Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/s3/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/usie/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/aue/@/amd64/compile/hs32/modules/usr/src/sys/modules/drm/mach64/@/dev/sfxge/common/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/s3/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/usie/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/aue/@/amd64/compile/hs32/modules/usr/src/sys/modules/drm/mach64/@/dev/sfxge/common/siena_nic.c |
/*- * Copyright 2009 Solarflare Communications Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/dev/sfxge/common/siena_nic.c 228100 2011-11-28 20:28:23Z philip $"); #include "efsys.h" #include "efx.h" #include "efx_impl.h" #if EFSYS_OPT_SIENA static __checkReturn int siena_nic_get_partn_mask( __in efx_nic_t *enp, __out unsigned int *maskp) { efx_mcdi_req_t req; uint8_t outbuf[MC_CMD_NVRAM_TYPES_OUT_LEN]; int rc; req.emr_cmd = MC_CMD_NVRAM_TYPES; EFX_STATIC_ASSERT(MC_CMD_NVRAM_TYPES_IN_LEN == 0); req.emr_in_buf = NULL; req.emr_in_length = 0; req.emr_out_buf = outbuf; req.emr_out_length = sizeof (outbuf); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_NVRAM_TYPES_OUT_LEN) { rc = EMSGSIZE; goto fail2; } *maskp = MCDI_OUT_DWORD(req, NVRAM_TYPES_OUT_TYPES); return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, int, rc); return (rc); } static __checkReturn int siena_nic_exit_assertion_handler( __in efx_nic_t *enp) { efx_mcdi_req_t req; uint8_t payload[MC_CMD_REBOOT_IN_LEN]; int rc; req.emr_cmd = MC_CMD_REBOOT; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_REBOOT_IN_LEN; EFX_STATIC_ASSERT(MC_CMD_REBOOT_OUT_LEN == 0); req.emr_out_buf = NULL; req.emr_out_length = 0; MCDI_IN_SET_DWORD(req, REBOOT_IN_FLAGS, MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0 && req.emr_rc != EIO) { rc = req.emr_rc; goto fail1; } return (0); fail1: EFSYS_PROBE1(fail1, int, rc); return (rc); } static __checkReturn int siena_nic_read_assertion( __in efx_nic_t *enp) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_GET_ASSERTS_IN_LEN, MC_CMD_GET_ASSERTS_OUT_LEN)]; const char *reason; unsigned int flags; unsigned int index; unsigned int ofst; int retry; int rc; /* * Before we attempt to chat to the MC, we should verify that the MC * isn't in it's assertion handler, either due to a previous reboot, * or because we're reinitializing due to an eec_exception(). * * Use GET_ASSERTS to read any assertion state that may be present. * Retry this command twice. Once because a boot-time assertion failure * might cause the 1st MCDI request to fail. And once again because * we might race with siena_nic_exit_assertion_handler() running on the * other port. */ retry = 2; do { req.emr_cmd = MC_CMD_GET_ASSERTS; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_GET_ASSERTS_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_GET_ASSERTS_OUT_LEN; MCDI_IN_SET_DWORD(req, GET_ASSERTS_IN_CLEAR, 1); efx_mcdi_execute(enp, &req); } while ((req.emr_rc == EINTR || req.emr_rc == EIO) && retry-- > 0); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_GET_ASSERTS_OUT_LEN) { rc = EMSGSIZE; goto fail2; } /* Print out any assertion state recorded */ flags = MCDI_OUT_DWORD(req, GET_ASSERTS_OUT_GLOBAL_FLAGS); if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS) return (0); reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL) ? "system-level assertion" : (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL) ? "thread-level assertion" : (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED) ? "watchdog reset" : "unknown assertion"; EFSYS_PROBE3(mcpu_assertion, const char *, reason, unsigned int, MCDI_OUT_DWORD(req, GET_ASSERTS_OUT_SAVED_PC_OFFS), unsigned int, MCDI_OUT_DWORD(req, GET_ASSERTS_OUT_THREAD_OFFS)); /* Print out the registers */ ofst = MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_OFST; for (index = 1; index < 32; index++) { EFSYS_PROBE2(mcpu_register, unsigned int, index, unsigned int, EFX_DWORD_FIELD(*MCDI_OUT(req, efx_dword_t, ofst), EFX_DWORD_0)); ofst += sizeof (efx_dword_t); } EFSYS_ASSERT(ofst <= MC_CMD_GET_ASSERTS_OUT_LEN); return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, int, rc); return (rc); } static __checkReturn int siena_nic_attach( __in efx_nic_t *enp, __in boolean_t attach) { efx_mcdi_req_t req; uint8_t payload[MC_CMD_DRV_ATTACH_IN_LEN]; int rc; req.emr_cmd = MC_CMD_DRV_ATTACH; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_DRV_ATTACH_IN_LEN; req.emr_out_buf = NULL; req.emr_out_length = 0; MCDI_IN_SET_DWORD(req, DRV_ATTACH_IN_NEW_STATE, attach ? 1 : 0); MCDI_IN_SET_DWORD(req, DRV_ATTACH_IN_UPDATE, 1); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_DRV_ATTACH_OUT_LEN) { rc = EMSGSIZE; goto fail2; } return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, int, rc); return (rc); } #if EFSYS_OPT_PCIE_TUNE __checkReturn int siena_nic_pcie_extended_sync( __in efx_nic_t *enp) { uint8_t inbuf[MC_CMD_WORKAROUND_IN_LEN]; efx_mcdi_req_t req; int rc; EFSYS_ASSERT3U(enp->en_family, ==, EFX_FAMILY_SIENA); req.emr_cmd = MC_CMD_WORKAROUND; req.emr_in_buf = inbuf; req.emr_in_length = sizeof (inbuf); EFX_STATIC_ASSERT(MC_CMD_WORKAROUND_OUT_LEN == 0); req.emr_out_buf = NULL; req.emr_out_length = 0; MCDI_IN_SET_DWORD(req, WORKAROUND_IN_TYPE, MC_CMD_WORKAROUND_BUG17230); MCDI_IN_SET_DWORD(req, WORKAROUND_IN_ENABLED, 1); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } return (0); fail1: EFSYS_PROBE1(fail1, int, rc); return (rc); } #endif /* EFSYS_OPT_PCIE_TUNE */ static __checkReturn int siena_board_cfg( __in efx_nic_t *enp) { efx_nic_cfg_t *encp = &(enp->en_nic_cfg); efx_mcdi_iface_t *emip = &(enp->en_u.siena.enu_mip); uint8_t outbuf[MAX(MC_CMD_GET_BOARD_CFG_OUT_LEN, MC_CMD_GET_RESOURCE_LIMITS_OUT_LEN)]; efx_mcdi_req_t req; uint8_t *src; int rc; /* Board configuration */ req.emr_cmd = MC_CMD_GET_BOARD_CFG; EFX_STATIC_ASSERT(MC_CMD_GET_BOARD_CFG_IN_LEN == 0); req.emr_in_buf = NULL; req.emr_in_length = 0; req.emr_out_buf = outbuf; req.emr_out_length = MC_CMD_GET_BOARD_CFG_OUT_LEN; efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_GET_BOARD_CFG_OUT_LEN) { rc = EMSGSIZE; goto fail2; } if (emip->emi_port == 1) src = MCDI_OUT2(req, uint8_t, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0); else src = MCDI_OUT2(req, uint8_t, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1); EFX_MAC_ADDR_COPY(encp->enc_mac_addr, src); encp->enc_board_type = MCDI_OUT_DWORD(req, GET_BOARD_CFG_OUT_BOARD_TYPE); /* Resource limits */ req.emr_cmd = MC_CMD_GET_RESOURCE_LIMITS; EFX_STATIC_ASSERT(MC_CMD_GET_RESOURCE_LIMITS_IN_LEN == 0); req.emr_in_buf = NULL; req.emr_in_length = 0; req.emr_out_buf = outbuf; req.emr_out_length = MC_CMD_GET_RESOURCE_LIMITS_OUT_LEN; efx_mcdi_execute(enp, &req); if (req.emr_rc == 0) { if (req.emr_out_length_used < MC_CMD_GET_RESOURCE_LIMITS_OUT_LEN) { rc = EMSGSIZE; goto fail3; } encp->enc_evq_limit = MCDI_OUT_DWORD(req, GET_RESOURCE_LIMITS_OUT_EVQ); encp->enc_txq_limit = MIN(EFX_TXQ_LIMIT_TARGET, MCDI_OUT_DWORD(req, GET_RESOURCE_LIMITS_OUT_TXQ)); encp->enc_rxq_limit = MIN(EFX_RXQ_LIMIT_TARGET, MCDI_OUT_DWORD(req, GET_RESOURCE_LIMITS_OUT_RXQ)); } else if (req.emr_rc == ENOTSUP) { encp->enc_evq_limit = 1024; encp->enc_txq_limit = EFX_TXQ_LIMIT_TARGET; encp->enc_rxq_limit = EFX_RXQ_LIMIT_TARGET; } else { rc = req.emr_rc; goto fail4; } encp->enc_buftbl_limit = SIENA_SRAM_ROWS - (encp->enc_txq_limit * 16) - (encp->enc_rxq_limit * 64); return (0); fail4: EFSYS_PROBE(fail4); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, int, rc); return (rc); } static __checkReturn int siena_phy_cfg( __in efx_nic_t *enp) { efx_port_t *epp = &(enp->en_port); efx_nic_cfg_t *encp = &(enp->en_nic_cfg); efx_mcdi_req_t req; uint8_t outbuf[MC_CMD_GET_PHY_CFG_OUT_LEN]; int rc; req.emr_cmd = MC_CMD_GET_PHY_CFG; EFX_STATIC_ASSERT(MC_CMD_GET_PHY_CFG_IN_LEN == 0); req.emr_in_buf = NULL; req.emr_in_length = 0; req.emr_out_buf = outbuf; req.emr_out_length = sizeof (outbuf); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_GET_PHY_CFG_OUT_LEN) { rc = EMSGSIZE; goto fail2; } encp->enc_phy_type = MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_TYPE); #if EFSYS_OPT_NAMES (void) strncpy(encp->enc_phy_name, MCDI_OUT2(req, char, GET_PHY_CFG_OUT_NAME), MIN(sizeof (encp->enc_phy_name) - 1, MC_CMD_GET_PHY_CFG_OUT_NAME_LEN)); #endif /* EFSYS_OPT_NAMES */ (void) memset(encp->enc_phy_revision, 0, sizeof (encp->enc_phy_revision)); memcpy(encp->enc_phy_revision, MCDI_OUT2(req, char, GET_PHY_CFG_OUT_REVISION), MIN(sizeof (encp->enc_phy_revision) - 1, MC_CMD_GET_PHY_CFG_OUT_REVISION_LEN)); #if EFSYS_OPT_PHY_LED_CONTROL encp->enc_led_mask = ((1 << EFX_PHY_LED_DEFAULT) | (1 << EFX_PHY_LED_OFF) | (1 << EFX_PHY_LED_ON)); #endif /* EFSYS_OPT_PHY_LED_CONTROL */ #if EFSYS_OPT_PHY_PROPS encp->enc_phy_nprops = 0; #endif /* EFSYS_OPT_PHY_PROPS */ /* Get the media type of the fixed port, if recognised. */ EFX_STATIC_ASSERT(MC_CMD_MEDIA_XAUI == EFX_PHY_MEDIA_XAUI); EFX_STATIC_ASSERT(MC_CMD_MEDIA_CX4 == EFX_PHY_MEDIA_CX4); EFX_STATIC_ASSERT(MC_CMD_MEDIA_KX4 == EFX_PHY_MEDIA_KX4); EFX_STATIC_ASSERT(MC_CMD_MEDIA_XFP == EFX_PHY_MEDIA_XFP); EFX_STATIC_ASSERT(MC_CMD_MEDIA_SFP_PLUS == EFX_PHY_MEDIA_SFP_PLUS); EFX_STATIC_ASSERT(MC_CMD_MEDIA_BASE_T == EFX_PHY_MEDIA_BASE_T); epp->ep_fixed_port_type = MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_MEDIA_TYPE); if (epp->ep_fixed_port_type >= EFX_PHY_MEDIA_NTYPES) epp->ep_fixed_port_type = EFX_PHY_MEDIA_INVALID; epp->ep_phy_cap_mask = MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_SUPPORTED_CAP); #if EFSYS_OPT_PHY_FLAGS encp->enc_phy_flags_mask = MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_FLAGS); #endif /* EFSYS_OPT_PHY_FLAGS */ encp->enc_port = (uint8_t)MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_PRT); /* Populate internal state */ encp->enc_siena_channel = (uint8_t)MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_CHANNEL); #if EFSYS_OPT_PHY_STATS encp->enc_siena_phy_stat_mask = MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_STATS_MASK); /* Convert the MCDI statistic mask into the EFX_PHY_STAT mask */ siena_phy_decode_stats(enp, encp->enc_siena_phy_stat_mask, NULL, &encp->enc_phy_stat_mask, NULL); #endif /* EFSYS_OPT_PHY_STATS */ #if EFSYS_OPT_PHY_BIST encp->enc_bist_mask = 0; if (MCDI_OUT_DWORD_FIELD(req, GET_PHY_CFG_OUT_FLAGS, GET_PHY_CFG_OUT_BIST_CABLE_SHORT)) encp->enc_bist_mask |= (1 << EFX_PHY_BIST_TYPE_CABLE_SHORT); if (MCDI_OUT_DWORD_FIELD(req, GET_PHY_CFG_OUT_FLAGS, GET_PHY_CFG_OUT_BIST_CABLE_LONG)) encp->enc_bist_mask |= (1 << EFX_PHY_BIST_TYPE_CABLE_LONG); if (MCDI_OUT_DWORD_FIELD(req, GET_PHY_CFG_OUT_FLAGS, GET_PHY_CFG_OUT_BIST)) encp->enc_bist_mask |= (1 << EFX_PHY_BIST_TYPE_NORMAL); #endif /* EFSYS_OPT_BIST */ return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, int, rc); return (rc); } #if EFSYS_OPT_LOOPBACK static __checkReturn int siena_loopback_cfg( __in efx_nic_t *enp) { efx_nic_cfg_t *encp = &(enp->en_nic_cfg); efx_mcdi_req_t req; uint8_t outbuf[MC_CMD_GET_LOOPBACK_MODES_OUT_LEN]; int rc; req.emr_cmd = MC_CMD_GET_LOOPBACK_MODES; EFX_STATIC_ASSERT(MC_CMD_GET_LOOPBACK_MODES_IN_LEN == 0); req.emr_in_buf = NULL; req.emr_in_length = 0; req.emr_out_buf = outbuf; req.emr_out_length = sizeof (outbuf); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_GET_LOOPBACK_MODES_OUT_LEN) { rc = EMSGSIZE; goto fail2; } /* * We assert the MC_CMD_LOOPBACK and EFX_LOOPBACK namespaces agree * in siena_phy.c:siena_phy_get_link() */ encp->enc_loopback_types[EFX_LINK_100FDX] = EFX_LOOPBACK_MASK & MCDI_OUT_DWORD(req, GET_LOOPBACK_MODES_OUT_100M) & MCDI_OUT_DWORD(req, GET_LOOPBACK_MODES_OUT_SUGGESTED); encp->enc_loopback_types[EFX_LINK_1000FDX] = EFX_LOOPBACK_MASK & MCDI_OUT_DWORD(req, GET_LOOPBACK_MODES_OUT_1G) & MCDI_OUT_DWORD(req, GET_LOOPBACK_MODES_OUT_SUGGESTED); encp->enc_loopback_types[EFX_LINK_10000FDX] = EFX_LOOPBACK_MASK & MCDI_OUT_DWORD(req, GET_LOOPBACK_MODES_OUT_10G) & MCDI_OUT_DWORD(req, GET_LOOPBACK_MODES_OUT_SUGGESTED); encp->enc_loopback_types[EFX_LINK_UNKNOWN] = (1 << EFX_LOOPBACK_OFF) | encp->enc_loopback_types[EFX_LINK_100FDX] | encp->enc_loopback_types[EFX_LINK_1000FDX] | encp->enc_loopback_types[EFX_LINK_10000FDX]; return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, int, rc); return (rc); } #endif /* EFSYS_OPT_LOOPBACK */ #if EFSYS_OPT_MON_STATS