Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/s3/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/usie/@/amd64/compile/hs32/modules/usr/src/sys/modules/oce/@/amd64/compile/hs32/modules/usr/src/sys/modules/sis/@/i386/i386/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/s3/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/usie/@/amd64/compile/hs32/modules/usr/src/sys/modules/oce/@/amd64/compile/hs32/modules/usr/src/sys/modules/sis/@/i386/i386/i686_mem.c |
/*- * Copyright (c) 1999 Michael Smith <msmith@freebsd.org> * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/i386/i386/i686_mem.c 217506 2011-01-17 17:30:35Z jkim $"); #include <sys/param.h> #include <sys/kernel.h> #include <sys/systm.h> #include <sys/malloc.h> #include <sys/memrange.h> #include <sys/smp.h> #include <sys/sysctl.h> #include <machine/cputypes.h> #include <machine/md_var.h> #include <machine/specialreg.h> /* * i686 memory range operations * * This code will probably be impenetrable without reference to the * Intel Pentium Pro documentation. */ static char *mem_owner_bios = "BIOS"; #define MR686_FIXMTRR (1<<0) #define mrwithin(mr, a) \ (((a) >= (mr)->mr_base) && ((a) < ((mr)->mr_base + (mr)->mr_len))) #define mroverlap(mra, mrb) \ (mrwithin(mra, mrb->mr_base) || mrwithin(mrb, mra->mr_base)) #define mrvalid(base, len) \ ((!(base & ((1 << 12) - 1))) && /* base is multiple of 4k */ \ ((len) >= (1 << 12)) && /* length is >= 4k */ \ powerof2((len)) && /* ... and power of two */ \ !((base) & ((len) - 1))) /* range is not discontiuous */ #define mrcopyflags(curr, new) \ (((curr) & ~MDF_ATTRMASK) | ((new) & MDF_ATTRMASK)) static int mtrrs_disabled; TUNABLE_INT("machdep.disable_mtrrs", &mtrrs_disabled); SYSCTL_INT(_machdep, OID_AUTO, disable_mtrrs, CTLFLAG_RDTUN, &mtrrs_disabled, 0, "Disable i686 MTRRs."); static void i686_mrinit(struct mem_range_softc *sc); static int i686_mrset(struct mem_range_softc *sc, struct mem_range_desc *mrd, int *arg); static void i686_mrAPinit(struct mem_range_softc *sc); static void i686_mrreinit(struct mem_range_softc *sc); static struct mem_range_ops i686_mrops = { i686_mrinit, i686_mrset, i686_mrAPinit, i686_mrreinit }; /* XXX for AP startup hook */ static u_int64_t mtrrcap, mtrrdef; /* The bitmask for the PhysBase and PhysMask fields of the variable MTRRs. */ static u_int64_t mtrr_physmask; static struct mem_range_desc *mem_range_match(struct mem_range_softc *sc, struct mem_range_desc *mrd); static void i686_mrfetch(struct mem_range_softc *sc); static int i686_mtrrtype(int flags); static int i686_mrt2mtrr(int flags, int oldval); static int i686_mtrrconflict(int flag1, int flag2); static void i686_mrstore(struct mem_range_softc *sc); static void i686_mrstoreone(void *arg); static struct mem_range_desc *i686_mtrrfixsearch(struct mem_range_softc *sc, u_int64_t addr); static int i686_mrsetlow(struct mem_range_softc *sc, struct mem_range_desc *mrd, int *arg); static int i686_mrsetvariable(struct mem_range_softc *sc, struct mem_range_desc *mrd, int *arg); /* i686 MTRR type to memory range type conversion */ static int i686_mtrrtomrt[] = { MDF_UNCACHEABLE, MDF_WRITECOMBINE, MDF_UNKNOWN, MDF_UNKNOWN, MDF_WRITETHROUGH, MDF_WRITEPROTECT, MDF_WRITEBACK }; #define MTRRTOMRTLEN (sizeof(i686_mtrrtomrt) / sizeof(i686_mtrrtomrt[0])) static int i686_mtrr2mrt(int val) { if (val < 0 || val >= MTRRTOMRTLEN) return (MDF_UNKNOWN); return (i686_mtrrtomrt[val]); } /* * i686 MTRR conflicts. Writeback and uncachable may overlap. */ static int i686_mtrrconflict(int flag1, int flag2) { flag1 &= MDF_ATTRMASK; flag2 &= MDF_ATTRMASK; if (flag1 == flag2 || (flag1 == MDF_WRITEBACK && flag2 == MDF_UNCACHEABLE) || (flag2 == MDF_WRITEBACK && flag1 == MDF_UNCACHEABLE)) return (0); return (1); } /* * Look for an exactly-matching range. */ static struct mem_range_desc * mem_range_match(struct mem_range_softc *sc, struct mem_range_desc *mrd) { struct mem_range_desc *cand; int i; for (i = 0, cand = sc->mr_desc; i < sc->mr_ndesc; i++, cand++) if ((cand->mr_base == mrd->mr_base) && (cand->mr_len == mrd->mr_len)) return (cand); return (NULL); } /* * Fetch the current mtrr settings from the current CPU (assumed to * all be in sync in the SMP case). Note that if we are here, we * assume that MTRRs are enabled, and we may or may not have fixed * MTRRs. */ static void i686_mrfetch(struct mem_range_softc *sc) { struct mem_range_desc *mrd; u_int64_t msrv; int i, j, msr; mrd = sc->mr_desc; /* Get fixed-range MTRRs. */ if (sc->mr_cap & MR686_FIXMTRR) { msr = MSR_MTRR64kBase; for (i = 0; i < (MTRR_N64K / 8); i++, msr++) { msrv = rdmsr(msr); for (j = 0; j < 8; j++, mrd++) { mrd->mr_flags = (mrd->mr_flags & ~MDF_ATTRMASK) | i686_mtrr2mrt(msrv & 0xff) | MDF_ACTIVE; if (mrd->mr_owner[0] == 0) strcpy(mrd->mr_owner, mem_owner_bios); msrv = msrv >> 8; } } msr = MSR_MTRR16kBase; for (i = 0; i < (MTRR_N16K / 8); i++, msr++) { msrv = rdmsr(msr); for (j = 0; j < 8; j++, mrd++) { mrd->mr_flags = (mrd->mr_flags & ~MDF_ATTRMASK) | i686_mtrr2mrt(msrv & 0xff) | MDF_ACTIVE; if (mrd->mr_owner[0] == 0) strcpy(mrd->mr_owner, mem_owner_bios); msrv = msrv >> 8; } } msr = MSR_MTRR4kBase; for (i = 0; i < (MTRR_N4K / 8); i++, msr++) { msrv = rdmsr(msr); for (j = 0; j < 8; j++, mrd++) { mrd->mr_flags = (mrd->mr_flags & ~MDF_ATTRMASK) | i686_mtrr2mrt(msrv & 0xff) | MDF_ACTIVE; if (mrd->mr_owner[0] == 0) strcpy(mrd->mr_owner, mem_owner_bios); msrv = msrv >> 8; } } } /* Get remainder which must be variable MTRRs. */ msr = MSR_MTRRVarBase; for (; (mrd - sc->mr_desc) < sc->mr_ndesc; msr += 2, mrd++) { msrv = rdmsr(msr); mrd->mr_flags = (mrd->mr_flags & ~MDF_ATTRMASK) | i686_mtrr2mrt(msrv & MTRR_PHYSBASE_TYPE); mrd->mr_base = msrv & mtrr_physmask; msrv = rdmsr(msr + 1); mrd->mr_flags = (msrv & MTRR_PHYSMASK_VALID) ? (mrd->mr_flags | MDF_ACTIVE) : (mrd->mr_flags & ~MDF_ACTIVE); /* Compute the range from the mask. Ick. */ mrd->mr_len = (~(msrv & mtrr_physmask) & (mtrr_physmask | 0xfffLL)) + 1; if (!mrvalid(mrd->mr_base, mrd->mr_len)) mrd->mr_flags |= MDF_BOGUS; /* If unclaimed and active, must be the BIOS. */ if ((mrd->mr_flags & MDF_ACTIVE) && (mrd->mr_owner[0] == 0)) strcpy(mrd->mr_owner, mem_owner_bios); } } /* * Return the MTRR memory type matching a region's flags */ static int i686_mtrrtype(int flags) { int i; flags &= MDF_ATTRMASK; for (i = 0; i < MTRRTOMRTLEN; i++) { if (i686_mtrrtomrt[i] == MDF_UNKNOWN) continue; if (flags == i686_mtrrtomrt[i]) return (i); } return (-1); } static int i686_mrt2mtrr(int flags, int oldval) { int val; if ((val = i686_mtrrtype(flags)) == -1) return (oldval & 0xff); return (val & 0xff); } /* * Update running CPU(s) MTRRs to match the ranges in the descriptor * list. * * XXX Must be called with interrupts enabled. */ static void i686_mrstore(struct mem_range_softc *sc) { #ifdef SMP /* * We should use ipi_all_but_self() to