h> #include <sys/kernel.h> #include <sys/limits.h> #include <sys/lock.h> #include <sys/malloc.h> #include <sys/mman.h> #include <sys/mount.h> #include <sys/mqueue.h> #include <sys/mutex.h> #include <sys/namei.h> #include <sys/selinfo.h> #include <sys/pipe.h> #include <sys/priv.h> #include <sys/proc.h> #include <sys/procdesc.h> #include <sys/protosw.h> #include <sys/racct.h> #include <sys/resourcevar.h> #include <sys/signalvar.h> #include <sys/socketvar.h> #include <sys/stat.h> #include <sys/sx.h> #include <sys/syscallsubr.h> #include <sys/sysctl.h> #include <sys/sysproto.h> #include <sys/tty.h> #include <sys/unistd.h> #include <sys/un.h> #include <sys/unpcb.h> #include <sys/user.h> #include <sys/vnode.h> #ifdef KTRACE #include <sys/ktrace.h> #endif #include <net/vnet.h> #include <netinet/in.h> #include <netinet/in_pcb.h> #include <security/audit/audit.h> #include <vm/uma.h> #include <vm/vm.h> #include <ddb/ddb.h> static MALLOC_DEFINE(M_FILEDESC, "filedesc", "Open file descriptor table"); static MALLOC_DEFINE(M_FILEDESC_TO_LEADER, "filedesc_to_leader", "file desc to leader structures"); static MALLOC_DEFINE(M_SIGIO, "sigio", "sigio structures"); MALLOC_DECLARE(M_FADVISE); static uma_zone_t file_zone; /* Flags for do_dup() */ #define DUP_FIXED 0x1 /* Force fixed allocation */ #define DUP_FCNTL 0x2 /* fcntl()-style errors */ static int do_dup(struct thread *td, int flags, int old, int new, register_t *retval); static int fd_first_free(struct filedesc *, int, int); static int fd_last_used(struct filedesc *, int, int); static void fdgrowtable(struct filedesc *, int); static void fdunused(struct filedesc *fdp, int fd); static void fdused(struct filedesc *fdp, int fd); static int fill_vnode_info(struct vnode *vp, struct kinfo_file *kif); static int fill_socket_info(struct socket *so, struct kinfo_file *kif); static int fill_pts_info(struct tty *tp, struct kinfo_file *kif); static int fill_pipe_info(struct pipe *pi, struct kinfo_file *kif); static int fill_procdesc_info(struct procdesc *pdp, struct kinfo_file *kif); static int fill_shm_info(struct file *fp, struct kinfo_file *kif); /* * A process is initially started out with NDFILE descriptors stored within * this structure, selected to be enough for typical applications based on * the historical limit of 20 open files (and the usage of descriptors by * shells). If these descriptors are exhausted, a larger descriptor table * may be allocated, up to a process' resource limit; the internal arrays * are then unused. */ #define NDFILE 20 #define NDSLOTSIZE sizeof(NDSLOTTYPE) #define NDENTRIES (NDSLOTSIZE * __CHAR_BIT) #define NDSLOT(x) ((x) / NDENTRIES) #define NDBIT(x) ((NDSLOTTYPE)1 << ((x) % NDENTRIES)) #define NDSLOTS(x) (((x) + NDENTRIES - 1) / NDENTRIES) /* * Storage required per open file descriptor. */ #define OFILESIZE (sizeof(struct file *) + sizeof(char)) /* * Storage to hold unused ofiles that need to be reclaimed. */ struct freetable { struct file **ft_table; SLIST_ENTRY(freetable) ft_next; }; /* * Basic allocation of descriptors: * one of the above, plus arrays for NDFILE descriptors. */ struct filedesc0 { struct filedesc fd_fd; /* * ofiles which need to be reclaimed on free. */ SLIST_HEAD(,freetable) fd_free; /* * These arrays are used when the number of open files is * <= NDFILE, and are then pointed to by the pointers above. */ struct file *fd_dfiles[NDFILE]; char fd_dfileflags[NDFILE]; NDSLOTTYPE fd_dmap[NDSLOTS(NDFILE)]; }; /* * Descriptor management. */ volatile int openfiles; /* actual number of open files */ struct mtx sigio_lock; /* mtx to protect pointers to sigio */ void (*mq_fdclose)(struct thread *td, int fd, struct file *fp); /* A mutex to protect the association between a proc and filedesc. */ static struct mtx fdesc_mtx; /* * Find the first zero bit in the given bitmap, starting at low and not * exceeding size - 1. */ static int fd_first_free(struct filedesc *fdp, int low, int size) { NDSLOTTYPE *map = fdp->fd_map; NDSLOTTYPE mask; int off, maxoff; if (low >= size) return (low); off = NDSLOT(low); if (low % NDENTRIES) { mask = ~(~(NDSLOTTYPE)0 >> (NDENTRIES - (low % NDENTRIES))); if ((mask &= ~map[off]) != 0UL) return (off * NDENTRIES + ffsl(mask) - 1); ++off; } for (maxoff = NDSLOTS(size); off < maxoff; ++off) if (map[off] != ~0UL) return (off * NDENTRIES + ffsl(~map[off]) - 1); return (size); } /* * Find the highest non-zero bit in the given bitmap, starting at low and * not exceeding size - 1. */ static int fd_last_used(struct filedesc *fdp, int low, int size) { NDSLOTTYPE *map = fdp->fd_map; NDSLOTTYPE mask; int off, minoff; if (low >= size) return (-1); off = NDSLOT(size); if (size % NDENTRIES) { mask = ~(~(NDSLOTTYPE)0 << (size % NDENTRIES)); if ((mask &= map[off]) != 0) return (off * NDENTRIES + flsl(mask) - 1); --off; } for (minoff = NDSLOT(low); off >= minoff; --off) if (map[off] != 0) return (off * NDENTRIES + flsl(map[off]) - 1); return (low - 1); } static int fdisused(struct filedesc *fdp, int fd) { KASSERT(fd >= 0 && fd < fdp->fd_nfiles, ("file descriptor %d out of range (0, %d)", fd, fdp->fd_nfiles)); return ((fdp->fd_map[NDSLOT(fd)] & NDBIT(fd)) != 0); } /* * Mark a file descriptor as used. */ static void fdused(struct filedesc *fdp, int fd) { FILEDESC_XLOCK_ASSERT(fdp); KASSERT(!fdisused(fdp, fd), ("fd already used")); fdp->fd_map[NDSLOT(fd)] |= NDBIT(fd); if (fd > fdp->fd_lastfile) fdp->fd_lastfile = fd; if (fd == fdp->fd_freefile) fdp->fd_freefile = fd_first_free(fdp, fd, fdp->fd_nfiles); } /* * Mark a file descriptor as unused. */ static void fdunused(struct filedesc *fdp, int fd) { FILEDESC_XLOCK_ASSERT(fdp); KASSERT(fdisused(fdp, fd), ("fd is already unused")); KASSERT(fdp->fd_ofiles[fd] == NULL, ("fd is still in use")); fdp->fd_map[NDSLOT(fd)] &= ~NDBIT(fd); if (fd < fdp->fd_freefile) fdp->fd_freefile = fd; if (fd == fdp->fd_lastfile) fdp->fd_lastfile = fd_last_used(fdp, 0, fd); } /* * System calls on descriptors. */ #ifndef _SYS_SYSPROTO_H_ struct getdtablesize_args { int dummy; }; #endif /* ARGSUSED */ int sys_getdtablesize(struct thread *td, struct getdtablesize_args *uap) { struct proc *p = td->td_proc; uint64_t lim; PROC_LOCK(p); td->td_retval[0] = min((int)lim_cur(p, RLIMIT_NOFILE), maxfilesperproc); lim = racct_get_limit(td->td_proc, RACCT_NOFILE); PROC_UNLOCK(p); if (lim < td->td_retval[0]) td->td_retval[0] = lim; return (0); } /* * Duplicate a file descriptor to a particular value. * * Note: keep in mind that a potential race condition exists when closing * descriptors from a shared descriptor table (via rfork). */ #ifndef _SYS_SYSPROTO_H_ struct dup2_args { u_int from; u_int to; }; #endif /* ARGSUSED */ int sys_dup2(struct thread *td, struct dup2_args *uap) { return (do_dup(td, DUP_FIXED, (int)uap->from, (int)uap->to, td->td_retval)); } /* * Duplicate a file descriptor. */ #ifndef _SYS_SYSPROTO_H_ struct dup_args { u_int fd; }; #endif /* ARGSUSED */ int sys_dup(struct thread *td, struct dup_args *uap) { return (do_dup(td, 0, (int)uap->fd, 0, td->td_retval)); } /* * The file control system call. */ #ifndef _SYS_SYSPROTO_H_ struct fcntl_args { int fd; int cmd; long arg; }; #endif /* ARGSUSED */ int sys_fcntl(struct thread *td, struct fcntl_args *uap) { struct flock fl; struct oflock ofl; intptr_t arg; int error; int cmd; error = 0; cmd = uap->cmd; switch (uap->cmd) { case F_OGETLK: case F_OSETLK: case F_OSETLKW: /* * Convert old flock structure to new. */ error = copyin((void *)(intptr_t)uap->arg, &ofl, sizeof(ofl)); fl.l_start = ofl.l_start; fl.l_len = ofl.l_len; fl.l_pid = ofl.l_pid; fl.l_type = ofl.l_type; fl.l_whence = ofl.l_whence; fl.l_sysid = 0; switch (uap->cmd) { case F_OGETLK: cmd = F_GETLK; break; case F_OSETLK: cmd = F_SETLK; break; case F_OSETLKW: cmd = F_SETLKW; break; } arg = (intptr_t)&fl; break; case F_GETLK: case F_SETLK: case F_SETLKW: case F_SETLK_REMOTE: error = copyin((void *)(intptr_t)uap->arg, &fl, sizeof(fl)); arg = (intptr_t)&fl; break; default: arg = uap->arg; break; } if (error) return (error); error = kern_fcntl(td, uap->fd, cmd, arg); if (error) return (error); if (uap->cmd == F_OGETLK) { ofl.l_start = fl.l_start; ofl.l_len = fl.l_len; ofl.l_pid = fl.l_pid; ofl.l_type = fl.l_type; ofl.l_whence = fl.l_whence; error = copyout(&ofl, (void *)(intptr_t)uap->arg, sizeof(ofl)); } else if (uap->cmd == F_GETLK) { error = copyout(&fl, (void *)(intptr_t)uap->arg, sizeof(fl)); } return (error); } static inline struct file * fdtofp(int fd, struct filedesc *fdp) { struct file *fp; FILEDESC_LOCK_ASSERT(fdp); if ((unsigned)fd >= fdp->fd_nfiles || (fp = fdp->fd_ofiles[fd]) == NULL) return (NULL); return (fp); } static inline int fdunwrap(int fd, cap_rights_t rights, struct filedesc *fdp, struct file **fpp) { *fpp = fdtofp(fd, fdp); if (*fpp == NULL) return (EBADF); #ifdef CAPABILITIES if ((*fpp)->f_type == DTYPE_CAPABILITY) { int err = cap_funwrap(*fpp, rights, fpp); if (err != 0) { *fpp = NULL; return (err); } } #endif /* CAPABILITIES */ return (0); } int kern_fcntl(struct thread *td, int fd, int cmd, intptr_t arg) { struct filedesc *fdp; struct flock *flp; struct file *fp; struct proc *p; char *pop; struct vnode *vp; int error, flg, tmp; int vfslocked; u_int old, new; uint64_t bsize; vfslocked = 0; error = 0; flg = F_POSIX; p = td->td_proc; fdp = p->p_fd; switch (cmd) { case F_DUPFD: tmp = arg; error = do_dup(td, DUP_FCNTL, fd, tmp, td->td_retval); break; case F_DUP2FD: tmp = arg; error = do_dup(td, DUP_FIXED, fd, tmp, td->td_retval); break; case F_GETFD: FILEDESC_SLOCK(fdp); if ((fp = fdtofp(fd, fdp)) == NULL) { FILEDESC_SUNLOCK(fdp); error = EBADF; break; } pop = &fdp->fd_ofileflags[fd]; td->td_retval[0] = (*pop & UF_EXCLOSE) ? FD_CLOEXEC : 0; FILEDESC_SUNLOCK(fdp); break; case F_SETFD: FILEDESC_XLOCK(fdp); if ((fp = fdtofp(fd, fdp)) == NULL) { FILEDESC_XUNLOCK(fdp); error = EBADF; break; } pop = &fdp->fd_ofileflags[fd]; *pop = (*pop &~ UF_EXCLOSE) | (arg & FD_CLOEXEC ? UF_EXCLOSE : 0); FILEDESC_XUNLOCK(fdp); break; case F_GETFL: FILEDESC_SLOCK(fdp); error = fdunwrap(fd, CAP_FCNTL, fdp, &fp); if (error != 0) { FILEDESC_SUNLOCK(fdp); break; } td->td_retval[0] = OFLAGS(fp->f_flag); FILEDESC_SUNLOCK(fdp); break; case F_SETFL: FILEDESC_SLOCK(fdp); error = fdunwrap(fd, CAP_FCNTL, fdp, &fp); if (error != 0) { FILEDESC_SUNLOCK(fdp); break; } fhold(fp); FILEDESC_SUNLOCK(fdp); do { tmp = flg = fp->f_flag; tmp &= ~FCNTLFLAGS; tmp |= FFLAGS(arg & ~O_ACCMODE) & FCNTLFLAGS; } while(atomic_cmpset_int(&fp->f_flag, flg, tmp) == 0); tmp = fp->f_flag & FNONBLOCK; error = fo_ioctl(fp, FIONBIO, &tmp, td->td_ucred, td); if (error) { fdrop(fp, td); break; } tmp = fp->f_flag & FASYNC; error = fo_ioctl(fp, FIOASYNC, &tmp, td->td_ucred, td); if (error == 0) { fdrop(fp, td); break; } atomic_clear_int(&fp->f_flag, FNONBLOCK); tmp = 0; (void)fo_ioctl(fp, FIONBIO, &tmp, td->td_ucred, td); fdrop(fp, td); break; case F_GETOWN: FILEDESC_SLOCK(fdp); error = fdunwrap(fd, CAP_FCNTL, fdp, &fp); if (error != 0) { FILEDESC_SUNLOCK(fdp); break; } fhold(fp); FILEDESC_SUNLOCK(fdp); error = fo_ioctl(fp, FIOGETOWN, &tmp, td->td_ucred, td); if (error == 0) td->td_retval[0] = tmp; fdrop(fp, td); break; case F_SETOWN: FILEDESC_SLOCK(fdp); error = fdunwrap(fd, CAP_FCNTL, fdp, &fp); if (error != 0) { FILEDESC_SUNLOCK(fdp); break; } fhold(fp); FILEDESC_SUNLOCK(fdp); tmp = arg; error = fo_ioctl(fp, FIOSETOWN, &tmp, td->td_ucred, td); fdrop(fp, td); break; case F_SETLK_REMOTE: error = priv_check(td, PRIV_NFS_LOCKD); if (error) return (error); flg = F_REMOTE; goto do_setlk; case F_SETLKW: flg |= F_WAIT; /* FALLTHROUGH F_SETLK */ case F_SETLK: do_setlk: FILEDESC_SLOCK(fdp); error = fdunwrap(fd, CAP_FLOCK, fdp, &fp); if (error != 0) { FILEDESC_SUNLOCK(fdp); break; } if (fp->f_type != DTYPE_VNODE) { FILEDESC_SUNLOCK(fdp); error = EBADF; break; } flp = (struct flock *)arg; if (flp->l_whence == SEEK_CUR) { if (fp->f_offset < 0 || (flp->l_start > 0 && fp->f_offset > OFF_MAX - flp->l_start)) { FILEDESC_SUNLOCK(fdp); error = EOVERFLOW; break; } flp->l_start += fp->f_offset; } /* * VOP_ADVLOCK() may block. */ fhold(fp); FILEDESC_SUNLOCK(fdp); vp = fp->f_vnode; vfslocked = VFS_LOCK_GIANT(vp->v_mount); switch (flp->l_type) { case F_RDLCK: if ((fp->f_flag & FREAD) == 0) { error = EBADF; break; } PROC_LOCK(p->p_leader); p->p_leader->p_flag |= P_ADVLOCK; PROC_UNLOCK(p->p_leader); error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_SETLK, flp, flg); break; case F_WRLCK: if ((fp->f_flag & FWRITE) == 0) { error = EBADF; break; } PROC_LOCK(p->p_leader); p->p_leader->p_flag |= P_ADVLOCK; PROC_UNLOCK(p->p_leader); error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_SETLK, flp, flg); break; case F_UNLCK: error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_UNLCK, flp, flg); break; case F_UNLCKSYS: /* * Temporary api for testing remote lock * infrastructure. */ if (flg != F_REMOTE) { error = EINVAL; break; } error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_UNLCKSYS, flp, flg); break; default: error = EINVAL; break; } VFS_UNLOCK_GIANT(vfslocked); vfslocked = 0; /* Check for race with close */ FILEDESC_SLOCK(fdp); if ((unsigned) fd >= fdp->fd_nfiles || fp != fdp->fd_ofiles[fd]) { FILEDESC_SUNLOCK(fdp); flp->l_whence = SEEK_SET; flp->l_start = 0; flp->l_len = 0; flp->l_type = F_UNLCK; vfslocked = VFS_LOCK_GIANT(vp->v_mount); (void) VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_UNLCK, flp, F_POSIX); VFS_UNLOCK_GIANT(vfslocked); vfslocked = 0; } else FILEDESC_SUNLOCK(fdp); fdrop(fp, td); break; case F_GETLK: FILEDESC_SLOCK(fdp); error = fdunwrap(fd, CAP_FLOCK, fdp, &fp); if (error != 0) { FILEDESC_SUNLOCK(fdp); break; } if (fp->f_type != DTYPE_VNODE) { FILEDESC_SUNLOCK(fdp); error = EBADF; break; } flp = (struct flock *)arg; if (flp->l_type != F_RDLCK && flp->l_type != F_WRLCK && flp->l_type != F_UNLCK) { FILEDESC_SUNLOCK(fdp); error = EINVAL; break; } if (flp->l_whence == SEEK_CUR) { if ((flp->l_start > 0 && fp->f_offset > OFF_MAX - flp->l_start) || (flp->l_start < 0 && fp->f_offset < OFF_MIN - flp->l_start)) { FILEDESC_SUNLOCK(fdp); error = EOVERFLOW; break; } flp->l_start += fp->f_offset; } /* * VOP_ADVLOCK() may block. */ fhold(fp); FILEDESC_SUNLOCK(fdp); vp = fp->f_vnode; vfslocked = VFS_LOCK_GIANT(vp->v_mount); error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_GETLK, flp, F_POSIX); VFS_UNLOCK_GIANT(vfslocked); vfslocked = 0; fdrop(fp, td); break; case F_RDAHEAD: arg = arg ? 128 * 1024: 0; /* FALLTHROUGH */ case F_READAHEAD: FILEDESC_SLOCK(fdp); if ((fp = fdtofp(fd, fdp)) == NULL) { FILEDESC_SUNLOCK(fdp); error = EBADF; break; } if (fp->f_type != DTYPE_VNODE) { FILEDESC_SUNLOCK(fdp); error = EBADF; break; } fhold(fp); FILEDESC_SUNLOCK(fdp); if (arg != 0) { vp = fp->f_vnode; vfslocked = VFS_LOCK_GIANT(vp->v_mount); error = vn_lock(vp, LK_SHARED); if (error != 0) goto readahead_vnlock_fail; bsize = fp->f_vnode->v_mount->mnt_stat.f_iosize; VOP_UNLOCK(vp, 0); fp->f_seqcount = (arg + bsize - 1) / bsize; do { new = old = fp->f_flag; new |= FRDAHEAD; } while (!atomic_cmpset_rel_int(&fp->f_flag, old, new)); readahead_vnlock_fail: VFS_UNLOCK_GIANT(vfslocked); vfslocked = 0; } else { do { new = old = fp->f_flag; new &= ~FRDAHEAD; } while (!atomic_cmpset_rel_int(&fp->f_flag, old, new)); } fdrop(fp, td); break; default: error = EINVAL; break; } VFS_UNLOCK_GIANT(vfslocked); return (error); } /* * Common code for dup, dup2, fcntl(F_DUPFD) and fcntl(F_DUP2FD). */ static int do_dup(struct thread *td, int flags, int old, int new, register_t *retval) { struct filedesc *fdp; struct proc *p; struct file *fp; struct file *delfp; int error, holdleaders, maxfd; p = td->td_proc; fdp = p->p_fd; /* * Verify we have a valid descriptor to dup from and possibly to * dup to. Unlike dup() and dup2(), fcntl()'s F_DUPFD should * return EINVAL when the new descriptor is out of bounds. */ if (old < 0) return (EBADF); if (new < 0) return (flags & DUP_FCNTL ? EINVAL : EBADF); PROC_LOCK(p); maxfd = min((int)lim_cur(p, RLIMIT_NOFILE), maxfilesperproc); PROC_UNLOCK(p); if (new >= maxfd) return (flags & DUP_FCNTL ? EINVAL : EBADF); FILEDESC_XLOCK(fdp); if (old >= fdp->fd_nfiles || fdp->fd_ofiles[old] == NULL) { FILEDESC_XUNLOCK(fdp); return (EBADF); } if (flags & DUP_FIXED && old == new) { *retval = new; FILEDESC_XUNLOCK(fdp); return (0); } fp = fdp->fd_ofiles[old]; fhold(fp); /* * If the caller specified a file descriptor, make sure the file * table is large enough to hold it, and grab it. Otherwise, just * allocate a new descriptor the usual way. Since the filedesc * lock may be temporarily dropped in the process, we have to look * out for a race. */ if (flags & DUP_FIXED) { if (new >= fdp->fd_nfiles) { /* * The resource limits are here instead of e.g. * fdalloc(), because the file descriptor table may be * shared between processes, so we can't really use * racct_add()/racct_sub(). Instead of counting the * number of actually allocated descriptors, just put * the limit on the size of the file descriptor table. */ #ifdef RACCT PROC_LOCK(p); error = racct_set(p, RACCT_NOFILE, new + 1); PROC_UNLOCK(p); if (error != 0) { FILEDESC_XUNLOCK(fdp); fdrop(fp, td); return (EMFILE); } #endif fdgrowtable(fdp, new + 1); } if (fdp->fd_ofiles[new] == NULL) fdused(fdp, new); } else { if ((error = fdalloc(td, new, &new)) != 0) { FILEDESC_XUNLOCK(fdp); fdrop(fp, td); return (error); } } /* * If the old file changed out from under us then treat it as a * bad file descriptor. Userland should do its own locking to * avoid this case. */ if (fdp->fd_ofiles[old] != fp) { /* we've allocated a descriptor which we won't use */ if (fdp->fd_ofiles[new] == NULL) fdunused(fdp, new); FILEDESC_XUNLOCK(fdp); fdrop(fp, td); return (EBADF); } KASSERT(old != new, ("new fd is same as old")); /* * Save info on the descriptor being overwritten. We cannot close * it without introducing an ownership race for the slot, since we * need to drop the filedesc lock to call closef(). * * XXX this duplicates parts of close(). */ delfp = fdp->fd_ofiles[new]; holdleaders = 0; if (delfp != NULL) { if (td->td_proc->p_fdtol != NULL) { /* * Ask fdfree() to sleep to ensure that all relevant * process leaders can be traversed in closef(). */ fdp->fd_holdleaderscount++; holdleaders = 1; } } /* * Duplicate the source descriptor */ fdp->fd_ofiles[new] = fp; fdp->fd_ofileflags[new] = fdp->fd_ofileflags[old] &~ UF_EXCLOSE; if (new > fdp->fd_lastfile) fdp->fd_lastfile = new; *retval = new; /* * If we dup'd over a valid file, we now own the reference to it * and must dispose of it using closef() semantics (as if a * close() were performed on it). * * XXX this duplicates parts of close(). */ if (delfp != NULL) { knote_fdclose(td, new); if (delfp->f_type == DTYPE_MQUEUE) mq_fdclose(td, new, delfp); FILEDESC_XUNLOCK(fdp); (void) closef(delfp, td); if (holdleaders) { FILEDESC_XLOCK(fdp); fdp->fd_holdleaderscount--; if (fdp->fd_holdleaderscount == 0 && fdp->fd_holdleaderswakeup != 0) { fdp->fd_holdleaderswakeup = 0; wakeup(&fdp->fd_holdleaderscount); } FILEDESC_XUNLOCK(fdp); } } else { FILEDESC_XUNLOCK(fdp); } return (0); } /* * If sigio is on the list associated with a process or process group, * disable signalling from the device, remove sigio from the list and * free sigio. */ void funsetown(struct sigio **sigiop) { struct sigio *sigio; SIGIO_LOCK(); sigio = *sigiop; if (sigio == NULL) { SIGIO_UNLOCK(); return; } *(sigio->sio_myref) = NULL; if ((sigio)->sio_pgid < 0) { struct pgrp *pg = (sigio)->sio_pgrp; PGRP_LOCK(pg); SLIST_REMOVE(&sigio->sio_pgrp->pg_sigiolst, sigio, sigio, sio_pgsigio); PGRP_UNLOCK(pg); } else { struct proc *p = (sigio)->sio_proc; PROC_LOCK(p); SLIST_REMOVE(&sigio->sio_proc->p_sigiolst, sigio, sigio, sio_pgsigio); PROC_UNLOCK(p); } SIGIO_UNLOCK(); crfree(sigio->sio_ucred); free(sigio, M_SIGIO); } /* * Free a list of sigio structures. * We only need to lock the SIGIO_LOCK because we have made ourselves * inaccessible to callers of fsetown and therefore do not need to lock * the proc or pgrp struct for the list manipulation. */ void funsetownlst(struct sigiolst *sigiolst) { struct proc *p; struct pgrp *pg; struct sigio *sigio; sigio = SLIST_FIRST(sigiolst); if (sigio == NULL) return; p = NULL; pg = NULL; /* * Every entry of the list should belong * to a single proc or pgrp. */ if (sigio->sio_pgid < 0) { pg = sigio->sio_pgrp; PGRP_LOCK_ASSERT(pg, MA_NOTOWNED); } else /* if (sigio->sio_pgid > 0) */ { p = sigio->sio_proc; PROC_LOCK_ASSERT(p, MA_NOTOWNED); } SIGIO_LOCK(); while ((sigio = SLIST_FIRST(sigiolst)) != NULL) { *(sigio->sio_myref) = NULL; if (pg != NULL) { KASSERT(sigio->sio_pgid < 0, ("Proc sigio in pgrp sigio list")); KASSERT(sigio->sio_pgrp == pg, ("Bogus pgrp in sigio list")); PGRP_LOCK(pg); SLIST_REMOVE(&pg->pg_sigiolst, sigio, sigio, sio_pgsigio); PGRP_UNLOCK(pg); } else /* if (p != NULL) */ { KASSERT(sigio->sio_pgid > 0, ("Pgrp sigio in proc sigio list")); KASSERT(sigio->sio_proc == p, ("Bogus proc in sigio list")); PROC_LOCK(p); SLIST_REMOVE(&p->p_sigiolst, sigio, sigio, sio_pgsigio); PROC_UNLOCK(p); } SIGIO_UNLOCK(); crfree(sigio->sio_ucred); free(sigio, M_SIGIO); SIGIO_LOCK(); } SIGIO_UNLOCK(); } /* * This