static __checkReturn int siena_monitor_cfg( __in efx_nic_t *enp) { efx_nic_cfg_t *encp = &(enp->en_nic_cfg); efx_mcdi_req_t req; uint8_t outbuf[MCDI_CTL_SDU_LEN_MAX]; int rc; req.emr_cmd = MC_CMD_SENSOR_INFO; EFX_STATIC_ASSERT(MC_CMD_SENSOR_INFO_IN_LEN == 0); req.emr_in_buf = NULL; req.emr_in_length = 0; req.emr_out_buf = outbuf; req.emr_out_length = sizeof (outbuf); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_SENSOR_INFO_OUT_MASK_OFST + 4) { rc = EMSGSIZE; goto fail2; } encp->enc_siena_mon_stat_mask = MCDI_OUT_DWORD(req, SENSOR_INFO_OUT_MASK); encp->enc_mon_type = EFX_MON_SFC90X0; siena_mon_decode_stats(enp, encp->enc_siena_mon_stat_mask, NULL, &(encp->enc_mon_stat_mask), NULL); return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, int, rc); return (rc); } #endif /* EFSYS_OPT_MON_STATS */ __checkReturn int siena_nic_probe( __in efx_nic_t *enp) { efx_port_t *epp = &(enp->en_port); efx_nic_cfg_t *encp = &(enp->en_nic_cfg); siena_link_state_t sls; unsigned int mask; int rc; EFSYS_ASSERT3U(enp->en_family, ==, EFX_FAMILY_SIENA); /* Read clear any assertion state */ if ((rc = siena_nic_read_assertion(enp)) != 0) goto fail1; /* Exit the assertion handler */ if ((rc = siena_nic_exit_assertion_handler(enp)) != 0) goto fail2; /* Wrestle control from the BMC */ if ((rc = siena_nic_attach(enp, B_TRUE)) != 0) goto fail3; if ((rc = siena_board_cfg(enp)) != 0) goto fail4; encp->enc_evq_moderation_max = EFX_EV_TIMER_QUANTUM << FRF_CZ_TIMER_VAL_WIDTH; if ((rc = siena_phy_cfg(enp)) != 0) goto fail5; /* Obtain the default PHY advertised capabilities */ if ((rc = siena_nic_reset(enp)) != 0) goto fail6; if ((rc = siena_phy_get_link(enp, &sls)) != 0) goto fail7; epp->ep_default_adv_cap_mask = sls.sls_adv_cap_mask; epp->ep_adv_cap_mask = sls.sls_adv_cap_mask; #if EFSYS_OPT_VPD || EFSYS_OPT_NVRAM if ((rc = siena_nic_get_partn_mask(enp, &mask)) != 0) goto fail8; enp->en_u.siena.enu_partn_mask = mask; #endif #if EFSYS_OPT_MAC_STATS /* Wipe the MAC statistics */ if ((rc = siena_mac_stats_clear(enp)) != 0) goto fail9; #endif #if EFSYS_OPT_LOOPBACK if ((rc = siena_loopback_cfg(enp)) != 0) goto fail10; #endif #if EFSYS_OPT_MON_STATS if ((rc = siena_monitor_cfg(enp)) != 0) goto fail11; #endif encp->enc_features = enp->en_features; return (0); #if EFSYS_OPT_MON_STATS fail11: EFSYS_PROBE(fail11); #endif #if EFSYS_OPT_LOOPBACK fail10: EFSYS_PROBE(fail10); #endif #if EFSYS_OPT_MAC_STATS fail9: EFSYS_PROBE(fail9); #endif #if EFSYS_OPT_VPD || EFSYS_OPT_NVRAM fail8: EFSYS_PROBE(fail8); #endif fail7: EFSYS_PROBE(fail7); fail6: EFSYS_PROBE(fail6); fail5: EFSYS_PROBE(fail5); fail4: EFSYS_PROBE(fail4); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, int, rc); return (rc); } __checkReturn int siena_nic_reset( __in efx_nic_t *enp) { efx_mcdi_req_t req; int rc; EFSYS_ASSERT3U(enp->en_family, ==, EFX_FAMILY_SIENA); /* siena_nic_reset() is called to recover from BADASSERT failures. */ if ((rc = siena_nic_read_assertion(enp)) != 0) goto fail1; if ((rc = siena_nic_exit_assertion_handler(enp)) != 0) goto fail2; req.emr_cmd = MC_CMD_PORT_RESET; EFX_STATIC_ASSERT(MC_CMD_PORT_RESET_IN_LEN == 0); req.emr_in_buf = NULL; req.emr_in_length = 0; EFX_STATIC_ASSERT(MC_CMD_PORT_RESET_OUT_LEN == 0); req.emr_out_buf = NULL; req.emr_out_length = 0; efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail3; } return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, int, rc); return (0); } static __checkReturn int siena_nic_logging( __in efx_nic_t *enp) { efx_mcdi_req_t req; uint8_t payload[MC_CMD_LOG_CTRL_IN_LEN]; int rc; req.emr_cmd = MC_CMD_LOG_CTRL; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_LOG_CTRL_IN_LEN; EFX_STATIC_ASSERT(MC_CMD_LOG_CTRL_OUT_LEN == 0); req.emr_out_buf = NULL; req.emr_out_length = 0; MCDI_IN_SET_DWORD(req, LOG_CTRL_IN_LOG_DEST, MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ); MCDI_IN_SET_DWORD(req, LOG_CTRL_IN_LOG_DEST_EVQ, 0); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } return (0); fail1: EFSYS_PROBE1(fail1, int, rc); return (rc); } static void siena_nic_rx_cfg( __in efx_nic_t *enp) { efx_oword_t oword; /* * RX_INGR_EN is always enabled on Siena, because we rely on * the RX parser to be resiliant to missing SOP/EOP. */ EFX_BAR_READO(enp, FR_AZ_RX_CFG_REG, &oword); EFX_SET_OWORD_FIELD(oword, FRF_BZ_RX_INGR_EN, 1); EFX_BAR_WRITEO(enp, FR_AZ_RX_CFG_REG, &oword); /* Disable parsing of additional 802.1Q in Q packets */ EFX_BAR_READO(enp, FR_AZ_RX_FILTER_CTL_REG, &oword); EFX_SET_OWORD_FIELD(oword, FRF_CZ_RX_FILTER_ALL_VLAN_ETHERTYPES, 0); EFX_BAR_WRITEO(enp, FR_AZ_RX_FILTER_CTL_REG, &oword); } static void siena_nic_usrev_dis( __in efx_nic_t *enp) { efx_oword_t oword; EFX_POPULATE_OWORD_1(oword, FRF_CZ_USREV_DIS, 1); EFX_BAR_WRITEO(enp, FR_CZ_USR_EV_CFG, &oword); } __checkReturn int siena_nic_init( __in efx_nic_t *enp) { int rc; EFSYS_ASSERT3U(enp->en_family, ==, EFX_FAMILY_SIENA); if ((rc = siena_nic_logging(enp)) != 0) goto fail1; siena_sram_init(enp); /* Configure Siena's RX block */ siena_nic_rx_cfg(enp); /* Disable USR_EVents for now */ siena_nic_usrev_dis(enp); /* bug17057: Ensure set_link is called */ if ((rc = siena_phy_reconfigure(enp)) != 0) goto fail2; return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, int, rc); return (rc); } void siena_nic_fini( __in efx_nic_t *enp) { _NOTE(ARGUNUSED(enp)) } void siena_nic_unprobe( __in efx_nic_t *enp) { (void) siena_nic_attach(enp, B_FALSE); } #if EFSYS_OPT_DIAG static efx_register_set_t __cs __siena_registers[] = { { FR_AZ_ADR_REGION_REG_OFST, 0, 1 }, { FR_CZ_USR_EV_CFG_OFST, 0, 1 }, { FR_AZ_RX_CFG_REG_OFST, 0, 1 }, { FR_AZ_TX_CFG_REG_OFST, 0, 1 }, { FR_AZ_TX_RESERVED_REG_OFST, 0, 1 }, { FR_AZ_SRM_TX_DC_CFG_REG_OFST, 0, 1 }, { FR_AZ_RX_DC_CFG_REG_OFST, 0, 1 }, { FR_AZ_RX_DC_PF_WM_REG_OFST, 0, 1 }, { FR_AZ_DP_CTRL_REG_OFST, 0, 1 }, { FR_BZ_RX_RSS_TKEY_REG_OFST, 0, 1}, { FR_CZ_RX_RSS_IPV6_REG1_OFST, 0, 1}, { FR_CZ_RX_RSS_IPV6_REG2_OFST, 0, 1}, { FR_CZ_RX_RSS_IPV6_REG3_OFST, 0, 1} }; static const uint32_t __cs __siena_register_masks[] = { 0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x000103FF, 0x00000000, 0x00000000, 0x00000000, 0xFFFFFFFE, 0xFFFFFFFF, 0x0003FFFF, 