call other CPUs into a * locking gate, then call a target function to do this work. * The "proper" solution involves a generalised locking gate * implementation, not ready yet. */ smp_rendezvous(NULL, i686_mrstoreone, NULL, sc); #else disable_intr(); /* disable interrupts */ i686_mrstoreone(sc); enable_intr(); #endif } /* * Update the current CPU's MTRRs with those represented in the * descriptor list. Note that we do this wholesale rather than just * stuffing one entry; this is simpler (but slower, of course). */ static void i686_mrstoreone(void *arg) { struct mem_range_softc *sc = arg; struct mem_range_desc *mrd; u_int64_t omsrv, msrv; int i, j, msr; u_long cr0, cr4; mrd = sc->mr_desc; critical_enter(); /* Disable PGE. */ cr4 = rcr4(); load_cr4(cr4 & ~CR4_PGE); /* Disable caches (CD = 1, NW = 0). */ cr0 = rcr0(); load_cr0((cr0 & ~CR0_NW) | CR0_CD); /* Flushes caches and TLBs. */ wbinvd(); invltlb(); /* Disable MTRRs (E = 0). */ wrmsr(MSR_MTRRdefType, rdmsr(MSR_MTRRdefType) & ~MTRR_DEF_ENABLE); /* Set fixed-range MTRRs. */ if (sc->mr_cap & MR686_FIXMTRR) { msr = MSR_MTRR64kBase; for (i = 0; i < (MTRR_N64K / 8); i++, msr++) { msrv = 0; omsrv = rdmsr(msr); for (j = 7; j >= 0; j--) { msrv = msrv << 8; msrv |= i686_mrt2mtrr((mrd + j)->mr_flags, omsrv >> (j * 8)); } wrmsr(msr, msrv); mrd += 8; } msr = MSR_MTRR16kBase; for (i = 0; i < (MTRR_N16K / 8); i++, msr++) { msrv = 0; omsrv = rdmsr(msr); for (j = 7; j >= 0; j--) { msrv = msrv << 8; msrv |= i686_mrt2mtrr((mrd + j)->mr_flags, omsrv >> (j * 8)); } wrmsr(msr, msrv); mrd += 8; } msr = MSR_MTRR4kBase; for (i = 0; i < (MTRR_N4K / 8); i++, msr++) { msrv = 0; omsrv = rdmsr(msr); for (j = 7; j >= 0; j--) { msrv = msrv << 8; msrv |= i686_mrt2mtrr((mrd + j)->mr_flags, omsrv >> (j * 8)); } wrmsr(msr, msrv); mrd += 8; } } /* Set remainder which must be variable MTRRs. */ msr = MSR_MTRRVarBase; for (; (mrd - sc->mr_desc) < sc->mr_ndesc; msr += 2, mrd++) { /* base/type register */ omsrv = rdmsr(msr); if (mrd->mr_flags & MDF_ACTIVE) { msrv = mrd->mr_base & mtrr_physmask; msrv |= i686_mrt2mtrr(mrd->mr_flags, omsrv); } else { msrv = 0; } wrmsr(msr, msrv); /* mask/active register */ if (mrd->mr_flags & MDF_ACTIVE) { msrv = MTRR_PHYSMASK_VALID | (~(mrd->mr_len - 1) & mtrr_physmask); } else { msrv = 0; } wrmsr(msr + 1, msrv); } /* Flush caches and TLBs. */ wbinvd(); invltlb(); /* Enable MTRRs. */ wrmsr(MSR_MTRRdefType, rdmsr(MSR_MTRRdefType) | MTRR_DEF_ENABLE); /* Restore caches and PGE. */ load_cr0(cr0); load_cr4(cr4); critical_exit(); } /* * Hunt for the fixed MTRR referencing (addr) */ static struct mem_range_desc * i686_mtrrfixsearch(struct mem_range_softc *sc, u_int64_t addr) { struct mem_range_desc *mrd; int i; for (i = 0, mrd = sc->mr_desc; i < (MTRR_N64K + MTRR_N16K + MTRR_N4K); i++, mrd++) if ((addr >= mrd->mr_base) && (addr < (mrd->mr_base + mrd->mr_len))) return (mrd); return (NULL); } /* * Try to satisfy the given range request by manipulating the fixed * MTRRs that cover low memory. * * Note that we try to be generous here; we'll bloat the range out to * the next higher/lower boundary to avoid the consumer having to know * too much about the mechanisms here. * * XXX note that this will have to be updated when we start supporting * "busy" ranges. */ static int i686_mrsetlow(struct mem_range_softc *sc, struct mem_range_desc *mrd, int *arg) { struct mem_range_desc *first_md, *last_md, *curr_md; /* Range check. */ if (((first_md = i686_mtrrfixsearch(sc, mrd->mr_base)) == NULL) || ((last_md = i686_mtrrfixsearch(sc, mrd->mr_base + mrd->mr_len - 1)) == NULL)) return (EINVAL); /* Check that we aren't doing something risky. */ if (!