is common code for FIOSETOWN ioctl called by fcntl(fd, F_SETOWN, arg). * * After permission checking, add a sigio structure to the sigio list for * the process or process group. */ int fsetown(pid_t pgid, struct sigio **sigiop) { struct proc *proc; struct pgrp *pgrp; struct sigio *sigio; int ret; if (pgid == 0) { funsetown(sigiop); return (0); } ret = 0; /* Allocate and fill in the new sigio out of locks. */ sigio = malloc(sizeof(struct sigio), M_SIGIO, M_WAITOK); sigio->sio_pgid = pgid; sigio->sio_ucred = crhold(curthread->td_ucred); sigio->sio_myref = sigiop; sx_slock(&proctree_lock); if (pgid > 0) { proc = pfind(pgid); if (proc == NULL) { ret = ESRCH; goto fail; } /* * Policy - Don't allow a process to FSETOWN a process * in another session. * * Remove this test to allow maximum flexibility or * restrict FSETOWN to the current process or process * group for maximum safety. */ PROC_UNLOCK(proc); if (proc->p_session != curthread->td_proc->p_session) { ret = EPERM; goto fail; } pgrp = NULL; } else /* if (pgid < 0) */ { pgrp = pgfind(-pgid); if (pgrp == NULL) { ret = ESRCH; goto fail; } PGRP_UNLOCK(pgrp); /* * Policy - Don't allow a process to FSETOWN a process * in another session. * * Remove this test to allow maximum flexibility or * restrict FSETOWN to the current process or process * group for maximum safety. */ if (pgrp->pg_session != curthread->td_proc->p_session) { ret = EPERM; goto fail; } proc = NULL; } funsetown(sigiop); if (pgid > 0) { PROC_LOCK(proc); /* * Since funsetownlst() is called without the proctree * locked, we need to check for P_WEXIT. * XXX: is ESRCH correct? */ if ((proc->p_flag & P_WEXIT) != 0) { PROC_UNLOCK(proc); ret = ESRCH; goto fail; } SLIST_INSERT_HEAD(&proc->p_sigiolst, sigio, sio_pgsigio); sigio->sio_proc = proc; PROC_UNLOCK(proc); } else { PGRP_LOCK(pgrp); SLIST_INSERT_HEAD(&pgrp->pg_sigiolst, sigio, sio_pgsigio); sigio->sio_pgrp = pgrp; PGRP_UNLOCK(pgrp); } sx_sunlock(&proctree_lock); SIGIO_LOCK(); *sigiop = sigio; SIGIO_UNLOCK(); return (0); fail: sx_sunlock(&proctree_lock); crfree(sigio->sio_ucred); free(sigio, M_SIGIO); return (ret); } /* * This is common code for FIOGETOWN ioctl called by fcntl(fd, F_GETOWN, arg). */ pid_t fgetown(sigiop) struct sigio **sigiop; { pid_t pgid; SIGIO_LOCK(); pgid = (*sigiop != NULL) ? (*sigiop)->sio_pgid : 0; SIGIO_UNLOCK(); return (pgid); } /* * Close a file descriptor. */ #ifndef _SYS_SYSPROTO_H_ struct close_args { int fd; }; #endif /* ARGSUSED */ int sys_close(td, uap) struct thread *td; struct close_args *uap; { return (kern_close(td, uap->fd)); } int kern_close(td, fd) struct thread *td; int fd; { struct filedesc *fdp; struct file *fp, *fp_object; int error; int holdleaders; error = 0; holdleaders = 0; fdp = td->td_proc->p_fd; AUDIT_SYSCLOSE(td, fd); FILEDESC_XLOCK(fdp); if ((unsigned)fd >= fdp->fd_nfiles || (fp = fdp->fd_ofiles[fd]) == NULL) { FILEDESC_XUNLOCK(fdp); return (EBADF); } fdp->fd_ofiles[fd] = NULL; fdp->fd_ofileflags[fd] = 0; fdunused(fdp, fd); if (td->td_proc->p_fdtol != NULL) { /* * Ask fdfree() to sleep to ensure that all relevant * process leaders can be traversed in closef(). */ fdp->fd_holdleaderscount++; holdleaders = 1; } /* * We now hold the fp reference that used to be owned by the * descriptor array. We have to unlock the FILEDESC *AFTER* * knote_fdclose to prevent a race of the fd getting opened, a knote * added, and deleteing a knote for the new fd. */ knote_fdclose(td, fd); /* * When we're closing an fd with a capability, we need to notify * mqueue if the underlying object is of type mqueue. */ (void)cap_funwrap(fp, 0, &fp_object); if (fp_object->f_type == DTYPE_MQUEUE) mq_fdclose(td, fd, fp_object); FILEDESC_XUNLOCK(fdp); error = closef(fp, td); if (holdleaders) { FILEDESC_XLOCK(fdp); fdp->fd_holdleaderscount--; if (fdp->fd_holdleaderscount == 0 && fdp->fd_holdleaderswakeup != 0) { fdp->fd_holdleaderswakeup = 0; wakeup(&fdp->fd_holdleaderscount); } FILEDESC_XUNLOCK(fdp); } return (error); } /* * Close open file descriptors. */ #ifndef _SYS_SYSPROTO_H_ struct closefrom_args { int lowfd; }; #endif /* ARGSUSED */ int sys_closefrom(struct thread *td, struct closefrom_args *uap) { struct filedesc *fdp; int fd; fdp = td->td_proc->p_fd; AUDIT_ARG_FD(uap->lowfd); /* * Treat negative starting file descriptor values identical to * closefrom(0) which closes all files. */ if (uap->lowfd < 0) uap->lowfd = 0; FILEDESC_SLOCK(fdp); for (fd = uap->lowfd; fd < fdp->fd_nfiles; fd++) { if (fdp->fd_ofiles[fd] != NULL) { FILEDESC_SUNLOCK(fdp); (void)kern_close(td, fd); FILEDESC_SLOCK(fdp); } } FILEDESC_SUNLOCK(fdp); return (0); } #if defined(COMPAT_43) /* * Return status information about a file descriptor. */ #ifndef _SYS_SYSPROTO_H_ struct ofstat_args { int fd; struct ostat *sb; }; #endif /* ARGSUSED */ int ofstat(struct thread *td, struct ofstat_args *uap) { struct ostat oub; struct stat ub; int error; error = kern_fstat(td, uap->fd, &ub); if (error == 0) { cvtstat(&ub, &oub); error = copyout(&oub, uap->sb, sizeof(oub)); } return (error); } #endif /* COMPAT_43 */ /* * Return status information about a file descriptor. */ #ifndef _SYS_SYSPROTO_H_ struct fstat_args { int fd; struct stat *sb; }; #endif /* ARGSUSED */ int sys_fstat(struct thread *td, struct fstat_args *uap) { struct stat ub; int error; error = kern_fstat(td, uap->fd, &ub); if (error == 0) error = copyout(&ub, uap->sb, sizeof(ub)); return (error); } int kern_fstat(struct thread *td, int fd, struct stat *sbp) { struct file *fp; int error; AUDIT_ARG_FD(fd); if ((error = fget(td, fd, CAP_FSTAT, &fp)) != 0) return (error); AUDIT_ARG_FILE(td->td_proc, fp); error = fo_stat(fp, sbp, td->td_ucred, td); fdrop(fp, td); #ifdef KTRACE if (error == 0 && KTRPOINT(td, KTR_STRUCT)) ktrstat(sbp); #endif return (error); } /* * Return status information about a file descriptor. */ #ifndef _SYS_SYSPROTO_H_ struct nfstat_args { int fd; struct nstat *sb; }; #endif /* ARGSUSED */ int sys_nfstat(struct thread *td, struct nfstat_args *uap) { struct nstat nub; struct stat ub; int error; error = kern_fstat(td, uap->fd, &ub); if (error == 0) { cvtnstat(&ub, &nub); error = copyout(&nub, uap->sb, sizeof(nub)); } return (error); } /* * Return pathconf information about a file descriptor. */ #ifndef _SYS_SYSPROTO_H_ struct fpathconf_args { int fd; int name; }; #endif /* ARGSUSED */ int sys_fpathconf(struct thread *td, struct fpathconf_args *uap) { struct file *fp; struct vnode *vp; int error; if ((error = fget(td, uap->fd, CAP_FPATHCONF, &fp)) != 0) return (error); /* If asynchronous I/O is available, it works for all descriptors. */ if (uap->name == _PC_ASYNC_IO) { td->td_retval[0] = async_io_version; goto out; } vp = fp->f_vnode; if (vp != NULL) { int vfslocked; vfslocked = VFS_LOCK_GIANT(vp->v_mount); vn_lock(vp, LK_SHARED | LK_RETRY); error = VOP_PATHCONF(vp, uap->name, td->td_retval); VOP_UNLOCK(vp, 0); VFS_UNLOCK_GIANT(vfslocked); } else if (fp->f_type == DTYPE_PIPE || fp->f_type == DTYPE_SOCKET) { if (uap->name != _PC_PIPE_BUF) { error = EINVAL; } else { td->td_retval[0] = PIPE_BUF; error = 0; } } else { error = EOPNOTSUPP; } out: fdrop(fp, td); return (error); } /* * Grow the file table to accomodate (at least) nfd descriptors. This may * block and drop the filedesc lock, but it will reacquire it before * returning. */ static void fdgrowtable(struct filedesc *fdp, int nfd) { struct filedesc0 *fdp0; struct freetable *fo; struct file **ntable; struct file **otable; char *nfileflags; int nnfiles, onfiles; NDSLOTTYPE *nmap; FILEDESC_XLOCK_ASSERT(fdp); KASSERT(fdp->fd_nfiles > 0, ("zero-length file table")); /* compute the size of the new table */ onfiles = fdp->fd_nfiles; nnfiles = NDSLOTS(nfd) * NDENTRIES; /* round up */ if (nnfiles <= onfiles) /* the table is already large enough */ return; /* allocate a new table and (if required) new bitmaps */ FILEDESC_XUNLOCK(fdp); ntable = malloc((nnfiles * OFILESIZE) + sizeof(struct freetable), M_FILEDESC, M_ZERO | M_WAITOK); nfileflags = (char *)&ntable[nnfiles]; if (NDSLOTS(nnfiles) > NDSLOTS(onfiles)) nmap = malloc(NDSLOTS(nnfiles) * NDSLOTSIZE, M_FILEDESC, M_ZERO | M_WAITOK); else nmap = NULL; FILEDESC_XLOCK(fdp); /* * We now have new tables ready to go. Since we dropped the * filedesc lock to call malloc(), watch out for a race. */ onfiles = fdp->fd_nfiles; if (onfiles >= nnfiles) { /* we lost the race, but that's OK */ free(ntable, M_FILEDESC); if (nmap != NULL) free(nmap, M_FILEDESC); return; } bcopy(fdp->fd_ofiles, ntable, onfiles * sizeof(*ntable)); bcopy(fdp->fd_ofileflags, nfileflags, onfiles); otable = fdp->fd_ofiles; fdp->fd_ofileflags = nfileflags; fdp->fd_ofiles = ntable; /* * We must preserve ofiles until the process exits because we can't * be certain that no threads have references to the old table via * _fget(). */ if (onfiles > NDFILE) { fo = (struct freetable *)&otable[onfiles]; fdp0 = (struct filedesc0 *)fdp; fo->ft_table = otable; SLIST_INSERT_HEAD(&fdp0->fd_free, fo, ft_next); } if (NDSLOTS(nnfiles) > NDSLOTS(onfiles)) { bcopy(fdp->fd_map, nmap, NDSLOTS(onfiles) * sizeof(*nmap)); if (NDSLOTS(onfiles) > NDSLOTS(NDFILE)) free(fdp->fd_map, M_FILEDESC); fdp->fd_map = nmap; } fdp->fd_nfiles = nnfiles; } /* * Allocate a file descriptor for the process. */ int fdalloc(struct thread *td, int minfd, int *result) { struct proc *p = td->td_proc; struct filedesc *fdp = p->p_fd; int fd = -1, maxfd; #ifdef RACCT int error; #endif FILEDESC_XLOCK_ASSERT(fdp); if (fdp->fd_freefile > minfd) minfd = fdp->fd_freefile; PROC_LOCK(p); maxfd = min((int)lim_cur(p, RLIMIT_NOFILE), maxfilesperproc); PROC_UNLOCK(p); /* * Search the bitmap for a free descriptor. If none is found, try * to grow the file table. Keep at it until we either get a file * descriptor or run into process or system limits; fdgrowtable() * may drop the filedesc lock, so we're in a race. */ for (;;) { fd = fd_first_free(fdp, minfd, fdp->fd_nfiles); if (fd >= maxfd) return (EMFILE); if (fd < fdp->fd_nfiles) break; #ifdef RACCT PROC_LOCK(p); error = racct_set(p, RACCT_NOFILE, min(fdp->fd_nfiles * 2, maxfd)); PROC_UNLOCK(p); if (error != 0) return (EMFILE); #endif fdgrowtable(fdp, min(fdp->fd_nfiles * 2, maxfd)); } /* * Perform some sanity checks, then mark the file descriptor as * used and return it to the caller. */ KASSERT(!fdisused(fdp, fd), ("fd_first_free() returned non-free descriptor")); KASSERT(fdp->fd_ofiles[fd] == NULL, ("free descriptor isn't")); fdp->fd_ofileflags[fd] = 