0x00000000, 0x7FFF0037, 0xFFFF8000, 0xFFFFFFFF, 0x03FFFFFF, 0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF, 0x001FFFFF, 0x00000000, 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000, 0x000003FF, 0x00000000, 0x00000000, 0x00000000, 0x00000FFF, 0x00000000, 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000007, 0x00000000 }; static efx_register_set_t __cs __siena_tables[] = { { FR_AZ_RX_FILTER_TBL0_OFST, FR_AZ_RX_FILTER_TBL0_STEP, FR_AZ_RX_FILTER_TBL0_ROWS }, { FR_CZ_RX_MAC_FILTER_TBL0_OFST, FR_CZ_RX_MAC_FILTER_TBL0_STEP, FR_CZ_RX_MAC_FILTER_TBL0_ROWS }, { FR_AZ_RX_DESC_PTR_TBL_OFST, FR_AZ_RX_DESC_PTR_TBL_STEP, FR_CZ_RX_DESC_PTR_TBL_ROWS }, { FR_AZ_TX_DESC_PTR_TBL_OFST, FR_AZ_TX_DESC_PTR_TBL_STEP, FR_CZ_TX_DESC_PTR_TBL_ROWS }, { FR_AZ_TIMER_TBL_OFST, FR_AZ_TIMER_TBL_STEP, FR_CZ_TIMER_TBL_ROWS }, { FR_CZ_TX_FILTER_TBL0_OFST, FR_CZ_TX_FILTER_TBL0_STEP, FR_CZ_TX_FILTER_TBL0_ROWS }, { FR_CZ_TX_MAC_FILTER_TBL0_OFST, FR_CZ_TX_MAC_FILTER_TBL0_STEP, FR_CZ_TX_MAC_FILTER_TBL0_ROWS } }; static const uint32_t __cs __siena_table_masks[] = { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x000003FF, 0xFFFF0FFF, 0xFFFFFFFF, 0x00000E7F, 0x00000000, 0xFFFFFFFF, 0x0FFFFFFF, 0x01800000, 0x00000000, 0xFFFFFFFE, 0x0FFFFFFF, 0x0C000000, 0x00000000, 0x3FFFFFFF, 0x00000000, 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x000013FF, 0xFFFF07FF, 0xFFFFFFFF, 0x0000007F, 0x00000000, }; __checkReturn int siena_nic_register_test( __in efx_nic_t *enp) { efx_register_set_t *rsp; const uint32_t *dwordp; unsigned int nitems; unsigned int count; int rc; /* Fill out the register mask entries */ EFX_STATIC_ASSERT(EFX_ARRAY_SIZE(__siena_register_masks) == EFX_ARRAY_SIZE(__siena_registers) * 4); nitems = EFX_ARRAY_SIZE(__siena_registers); dwordp = __siena_register_masks; for (count = 0; count < nitems; ++count) { rsp = __siena_registers + count; rsp->mask.eo_u32[0] = *dwordp++; rsp->mask.eo_u32[1] = *dwordp++; rsp->mask.eo_u32[2] = *dwordp++; rsp->mask.eo_u32[3] = *dwordp++; } /* Fill out the register table entries */ EFX_STATIC_ASSERT(EFX_ARRAY_SIZE(__siena_table_masks) == EFX_ARRAY_SIZE(__siena_tables) * 4); nitems = EFX_ARRAY_SIZE(__siena_tables); dwordp = __siena_table_masks; for (count = 0; count < nitems; ++count) { rsp = __siena_tables + count; rsp->mask.eo_u32[0] = *dwordp++; rsp->mask.eo_u32[1] = *dwordp++; rsp->mask.eo_u32[2] = *dwordp++; rsp->mask.eo_u32[3] = *dwordp++; } if ((rc = efx_nic_test_registers(enp, __siena_registers, EFX_ARRAY_SIZE(__siena_registers))) != 0) goto fail1; if ((rc = efx_nic_test_tables(enp, __siena_tables, EFX_PATTERN_BYTE_ALTERNATE, EFX_ARRAY_SIZE(__siena_tables))) != 0) goto fail2; if ((rc = efx_nic_test_tables(enp, __siena_tables, EFX_PATTERN_BYTE_CHANGING, EFX_ARRAY_SIZE(__siena_tables))) != 0) goto fail3; if ((rc = efx_nic_test_tables(enp, __siena_tables, EFX_PATTERN_BIT_SWEEP, EFX_ARRAY_SIZE(__siena_tables))) != 0) goto fail4; return (0); fail4: EFSYS_PROBE(fail4); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, int, rc); return (rc); } #endif /* EFSYS_OPT_DIAG */ #endif /* EFSYS_OPT_SIENA */