(mrd->mr_flags & MDF_FORCE)) for (curr_md = first_md; curr_md <= last_md; curr_md++) { if ((curr_md->mr_flags & MDF_ATTRMASK) == MDF_UNKNOWN) return (EACCES); } /* Set flags, clear set-by-firmware flag. */ for (curr_md = first_md; curr_md <= last_md; curr_md++) { curr_md->mr_flags = mrcopyflags(curr_md->mr_flags & ~MDF_FIRMWARE, mrd->mr_flags); bcopy(mrd->mr_owner, curr_md->mr_owner, sizeof(mrd->mr_owner)); } return (0); } /* * Modify/add a variable MTRR to satisfy the request. * * XXX needs to be updated to properly support "busy" ranges. */ static int i686_mrsetvariable(struct mem_range_softc *sc, struct mem_range_desc *mrd, int *arg) { struct mem_range_desc *curr_md, *free_md; int i; /* * Scan the currently active variable descriptors, look for * one we exactly match (straight takeover) and for possible * accidental overlaps. * * Keep track of the first empty variable descriptor in case * we can't perform a takeover. */ i = (sc->mr_cap & MR686_FIXMTRR) ? MTRR_N64K + MTRR_N16K + MTRR_N4K : 0; curr_md = sc->mr_desc + i; free_md = NULL; for (; i < sc->mr_ndesc; i++, curr_md++) { if (curr_md->mr_flags & MDF_ACTIVE) { /* Exact match? */ if ((curr_md->mr_base == mrd->mr_base) && (curr_md->mr_len == mrd->mr_len)) { /* Whoops, owned by someone. */ if (curr_md->mr_flags & MDF_BUSY) return (EBUSY); /* Check that we aren't doing something risky */ if (!(mrd->mr_flags & MDF_FORCE) && ((curr_md->mr_flags & MDF_ATTRMASK) == MDF_UNKNOWN)) return (EACCES); /* Ok, just hijack this entry. */ free_md = curr_md; break; } /* Non-exact overlap? */ if (mroverlap(curr_md, mrd)) { /* Between conflicting region types? */ if (i686_mtrrconflict(curr_md->mr_flags, mrd->mr_flags)) return (EINVAL); } } else if (free_md == NULL) { free_md = curr_md; } } /* Got somewhere to put it? */ if (free_md == NULL) return (ENOSPC); /* Set up new descriptor. */ free_md->mr_base = mrd->mr_base; free_md->mr_len = mrd->mr_len; free_md->mr_flags = mrcopyflags(MDF_ACTIVE, mrd->mr_flags); bcopy(mrd->mr_owner, free_md->mr_owner, sizeof(mrd->mr_owner)); return (0); } /* * Handle requests to set memory range attributes by manipulating MTRRs. */ static int i686_mrset(struct mem_range_softc *sc, struct mem_range_desc *mrd, int *arg) { struct mem_range_desc *targ; int error = 0; switch(*arg) { case MEMRANGE_SET_UPDATE: /* * Make sure that what's being asked for is even * possible at all. */ if (!mrvalid(mrd->mr_base, mrd->mr_len) || i686_mtrrtype(mrd->mr_flags) == -1) return (EINVAL); #define FIXTOP ((MTRR_N64K * 0x10000) + (MTRR_N16K * 0x4000) + (MTRR_N4K * 0x1000)) /* Are the "low memory" conditions applicable? */ if ((sc->mr_cap & MR686_FIXMTRR) && ((mrd->mr_base + mrd->mr_len) <= FIXTOP)) { if ((error = i686_mrsetlow(sc, mrd, arg)) != 0) return (error); } else { /* It's time to play with variable MTRRs. */ if ((error = i686_mrsetvariable(sc, mrd, arg)) != 0) return (error); } break; case MEMRANGE_SET_REMOVE: if ((targ = mem_range_match(sc, mrd)) == NULL) return (ENOENT); if (targ->mr_flags & MDF_FIXACTIVE) return (EPERM); if (targ->mr_flags & MDF_BUSY) return (EBUSY); targ->mr_flags &= ~MDF_ACTIVE; targ->mr_owner[0] = 0; break; default: return (EOPNOTSUPP); } /* Update the hardware. */ i686_mrstore(sc); /* Refetch to see where we're at. */ i686_mrfetch(sc); return (0); } /* * Work out how many ranges we support, initialise storage for them, * and fetch the initial settings. */ static void i686_mrinit(struct mem_range_softc *sc) { struct mem_range_desc *mrd; u_int regs[4]; int i, nmdesc = 0, pabits; mtrrcap = rdmsr(MSR_MTRRcap); mtrrdef = rdmsr(MSR_MTRRdefType); /* For now, bail out if MTRRs are not enabled. */ if (!