0; /* XXX needed? */ fdused(fdp, fd); *result = fd; return (0); } /* * Check to see whether n user file descriptors are available to the process * p. */ int fdavail(struct thread *td, int n) { struct proc *p = td->td_proc; struct filedesc *fdp = td->td_proc->p_fd; struct file **fpp; int i, lim, last; FILEDESC_LOCK_ASSERT(fdp); /* * XXX: This is only called from uipc_usrreq.c:unp_externalize(); * call racct_add() from there instead of dealing with containers * here. */ PROC_LOCK(p); lim = min((int)lim_cur(p, RLIMIT_NOFILE), maxfilesperproc); PROC_UNLOCK(p); if ((i = lim - fdp->fd_nfiles) > 0 && (n -= i) <= 0) return (1); last = min(fdp->fd_nfiles, lim); fpp = &fdp->fd_ofiles[fdp->fd_freefile]; for (i = last - fdp->fd_freefile; --i >= 0; fpp++) { if (*fpp == NULL && --n <= 0) return (1); } return (0); } /* * Create a new open file structure and allocate a file decriptor for the * process that refers to it. We add one reference to the file for the * descriptor table and one reference for resultfp. This is to prevent us * being preempted and the entry in the descriptor table closed after we * release the FILEDESC lock. */ int falloc(struct thread *td, struct file **resultfp, int *resultfd, int flags) { struct file *fp; int error, fd; error = falloc_noinstall(td, &fp); if (error) return (error); /* no reference held on error */ error = finstall(td, fp, &fd, flags); if (error) { fdrop(fp, td); /* one reference (fp only) */ return (error); } if (resultfp != NULL) *resultfp = fp; /* copy out result */ else fdrop(fp, td); /* release local reference */ if (resultfd != NULL) *resultfd = fd; return (0); } /* * Create a new open file structure without allocating a file descriptor. */ int falloc_noinstall(struct thread *td, struct file **resultfp) { struct file *fp; int maxuserfiles = maxfiles - (maxfiles / 20); static struct timeval lastfail; static int curfail; KASSERT(resultfp != NULL, ("%s: resultfp == NULL", __func__)); if ((openfiles >= maxuserfiles && priv_check(td, PRIV_MAXFILES) != 0) || openfiles >= maxfiles) { if (ppsratecheck(&lastfail, &curfail, 1)) { printf("kern.maxfiles limit exceeded by uid %i, " "please see tuning(7).\n", td->td_ucred->cr_ruid); } return (ENFILE); } atomic_add_int(&openfiles, 1); fp = uma_zalloc(file_zone, M_WAITOK | M_ZERO); refcount_init(&fp->f_count, 1); fp->f_cred = crhold(td->td_ucred); fp->f_ops = &badfileops; fp->f_data = NULL; fp->f_vnode = NULL; *resultfp = fp; return (0); } /* * Install a file in a file descriptor table. */ int finstall(struct thread *td, struct file *fp, int *fd, int flags) { struct filedesc *fdp = td->td_proc->p_fd; int error; KASSERT(fd != NULL, ("%s: fd == NULL", __func__)); KASSERT(fp != NULL, ("%s: fp == NULL", __func__)); FILEDESC_XLOCK(fdp); if ((error = fdalloc(td, 0, fd))) { FILEDESC_XUNLOCK(fdp); return (error); } fhold(fp); fdp->fd_ofiles[*fd] = fp; if ((flags & O_CLOEXEC) != 0) fdp->fd_ofileflags[*fd] |= UF_EXCLOSE; FILEDESC_XUNLOCK(fdp); return (0); } /* * Build a new filedesc structure from another. * Copy the current, root, and jail root vnode references. */ struct filedesc * fdinit(struct filedesc *fdp) { struct filedesc0 *newfdp; newfdp = malloc(sizeof *newfdp, M_FILEDESC, M_WAITOK | M_ZERO); FILEDESC_LOCK_INIT(&newfdp->fd_fd); if (fdp != NULL) { FILEDESC_XLOCK(fdp); newfdp->fd_fd.fd_cdir = fdp->fd_cdir; if (newfdp->fd_fd.fd_cdir) VREF(newfdp->fd_fd.fd_cdir); newfdp->fd_fd.fd_rdir = fdp->fd_rdir; if (newfdp->fd_fd.fd_rdir) VREF(newfdp->fd_fd.fd_rdir); newfdp->fd_fd.fd_jdir = fdp->fd_jdir; if (newfdp->fd_fd.fd_jdir) VREF(newfdp->fd_fd.fd_jdir); FILEDESC_XUNLOCK(fdp); } /* Create the file descriptor table. */ newfdp->fd_fd.fd_refcnt = 1; newfdp->fd_fd.fd_holdcnt = 1; newfdp->fd_fd.fd_cmask = CMASK; newfdp->fd_fd.fd_ofiles = newfdp->fd_dfiles; newfdp->fd_fd.fd_ofileflags = newfdp->fd_dfileflags; newfdp->fd_fd.fd_nfiles = NDFILE; newfdp->fd_fd.fd_map = newfdp->fd_dmap; newfdp->fd_fd.fd_lastfile = -1; return (&newfdp->fd_fd); } static struct filedesc * fdhold(struct proc *p) { struct filedesc *fdp; mtx_lock(&fdesc_mtx); fdp = p->p_fd; if (fdp != NULL) fdp->fd_holdcnt++; mtx_unlock(&fdesc_mtx); return (fdp); } static void fddrop(struct filedesc *fdp) { struct filedesc0 *fdp0; struct freetable *ft; int i; mtx_lock(&fdesc_mtx); i = --fdp->fd_holdcnt; mtx_unlock(&fdesc_mtx); if (i > 0) return; FILEDESC_LOCK_DESTROY(fdp); fdp0 = (struct filedesc0 *)fdp; while ((ft = SLIST_FIRST(&fdp0->fd_free)) != NULL) { SLIST_REMOVE_HEAD(&fdp0->fd_free, ft_next); free(ft->ft_table, M_FILEDESC); } free(fdp, M_FILEDESC); } /* * Share a filedesc structure. */ struct filedesc * fdshare(struct filedesc *fdp) { FILEDESC_XLOCK(fdp); fdp->fd_refcnt++; FILEDESC_XUNLOCK(fdp); return (fdp); } /* * Unshare a filedesc structure, if necessary by making a copy */ void fdunshare(struct proc *p, struct thread *td) { FILEDESC_XLOCK(p->p_fd); if (p->p_fd->fd_refcnt > 1) { struct filedesc *tmp; FILEDESC_XUNLOCK(p->p_fd); tmp = fdcopy(p->p_fd); fdfree(td); p->p_fd = tmp; } else FILEDESC_XUNLOCK(p->p_fd); } /* * Copy a filedesc structure. A NULL pointer in returns a NULL reference, * this is to ease callers, not catch errors. */ struct filedesc * fdcopy(struct filedesc *fdp) { struct filedesc *newfdp; int i; /* Certain daemons might not have file descriptors. */ if (fdp == NULL) return (NULL); newfdp = fdinit(fdp); FILEDESC_SLOCK(fdp); while (fdp->fd_lastfile >= newfdp->fd_nfiles) { FILEDESC_SUNLOCK(fdp); FILEDESC_XLOCK(newfdp); fdgrowtable(newfdp, fdp->fd_lastfile + 1); FILEDESC_XUNLOCK(newfdp); FILEDESC_SLOCK(fdp); } /* copy all passable descriptors (i.e. not kqueue) */ newfdp->fd_freefile = -1; for (i = 0; i <= fdp->fd_lastfile; ++i) { if (fdisused(fdp, i) && (fdp->fd_ofiles[i]->f_ops->fo_flags & DFLAG_PASSABLE) && fdp->fd_ofiles[i]->f_ops != &badfileops) { newfdp->fd_ofiles[i] = fdp->fd_ofiles[i]; newfdp->fd_ofileflags[i] = fdp->fd_ofileflags[i]; fhold(newfdp->fd_ofiles[i]); newfdp->fd_lastfile = i; } else { if (newfdp->fd_freefile == -1) newfdp->fd_freefile = i; } } newfdp->fd_cmask = fdp->fd_cmask; FILEDESC_SUNLOCK(fdp); FILEDESC_XLOCK(newfdp); for (i = 0; i <= newfdp->fd_lastfile; ++i) if (newfdp->fd_ofiles[i] != NULL) fdused(newfdp, i); if (newfdp->fd_freefile == -1) newfdp->fd_freefile = i; FILEDESC_XUNLOCK(newfdp); return (newfdp); } /* * Release a filedesc structure. */ void fdfree(struct thread *td) { struct filedesc *fdp; struct file **fpp; int i, locked; struct filedesc_to_leader *fdtol; struct file *fp; struct vnode *cdir, *jdir, *rdir, *vp; struct flock lf; /* Certain daemons might not have file descriptors. */ fdp = td->td_proc->p_fd; if (fdp == NULL) return; #ifdef RACCT PROC_LOCK(td->td_proc); racct_set(td->td_proc, RACCT_NOFILE, 0); PROC_UNLOCK(td->td_proc); #endif /* Check for special need to clear POSIX style locks */ fdtol = td->td_proc->p_fdtol; if (fdtol != NULL) { FILEDESC_XLOCK(fdp); KASSERT(fdtol->fdl_refcount > 0, ("filedesc_to_refcount botch: fdl_refcount=%d", fdtol->fdl_refcount)); if (fdtol->fdl_refcount == 1 && (td->td_proc->p_leader->p_flag & P_ADVLOCK) != 0) { for (i = 0, fpp = fdp->fd_ofiles; i <= fdp->fd_lastfile; i++, fpp++) { if (*fpp == NULL || (*fpp)->f_type != DTYPE_VNODE) continue; fp = *fpp; fhold(fp); FILEDESC_XUNLOCK(fdp); lf.l_whence = SEEK_SET; lf.l_start = 0; lf.l_len = 0; lf.l_type = F_UNLCK; vp = fp->f_vnode; locked = VFS_LOCK_GIANT(vp->v_mount); (void) VOP_ADVLOCK(vp, (caddr_t)td->td_proc-> p_leader, F_UNLCK, &lf, F_POSIX); VFS_UNLOCK_GIANT(locked); FILEDESC_XLOCK(fdp); fdrop(fp, td); fpp = fdp->fd_ofiles + i; } } retry: if (fdtol->fdl_refcount == 1) { if (fdp->fd_holdleaderscount > 0 && (td->td_proc->p_leader->p_flag & P_ADVLOCK) != 0) { /* * close() or do_dup() has cleared a reference * in a shared file descriptor table. */ fdp->fd_holdleaderswakeup = 1; sx_sleep(&fdp->fd_holdleaderscount, FILEDESC_LOCK(fdp), PLOCK, "fdlhold", 0); goto retry; } if (fdtol->fdl_holdcount > 0) { /* * Ensure that fdtol->fdl_leader remains * valid in closef(). */ fdtol->fdl_wakeup = 1; sx_sleep(fdtol, FILEDESC_LOCK(fdp), PLOCK, "fdlhold", 0); goto retry; } } fdtol->fdl_refcount--; if (fdtol->fdl_refcount == 0 && fdtol->fdl_holdcount == 0) { fdtol->fdl_next->fdl_prev = fdtol->fdl_prev; fdtol->fdl_prev->fdl_next = fdtol->fdl_next; } else fdtol = NULL; td->td_proc->p_fdtol = NULL; FILEDESC_XUNLOCK(fdp); if (fdtol != NULL) free(fdtol, M_FILEDESC_TO_LEADER); } FILEDESC_XLOCK(fdp); i = --fdp->fd_refcnt; FILEDESC_XUNLOCK(fdp); if (i > 0) return; fpp = fdp->fd_ofiles; for (i = fdp->fd_lastfile; i-- >= 0; fpp++) { if (*fpp) { FILEDESC_XLOCK(fdp); fp = *fpp; *fpp = NULL; FILEDESC_XUNLOCK(fdp); (void) closef(fp, td); } } FILEDESC_XLOCK(fdp); /* XXX This should happen earlier. */ mtx_lock(&fdesc_mtx); td->td_proc->p_fd = NULL; mtx_unlock(&fdesc_mtx); if (fdp->fd_nfiles > NDFILE) free(fdp->fd_ofiles, M_FILEDESC); if (NDSLOTS(fdp->fd_nfiles) > NDSLOTS(NDFILE)) free(fdp->fd_map, M_FILEDESC); fdp->fd_nfiles = 0; cdir = fdp->fd_cdir; fdp->fd_cdir = NULL; rdir = fdp->fd_rdir; fdp->fd_rdir = NULL; jdir = fdp->fd_jdir; fdp->fd_jdir = NULL; FILEDESC_XUNLOCK(fdp); if (cdir) { locked = VFS_LOCK_GIANT(cdir->v_mount); vrele(cdir); VFS_UNLOCK_GIANT(locked); } if (rdir) { locked = VFS_LOCK_GIANT(rdir->v_mount); vrele(rdir); VFS_UNLOCK_GIANT(locked); } if (jdir) { locked = VFS_LOCK_GIANT(jdir->v_mount); vrele(jdir); VFS_UNLOCK_GIANT(locked); } fddrop(fdp); } /* * For setugid programs, we don't want to people to use that setugidness * to generate error messages which write to a file which otherwise would * otherwise be off-limits to the process. We check for filesystems where * the vnode can change out from under us after execve (like [lin]procfs). * * Since setugidsafety calls this only for fd 0, 1 and 2, this check is * sufficient. We also don't check for setugidness since we know we are. */ static int is_unsafe(struct file *fp) { if (fp->f_type == DTYPE_VNODE) { struct vnode *vp = fp->f_vnode; if ((vp->v_vflag & VV_PROCDEP) != 0) return (1); } return (0); } /* * Make this setguid thing safe, if at all possible. */ void setugidsafety(struct thread *td) { struct filedesc *fdp; int i; /* Certain daemons might not have file descriptors. */ fdp = td->td_proc->p_fd; if (fdp == NULL) return; /* * Note: fdp->fd_ofiles may be reallocated out from under us while * we are blocked in a close. Be careful! */ FILEDESC_XLOCK(fdp); for (i = 0; i <= fdp->fd_lastfile; i++) { if (i > 2) break; if (fdp->fd_ofiles[i] && is_unsafe(fdp->fd_ofiles[i])) { struct file *fp; knote_fdclose(td, i); /* * NULL-out descriptor prior to close to avoid * a race while close blocks. */ fp = fdp->fd_ofiles[i]; fdp->fd_ofiles[i] = NULL; fdp->fd_ofileflags[i] = 0; fdunused(fdp, i); FILEDESC_XUNLOCK(fdp); (void) closef(fp, td); FILEDESC_XLOCK(fdp); } } FILEDESC_XUNLOCK(fdp); } /* * If a specific file object occupies a specific file descriptor, close the * file descriptor entry and drop a reference on the file object. This is a * convenience function to handle a subsequent error in a function that calls * falloc() that handles the race that another thread might have closed the * file descriptor out from under the thread creating the file object. */ void fdclose(struct filedesc *fdp, struct file *fp, int idx, struct thread *td) { FILEDESC_XLOCK(fdp); if (fdp->fd_ofiles[idx] == fp) { fdp->fd_ofiles[idx] = NULL; fdunused(fdp, idx); FILEDESC_XUNLOCK(fdp); fdrop(fp, td); } else FILEDESC_XUNLOCK(fdp); } /* * Close any files on exec? */ void fdcloseexec(struct thread *td) { struct filedesc *fdp; int i; /* Certain daemons might not have file descriptors. */ fdp = td->td_proc->p_fd; if (fdp == NULL) return; FILEDESC_XLOCK(fdp); /* * We cannot cache fd_ofiles or fd_ofileflags since operations * may block and rip them out from under us. */ for (i = 0; i <= fdp->fd_lastfile; i++) { if (fdp->fd_ofiles[i] != NULL && (fdp->fd_ofiles[i]->f_type == DTYPE_MQUEUE || (fdp->fd_ofileflags[i] & UF_EXCLOSE))) { struct file *fp; knote_fdclose(td, i); /* * NULL-out descriptor prior to close to avoid * a race while close blocks. */ fp = fdp->fd_ofiles[i]; fdp->fd_ofiles[i] = NULL; fdp->fd_ofileflags[i] = 0; fdunused(fdp, i); if (fp->f_type == DTYPE_MQUEUE) mq_fdclose(td, i, fp); FILEDESC_XUNLOCK(fdp); (void) closef(fp, td); FILEDESC_XLOCK(fdp); } } FILEDESC_XUNLOCK(fdp); } /* * It is unsafe for set[ug]id processes to be started with file * descriptors 0..2 closed, as these descriptors are given implicit * significance in the Standard C library. fdcheckstd() will create a * descriptor referencing /dev/null for each of stdin, stdout, and * stderr that is not already open. */ int fdcheckstd(struct thread *td) { struct filedesc *fdp; register_t retval, save; int i, error, devnull; fdp = td->td_proc->p_fd; if (fdp == NULL) return (0); KASSERT(fdp->fd_refcnt == 1, ("the fdtable should not be shared")); devnull = -1; error = 0; for (i = 0; i < 3; i++) { if (fdp->fd_ofiles[i] != NULL) continue; if (devnull < 0) { save = td->td_retval[0]; error = kern_open(td, "/dev/null", UIO_SYSSPACE, O_RDWR, 0); devnull = td->td_retval[0]; td->td_retval[0] = save; if (error) break; KASSERT(devnull == i, ("oof, we didn't get our fd")); } else { error = do_dup(td, DUP_FIXED, devnull, i, &retval); if (error != 0) break; } } return (error); } /* * Internal form of close. Decrement reference count on file structure. * Note: td may be NULL when closing a file that was being passed in a * message. * * XXXRW: Giant is not required for the caller, but often will be held; this * makes it moderately likely the Giant will be recursed in the VFS case. */ int closef(struct file *fp, struct thread *td) { struct vnode *vp; struct flock lf; struct filedesc_to_leader *fdtol; struct filedesc *fdp; struct file *fp_object; /* * POSIX record locking dictates that any close releases ALL * locks owned by this process. This is handled by setting * a flag in the unlock to free ONLY locks obeying POSIX * semantics, and not to free BSD-style file locks. * If the descriptor was in a message, POSIX-style locks * aren't passed with the descriptor, and the thread pointer * will be NULL. Callers should be careful only to pass a * NULL thread pointer when there really is no owning * context that might have locks, or the locks will be * leaked. * * If this is a capability, we do lock processing under the underlying * node, not the capability itself. */ (void)cap_funwrap(fp, 0, &fp_object); if ((fp_object->f_type == DTYPE_VNODE) && (td != NULL)) { int vfslocked; vp = fp_object->f_vnode; vfslocked = VFS_LOCK_GIANT(vp->v_mount); if ((td->td_proc->p_leader->p_flag & P_ADVLOCK) != 0) { lf.l_whence = SEEK_SET; lf.l_start = 0; lf.l_len = 0; lf.l_type = F_UNLCK; (void) VOP_ADVLOCK(vp, (caddr_t)td->td_proc->p_leader, F_UNLCK, &lf, F_POSIX); } fdtol = td->td_proc->p_fdtol; if (fdtol != NULL) { /* * Handle special case where file descriptor table is * shared between multiple process leaders. */ fdp = td->td_proc->p_fd; FILEDESC_XLOCK(fdp); for (fdtol = fdtol->fdl_next; fdtol != td->td_proc->p_fdtol; fdtol = fdtol->fdl_next) { if ((fdtol->fdl_leader->p_flag & P_ADVLOCK) == 0) continue; fdtol->fdl_holdcount++; FILEDESC_XUNLOCK(fdp); lf.l_whence = SEEK_SET; lf.l_start = 0; lf.l_len = 0; lf.l_type = F_UNLCK; vp = fp_object->f_vnode; (void) VOP_ADVLOCK(vp, (caddr_t)fdtol->fdl_leader, F_UNLCK, &lf, F_POSIX); FILEDESC_XLOCK(fdp); fdtol->fdl_holdcount--; if (fdtol->fdl_holdcount == 0 && fdtol->fdl_wakeup != 0) { fdtol->fdl_wakeup = 0; wakeup(fdtol); } } FILEDESC_XUNLOCK(fdp); } VFS_UNLOCK_GIANT(vfslocked); } return (fdrop(fp, td)); } /* * Initialize the file pointer with the specified properties. * * The ops are set with release semantics to be certain that the flags, type, * and data are visible when ops is. This is to prevent ops methods from being * called with bad data. */ void finit(struct file *fp, u_int flag, short type, void *data, struct fileops *ops) { fp->f_data = data; fp->f_flag = flag; fp->f_type = type; atomic_store_rel_ptr((volatile uintptr_t *)&fp->f_ops, (uintptr_t)ops); } struct file * fget_unlocked(struct filedesc *fdp, int fd) { struct file *fp; u_int count; if (fd < 0 || fd >= fdp->fd_nfiles) return (NULL); /* * Fetch the descriptor locklessly. We avoid fdrop() races by * never raising a refcount above 0. To accomplish this we have * to use a cmpset loop rather than an atomic_add. The descriptor * must be re-verified once we acquire a reference to be certain * that the identity is still correct and we did not lose a race * due to preemption. */ for (;;) { fp = fdp->fd_ofiles[fd]; if (fp == NULL) break; count = fp->f_count; if (count == 0) continue; /* * Use an acquire barrier to prevent caching of fd_ofiles * so it is refreshed for verification. */ if (atomic_cmpset_acq_int(&fp->f_count, count, count + 1) != 1) continue; if (fp == fdp->fd_ofiles[fd]) break; fdrop(fp, curthread); } return (fp); } /* * Extract the file pointer associated with the specified descriptor for the * current user process. * * If the descriptor doesn't exist or doesn't match 'flags', EBADF is * returned. * * If the FGET_GETCAP flag is set, the capability itself will be returned. * Calling _fget() with FGET_GETCAP on a non-capability will return EINVAL. * Otherwise, if the file is a capability, its rights will be checked against * the capability rights mask, and if successful, the object will be unwrapped. * * If an error occured the non-zero error is returned and *fpp is set to * NULL. Otherwise *fpp is held and set and zero is returned. Caller is * responsible for fdrop(). */ #define FGET_GETCAP 0x00000001 static __inline int _fget(struct thread *td, int fd, struct file **fpp, int flags, cap_rights_t needrights, cap_rights_t *haverightsp, u_char *maxprotp, int fget_flags) { struct filedesc *fdp; struct file *fp; #ifdef CAPABILITIES struct file *fp_fromcap; #endif int error; *fpp = NULL; if (td == NULL || (fdp = td->td_proc->p_fd) == NULL) return (EBADF); if ((fp = fget_unlocked(fdp, fd)) == NULL) return (EBADF); if (fp->f_ops == &badfileops) { fdrop(fp, td); return (EBADF); } #ifdef CAPABILITIES /* * If this is a capability, what rights does it have? */ if (haverightsp != NULL) { if (fp->f_type == DTYPE_CAPABILITY) *haverightsp = cap_rights(fp); else *haverightsp = CAP_MASK_VALID; } /* * If a capability has been requested, return the capability directly. * Otherwise, check capability rights, extract the underlying object, * and check its access flags. */ if (fget_flags & FGET_GETCAP) { if (fp->f_type != DTYPE_CAPABILITY) { fdrop(fp, td); return (EINVAL); } } else { if (maxprotp == NULL) error = cap_funwrap(fp, needrights, &fp_fromcap); else error = cap_funwrap_mmap(fp, needrights, maxprotp, &fp_fromcap); if (error != 0) { fdrop(fp, td); return (error); } /* * If we've unwrapped a file, drop the original capability * and hold the new descriptor. fp after this point refers to * the actual (unwrapped) object, not the capability. */ if (fp != fp_fromcap) { fhold(fp_fromcap); fdrop(fp, td); fp = fp_fromcap; } } #else /* !CAPABILITIES */ KASSERT(fp->f_type != DTYPE_CAPABILITY, ("%s: saw capability", __func__)); if (maxprotp != NULL) *maxprotp = VM_PROT_ALL; #endif /* CAPABILITIES */ /* * FREAD and FWRITE failure return EBADF as per POSIX. */ error = 0; switch (flags) { case FREAD: case FWRITE: if ((fp->f_flag & flags) == 0) error = EBADF; break; case FEXEC: if ((fp->f_flag & (FREAD | FEXEC)) == 0 || ((fp->f_flag & FWRITE) != 0)) error = EBADF; break; case 0: break; default: KASSERT(0, ("wrong flags")); } if (error != 0) { fdrop(fp, td); return (error); } *fpp = fp; return (0); } int fget(struct thread *td, int fd, cap_rights_t rights, struct file **fpp) { return(_fget(td, fd, fpp, 0, rights, NULL, NULL, 0)); } int fget_mmap(struct thread *td, int fd, cap_rights_t rights, u_char *maxprotp, struct file **fpp) { return (_fget(td, fd, fpp, 0, rights, NULL, maxprotp, 0)); } int fget_read(struct thread *td, int fd, cap_rights_t rights, struct file **fpp) { return(_fget(td, fd, fpp, FREAD, rights, NULL, NULL, 0)); } int fget_write(struct thread *td, int fd, cap_rights_t rights, struct file **fpp) { return (_fget(td, fd, fpp, FWRITE, rights, NULL, NULL, 0)); } /* * Unlike the other fget() calls, which accept and check capability rights * but never return capabilities, fgetcap() returns the capability but doesn't * check capability rights. */ int fgetcap(struct thread *td, int fd, struct file **fpp) { return (_fget(td, fd, fpp, 0, 0, NULL, NULL, FGET_GETCAP)); } /* * Like fget() but loads the underlying vnode, or returns an error if the * descriptor does not represent a vnode. Note that pipes use vnodes but * never have VM objects. The returned vnode will be vref()'d. * * XXX: what about the unused flags ? */ static __inline int _fgetvp(struct thread *td, int fd, int flags, cap_rights_t needrights, cap_rights_t *haverightsp, struct vnode **vpp) { struct file *fp; int error; *vpp = NULL; if ((error = _fget(td, fd, &fp, flags, needrights, haverightsp, NULL, 0)) != 0) return (error); if (fp->f_vnode == NULL) { error = EINVAL; } else { *vpp = fp->f_vnode; vref(*vpp); } fdrop(fp, td); return (error); } int fgetvp(struct thread *td, int fd, cap_rights_t rights, struct vnode **vpp) { return (_fgetvp(td, fd, 0, rights, NULL, vpp)); } int fgetvp_rights(struct thread *td, int fd, cap_rights_t need, cap_rights_t *have, struct vnode **vpp) { return (_fgetvp(td, fd, 0, need, have, vpp)); } int fgetvp_read(struct thread *td, int fd, cap_rights_t rights, struct vnode **vpp) { return (_fgetvp(td, fd, FREAD, rights, NULL, vpp)); } int fgetvp_exec(struct thread *td, int fd, cap_rights_t rights, struct vnode **vpp) { return (_fgetvp(td, fd, FEXEC, rights, NULL, vpp)); } #ifdef notyet int fgetvp_write(struct thread *td, int fd, cap_rights_t rights, struct vnode **vpp) { return (_fgetvp(td, fd, FWRITE, rights, NULL, vpp)); } #endif /* * Like fget() but loads the underlying socket, or returns an error if the * descriptor does not represent a socket. * * We bump the ref count on the returned socket. XXX Also obtain the SX lock * in the future. * * Note: fgetsock() and fputsock() are deprecated, as consumers should rely * on their file descriptor reference to prevent the socket from being free'd * during use. */ int fgetsock(struct thread *td, int fd, cap_rights_t rights, struct socket **spp, u_int *fflagp) { struct file *fp; int error; *spp = NULL; if (fflagp != NULL) *fflagp = 0; if ((error = _fget(td, fd, &fp, 0, rights, NULL, NULL, 0)) != 0) return (error); if (fp->f_type != DTYPE_SOCKET) { error = ENOTSOCK; } else { *spp = fp->f_data; if (fflagp) *fflagp = fp->f_flag; SOCK_LOCK(*spp); soref(*spp); SOCK_UNLOCK(*spp); } fdrop(fp, td); return (error); } /* * Drop the reference count on the socket and XXX release the SX lock in the * future. The last reference closes the socket. * * Note: fputsock() is deprecated, see comment for fgetsock(). */ void fputsock(struct socket *so) { ACCEPT_LOCK(); SOCK_LOCK(so); CURVNET_SET(so->so_vnet); sorele(so); CURVNET_RESTORE(); } /* * Handle the last reference to a file being closed. * * No special capability handling here, as the capability's fo_close will run * instead of the object here, and perform any necessary drop on the object. */ int _fdrop(struct file *fp, struct thread *td) { int error; error = 0; if (fp->f_count != 0) panic("fdrop: count %d", fp->f_count); if (fp->f_ops != &badfileops) error = fo_close(fp, td); atomic_subtract_int(&openfiles, 1); crfree(fp->f_cred); free(fp->f_advice, M_FADVISE); uma_zfree(file_zone, fp); return (error); } /* * Apply an advisory lock on a file descriptor. * * Just attempt to get a record lock of the requested type on the entire file * (l_whence = SEEK_SET, l_start = 0, l_len = 0). */ #ifndef _SYS_SYSPROTO_H_ struct flock_args { int fd; int how; }; #endif /* ARGSUSED */ int sys_flock(struct thread *td, struct flock_args *uap) { struct file *fp; struct vnode *vp; struct flock lf; int vfslocked; int error; if ((error = fget(td, uap->fd, CAP_FLOCK, &fp)) != 0) return (error); if (fp->f_type != DTYPE_VNODE) { fdrop(fp, td); return (EOPNOTSUPP); } vp = fp->f_vnode; vfslocked = VFS_LOCK_GIANT(vp->v_mount); lf.l_whence = SEEK_SET; lf.l_start = 0; lf.l_len = 0; if (uap->how & LOCK_UN) { lf.l_type = F_UNLCK; atomic_clear_int(&fp->f_flag, FHASLOCK); error = VOP_ADVLOCK(vp, (caddr_t)fp, F_UNLCK, &lf, F_FLOCK); goto done2; } if (uap->how & LOCK_EX) lf.l_type = F_WRLCK; else if (uap->how & LOCK_SH) lf.l_type = F_RDLCK; else { error = EBADF; goto done2; } atomic_set_int(&fp->f_flag, FHASLOCK); error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, (uap->how & LOCK_NB) ? F_FLOCK : F_FLOCK | F_WAIT); done2: fdrop(fp, td); VFS_UNLOCK_GIANT(vfslocked); return (error); } /* * Duplicate the specified descriptor to a free descriptor. */ int dupfdopen(struct thread *td, struct filedesc *fdp, int indx, int dfd, int mode, int error) { struct file *wfp; struct file *fp; /* * If the to-be-dup'd fd number is greater than the allowed number * of file descriptors, or the fd to be dup'd has already been * closed, then reject. */ FILEDESC_XLOCK(fdp); if (dfd < 0 || dfd >= fdp->fd_nfiles || (wfp = fdp->fd_ofiles[dfd]) == NULL) { FILEDESC_XUNLOCK(fdp); return (EBADF); } /* * There are two cases of interest here. * * For ENODEV simply dup (dfd) to file descriptor (indx) and return. * * For ENXIO steal away the file structure from (dfd) and store it in * (indx). (dfd) is effectively closed by this operation. * * Any other error code is just returned. */ switch (error) { case ENODEV: /* * Check that the mode the file is being opened for is a * subset of the mode of the existing descriptor. */ if (((mode & (FREAD|FWRITE)) | wfp->f_flag) != wfp->f_flag) { FILEDESC_XUNLOCK(fdp); return (EACCES); } fp = fdp->fd_ofiles[indx]; fdp->fd_ofiles[indx] = wfp; fdp->fd_ofileflags[indx] = fdp->fd_ofileflags[dfd]; if (fp == NULL) fdused(fdp, indx); fhold(wfp); FILEDESC_XUNLOCK(fdp); if (fp != NULL) /* * We now own the reference to fp that the ofiles[] * array used to own. Release it. */ fdrop(fp, td); return (0); case ENXIO: /* * Steal away the file pointer from dfd and stuff it into indx. */ fp = fdp->fd_ofiles[indx]; fdp->fd_ofiles[indx] = fdp->fd_ofiles[dfd]; fdp->fd_ofiles[dfd] = NULL; fdp->fd_ofileflags[indx] = fdp->fd_ofileflags[dfd]; fdp->fd_ofileflags[dfd] = 0; fdunused(fdp, dfd); if (fp == NULL) fdused(fdp, indx); FILEDESC_XUNLOCK(fdp); /* * We now own the reference to fp that the ofiles[] array * used to own. Release it. */ if (fp != NULL) fdrop(fp, td); return (0); default: FILEDESC_XUNLOCK(fdp); return (error); } /* NOTREACHED */ } /* * Scan all active processes and prisons to see if any of them have a current * or root directory of `olddp'. If so, replace them with the new mount point. */ void mountcheckdirs(struct vnode *olddp, struct vnode *newdp) { struct filedesc *fdp; struct prison *pr; struct proc *p; int nrele; if (vrefcnt(olddp) == 1) return; nrele = 0; sx_slock(&allproc_lock); FOREACH_PROC_IN_SYSTEM(p) { fdp = fdhold(p); if (fdp == NULL) continue; FILEDESC_XLOCK(fdp); if (fdp->fd_cdir == olddp) { vref(newdp); fdp->fd_cdir = newdp; nrele++; } if (fdp->fd_rdir == olddp) { vref(newdp); fdp->fd_rdir = newdp; nrele++; } if (fdp->fd_jdir == olddp) { vref(newdp); fdp->fd_jdir = newdp; nrele++; } FILEDESC_XUNLOCK(fdp); fddrop(fdp); } sx_sunlock(&allproc_lock); if (rootvnode == olddp) { vref(newdp); rootvnode = newdp; nrele++; } mtx_lock(&prison0.pr_mtx); if (prison0.pr_root == olddp) { vref(newdp); prison0.pr_root = newdp; nrele++; } mtx_unlock(&prison0.pr_mtx); sx_slock(&allprison_lock); TAILQ_FOREACH(pr, &allprison, pr_list) { mtx_lock(&pr->pr_mtx); if (pr->pr_root == olddp) { vref(newdp); pr->pr_root = newdp; nrele++; } mtx_unlock(&pr->pr_mtx); } sx_sunlock(&allprison_lock); while (nrele--) vrele(olddp); } struct filedesc_to_leader * filedesc_to_leader_alloc(struct filedesc_to_leader *old, struct filedesc *fdp, struct proc *leader) { struct filedesc_to_leader *fdtol; fdtol = malloc(sizeof(struct filedesc_to_leader), M_FILEDESC_TO_LEADER, M_WAITOK); fdtol->fdl_refcount = 1; fdtol->fdl_holdcount = 0; fdtol->fdl_wakeup = 0; fdtol->fdl_leader = leader; if (old != NULL) { FILEDESC_XLOCK(fdp); fdtol->fdl_next = old->fdl_next; fdtol->fdl_prev = old; old->fdl_next = fdtol; fdtol->fdl_next->fdl_prev = fdtol; FILEDESC_XUNLOCK(fdp); } else { fdtol->fdl_next = fdtol; fdtol->fdl_prev = fdtol; } return (fdtol); } /* * Get file structures globally. */ static int sysctl_kern_file(SYSCTL_HANDLER_ARGS) { struct xfile xf; struct filedesc *fdp; struct file *fp; struct proc *p; int error, n; error = sysctl_wire_old_buffer(req, 0); if (error != 0) return (error); if (req->oldptr == NULL) { n = 0; sx_slock(&allproc_lock); FOREACH_PROC_IN_SYSTEM(p) { if (p->p_state == PRS_NEW) continue; fdp = fdhold(p); if (fdp == NULL) continue; /* overestimates sparse tables. */ if (fdp->fd_lastfile > 0) n += fdp->fd_lastfile; fddrop(fdp); } sx_sunlock(&allproc_lock); return (SYSCTL_OUT(req, 0, n * sizeof(xf))); } error = 0; bzero(&xf, sizeof(xf)); xf.xf_size = sizeof(xf); sx_slock(&allproc_lock); FOREACH_PROC_IN_SYSTEM(p) { PROC_LOCK(p); if (p->p_state == PRS_NEW) { PROC_UNLOCK(p); continue; } if (p_cansee(req->td, p) != 0) { PROC_UNLOCK(p); continue; } xf.xf_pid = p->p_pid; xf.xf_uid = p->p_ucred->cr_uid; PROC_UNLOCK(p); fdp = fdhold(p); if (fdp == NULL) continue; FILEDESC_SLOCK(fdp); for (n = 0; fdp->fd_refcnt > 0 && n < fdp->fd_nfiles; ++n) { if ((fp = fdp->fd_ofiles[n]) == NULL) continue; xf.xf_fd = n; xf.xf_file = fp; xf.xf_data = fp->f_data; xf.xf_vnode = fp->f_vnode; xf.xf_type = fp->f_type; xf.xf_count = fp->f_count; xf.xf_msgcount = 0; xf.xf_offset = fp->f_offset; xf.xf_flag = fp->f_flag; error = SYSCTL_OUT(req, &xf, sizeof(xf)); if (error) break; } FILEDESC_SUNLOCK(fdp); fddrop(fdp); if (error) break; } sx_sunlock(&allproc_lock); return (error); } SYSCTL_PROC(_kern, KERN_FILE, file, CTLTYPE_OPAQUE|CTLFLAG_RD, 0, 0, sysctl_kern_file, "S,xfile", "Entire file table"); #ifdef KINFO_OFILE_SIZE CTASSERT(sizeof(struct kinfo_ofile) == KINFO_OFILE_SIZE); #endif #ifdef COMPAT_FREEBSD7 static int export_vnode_for_osysctl(struct vnode *vp, int type, struct kinfo_ofile *kif, struct filedesc *fdp, struct sysctl_req *req) { int error; char *fullpath, *freepath; int vfslocked; bzero(kif, sizeof(*kif)); kif->kf_structsize = sizeof(*kif); vref(vp); kif->kf_fd = type; kif->kf_type = KF_TYPE_VNODE; /* This function only handles directories. */ if (vp->v_type != VDIR) { vrele(vp); return (ENOTDIR); } kif->kf_vnode_type = KF_VTYPE_VDIR; /* * This is not a true file descriptor, so we set a bogus refcount * and offset to indicate these fields should be ignored. */ kif->kf_ref_count = -1; kif->kf_offset = -1; freepath = NULL; fullpath = "-"; FILEDESC_SUNLOCK(fdp); vn_fullpath(curthread, vp, &fullpath, &freepath); vfslocked = VFS_LOCK_GIANT(vp->v_mount); vrele(vp); VFS_UNLOCK_GIANT(vfslocked); strlcpy(kif->kf_path, fullpath, sizeof(kif->kf_path)); if (freepath != NULL) free(freepath, M_TEMP); error = SYSCTL_OUT(req, kif, sizeof(*kif)); FILEDESC_SLOCK(fdp); return (error); } /* * Get per-process file descriptors for use by procstat(1), et al. */ static int sysctl_kern_proc_ofiledesc(SYSCTL_HANDLER_ARGS) { char *fullpath, *freepath; struct kinfo_ofile *kif; struct filedesc *fdp; int error, i, *name; struct shmfd *shmfd; struct socket *so; struct vnode *vp; struct file *fp; struct proc *p; struct tty *tp; int vfslocked; name = (int *)arg1; if ((p = pfind((pid_t)name[0])) == NULL) return (ESRCH); if ((error = p_candebug(curthread, p))) { PROC_UNLOCK(p); return (error); } fdp = fdhold(p); PROC_UNLOCK(p); if (fdp == NULL) return (ENOENT); kif = malloc(sizeof(*kif), M_TEMP, M_WAITOK); FILEDESC_SLOCK(fdp); if (fdp->fd_cdir != NULL) export_vnode_for_osysctl(fdp->fd_cdir, KF_FD_TYPE_CWD, kif, fdp, req); if (fdp->fd_rdir != NULL) export_vnode_for_osysctl(fdp->fd_rdir, KF_FD_TYPE_ROOT, kif, fdp, req); if (fdp->fd_jdir != NULL) export_vnode_for_osysctl(fdp->fd_jdir, KF_FD_TYPE_JAIL, kif, fdp, req); for (i = 0; i < fdp->fd_nfiles; i++) { if ((fp = fdp->fd_ofiles[i]) == NULL) continue; bzero(kif, sizeof(*kif)); kif->kf_structsize = sizeof(*kif); vp = NULL; so = NULL; tp = NULL; shmfd = NULL; kif->kf_fd = i; #ifdef CAPABILITIES /* * When reporting a capability, most fields will be from the * underlying object, but do mark as a capability. With * ofiledesc, we don't have a field to export the cap_rights_t, * but we do with the new filedesc. */ if (fp->f_type == DTYPE_CAPABILITY) { kif->kf_flags |= KF_FLAG_CAPABILITY; (void)cap_funwrap(fp, 0, &fp); } #else KASSERT(fp->f_type != DTYPE_CAPABILITY, ("sysctl_kern_proc_ofiledesc: saw capability")); #endif switch (fp->f_type) { case DTYPE_VNODE: kif->kf_type = KF_TYPE_VNODE; vp = fp->f_vnode; break; case DTYPE_SOCKET: kif->kf_type = KF_TYPE_SOCKET; so = fp->f_data; break; case DTYPE_PIPE: kif->kf_type = KF_TYPE_PIPE; break; case DTYPE_FIFO: kif->kf_type = KF_TYPE_FIFO; vp = fp->f_vnode; break; case DTYPE_KQUEUE: kif->kf_type = KF_TYPE_KQUEUE; break; case DTYPE_CRYPTO: kif->kf_type = KF_TYPE_CRYPTO; break; case DTYPE_MQUEUE: kif->kf_type = KF_TYPE_MQUEUE; break; case DTYPE_SHM: kif->kf_type = KF_TYPE_SHM; shmfd = fp->f_data; break; case DTYPE_SEM: kif->kf_type = KF_TYPE_SEM; break; case DTYPE_PTS: kif->kf_type = KF_TYPE_PTS; tp = fp->f_data; break; #ifdef PROCDESC case DTYPE_PROCDESC: kif->kf_type = KF_TYPE_PROCDESC; break; #endif default: kif->kf_type = KF_TYPE_UNKNOWN; break; } kif->kf_ref_count = fp->f_count; if (fp->f_flag & FREAD) kif->kf_flags |= KF_FLAG_READ; if (fp->f_flag & FWRITE) kif->kf_flags |= KF_FLAG_WRITE; if (fp->f_flag & FAPPEND) kif->kf_flags |= KF_FLAG_APPEND; if (fp->f_flag & FASYNC) kif->kf_flags |= KF_FLAG_ASYNC; if (fp->f_flag & FFSYNC) kif->kf_flags |= KF_FLAG_FSYNC; if (fp->f_flag & FNONBLOCK) kif->kf_flags |= KF_FLAG_NONBLOCK; if (fp->f_flag & O_DIRECT) kif->kf_flags |= KF_FLAG_DIRECT; if (fp->f_flag & FHASLOCK) kif->kf_flags |= KF_FLAG_HASLOCK; kif->kf_offset = fp->f_offset; if (vp != NULL) { vref(vp); switch (vp->v_type) { case VNON: kif->kf_vnode_type = KF_VTYPE_VNON; break; case VREG: kif->kf_vnode_type = KF_VTYPE_VREG; break; case VDIR: kif->kf_vnode_type = KF_VTYPE_VDIR; break; case VBLK: kif->kf_vnode_type = KF_VTYPE_VBLK; break; case VCHR: kif->kf_vnode_type = KF_VTYPE_VCHR; break; case VLNK: kif->kf_vnode_type = KF_VTYPE_VLNK; break; case VSOCK: kif->kf_vnode_type = KF_VTYPE_VSOCK; break; case VFIFO: kif->kf_vnode_type = KF_VTYPE_VFIFO; break; case VBAD: kif->kf_vnode_type = KF_VTYPE_VBAD; break; default: kif->kf_vnode_type = KF_VTYPE_UNKNOWN; break; } /* * It is OK to drop the filedesc lock here as we will * re-validate and re-evaluate its properties when * the loop continues. */ freepath = NULL; fullpath = "-"; FILEDESC_SUNLOCK(fdp); vn_fullpath(curthread, vp, &fullpath, &freepath); vfslocked = VFS_LOCK_GIANT(vp->v_mount); vrele(vp); VFS_UNLOCK_GIANT(vfslocked); strlcpy(kif->kf_path, fullpath, sizeof(kif->kf_path)); if (freepath != NULL) free(freepath, M_TEMP); FILEDESC_SLOCK(fdp); } if (so != NULL) { struct sockaddr *sa; if (so->so_proto->pr_usrreqs->pru_sockaddr(so, &sa) == 0 && sa->sa_len <= sizeof(kif->kf_sa_local)) { bcopy(sa, &kif->kf_sa_local, sa->sa_len); free(sa, M_SONAME); } if (so->so_proto->pr_usrreqs->pru_peeraddr(so, &sa) == 0 && sa->sa_len <= sizeof(kif->kf_sa_peer)) { bcopy(sa, &kif->kf_sa_peer, sa->sa_len); free(sa, M_SONAME); } kif->kf_sock_domain = so->so_proto->pr_domain->dom_family; kif->kf_sock_type = so->so_type; kif->kf_sock_protocol = so->so_proto->pr_protocol; } if (tp != NULL) { strlcpy(kif->kf_path, tty_devname(tp), sizeof(kif->kf_path)); } if (shmfd != NULL) shm_path(shmfd, kif->kf_path, sizeof(kif->kf_path)); error = SYSCTL_OUT(req, kif, sizeof(*kif)); if (error) break; } FILEDESC_SUNLOCK(fdp); fddrop(fdp); free(kif, M_TEMP); return (0); } static SYSCTL_NODE(_kern_proc, KERN_PROC_OFILEDESC, ofiledesc, CTLFLAG_RD, sysctl_kern_proc_ofiledesc, "Process ofiledesc entries"); #endif /* COMPAT_FREEBSD7 */ #ifdef KINFO_FILE_SIZE CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE); #endif static int export_fd_for_sysctl(void *data, int type, int fd, int fflags, int refcnt, int64_t offset, int fd_is_cap, cap_rights_t fd_cap_rights, struct kinfo_file *kif, struct sysctl_req *req) { struct { int fflag; int kf_fflag; } fflags_table[] = { { FAPPEND, KF_FLAG_APPEND }, { FASYNC, KF_FLAG_ASYNC }, { FFSYNC, KF_FLAG_FSYNC }, { FHASLOCK, KF_FLAG_HASLOCK }, { FNONBLOCK, KF_FLAG_NONBLOCK }, { FREAD, KF_FLAG_READ }, { FWRITE, KF_FLAG_WRITE }, { O_CREAT, KF_FLAG_CREAT }, { O_DIRECT, KF_FLAG_DIRECT }, { O_EXCL, KF_FLAG_EXCL }, { O_EXEC, KF_FLAG_EXEC }, { O_EXLOCK, KF_FLAG_EXLOCK }, { O_NOFOLLOW, KF_FLAG_NOFOLLOW }, { O_SHLOCK, KF_FLAG_SHLOCK }, { O_TRUNC, KF_FLAG_TRUNC } }; #define NFFLAGS (sizeof(fflags_table) / sizeof(*fflags_table)) struct vnode *vp; int error, vfslocked; unsigned int i; bzero(kif, sizeof(*kif)); switch (type) { case KF_TYPE_FIFO: case KF_TYPE_VNODE: vp = (struct vnode *)data; error = fill_vnode_info(vp, kif); vfslocked = VFS_LOCK_GIANT(vp->v_mount); vrele(vp); VFS_UNLOCK_GIANT(vfslocked); break; case KF_TYPE_SOCKET: error = fill_socket_info((struct socket *)data, kif); break; case KF_TYPE_PIPE: error = fill_pipe_info((struct pipe *)data, kif); break; case KF_TYPE_PTS: error = fill_pts_info((struct tty *)data, kif); break; case KF_TYPE_PROCDESC: error = fill_procdesc_info((struct procdesc *)data, kif); break; case KF_TYPE_SHM: error = fill_shm_info((struct file *)data, kif); break; default: error = 0; } if (error == 0) kif->kf_status |= KF_ATTR_VALID; /* * Translate file access flags. */ for (i = 0; i < NFFLAGS; i++) if (fflags & fflags_table[i].fflag) kif->kf_flags |= fflags_table[i].kf_fflag; if (fd_is_cap) kif->kf_flags |= KF_FLAG_CAPABILITY; if (fd_is_cap) kif->kf_cap_rights = fd_cap_rights; kif->kf_fd = fd; kif->kf_type = type; kif->kf_ref_count = refcnt; kif->kf_offset = offset; /* Pack record size down */ kif->kf_structsize = offsetof(struct kinfo_file, kf_path) + strlen(kif->kf_path) + 1; kif->kf_structsize = roundup(kif->kf_structsize, sizeof(uint64_t)); error = SYSCTL_OUT(req, kif, kif->kf_structsize); return (error); } /* * Get per-process file descriptors for use by procstat(1), et al. */ static int sysctl_kern_proc_filedesc(SYSCTL_HANDLER_ARGS) { struct file *fp; struct filedesc *fdp; struct kinfo_file *kif; struct proc *p; struct vnode *cttyvp, *textvp, *tracevp; size_t oldidx; int64_t offset; void *data; int error, i, *name; int fd_is_cap, type, refcnt, fflags; cap_rights_t fd_cap_rights; name = (int *)arg1; if ((p = pfind((pid_t)name[0])) == NULL) return (ESRCH); if ((error = p_candebug(curthread, p))) { PROC_UNLOCK(p); return (error); } /* ktrace vnode */ tracevp = p->p_tracevp; if (tracevp != NULL) vref(tracevp); /* text vnode */ textvp = p->p_textvp; if (textvp != NULL) vref(textvp); /* Controlling tty. */ cttyvp = NULL; if (p->p_pgrp != NULL && p->p_pgrp->pg_session != NULL) { cttyvp = p->p_pgrp->pg_session->s_ttyvp; if (cttyvp != NULL) vref(cttyvp); } fdp = fdhold(p); PROC_UNLOCK(p); kif = malloc(sizeof(*kif), M_TEMP, M_WAITOK); if (tracevp != NULL) export_fd_for_sysctl(tracevp, KF_TYPE_VNODE, KF_FD_TYPE_TRACE, FREAD | FWRITE, -1, -1, 0, 0, kif, req); if (textvp != NULL) export_fd_for_sysctl(textvp, KF_TYPE_VNODE, KF_FD_TYPE_TEXT, FREAD, -1, -1, 0, 0, kif, req); if (cttyvp != NULL) export_fd_for_sysctl(cttyvp, KF_TYPE_VNODE, KF_FD_TYPE_CTTY, FREAD | FWRITE, -1, -1, 0, 0, kif, req); if (fdp == NULL) goto fail; FILEDESC_SLOCK(fdp); /* working directory */ if (fdp->fd_cdir != NULL) { vref(fdp->fd_cdir); data = fdp->fd_cdir; FILEDESC_SUNLOCK(fdp); export_fd_for_sysctl(data, KF_TYPE_VNODE, KF_FD_TYPE_CWD, FREAD, -1, -1, 0, 0, kif, req); FILEDESC_SLOCK(fdp); } /* root directory */ if (fdp->fd_rdir != NULL) { vref(fdp->fd_rdir); data = fdp->fd_rdir; FILEDESC_SUNLOCK(fdp); export_fd_for_sysctl(data, KF_TYPE_VNODE, KF_FD_TYPE_ROOT, FREAD, -1, -1, 0, 0, kif, req); FILEDESC_SLOCK(fdp); } /* jail directory */ if (fdp->fd_jdir != NULL) { vref(fdp->fd_jdir); data = fdp->fd_jdir; FILEDESC_SUNLOCK(fdp); export_fd_for_sysctl(data, KF_TYPE_VNODE, KF_FD_TYPE_JAIL, FREAD, -1, -1, 0, 0, kif, req); FILEDESC_SLOCK(fdp); } for (i = 0; i < fdp->fd_nfiles; i++) { if ((fp = fdp->fd_ofiles[i]) == NULL) continue; data = NULL; fd_is_cap = 0; fd_cap_rights = 0; #ifdef CAPABILITIES /* * When reporting a capability, most fields will be from the * underlying object, but do mark as a capability and export * the capability rights mask. */ if (fp->f_type == DTYPE_CAPABILITY) { fd_is_cap = 1; fd_cap_rights = cap_rights(fp); (void)cap_funwrap(fp, 0, &fp); } #else /* !CAPABILITIES */ KASSERT(fp->f_type != DTYPE_CAPABILITY, ("sysctl_kern_proc_filedesc: saw capability")); #endif switch (fp->f_type) { case DTYPE_VNODE: type = KF_TYPE_VNODE; vref(fp->f_vnode); data = fp->f_vnode; break; case DTYPE_SOCKET: type = KF_TYPE_SOCKET; data = fp->f_data; break; case DTYPE_PIPE: type = KF_TYPE_PIPE; data = fp->f_data; break; case DTYPE_FIFO: type = KF_TYPE_FIFO; vref(fp->f_vnode); data = fp->f_vnode; break; case DTYPE_KQUEUE: type = KF_TYPE_KQUEUE; break; case DTYPE_CRYPTO: type = KF_TYPE_CRYPTO; break; case DTYPE_MQUEUE: type = KF_TYPE_MQUEUE; break; case DTYPE_SHM: type = KF_TYPE_SHM; data = fp; break; case DTYPE_SEM: type = KF_TYPE_SEM; break; case DTYPE_PTS: type = KF_TYPE_PTS; data = fp->f_data; break; #ifdef PROCDESC case DTYPE_PROCDESC: type = KF_TYPE_PROCDESC; data = fp->f_data; break; #endif default: type = KF_TYPE_UNKNOWN; break; } refcnt = fp->f_count; fflags = fp->f_flag; offset = fp->f_offset; /* * Create sysctl entry. * It is OK to drop the filedesc lock here as we will * re-validate and re-evaluate its properties when * the loop continues. */ oldidx = req->oldidx; if (type == KF_TYPE_VNODE || type == KF_TYPE_FIFO) FILEDESC_SUNLOCK(fdp); error = export_fd_for_sysctl(data, type, i, fflags, refcnt, offset, fd_is_cap, fd_cap_rights, kif, req); if (type == KF_TYPE_VNODE || type == KF_TYPE_FIFO) FILEDESC_SLOCK(fdp); if (error) { if (error == ENOMEM) { /* * The hack to keep the ABI of sysctl * kern.proc.filedesc intact, but not * to account a partially copied * kinfo_file into the oldidx. */ req->oldidx = oldidx; error = 0; } break; } } FILEDESC_SUNLOCK(fdp); fail: if (fdp != NULL) fddrop(fdp); free(kif, M_TEMP); return (error); } int vntype_to_kinfo(int vtype) { struct { int vtype; int kf_vtype; } vtypes_table[] = { { VBAD, KF_VTYPE_VBAD }, { VBLK, KF_VTYPE_VBLK }, { VCHR, KF_VTYPE_VCHR }, { VDIR, KF_VTYPE_VDIR }, { VFIFO, KF_VTYPE_VFIFO }, { VLNK, KF_VTYPE_VLNK }, { VNON, KF_VTYPE_VNON }, { VREG, KF_VTYPE_VREG }, { VSOCK, KF_VTYPE_VSOCK } }; #define NVTYPES (sizeof(vtypes_table) / sizeof(*vtypes_table)) unsigned int i; /* * Perform vtype translation. */ for (i = 0; i < NVTYPES; i++) if (vtypes_table[i].vtype == vtype) break; if (i < NVTYPES) return (vtypes_table[i].kf_vtype); return (KF_VTYPE_UNKNOWN); } static int fill_vnode_info(struct vnode *vp, struct kinfo_file *kif) { struct vattr va; char *fullpath, *freepath; int error, vfslocked; if (vp == NULL) return (1); kif->kf_vnode_type = vntype_to_kinfo(vp->v_type); freepath = NULL; fullpath = "-"; error = vn_fullpath(curthread, vp, &fullpath, &freepath); if (error == 0) { strlcpy(kif->kf_path, fullpath, sizeof(kif->kf_path)); } if (freepath != NULL) free(freepath, M_TEMP); /* * Retrieve vnode attributes. */ va.va_fsid = VNOVAL; va.va_rdev = NODEV; vfslocked = VFS_LOCK_GIANT(vp->v_mount); vn_lock(vp, LK_SHARED | LK_RETRY); error = VOP_GETATTR(vp, &va, curthread->td_ucred); VOP_UNLOCK(vp, 0); VFS_UNLOCK_GIANT(vfslocked); if (error != 0) return (error); if (va.va_fsid != VNOVAL) kif->kf_un.kf_file.kf_file_fsid = va.va_fsid; else kif->kf_un.kf_file.kf_file_fsid = vp->v_mount->mnt_stat.f_fsid.val[0]; kif->kf_un.kf_file.kf_file_fileid = va.va_fileid; kif->kf_un.kf_file.kf_file_mode = MAKEIMODE(va.va_type, va.va_mode); kif->kf_un.kf_file.kf_file_size = va.va_size; kif->kf_un.kf_file.kf_file_rdev = va.va_rdev; return (0); } static int fill_socket_info(struct socket *so, struct kinfo_file *kif) { struct sockaddr *sa; struct inpcb *inpcb; struct unpcb *unpcb; int error; if (so == NULL) return (1); kif->kf_sock_domain = so->so_proto->pr_domain->dom_family; kif->kf_sock_type = so->so_type; kif->kf_sock_protocol = so->so_proto->pr_protocol; kif->kf_un.kf_sock.kf_sock_pcb = (uintptr_t)so->so_pcb; switch(kif->kf_sock_domain) { case AF_INET: case AF_INET6: if (kif->kf_sock_protocol == IPPROTO_TCP) { if (so->so_pcb != NULL) { inpcb = (struct inpcb *)(so->so_pcb); kif->kf_un.kf_sock.kf_sock_inpcb = (uintptr_t)inpcb->inp_ppcb; } } break; case AF_UNIX: if (so->so_pcb != NULL) { unpcb = (struct unpcb *)(so->so_pcb); if (unpcb->unp_conn) { kif->kf_un.kf_sock.kf_sock_unpconn = (uintptr_t)unpcb->unp_conn; kif->kf_un.kf_sock.kf_sock_rcv_sb_state = so->so_rcv.sb_state; kif->kf_un.kf_sock.kf_sock_snd_sb_state = so->so_snd.sb_state; } } break; } error = so->so_proto->pr_usrreqs->pru_sockaddr(so, &sa); if (error == 0 && sa->sa_len <= sizeof(kif->kf_sa_local)) { bcopy(sa, &kif->kf_sa_local, sa->sa_len); free(sa, M_SONAME); } error = so->so_proto->pr_usrreqs->pru_peeraddr(so, &sa); if (error == 0 && sa->sa_len <= sizeof(kif->kf_sa_peer)) { bcopy(sa, &kif->kf_sa_peer, sa->sa_len); free(sa, M_SONAME); } strncpy(kif->kf_path, so->so_proto->pr_domain->dom_name, sizeof(kif->kf_path)); return (0); } static int fill_pts_info(struct tty *tp, struct kinfo_file *kif) { if (tp == NULL) return (1); kif->kf_un.kf_pts.kf_pts_dev = tty_udev(tp); strlcpy(kif->kf_path, tty_devname(tp), sizeof(kif->kf_path)); return (0); } static int fill_pipe_info(struct pipe *pi, struct kinfo_file *kif) { if (pi == NULL) return (1); kif->kf_un.kf_pipe.kf_pipe_addr = (uintptr_t)pi; kif->kf_un.kf_pipe.kf_pipe_peer = (uintptr_t)pi->pipe_peer; kif->kf_un.kf_pipe.kf_pipe_buffer_cnt = pi->pipe_buffer.cnt; return (0); } static int fill_procdesc_info(struct procdesc *pdp, struct kinfo_file *kif) { if (pdp == NULL) return (1); kif->kf_un.kf_proc.kf_pid = pdp->pd_pid; return (0); } static int fill_shm_info(struct file *fp, struct kinfo_file *kif) { struct thread *td; struct stat sb; td = curthread; if (fp->f_data == NULL) return (1); if (fo_stat(fp, &sb, td->td_ucred, td) != 0) return (1); shm_path(fp->f_data, kif->kf_path, sizeof(kif->kf_path)); kif->kf_un.kf_file.kf_file_mode = sb.st_mode; kif->kf_un.kf_file.kf_file_size = sb.st_size; return (0); } static SYSCTL_NODE(_kern_proc, KERN_PROC_FILEDESC, filedesc, CTLFLAG_RD, sysctl_kern_proc_filedesc, "Process filedesc entries"); #ifdef DDB /* * For the purposes of debugging, generate a human-readable string for the * file type. */ static const char * file_type_to_name(short type) { switch (type) { case 0: return ("zero"); case DTYPE_VNODE: return ("vnod"); case DTYPE_SOCKET: return ("sock"); case DTYPE_PIPE: return ("pipe"); case DTYPE_FIFO: return ("fifo"); case DTYPE_KQUEUE: return ("kque"); case DTYPE_CRYPTO: return ("crpt"); case DTYPE_MQUEUE: return ("mque"); case DTYPE_SHM: return ("shm"); case DTYPE_SEM: return ("ksem"); default: return ("unkn"); } } /* * For the purposes of debugging, identify a process (if any, perhaps one of * many) that references the passed file in its file descriptor array. Return * NULL if none. */ static struct proc * file_to_first_proc(struct file *fp) { struct filedesc *fdp; struct proc *p; int n; FOREACH_PROC_IN_SYSTEM(p) { if (p->p_state == PRS_NEW) continue; fdp = p->p_fd; if (fdp == NULL) continue; for (n = 0; n < fdp->fd_nfiles; n++) { if (fp == fdp->fd_ofiles[n]) return (p); } } return (NULL); } static void db_print_file(struct file *fp, int header) { struct proc *p; if (header) db_printf("%8s %4s %8s %8s %4s %5s %6s %8s %5s %12s\n", "File", "Type", "Data", "Flag", "GCFl", "Count", "MCount", "Vnode", "FPID", "FCmd"); p = file_to_first_proc(fp); db_printf("%8p %4s %8p %08x %04x %5d %6d %8p %5d %12s\n", fp, file_type_to_name(fp->f_type), fp->f_data, fp->f_flag, 0, fp->f_count, 0, fp->f_vnode, p != NULL ? p->p_pid : -1, p != NULL ? p->p_comm : "-"); } DB_SHOW_COMMAND(file, db_show_file) { struct file *fp; if (!have_addr) { db_printf("usage: show file <addr>\n"); return; } fp = (struct file *)addr; db_print_file(fp, 1); } DB_SHOW_COMMAND(files, db_show_files) { struct filedesc *fdp; struct file *fp; struct proc *p; int header; int n; header = 1; FOREACH_PROC_IN_SYSTEM(p) { if (p->p_state == PRS_NEW) continue; if ((fdp = p->p_fd) == NULL) continue; for (n = 0; n < fdp->fd_nfiles; ++n) { if ((fp = fdp->fd_ofiles[n]) == NULL) continue; db_print_file(fp, header); header = 0; } } } #endif SYSCTL_INT(_kern, KERN_MAXFILESPERPROC, maxfilesperproc, CTLFLAG_RW, &maxfilesperproc, 0, "Maximum files allowed open per process"); SYSCTL_INT(_kern, KERN_MAXFILES, maxfiles, CTLFLAG_RW, &maxfiles, 0, "Maximum number of files"); SYSCTL_INT(_kern, OID_AUTO, openfiles, CTLFLAG_RD, __DEVOLATILE(int *, &openfiles), 0, "System-wide number of open files"); /* ARGSUSED*/ static void filelistinit(void *dummy) { file_zone = uma_zcreate("Files", sizeof(struct file), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); mtx_init(&sigio_lock, "sigio lock", NULL, MTX_DEF); mtx_init(&fdesc_mtx, "fdesc", NULL, MTX_DEF); } SYSINIT(select, SI_SUB_LOCK, SI_ORDER_FIRST, filelistinit, NULL); /*-------------------------------------------------------------------*/ static int badfo_readwrite(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags, struct thread *td) { return (EBADF); } static int badfo_truncate(struct file *fp, off_t length, struct ucred *active_cred, struct thread *td) { return (EINVAL); } static int badfo_ioctl(struct file *fp, u_long com, void *data, struct ucred *active_cred, struct thread *td) { return (EBADF); } static int badfo_poll(struct file *fp, int events, struct ucred *active_cred, struct thread *td) { return (0); } static int badfo_kqfilter(struct file *fp, struct knote *kn) { return (EBADF); } static int badfo_stat(struct file *fp, struct stat *sb, struct ucred *active_cred, struct thread *td) { return (EBADF); } static int badfo_close(struct file *fp, struct thread *td) { return (EBADF); } static int badfo_chmod(struct file *fp, mode_t mode, struct ucred *active_cred, struct thread *td) { return (EBADF); } static int badfo_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred, struct thread *td) { return (EBADF); } struct fileops badfileops = { .fo_read = badfo_readwrite, .fo_write = badfo_readwrite, .fo_truncate = badfo_truncate, .fo_ioctl = badfo_ioctl, .fo_poll = badfo_poll, .fo_kqfilter = badfo_kqfilter, .fo_stat = badfo_stat, .fo_close = badfo_close, .fo_chmod = badfo_chmod, .fo_chown = badfo_chown, }; int invfo_chmod(struct file *fp, mode_t mode, struct ucred *active_cred, struct thread *td) { return (EINVAL); } int invfo_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred, struct thread *td) { return (EINVAL); } /*-------------------------------------------------------------------*/ /* * File Descriptor pseudo-device driver (/dev/fd/). * * Opening minor device N dup()s the file (if any) connected to file * descriptor N belonging to the calling process. Note that this driver * consists of only the ``open()'' routine, because all subsequent * references to this file will be direct to the other driver. * * XXX: we could give this one a cloning event handler if necessary. */ /* ARGSUSED */ static int fdopen(struct cdev *dev, int mode, int type, struct thread *td) { /* * XXX Kludge: set curthread->td_dupfd to contain the value of the * the file descriptor being sought for duplication. The error * return ensures that the vnode for this device will be released * by vn_open. Open will detect this special error and take the * actions in dupfdopen below. Other callers of vn_open or VOP_OPEN * will simply report the error. */ td->td_dupfd = dev2unit(dev); return (ENODEV); } static struct cdevsw fildesc_cdevsw = { .d_version = D_VERSION, .d_open = fdopen, .d_name = "FD", }; static void fildesc_drvinit(void *unused) { struct cdev *dev; dev = make_dev_credf(MAKEDEV_ETERNAL, &fildesc_cdevsw, 0, NULL, UID_ROOT, GID_WHEEL, 0666, "fd/0"); make_dev_alias(dev, "stdin"); dev = make_dev_credf(MAKEDEV_ETERNAL, &fildesc_cdevsw, 1, NULL, UID_ROOT, GID_WHEEL, 0666, "fd/1"); make_dev_alias(dev, "stdout"); dev = make_dev_credf(MAKEDEV_ETERNAL, &fildesc_cdevsw, 2, NULL, UID_ROOT, GID_WHEEL, 0666, "fd/2"); make_dev_alias(dev, "stderr"); } SYSINIT(fildescdev, SI_SUB_DRIVERS, SI_ORDER_MIDDLE, fildesc_drvinit, NULL);