(mtrrdef & MTRR_DEF_ENABLE)) { if (bootverbose) printf("CPU supports MTRRs but not enabled\n"); return; } nmdesc = mtrrcap & MTRR_CAP_VCNT; if (bootverbose) printf("Pentium Pro MTRR support enabled\n"); /* * Determine the size of the PhysMask and PhysBase fields in * the variable range MTRRs. If the extended CPUID 0x80000008 * is present, use that to figure out how many physical * address bits the CPU supports. Otherwise, default to 36 * address bits. */ if (cpu_exthigh >= 0x80000008) { do_cpuid(0x80000008, regs); pabits = regs[0] & 0xff; } else pabits = 36; mtrr_physmask = ((1ULL << pabits) - 1) & ~0xfffULL; /* If fixed MTRRs supported and enabled. */ if ((mtrrcap & MTRR_CAP_FIXED) && (mtrrdef & MTRR_DEF_FIXED_ENABLE)) { sc->mr_cap = MR686_FIXMTRR; nmdesc += MTRR_N64K + MTRR_N16K + MTRR_N4K; } sc->mr_desc = malloc(nmdesc * sizeof(struct mem_range_desc), M_MEMDESC, M_WAITOK | M_ZERO); sc->mr_ndesc = nmdesc; mrd = sc->mr_desc; /* Populate the fixed MTRR entries' base/length. */ if (sc->mr_cap & MR686_FIXMTRR) { for (i = 0; i < MTRR_N64K; i++, mrd++) { mrd->mr_base = i * 0x10000; mrd->mr_len = 0x10000; mrd->mr_flags = MDF_FIXBASE | MDF_FIXLEN | MDF_FIXACTIVE; } for (i = 0; i < MTRR_N16K; i++, mrd++) { mrd->mr_base = i * 0x4000 + 0x80000; mrd->mr_len = 0x4000; mrd->mr_flags = MDF_FIXBASE | MDF_FIXLEN | MDF_FIXACTIVE; } for (i = 0; i < MTRR_N4K; i++, mrd++) { mrd->mr_base = i * 0x1000 + 0xc0000; mrd->mr_len = 0x1000; mrd->mr_flags = MDF_FIXBASE | MDF_FIXLEN | MDF_FIXACTIVE; } } /* * Get current settings, anything set now is considered to * have been set by the firmware. (XXX has something already * played here?) */ i686_mrfetch(sc); mrd = sc->mr_desc; for (i = 0; i < sc->mr_ndesc; i++, mrd++) { if (mrd->mr_flags & MDF_ACTIVE) mrd->mr_flags |= MDF_FIRMWARE; } } /* * Initialise MTRRs on an AP after the BSP has run the init code. */ static void i686_mrAPinit(struct mem_range_softc *sc) { i686_mrstoreone(sc); wrmsr(MSR_MTRRdefType, mtrrdef); } /* * Re-initialise running CPU(s) MTRRs to match the ranges in the descriptor * list. * * XXX Must be called with interrupts enabled. */ static void i686_mrreinit(struct mem_range_softc *sc) { #ifdef SMP /* * We should use ipi_all_but_self() to call other CPUs into a * locking gate, then call a target function to do this work. * The "proper" solution involves a generalised locking gate * implementation, not ready yet. */ smp_rendezvous(NULL, (void *)i686_mrAPinit, NULL, sc); #else disable_intr(); /* disable interrupts */ i686_mrAPinit(sc); enable_intr(); #endif } static void i686_mem_drvinit(void *unused) { if (mtrrs_disabled) return; if (!(cpu_feature & CPUID_MTRR)) return; if ((cpu_id & 0xf00) != 0x600 && (cpu_id & 0xf00) != 0xf00) return; switch (cpu_vendor_id) { case CPU_VENDOR_INTEL: case CPU_VENDOR_AMD: case CPU_VENDOR_CENTAUR: break; default: return; } mem_range_softc.mr_op = &i686_mrops; } SYSINIT(i686memdev, SI_SUB_DRIVERS, SI_ORDER_FIRST, i686_mem_drvinit, NULL);